Hierarchical Decision Diagrams
to Exploit Model Structure

Jean-Michel Couvreur' and Yann Thierry-Mieg?

I' Laboratoire Bordelais de Recherche en Informatique, France
Couvreur@labri u bordeaux fr
2 Laboratoire d’Informatique de Paris 6, France
Yann Thierry Mieg@lip6 fr

Abstract. Symbolic model-checking using binary decision diagrams (BDD) can
allow to represent very large state spaces. BDD give good results for synchronous
systems, particularly for circuits that are well adapted to a binary encoding of a
state. However both the operation definition mechanism (using more BDD) and
the state representation (purely linear traversal from root to leaves) show their
limits when trying to tackle globally asynchronous and typed specifications. Data
Decision Diagrams (DDD) [7]] are a directed acyclic graph structure that manip-
ulates(a priori unbounded) integer domain variables, and which offers a flexible
and compositional definition of operations through inductive homomorphisms.

We first introduce a new transitive closure unary operator for homomorphisms,
that heavily reduces the intermediate peak size effect common to symbolic ap-
proaches. We then extend the DDD definition to introduce hierarchy in the data
structure. We define Set Decision Diagrams, in which a variable’s domain is a
set of values. Concretely, it means the arcs of an SDD may be labeled with an
SDD (or a DDD), introducing the possibility of arbitrary depth nesting in the
data structure. We show how this data structure and operation framework is par-
ticularly adapted to the computation and representation of structured state-spaces,
and thus shows good potential for symbolic model-checking of software systems,
a problem that is difficult for plain BDD representations.

1 Introduction

Model checking of concurrent systems is a difficult problem that faces the well known
state-space explosion problem. Efficient techniques to tolerate extremely large state
spaces have been developed however, using a compact representation based on deci-
sion diagrams [1I2]]. However, these symbolic techniques suffer from the intermediate
peak size effect : the size of intermediate results is sometimes out of proportion with the
size of the result. This is particularly true of globally asynchronous systems [9]. To fight
this effect, and its dual on the size of the BDD representing the transition relation, the
works of for example have shown how to exploit modularity to decompose
a transition relation in various ways. This allows large gains with respect to a purely
linear encoding in traditional BDD approaches. More recently Ciardo in [4] showed in
the context of modular verification how a fixpoint evaluation that is guided by the vari-
able ordering can dramatically reduce the peak size effect. This is due to a saturation

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 443-457] 2005.
© IFIP International Federation for Information Processing 2005

444 J.-M. Couvreur and Y. Thierry-Mieg

algorithm that works from the leaves up, thus a large proportion of the nodes created at
each iteration are retained in the result.

The structure of a model is essential from the architectural point of view, but is
usually not well captured by symbolic representations. Indeed, in a BDD encoding, a
system state is seen as a linear path that traverses all the (binary) variables that represent
the system. This is a handicap for symbolic techniques when trying to tackle complex
specifications, as structure information is lost in this state encoding. Gupta proposed in
[10] an encoding of inductive Boolean functions using hierarchical BDD, in the context
of parametric circuits. The complexity of the transition model used in that work has
however prevented a more widespread use of this concept.

We define here a new hierarchical data decision structure, SDD, that allows to gen-
eralize some of these patterns of good decision diagram usage, in an open and flexible
framework, inductive homomorphisms. SDD are naturally adapted to the representa-
tion of state spaces composed in parallel behavior, with event based synchronizations.
The structure of a model is reflected in the hierarchy of the decision diagram encod-
ing, allowing sharing of both operations and state representation. SDD allow to flexibly
compute local fixpoints, and thus our model-checker though still very young offers per-
formance an order above NuSMYV [6]] and comparable to SMaRT [4]. The DDD/SDD
library is available under LGPL from ddd.1ip6. fr.

The paper is structured as follows : we first present data decision diagrams (2.1) and
labeled Petri nets (2.2)) as the context in which we work. Section 3] shows how we inte-
grated local saturation in our DDD operation framework. Section Ml introduces our new
Set Decision Diagram hierarchical structure and operations. Section [3] explains how
they can be used in the context of modular and hierarchical symbolic model checking
for labeled transition systems, and in particular our chosen P/T nets. We give perfor-
mances of our prototype in sections Bland[3l

2 Context

2.1 Data Decision Diagram Definition

Data Decision Diagrams (DDD) are a data structure for representing finite sets of
assignments sequences of the form (ej := x1) (e2:=x3) (e, := x,) where ¢; are vari-
ables and x; are the assigned integer values. When an ordering on the variables is fixed
and the values are booleans, DDD coincides with the well-known Binary Decision Di-
agram. When the ordering on the variables is the only assumption, DDD correspond to
the specialized version of the Multi-valued Decision Diagrams representing character-
istic function of sets [3]]. However DDD assume no variable ordering and, even more,
the same variable may occur many times in a same assignment sequence. Moreover,
variables are not assumed to be part of all paths. Therefore, the maximal length of a
sequence is not fixed, and sequences of different lengths can coexist in a DDD. This
feature is very useful when dealing with dynamic structures like queues.

DDD have two terminals : as usual for decision diagram, 1-leaves stand for accept-
ing terminators and O-leaves for non-accepting ones. Since there is no assumption on
the variable domains, the non-accepted sequences are suppressed from the structure. 0
is considered as the default value and is only used to denote the empty set of sequence.

ddd.lip6.fr

Hierarchical Decision Diagrams to Exploit Model Structure 445

This characteristic of DDD is important as it allows the use of variables of finite domain
with a priori unknown bounds. In the following, E denotes a set of variables, and for
any e in E, Dom(e) C IN represents the domain of e.

Definition 1 (Data Decision Diagram). The set of DDD is defined by d € if:

- de{0,1} or
— d ={e,a) with:
e ccFE
e «:Dom(e) —» , such that {x € Dom(e)|a(x) # 0} is finite.

We denote e > d, the DDD (e,@) with a(x) =d and for all y # x, a(y) = 0. We call
DDD sequence a DDD of the form e 1, e 2L

Although no ordering constraints are given, DDD represent sets of compatible DDD
sequences. Note that the DDD 0 represents the empty set and is therefore compatible
with any DDD sequence. The symmetric compatibility property is defined inductively
for two DDD sequences:

Definition 2 (Compatible DDD sequences).

— Any DDD sequence is compatible with itself.

X
— Sequences 1 and e — d are incompatible

— Sequences e Sdand e > d are compatible iff. e=¢' AN(x =x" = d and d’ are
compatible)

As usual, DDD are encoded as (shared) decision trees (see
Fig. [1l for an example DDD). Hence, a DDD of the form {e,a)
is encoded by a node labeled e and for each x € Dom(e) such that
a(x) # 0, there is an arc from this node to the root of a(x). By the
definition[I], from a node (e, @) there can be at most one arc labeled
by x € Dom(e) and leading to @(x). This may cause conflicts when
computing the union of two DDD, if the sequences they contain are
incompatible, so care must be taken on the operations performed.

DDD are equipped with the classical set-theoretic operations.
They also offer a concatenation operation d; d> which replaces 1

Fig. 1. terminals of d; by d. Applied to well-defined DDD, it corresponds
asabp b to a cartesian product. In addition, homomorphisms are defined to
+aSe51 allow flexibility in the definition of application specific operations.
sababe by A basic homomorphism is a mapping @ from to such that

D(0)=0and &(d+d) = &(d)+ D(d),Yd,d” € . The sum and
the composition of two homomorphisms are homomorphisms. Some basic homomor-
phisms are hard-coded. For instance, the homomorphism d # Id where d € , * stands
for the intersection and Id for the identity, allows to select the sequences belonging
to d : it is a homomorphism that can be applied to any d’ yielding d*Id(d") = d = d’.
The homomorphisms d Id and Id d permit to left or right concatenate sequences. We

widely use the left concatenation that adds a single assignment (e := x), noted e 51

446 J.-M. Couvreur and Y. Thierry-Mieg

Furthermore, application-specific mappings can be defined by inductive homomor-
phisms. An inductive homomorphism @ is defined by its evaluation on the 1 terminal
@d(1)e ,and its evaluation @ = &(e i>) for any e 5. @ isitselfa (possibly inductive)
homomorphism, that will be applied on the successor node d. The result of @({e,a))

is then defined as 3 ycpom(e) Ple 5 a(x)). We give examples of homomorphisms in the
next subsection which introduces a simple labeled P/T net formalism.

2.2 Labeled P/T Nets Definition

In this section, we introduce a class of modular Petri nets. We chose P/T nets for their
simple semantics, but most of what is presented here is valid for other LTS.
A Labeled P/T-Net is a tuple (P, T, Pre, Post, L,label) where

— P is afinite set of places,

— T is a finite set of transitions (with PN T = (),

— Pre and Post : PXT — IN are the pre and post functions labelling the arcs.
— Lis a set of labels

— label : LXT — {True, False} is a function labeling the transitions.

A marking m is an element of IN". A transi-
Ldle tion ¢ is enabled in a marking m if for each place
p, the condition Pre(p,t)(m) < m(p) holds. The
firing of a transition ¢ from a marking m leads
to a new marking m’ defined by Vp € P,m’(p) =
m(p) Pre(p,t)+ Post(p,1).

Two labeled P/T nets may be composed by
synchronization on the transitions that bear the
Fork same label. This is a parallel composition noted
//, with event-based synchronizations that yields
Listmoan a new labeled P/T net. This is a general composi-

tional framework, adapted to the composition of

Fig.2. Labeled PT net model of the arbitrary labeled transition systems (LTS).
philosophers This paper focuses on the representation of a
state-space defined by composition of LTS, more
than on a given formalism. We thus limit our discussion to ordinary nets, with only con-
stant arc functions, and only pre and post arcs. However our implementations actually
encompass a wider class of nets (with FIFO, queues...) described fully in [7]. Let us
consider an encoding of a state space of a P/T net in which we use one variable for each
place of the system. The domain of place variables is the set of natural numbers. The

L

HasR I
Ri

initial marking for a single place is encoded by: d), = p moui 1. For a given total order
on the places of the net, the DDD encoding the initial marking is the concatenation of
DDD d,, d,,. For instance, the initial state of a philosopher can be represented by :

Idle > Waitl S WaitR > HasL > HasR % Fork 5> 1.

The symbolic transition relation is defined arc by arc in a modular way well-adapted
to the further combination of arcs of different net sub-classes. The two following homo-
morphisms are defined to deal respectively with the pre (2) and post (h*) conditions.

Hierarchical Decision Diagrams to Exploit Model Structure 447

Both are parameterized by the connected place (p) as well as the valuation (v) labelling
the arc entering or outing p .

h (p,v)(e,x) =
li v)(e -x) . h+([7,v)(€,x):
e —Id ife=pax>v o .
1 e —Id lfe:p
0 ife=pnx<v X ht h .
eSh (p,v) otherwise e — h™(p,v) otherwise

+ —

b (p(D)=T =T

These basic homomorphisms are composed to form a transition relation. For a tran-
sition ¢, °t (resp. t*) denotes the set of places {p € P | Pre(p,t) # 0} (resp. {p € P |
Post(p,t) # 0}). The full homomorphism A7y, for a given transition ¢ is obtained by :
Rerans(t) = Opet°h+(P,P05t(P, n)o Ope'th (p, Pre(p,1)

For instance the top-most transition in the model of Fig. Blwould have as homomor-
phism : hzygns(t) = K" (WaitL,1) o h"(WaitR,1) o h (Idle,1).

When on a path a precondition is unsatisfied, the 4 homomorphism will return 0,
pruning the path from the structure. Thus the 4™ are only applied on the paths such that
all preconditions are satisfied.

3 Introducing Saturation

A first extension to the DDD homomorphism model was made to introduce the concept
of local saturation. The idea, inspired by [4], is to compute fixpoint computations start-
ing from internal nodes of the decision diagram structure, instead of having all fixpoint
computations performed at the highest level. This is shown experimentally to consider-
ably reduce the intermediate peak size effect that is one of the critical problems related
to symbolic approaches (see [9]] for a good overview of other intermediate size reduc-
tion techniques). In effect, by computing local fixpoints starting from the leaves of the
structure and going up, and re-saturating lower nodes each time a variable is modified
favors creation of “low” nodes that will indeed appear in the final result. The canon-
ization process of decision diagrams is inductively based on the unicity of the terminal
node(s), thus creating more saturated low nodes reduces the number of intermediate
nodes at all levels in the structure.

To this end we introduce a new transitive closure * unary operator that allows to
perform local fixpoint computations. For any homomorphism 4, h*(d),d € is evalu-
ated by repeating d < h(d) until a fixpoint is reached. While this computation may not
terminate, if it does its evaluation can be described as a finite composition using o of
h, thus is itself an inductive homomorphism. This operator is usually applied to Id + h
instead of A, allowing to cumulate newly reached paths in the result.

To use this operator efficiently, we need to set a starting level for each transition of
the system. We define a transition #’s top level, noted fop(), as the variable of highest
index (the last variable encountered in the DDD bears index 0) that is affected by a firing
of . We then define a table TopT rans of size the number of variables of the system. This
table contains in TopT rans[i] a homomorphism that is a sum of the homomorphisms
(constructed using the usual equation presented in section of all transitions ¢ such
that rop(t) = i, and of Id.

448 J.-M. Couvreur and Y. Thierry-Mieg

L(e,x) =
e (TopTransle 1]oL*)* ife>0
eS1d otherwise
L()=1

We then define this new transition homomorphism £ that exploits these aspects.
TopTrans is never modified, and is thus simply referenced in £. The main application
case consists in applying over the successor node of index e 1 a fixpoint of £ (thus
saturating all lower nodes of indexes strictly smaller than e 1) followed by all the
transitions that start fromnode e 1 (plus Id) in a fixpoint. The last place in the structure
is indexed by 0, and we stop the operation when we reach this level. For a system
composed of N places, we compute the full state space by applying (TopTrans[N
170 L*)* to the DDD representing the initial state.

Table Tlmeasures the impact of the use of fixpoint operators on state space construc-
tion. We use a benchmark of four models taken from [13]. Performance measures were
run on a P4/2.4GHz/2GbRAM. The table shows the huge gain in complexity offered
by local saturation. The number of nodes explored is however sometimes higher in the
saturation approach ; this effect is explained by the fact that every step of the fixpoint
computations are cached, thus some transitions may be fired more times in the ver-
sion with saturation. Ciardo et al. suggest in [4] that only the result of the full fixpoint

Table 1. Comparing our tool PNDDD with saturation activated or not. Benchmark models taken
from [13]. We give for each model the final number of nodes and the total number of nodes
explored (i.e. constructed at some point). Garbage collecting was deactivated to allow to measure
this value; this is the default behavior anyway, we lazily collect garbage only once at the end of
the construction.

PNDDD no sat PNDDD sat

Model N Nb. States final total time total time
nodes nodes (s) nodes (s)
Dining 50 2.23e+31 1387 13123 11.6 10739 0.09

Philosophers 100 4.97e+62 2787 26823 54.19 21689 0.18
200 2.47e+125 5587 54223 234 43589 0.39

1000 9.18e+626 27987 - - 218789 2.1

Slotted 10 8.29e+09 1281 35898 83.07 45970 0.8
Ring 15 1.46e+15 2780 118054 595 132126 2.26
Protocol 50 1.72e+52 29401 - - 3.58e+06 61.58
Flexible 10 2.50+09 580 8604 2.06 11202 0.17
Manufacturing 25 8.54e+13 2545 50489 28.75 85962 1.58
System 50 4.24e+17 8820 231464 240.4 490062 9.78
80 1.58e+20 21300 - - 1.72e+06 37.06

Kanban 10 1.01e+09 257 26862 20.47 5837 0.06
50 1.04e+16 3217 - - 209117 3.96
100 1.73e+19 11417 - - 1.32e+06 28.09

200 3.17e+22 42817 - - 9.23e+06 238.95

Hierarchical Decision Diagrams to Exploit Model Structure 449

evaluation be cached, not its steps ; however we did not implement this tuning of our
caching policy, which might reduce the measure (if we only count nodes actually cre-
ated), but not truly the time/space complexity (as the extra nodes that we do count could
be garbage colected at any time). Note that our fixpoint operator allows any library user
to profit from leaves to root saturation instead of the traditional external fixpoint, thus
generalizing the concept introduced in [4] to other applications.

The time complexity explosion in the version without local fixpoint is due to the
cost of traversals of the structure and to the number of iterations required in this breadth-
first evaluation scheme. The saturation process naturally applies transitions from their
starting level as it is reached, whereas in a fixpoint “from outside”, the transitions that
target the bottom of the structure need to traverse a very large number of nodes.

4 Set Decision Diagrams

4.1 SDD Definition

DDD are a flexible data structure, and inductive homomorphisms give the user unprece-
dented freedom to define new symbolic operations. Since the work in [7], DDD have
been used for instance to implement model checkers for a subset of VHDL in a project
for the “Direction Générale des Armées” (DGA) called Clovis (the reports are however
not public), for formal verification of LfP in MORSE, an RNTL project [12]], and to
construct a quotient state-space by exploiting the symmetries of a colored Well-Formed
net model [T5]. However, as we manipulated more and more complex data structures,
such as the dynamically dimensioned tensors of [13]], we encountered problems linked
to the lack of structure of DDD. We therefore decided to extend the DDD definition
to allow hierarchical nesting of DDD. This new data structure is called Set Decision
Diagrams, as an arc of the structure is labeled by a set of values, instead of a single
valuation. The set is itself represented by an SDD or DDD, thus in effect we label the
arcs of our structure with references to SDD or DDD, introducing hierarchy in the data
structure.

Set Decision Diagrams (SDD) are data structures for representing sequences of as-
signments of the form e € aj;ex €az; ey, € a, where e; are variables and a; are sets of
values. SDD can therefore simply be seen as a different encoding for set of assignment

sequences of the same form as those of DDD, obtained by flattening the structure, i.e.
X X Xn
as a DDD defined as Uy, ca, Uxyea, Uxpea, €1 Le D a5l

In this section we base our reasoning on the actual data structure that is used to
store them, and as sets will label the arcs of our data structure, we use the e € a;
presentation. However the basic linearity operation properties over the sequences of the
equivalent DDD must be ensured to allow correct computations. We assume no variable
ordering, and the same variable can occur several times in an assignment sequence. We
also make no assumptions on the domain of the variables. We encode SDD as shared
decision trees. We define the usual terminals 0 and 1 to represent non-accepting and
accepting sequences respectively. In the following, E denotes a set of variables, and for
any e in E, Dom(e) represents the domain of e,

450 J.-M. Couvreur and Y. Thierry-Mieg

Definition 3 (Set Decision Diagram). The set of SDD is defined by d € if:

- de{0,1} or
- d = (e,) with:
e ccFE
e q: is a finite set of pairs (a;,d;) where a; € Dom(e) and d; €

We denote ¢ 2> d;, the SDD (e,) with a(a;) = d and for all a; # a;, a(aj) = 0. We call
SDD sequence an SDD of the form e} 4, e 2, 1 where VYi,|a;| = 1.

We further introduce a canonical representation for SDD, essential to allow use of
a unicity table and cache. The SDD we manipulate are canonized by construction,
through the union operation given in proposition[I] below.

Definition 4 (Canonical Set Decision Diagram). An SDD d is said to be canonical if
and only if :

- d=0o0rd=1
1 a,-ﬂaj=®
- d=(e,@)and¥(a;,d;),(a;,dj)) e a,i# j 2 di #d;
3 a;#0andd; #0

Intuitively this definition sets the constraints that:

1. The number of sets of values that are mapped to a non-zero SDD be finite. This
is required so that the number of arcs leading from a node be finite, since only the
arcs labeled with sets that map to a non-zero SDD are stored in the data structure;

2. For a value x of Dom(e), at most one non zero SDD is associated. In other words
the sets referenced on the arcs outgoing from a node are disjoint. This is required
to allow existence of a unique canonical representation of sets, hence unicity and
comparison of SDD nodes.

3. No two arcs from a node may lead to the same SDD. This is the crucial point, any

. 4 . ud' .
time we are about to construct ¢ — d+e — d, we will construct e ““%, d instead.
This corresponds to fusing arcs that would have led to the same node.

4. By definition, the empty set maps to 0 and is not represented.

Some immediate effects of this definition should be highlighted :

— This definition assumes that sets of values can be (efficiently) represented, as an arc
of the shared decision tree representing the SDD is labeled with a set of values. As
an SDD itself represents a set, we can use variables of domain itself, introducing
hierarchy in the data structure.

— In practice, the requirements on the data sets that label the arcs of an SDD are that
they offer the usual set theoretic operations (union, intersection and set difference)
and the ability to compute a hash key for the set stored. These requirements are
captured by an abstract interface class, thus labeling an SDD with any type of de-
cision diagram (i.e. from existing libraries) should be very easy if it is written in C
or C++.

Hierarchical Decision Diagrams to Exploit Model Structure 451

— Another effect is that we no longer have the constraint of DDD that the number
of values taken by a variable x be finite. This constraint expressed in DDD that
the number of outgoing arcs from a node be finite, but is reduced for SDD to the
constraint that the number of sets of values that lead to different nodes be finite. This
subtle difference means that we could represent infinite sets provided an efficient
set representation is used (intervals in R for instance). This possibility has not yet
been fully explored, and stresses the limits of our definition however, as we can no
longer consider our model equivalent to a linear DDD like finite representation.

To handle paths of variable lengths, SDD are required to represent a set of compat-
ible assignment sequences. An operation over SDD is said partially defined if it may
produce incompatible sequences in the result.

Definition 5 (Compatible SDD sequences).

— Any SDD sequence is compatible with itself.
- land e dare incompatible
, e=¢
—eSdande S d are compatible if { Aa and a’ are compatible
ANa = d’ = d and d’ are compatible)

The compatibility of a and @’ is defined as SDD compatibility if a,a’ € or DDD com-
patibility ifa,a’ € . DDD and SDD are incompatible. Other possible referenced types
should define their own notion of compatibility.

4.2 Operations on SDD

Set Theoretic Operations. First, we generalize the usual set-theoretic operations —
sum (union), product (intersection) and difference — to sets of set assignment sequences
expressed in terms of SDD.

Definition 6 (Finite Mapping and Union). A mapping a : 2P°™© — s said to be
finite if it respects the property that {a € Dom(e)|a(a) # 0} is finite. Such a mapping
has a finite number k of sets a; C Dom(e) such that a(a;) # 0, and can be explicitly
represented by the enumeration of the non-zero mappings it defines : @ = Uf.‘ Hai — d;}
where Vi,a; C Dom(e),d; € . Leta = Uf.‘ Hai—di}anda’ = Uf.‘l Aal — d’} be two finite
mappings.
aud = U fai - dyulf () — d)
= U UK (laiud, — dif d; = d5)
VUN i > diifVjell K1di#)
VUM (@ - dlifvjell kld #dj)

We define the square union L as :

Intuitively this operation performs part of the son-based canonization scheme neces-
sary for SDD : it ensures that no two arcs from an SDD node lead to the same SDD
(requirement 3 of SDD definition [3). It is easily implemented by a hash map of keys
d;s and values a;s. However it should be noted that this operation does not preserve
requirement 2 of definition 3] as nothing ensures that the sets mentionned on the arcs

452 J.-M. Couvreur and Y. Thierry-Mieg

are disjoint. Indeed, a given value x in Dom(e) may be included in more than one a; set
of the result. But this L operation over mappings will serve as a basis to define the sum
+, the difference \, and the product * of two SDD Mappings.

Definition 7 (Compatible SDD set theoretic operations). By definition, set theoretic
operations are only offered over compatible SDD.

- 0+d=d+0=d0xd=d*0=0,0\d=0andd\0=d,Yd e ;
—1+1=1%1=1,1\1=0
- (e,)o{e,a’) =(e,ax0a’), Vo€ {+,%\}

Proposition 1 (Mapping operations). The sum + (respectively product = and differ-
ence \) of two SDD mappings a = Uf dai— di} and o’ = Uf a; — dl} can be defined
inductively by :

koK
a+a’ —|_|{(a,\U(a) — d;} axd _HJU(a,ﬁa)ed i dl}
1 j1
; i / k ¥
uM{(ai\g(a,/))ﬁd,} “\QIZU{(“i\U(“}))—’d,‘}
koK - 4
HHHM"M;*‘Z"”’?} u|j k ind, - di\d)
il 1

Proof. We need to show the equivalence of the above propositions with a straight def-
inition reasoning on the actual individual assignments in a sequence. The proof is rela-
tively straightforward and is based on considering the different intersection possibilities
between the operands’ @ mappings. It is omitted here due to lack of space as it requires
introduction of additional definitions and notations for reasoning with the sequences of
the equivalent DDD.

It should be noted that using LI to compose the terms constituting the result may produce
some simplifications, as sets that map to the same value will be unioned, and the d; ¢ d;.
terms may produce already existing SDD. Furthermore, by definition the empty set ()
maps to 0, this produces further simplification as both the (a; \ Ulj‘.l 1(‘1})) and the a; N a;.
terms are liable to be empty sets. We should remind here that the union + operation
defined above is the core of the canonisation procedure, as it is in charge of ensuring
the canonicity of SDD by construction.

SDD Homomorphisms. By analogy with DDD, SDD allow the definition of user de-
fined operations through a recursive and compositional definition : inductive homo-
morphisms. The essential constraint over homomorphisms is linearity over the set of
sequences contained in an SDD. Homomorphisms can then be combined by sum and
composition.

Hierarchical Decision Diagrams to Exploit Model Structure 453

Definition 8 (Homomorphism). A mapping @ on SDD is a fully defined homomor-
phism if @(0) =0 and V¥d,dr € : @(d)+ P(d2) = P(d) + d2)

Proposition 2 (Sum and composition). Let @1, @, be two homomorphisms. Then
D1 + Dy, @1 o Py are homomorphisms.

The transitive closure * is also introduced, and allows to perform a local fixpoint com-
putation. It follows the same definition as for DDD transitive closure : for a homomor-
phism A, h*(d) is computed by repeating d < h(d) until a fixpoint is reached. Again we
usually use (h +Id)* in our fixpoint computations. From here we can allow the definition
of user-defined inductive homomorphisms:

Proposition 3 (Inductive homomorphism). The following recursive definition of
mappings (Py)i defines a family of homomorphisms called inductive homomorphisms.:

0 ifd=0
Vde ,D(d)=:d € ifd=1
o =38 Bule,ady) ifd=(e,a=Uf {ai > di})

Dy (e,a) is inductively defined as a sum Di(e,a) = Y ;m(e,a)o @+ no(e,a) where all
ni(e,a) are SDD homomorphisms, linear over the elements of a (Ya,a’ € Dom(e) :
mi(e,ala’) = mi(e,a) +me,a’)).

To define a family of inductive homomorphisms @, one has just to set the homomor-
phisms for the symbolic expression @(e,a;) for any variable e and set @; and the SDD
@(1). It should be noted that this definition differs from the DDD inductive homomor-
phism in that @(e, ;) is defined over the sets (a; € Dom(e)) of values of the variable e’s
domain Dom(e). This is a fundamental difference as it requires @ to be defined in an
ensemblist way: we cannot by this definition define the evaluation of @ over a single
value of e. However @ must be defined for the set containing any single value.

In addition we must respect the linearity constraint over the sequences of the equiv-
alent DDD. Thus n(e,a) must be an SDD homorphism linear over the element of a.

We use most commonly homomorphisms of the form e ¢((ﬂ> Id which allows a linear
operation on the values labeling the arc, and by composition with another inductive
homomorphism, to realize an operation on the rest of the paths of the SDD.

As in [13], we require that the partition of the system into modules be consistent.
This constraint allows the definition of a transition relation N in a partitioned disjunc-
tive or conjunctive (i.e. N = A; NV;) form [[IT]]. This allows one not to explicitly construct
the full BDD (or Kronecker representation [1313])) that corresponds to N, allowing to
tackle larger systems. In effect, consistency means each term composing N can be eval-
uated independently and in any order, and N(S) = (); NVi(S). For our ordinary Petri net
model, this is not a problem as any partition is consistent [13]], however more complex
operations require some care in the definition of modules.

5 SDD and Modular Petri Nets

In this section we present how the SDD hierarchy can be exploited to efficiently generate
and store the state-space of a labeled Petri net, itself a composition of labeled Petri nets.

454 J.-M. Couvreur and Y. Thierry-Mieg

In previous works, we had shown how to use DDD for non-modular Petri nets [[7]]. The
key idea is to use a variable to represent the state of a set of places, instead of having
one variable per place of the net. In Miner and Ciardo’s work on Smart [13]], a variable
represented a set of places or module, but the states of the module were represented in
an explicit fashion using splay trees. Here we propose a purely symbolic approach as
we use an SDD variable to represent the state of a module entering the composition of
the full model, the value domain of which is a DDD with one variable per place of the
module.

Definition 9 (Structured state representation). Let M be a labeled P/T net, we induc-
tively define its representation r(M) by :

— If M is a unitary net, we use the encoding of section22r(M)=d,, dp, dp,, with
mo(p)
dy=p 51
r(My) r(Ms) ..
- IfM =M || M>, r(M) =my, — My, = 1. Thus the parallel composition of
two subnets will give rise to the concatenation of their representations.

M)
- IfM=(My), r(M) =mu, & 5 1. Thus parenthesizing an expression gives rise to
a new level of hierarchy in the representation.

A state is thus encoded hierarchically in accordance with the module definitions.
We define a total order over the N subnets or modules composing a model, used to
index these submodels. Indeed the parallel composition operation is commutative and
symmetric, therefore a net can always be seen as a “flat” parallel composition of its
subnets. Such a composition which does not use any parenthesizing, would produce a
DDD representation. However, using different parenthesizing(s) yields a more hierar-
chical vision (nested submodules), that can be accurately represented and exploited in
our framework.

Thus for a parenthesizing of the composition in the manner My) (M|) (M2 /|
(M, 1 J/ (M))) we have n levels of depth in the SDD, with at each level k two vari-
ables : a variable my, with the states of a unitary module of the form My, and a variable
M) that in effect represents the states of all the modules of index greater than k.

We partition the transitions of the system into local and synchronization transitions.
A transition ¢ is local to unitary module M, iff Vp € *rUt*,p € M,,. For each unitary
module of index n, we construct a DDD homomorphism £, built using DDD saturation
as presented in section 3

For synchronization transitions that are not local to a single module, we define the
projection of a transition on a module of index » as:

1,(t) = Opet'ApeM,lh+(p, POSt(P’t)) o Ope't/\peM,lh (Ps P”E(PJ))

We further define for a synchronization transition ¢, Top(t) as the most internal paren-

thesised group (M) such that M; wholly contains ¢. So in effect ¢ is local to this group,
and this is the most internal level we can apply ¢ from. When nesting occurs at more
than one level of depth ¢ has a top and bottom at each level of depth in the structure.
Bot(t) is defined as the lowest variable index that is used by ¢. Our full transition relation
is then inductively defined by:

Hierarchical Decision Diagrams to Exploit Model Structure 455

Let 7 = Uggropy () 7(¢) represent the transitions local to a parenthesized group
(My); we define T | =1d.

7(1)(e,x) =
LMoLy () .
e =7, if e =my, Abot(t) > e
LolneLy(x) .
e =7, o7(t) if e=mpy, ADoi(t) <e
TZOT([)OTZ(X) . .
e -7, 07(t) if e=myy,
(1) =1

This algorithm thus performs local saturation of nested subnets. Like the algorithms of
[4], it performs local saturation on the lower nodes as soon synchronization transitions
are fired. This avoids the creation of intermediate nodes which will not appear in the

Table 2. Performances of our prototype over some bench models. We compare our tool’s run time
with the run times of Smart. Indicatively we also give the runtimes of NuSMV [6]], the emblematic
tool for symbolic representations (these values were not measured by us, but are directly taken
from [3]]). Some are missing as indicated by ?. The Lotos model is obtained from a true industrial
case-study. It was generated automatically from a LOTOS specification (8,500 lines of LOTOS
code + 3,000 lines of C code) by Hubert Garavel from INRIA. AGV (automated guided vehicle)
is a flexible manufacturing problem, with synthesis of controllers in mind : we give the statistics
with and without the controller enabled. Example witness trace construction is possible, yielding
the shortest path to (un)desirable states. Run time is 1h20 for finding a shortest witness trace
enabling each of the 776 transitions of the Lotos model, the longest is 28 transitions in length.

final total PNDDD SDD NuSMV SMaRT
Model N States SDD DDD SDD DDD time time time
#) # # @#H @ # (sec) (sec) (sec)
Philosophers 100 4.97+62 398 21 2185 70 0.21 990.8 0.43
200 2474125 798 21 4385 70 0.43 18129 0.7
1000 9.18e+626 3998 21 21985 70 2.28 - 5.9
5000 6.52+3134 19998 21 109985 70 11.7 - 83.7
Ring 10 8.29¢+09 61 44 2640 150 0.4 6.1 0.11
15 1.65e+16 288 44 8011 150 1.21 2853 0.29
50 1.72e+52 2600 44 238400 150 34.01 - 5.6
FMS 25 8.54e+13 55 412 346 11550 0.26 41.6 0.36
50 4.24e+17 105 812 671 38100 1.02 17321 1.33
80 1.58e+20 165 1292 1064 89760 2.59 - 4
150 4.8e+23 305 2412 1971 294300 10.52 - 20.7
Kanban 10 1.01e+09 15 46 129 592 0.02 ? 0.48
50 1.04+16 55 206 1589 9972 1.08 ? 43
100 1.73e+19 105 406 5664 37447 8.79 ? 474
200 3.17e+22 205 806 21314 144897 93.63 ? 13920
Lotos N/A 9.79474e+21 326 759 125773 34298 265.28 ? ?
AGYV [14] N/A 3.09658e+07 12 34 135 234 0.01 ? ?
AGYV Controlled N/A 1.66011e+07 95 124 2678 349 0.38 ? ?

456 J.-M. Couvreur and Y. Thierry-Mieg

final state-space representation, hence it limits the peak number of nodes that needs to
be stored.

The following table shows the performance of our prototype tool over models taken
from [[13]. We use here a simple (M) J/(M2)// // (M,,) parenthesizing scheme in these
performance runs, thus only one level of depth is used in the data structure. This is a
parenthesizing scheme that most closely relates to the experiments of [4]; indeed the
number of SDD nodes is identical to the number of MDD nodes reported by Smart.

We can observe that the encoding is much more compact than with plain DDD,
and the run times are a factor below those obtained with the flat DDD representation.
The exception is the philosophers model, which actually gives better run times in the
flat DDD representation (though at a cost in terms of representation size). The slotted
ring example shows the superiority of the MDD access procedure, which allows direct
access to all the nodes of any level k. Thus MDD saturation more efficiently fights
the intermediate size problem than our own transitive closure operator. We believe this
might be improved by tuning the caching policy, but this remains to be proved.

The Kanban model shows the advantage of SDD over MDD when the number of
states per submodel grows : in this model each submodule has a number of states fac-
torial with respect to N, while the number of modules stays constant. Smart’s MDD
representation represents one arc for each state value of a submodule, as an arc bearing
the index of the state in a splay tree explicit (but quite compact) representation. Thus
although we may have the same number of nodes, the number of arcs in the MDD rep-
resentation explodes exponentially with N, while our referenced DDD scheme allows to
factorize all the arcs that lead from a node d; to a node d> in the referenced DDD. This
is an important point as larger software examples present modules with a sometimes
very large reachability set.

6 Conclusion

We have presented Set Decision Diagrams, a hierarchical directed acyclic graph struc-
ture, with a canonical representation that allows use of a BDD-like cache and unicity
table. SDD operations are defined through a general and flexible model, inductive ho-
momorphisms, that give exceptional freedom to the user. This structure is particularly
well adapted to the construction and storage of the state space of hierarchical and mod-
ular models. Thanks to local fixpoint computations and improved sharing in the repre-
sentation with respect to the purely linear encoding of usual decision diagram libraries,
exceptional performances can be attained.

The principles of our parenthesized parallel composition can be generalized to a
wide range of models that can be seen as LTS. The choice of a correct parenthesizing is
an open problem : the separation into parts should highlight parts that are similar at least
structurally. One easy choice for typed specifications is to assign an encoding to each
type (record, vectors, lists, basic types...). This will increase representation sharing. Our
library, available under LGPL from|/ddd. 1ip6. fr, can be extended through inheritance
to use other decision diagram packages than DDD to represent the states of a module.

We are currently working at extending [15] to exploit symmetries in a hierarchical
SDD representation, as coloration can be seen as an important structural information,
that can guide the process of choosing an appropriate parenthesizing. We are also using

ddd.lip6.fr

Hierarchical Decision Diagrams to Exploit Model Structure 457

the SDD in a project to model-check Promela specifications. Finally we aim at defining
a framework for operations that do not respect the module consistency constraint, as
our current solutions lacks generality in this respect.

References

1.

2.

10.

11.

12.

13.

14.

15.

R. Bryant. Graph-based algorithms for boolean function manipulation. /EEE Transactions
on Computers, 35(8):677-691, August 1986.

J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020 states and be-
yond. Information and Computation (Special issue for best papers from LICS90), 98(2):153—
181, 1992.

. G. Ciardo, G. Liittgen, and R. Siminiceanu. Efficient symbolic state-space construction for

asynchronous systems. In Proc. of ICATPN’2000, volume 1825 of Lecture Notes in Com-
puter Science, pages 103—122. Springer Verlag, June 2000.

. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In H. Garavel and

J. Hatclift, editors, Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), pages 379-393, Warsaw, Poland, April 2003. Springer-Verlag LNCS 2619.

. Gianfranco Ciardo. Reachability set generation for petri nets: Can brute force be smart.

In J. Cortadella and W. Reisig, editors, Application and Theory of Petri Nets 2004. 25th
International Conference, ICATPN 2004., volume 3099 of LNCS, pages 17-34, 2004.

. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002), volume 2404
of LNCS, Copenhagen, Denmark, July 2002. Springer.

. J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-A. Wacrenier. Data

decision diagrams for Petri net analysis. In Proc. of ICATPN’2002, volume 2360 of Lecture
Notes in Computer Science, pages 101-120. Springer Verlag, June 2002.

. H. Garavel. A net generated from lotos by cadp

(http://www inrialpes fr/vasy/cadp). In PetriNets@daimi.au.dk| mailing
list., Posted 28/07/03 and follow-up with performance of 4 tools on 26/09/03.

. J. Geldenhuys and A. Valmari. Techniques for smaller intermediary bdds. In CONCUR

2001 - Concurrency Theory, 12th International Conference, Aalborg, Denmark, 2001, vol-
ume 2154 of Lecture Notes in Computer Science, pages 233-247, 2001.

A. Gupta and A. L. Fisher. Representation and symbolic manipulation of linearly inductive
boolean functions. In ICCAD’93, pages 111-116, 1993.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned transi-
tion relations. In A. Halaas and P.B. Denyer, editors, International Conference on Very Large
Scale Integration, pages 49-58, Edinburgh, Scotland, 1991. North-Holland.

F. Kordon and M. Lemoine, editors. Formal Methods for Embedded Distributed Systems
How to master the complexity. Kluwer Academic, 2004.

A.S. Miner and G. Ciardo. Efficient reachability set generation and storage using decision
diagrams. In Proc. of ICATPN’99, volume 1639 of Lecture Notes in Computer Science, pages
6-25. Springer Verlag, 1999.

L. Petrucci. Design and validation of a controller. In Proceedings of the 4th World Multi-
conference on Systemics, Cybernetics and Informatics (SCI 2000), pages 684—688, Orlando,
Florida, USA, July 2000.

Y. Thierry-Mieg, J-M. Ilie, and D. Poitrenaud. A symbolic symbolic state space. In Proc.
of the 24th IFIP WG 6.1 Int. Conf. on Formal Techniques for Networked and Distributed
Systems (FORTE’04), volume 3235 of LNCS, pages 276-291, Madrid, Spain, September
2004. Springer.

http://www.inrialpes.fr/vasy/cadp
PetriNets@daimi.au.dk

	Introduction
	Context
	Data Decision Diagram Definition
	Labeled P/T Nets Definition

	Introducing Saturation
	Set Decision Diagrams
	SDD Definition
	Operations on SDD

	SDD and Modular Petri Nets
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

