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A two-degree-of-freedom control structure is proposed for a class of unstable processes with time delay based on modified Smith
predictor control; the superior performance of disturbance rejection and good robust stability are gained for the system. The set-
point tracking controller is designed using the direct synthesismethod; the IMC-PID controller for disturbance rejection is designed
based on the internal mode control design principle. The controller for set-point response and the controller for disturbance
rejection can be adjusted and optimized independently. Meanwhile, the two controllers are designed in the form of PID, which
is convenient for engineering application. Finally, simulation examples demonstrate the validity of the proposed control scheme.

1. Introduction

Unstable processes are well known to be difficult to control
especially when there exists pure time delay. A time delay
is introduced into the transfer function description of such
system due to the measurement delay or an actuator delay
[1–5]. A lot of academic research had been devoted to
developing effective control strategies for such processes.
Generally, PI or PID controllers are designed using a unity
feedback control structure for these systems. Two-degree-
of-freedom methods based on PID control are the most
common methods [6–11]. Internal mode control and Smith
predictor (SP) control are regarded as the most effective
methods for process control andmostwidely used in industry
but cannot be used directly for unstable process with time
delay. Owing to the standard SP control structure which is in
essence equivalent to the internal model control structure for
time delay processes, a number of control schemes based on
modified Smith predictor had been developed in recent years
[12–18]. By using the Smith predictor, Rao and Chidambaram
[19] proposed a two-degree-of-freedom control scheme for
unstable systems with time delay; in the scheme three
controllerswere used to improve the systemperformance. Liu
et al. [20] proposed a modified form of Smith predictor in a
two-degree-of-freedom control scheme, which demonstrated

the remarkable improvement of regulatory capacity for both
of reference input tracking and load disturbance rejection.
Garćıa andAlbertos [21] proposed a scheme that is equivalent
to the Smith predictor but able to cope with any kind of
systems; the results showed a substantial improvement in
the performance/robustness tradeoff as well as in the tuning
process. Vijayan and Panda [22] proposed a double-feedback
loop method which was used to achieve stability and better
performance of the process. By comparison, few papers [23,
24] developed discrete-time domain control methods for
advanced regulation of unstable processes. Besides, nonlinear
control schemes were presented to deal with integrating
and unstable processes with time delay [25]. Dey et al.
[26] proposed an autotuning proportional-derivative control
scheme; the proportional and derivative gains were adjusted
using a nonlinear gain updating factor to achieve an overall
improved performance.

Evaporation processes are common in the food industry.
It is the stage in which the water contained in a juice is
eliminated in order to obtain a juice with a higher concen-
tration. The dynamics of the evaporation can be represented
with integrating first order plus time delay process [27]. The
control of such system is difficult because of the limitations
imposed by the integrator and the time delay on the system
performance and stability.
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Figure 1: Modified Smith control structure.

Disturbance rejection is much more important than set-
point tracking for many process control applications. But the
methods proposed previously for the disturbance rejection
have not gained much popularity; what is more, it is difficult
to be carried out in process industries. The objective of the
present study is to develop a practicable method to obtain
enhanced disturbance rejection performance and perfect set-
point tracking performance. So a two-degree-of-freedom
control scheme based on modified Smith predictor shown in
Figure 1 is proposed. The set-point tracking controller 𝐾

1
(𝑠)

and disturbance rejection controller 𝐾
2
(𝑠) are designed in

the form of PID. The scheme can lead to substantial control
performance improvement, especially for the disturbance
rejection.The analysis has been carried out for the two typical
transfer function models: 𝑃(𝑠) = 𝑘𝑒

−𝜃𝑠
/𝑠(𝑇𝑠 − 1) and 𝑃(𝑠) =

𝑘𝑒
−𝜃𝑠

/𝑠(𝑇𝑠 + 1).
In Figure 1 𝑃

0
(𝑠) is the transfer function of the process

model without the time delay, that is, 𝑃(𝑠) = 𝑃
0
(𝑠)𝑒
−𝜃𝑠, 𝐾

1
(𝑠)

is used for set-point tracking, 𝐾
2
(𝑠) is used for disturbance

rejection, 𝐹(𝑠) is the set-point filter, 𝑟(𝑠) is the set point,𝑦(𝑠) is
the process output, and 𝑑

𝑖
(𝑠) and 𝑑

𝑜
(𝑠) are the disturbances

before and after process, respectively. As can be seen, the
performance of set point and load disturbance rejection
response are decoupled completely and can bemonotonically
tuned to meet a good performance by controller 𝐾

1
(𝑠) and

𝐾
2
(𝑠), respectively.

2. Controller Design Procedure

2.1. Set-Point Tracking Controller 𝐾
1
(𝑠). From Figure 1, the

transfer function from 𝑦(𝑠) to 𝑟(𝑠) can be determined in the
form of

𝐻
𝑟
(𝑠) =

𝑦 (𝑠)

𝑟 (𝑠)

=
𝑃 (𝑠)𝐾

1
(𝑠)

1 + 𝑃
0
(𝑠) 𝐾
1
(𝑠)

1 + 𝐾
2
(𝑠) 𝑃
0
(𝑠) 𝑒
−𝜃𝑠

1 + 𝐾
2
(𝑠) 𝑃 (𝑠)

.

(1)

In the nominal case, that is 𝑃(𝑠) = 𝑃
0
(𝑠)𝑒
−𝜃𝑠, the set-point

tracking transfer function can be simplified as

𝐻
𝑟
(𝑠) =

𝑦 (𝑠)

𝑟 (𝑠)
=

𝑃 (𝑠)𝐾
1
(𝑠)

1 + 𝑃
0
(𝑠) 𝐾
1
(𝑠)

. (2)

Obviously, there is no dead-time element in the characteristic
equation of the nominal set-point tracking transfer function;
𝐾
1
(𝑠) can be obtained if the transfer function is determined:

𝐾
1
(𝑠) =

𝐻
𝑟𝑑
(𝑠)

1 − 𝐻
𝑟𝑑
(𝑠)

1

𝑃
0
(𝑠)

. (3)

Considering the implementation and system performance,
the desired set-point tracking transfer function is proposed:

𝐻
𝑟𝑑
(𝑠) =

𝑦 (𝑠)

𝑟 (𝑠)
=
𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 1

(𝜆𝑠 + 1)
3

, (4)

where 𝜆 is the adjustable parameter; as for the unstable
process type 𝑃(𝑠) = 𝑘𝑒

−𝜃𝑠
/𝑠(𝑇𝑠 − 1), the controller can be

derived from (3) and (4):

𝐾
1
(𝑠) =

𝑠 (𝑇𝑠 − 1) (𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 1)

𝑘 [(𝜆𝑠 + 1)
3
− (𝑎
2
𝑠2 + 𝑎

1
𝑠 + 1)]

. (5)

Because of simple structure and better control performance
than the direct-action tuner, the ability of PID controllers
to meet most of the control objectives has led to their
widespread acceptance in the control industry. As we know,
distributed control system is widely used in process industry.
PID module is the basic and the most used module in the
distributed control system; over 90% control points were
designed in PID form [28]. To obtain a realizable controller,
𝐾
1
(𝑠) should be realized in discrete form or approximated by

a rational transfer function. So 𝐾
1
(𝑠) can be expressed as

𝐾
1
(𝑠) =

(𝑇𝑠 − 1) (𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 1)

𝑘 [𝜆3𝑠2 + (3𝜆2 − 𝑎
2
) 𝑠 + (3𝜆 − 𝑎

1
)]
. (6)

According to the model transform method [29], order 𝑎
1
=

4𝜆, 𝑎
2
= 6𝜆
2
+ 1. A PID controller with first order lag filter

can be approximated

𝐾
1
(𝑠) = 𝑘

1
(1 +

1

𝜏
𝑖1
𝑠
+ 𝜏
𝑑1
𝑠)

1

𝛼𝑠 + 1
. (7)

After approximate comparison, we can obtain the parameters
of PID, 𝑘

1
= 𝑎
1
/𝑘 is proportional gain, 𝜏

𝑖1
= 𝑎
1
is integral

gain, 𝜏
𝑑1

= 𝑎
2
/𝑎
1
is derivative gain, and 𝛼 = 𝜆

4
/𝑇 is the filter

parameter.
As can be seen from (4), numerator of the transfer

function will result in undesired system overshoot. So in
order to improve the set-point tracking performance and
reduce the overshoot, a set-point filer is designed 𝐹(𝑠) =

1/(𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 1).

Analogously, as for the process type𝑃(𝑠) = 𝑘𝑒
−𝜃𝑠

/𝑠(𝑇𝑠+1),
𝐾
1
(𝑠) can be obtained from (3) and (4):

𝐾
1
(𝑠) =

(𝑇𝑠 + 1) (𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 1)

𝑘 [𝜆3𝑠2 + (3𝜆2 − 𝑎
2
) 𝑠 + (3𝜆 − 𝑎

1
)]
. (8)

Using the similarmethod, we obtain 𝑎
1
= 3𝜆, 𝑎

2
= 3𝜆
2
−𝜆
3
/𝑇.

The𝐾
1
(𝑠) can be derived in the form of PID as follows:

𝐾
1
(𝑠) = 𝑘

1
(1 +

1

𝜏
𝑖1
𝑠
+ 𝜏
𝑑1
𝑠) , (9)
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where 𝑘
1
= 3𝑇/𝑘𝜆

2 is proportional gain, 𝜏
𝑖1
= 3𝜆 is integral

gain, and 𝜏
𝑑1

= 𝜆(1 − 𝜆/3𝑇) is derivative gain.

2.2. Disturbance Rejection Controller 𝐾
2
(𝑠). In the proposed

control structure shown in Figure 1, the load disturbance
transfer functions are given by

𝐻
𝑑𝑖
(𝑠) =

𝑦 (𝑠)

𝑑
𝑖
(𝑠)

=
𝑃 (𝑠)

1 + 𝐾
2
(𝑠) 𝑃 (𝑠)

,

𝐻
𝑑𝑜
(𝑠) =

𝑦 (𝑠)

𝑑
𝑜
(𝑠)

=
1

1 + 𝐾
2
(𝑠) 𝑃 (𝑠)

.

(10)

At the same time, we can obtain the closed-loop comple-
mentary sensitivity function between the process input and
output for the load disturbance rejection as

𝑇 (𝑠) =
𝐾
2
(𝑠) 𝑃 (𝑠)

1 + 𝐾
2
(𝑠) 𝑃 (𝑠)

. (11)

Here, 𝐾
2
(𝑠) is designed using the method of unit feedback

based on internal mode control theory [30]:

𝐾
2
(𝑠) 𝑃 (𝑠)

1 + 𝐾
2
(𝑠) 𝑃 (𝑠)

= 𝑃 (𝑠) 𝐶 (𝑠) , (12)

where𝐶(𝑠) is the internal mode controller, 𝑃(𝑠) = 𝑃
−
(𝑠)𝑃
+
(𝑠),

𝐶(𝑠) = 𝑃
−1

−
(𝑠)𝑓(𝑠), in which 𝑓(𝑠) is the filter, 𝑃

−
(𝑠) contains

the invertible portion of the model, and 𝑃
+
(𝑠) contains all

the noninvertible portion. The invertible portions are the
part of the model with stable poles and unstable poles. The
noninvertible portions are the portion of themodel with right
half plane zeros and time delays. In order to ensure that the
system is internally stable, the filter is designed as

𝑓 (𝑠) =
∑
𝑚

𝑖=1
𝑏
𝑖
𝑠
𝑖
+ 1

(𝜆𝑠 + 1)
𝑛
, (13)

where 𝜆 is an adjustable parameter which controls the trade-
off between the performance and robustness, determined to
cancel the unstable and integrating poles of 𝑃(𝑠). 𝑚 is the
number of unstable and integrating poles. 𝑛 is selected to be
large enough to make the internal mode controller proper; 𝑏

𝑖

is determined by 1 − 𝑃(𝑠)𝐶(𝑠)|
𝑠=𝑧1 ,...,𝑧𝑚

= 0, where 𝑧
1
, . . . , 𝑧

𝑚

are the unstable and integrating poles.
As for the unstable process type 𝑃(𝑠) = 𝑘𝑒

−𝜃𝑠
/𝑠(𝑇𝑠 − 1),

it can be transformed as 𝑃(𝑠) = 𝑘

𝑒
−𝜃𝑠

/(𝑇

𝑠 − 1)(𝑇𝑠 − 1);

time constant 𝑇 is selected to be large enough. The filter is
designed as

𝑓 (𝑠) =
𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1

(𝜆𝑠 + 1)
4

. (14)

Correspondingly by using (12) and (14), the controller 𝐾
2
(𝑠)

can be obtained as

𝐾
2
(𝑠) =

(𝑇

𝑠 − 1) (𝑇𝑠 − 1) (𝑏

2
𝑠
2
+ 𝑏
1
𝑠 + 1)

𝑘 [(𝜆𝑠 + 1)
4

− 𝑒−𝜃𝑠 (𝑏
2
𝑠2 + 𝑏
1
𝑠 + 1)]

, (15)

where 𝑏
1
and 𝑏
2
are determined by the two constraints

lim
𝑠→1/𝑇

𝐻
𝑑0
(𝑠) = 0, lim

𝑠→1/𝑇


𝐻
𝑑0
(𝑠) = 0, that is,

lim
𝑠→1/𝑇

[1 −
𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1

(𝜆𝑠 + 1)
4

𝑒
−𝜃𝑠

] = 0,

lim
𝑠→1/𝑇



[1 −
𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1

(𝜆𝑠 + 1)
4

𝑒
−𝜃𝑠

] = 0.

(16)

Following a simple calculation, we obtain

𝑏
1
= (𝑇
2
(
𝜆


𝑇
+ 1)

4

𝑒
𝜃/𝑇


− 𝑇
2
(
𝜆


𝑇
+ 1)

4

𝑒
𝜃/𝑇

+ 𝑇
2
− 𝑇
2
) × (𝑇


− 𝑇)
−1

,

𝑏
2
= 𝑇
2
[(

𝜆


𝑇
+ 1)

4

𝑒
𝜃/𝑇


− 1] − 𝑏
1
𝑇

.

(17)

The dead time 𝑒
−𝜃𝑠 in (15) is approximated using Pade

expansion:

𝑒
−𝜃𝑠

=
1 − 𝜃𝑠/2

1 + 𝜃𝑠/2
. (18)

Then substituting (18) into (15) obtains the controller𝐾
2
(𝑠) as

𝐾
2
(𝑠) =

𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1

𝜂
×

(𝑇

𝑠 − 1) (𝑇𝑠 − 1) (1 + 𝜃𝑠/2)

1 + 𝑙
1
𝑠 + 𝑙
2
𝑠2 + 𝑙
3
𝑠3 + 𝑙
4
𝑠4

,

(19)

where 𝜂 = 4𝜆

− 𝑏
1
+ 𝜃, 𝑙
1
= (6𝜆

2
+ 2𝜆

𝜃 + 𝑏
1
𝜃/2 − 𝑏

2
)/𝜂,

𝑙
2
= (4𝜆

3
+ 3𝜆
2
𝜃 + 𝑏
2
𝜃
2
/2)/𝜂, 𝑙

3
= (𝜆
4
+ 2𝜆
3
𝜃)/𝜂, and

𝑙
4
= 𝜆
4
𝜃
2
/2𝜂. Since the resulting controller does not have

a standard PID controller form, a procedure is employed to
produce a PID controller cascade with a first order lead-lag
filter:

𝐾
2
(𝑠) = 𝑘

2
(1 +

1

𝜏
𝑖2
𝑠
+ 𝜏
𝑑2
𝑠)

1 + 𝛼

𝑠

1 + 𝛽𝑠
. (20)

As can be seen from (19), the first term (𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1)/𝜂 can

be interpreted as the standard PID controller in the form of
𝑘
2
(1 + (1/𝜏

𝑖2
𝑠) + 𝜏
𝑑2
𝑠). The later term can be interpreted as a

first order lead-lag filter (1 + 𝛼

𝑠)/(1 + 𝛽𝑠), 𝛼 = 0.5𝜃; 𝛽 can

be obtained by

𝑑

𝑑𝑠
(]𝑠2 + 𝛽𝑠 + 1)

𝑠=0

=
𝑑

𝑑𝑠
[
1 + 𝑙
1
𝑠 + 𝑙
2
𝑠
2
+ 𝑙
3
𝑠
3
+ 𝑙
4
𝑠
4

(𝑇𝑠 − 1) (𝑇𝑠 − 1)
]

𝑠=0

.

(21)

Since the ]𝑠2 term has little impact on the overall control
performance, it can be ignored. Calculating by using (19) and
(21), we can obtain the parameters for the controller 𝐾

2
(𝑠).

𝑘
2
= 𝑏
1
/𝑘

(4𝜆

+ 𝜃 − 𝑏

1
) is proportional gain, 𝜏

𝑖2
= 𝑏
1
is
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integral gain, and 𝜏
𝑑2

= 𝑏
2
/𝑏
1
is derivative gain. 𝛼 = 0.5𝜃,

𝛽 = ((𝑏
1
𝜃/2 − 𝑏

2
+ 2𝜆

𝜃 + 6𝜆

2
)/(𝜃 + 4𝜆


− 𝑏
1
)) + 𝑇 +𝑇

, 𝛼 and
𝛽 are parameters of the lead-lag filter.

As for the process type 𝑃(𝑠) = 𝑘𝑒
−𝜃𝑠

/𝑠(𝑇𝑠 + 1), it can be
transformed as 𝑃(𝑠) = −𝑘


𝑒
−𝜃𝑠

/[(𝑇

𝑠 − 1)(−𝑇𝑠 − 1)], and the

executable controller 𝐾
2
(𝑠) can be obtained in the form of

PID by using (15), (18), and (20). On the basis of simulation
study on integrating first order plus time delay processes, the
use of 0.1𝛽 instead of 𝛽 is suitable and 𝛽 is about 0.2–1.2
generally.

3. System Robust Stability Analysis

A control system is robust if it is insensitive to differences
between the actual system and the model of the system
which was used to design the controller.These differences are
referred to as model mismatch or simply model uncertainty
[31]. A study of robustness analysis is an important task
because no mathematical model of a system will be a perfect
representation of the actual system. Small-gain theorem is
‖𝑙
𝑚
𝑇(𝑠)‖
∞

< 1; it expresses the robustly stable condition of
a control system, where 𝑙

𝑚
(𝑠) is the bound on the process

multiplicative uncertainty and 𝑇(𝑠) is the closed-loop com-
plementary sensitivity function [32].

For the process type 𝑃(𝑠) = 𝑘𝑒
−𝜃𝑠

/𝑠(𝑇𝑠 − 1), if there are
uncertainties that exist in all three parameters, that is,

𝑃

(𝑠) =

(𝑘 + Δ𝑘) 𝑒
−(𝜃+Δ𝜃)𝑠

𝑠 (𝑇
2
𝑠 − 1) (Δ𝑇𝑠 + 1)

. (22)

Thebound on the processmultiplicative uncertainty 𝑙
𝑚
(𝑠) can

be obtained as

𝑙
𝑚
(𝑠) =



𝑃

(𝑠) − 𝑃 (𝑠)

𝑃 (𝑠)



=
(1 + (Δ𝑘/𝑘)) 𝑒

−Δ𝜃𝑠

(Δ𝑇𝑠 + 1)
− 1. (23)

Then the tuning parameters should be selected in such a way
that


𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1

(𝜆𝑠 + 1)
4

∞

<
1

((1 + (Δ𝑘/𝑘))𝑒
−Δ𝜃𝑠/ (Δ𝑇𝑠 + 1)) − 1

∞

.

(24)

If the uncertainty exists in the time delay, the tuning param-
eters should be selected in a way that



𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 1

(𝜆𝑠 + 1)
4

∞

<
1

𝑒
−𝑗Δ𝜃𝑤 − 1



. (25)

At the same time, in order to compromise the nominal
performance with the robust stability of the closed-loop for
the load disturbance rejection, the following constraint is
required to meet [31]

𝑙𝑚 (𝑠) 𝑇 (𝑠)
 + |𝜔 (𝑠) (1 − 𝑇 (𝑠))| < 1, (26)

where 𝜔(𝑠) is a weight function of the closed-loop sensitivity
function 𝑆 = 1 − 𝑇(𝑠), which usually can be chosen as
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Figure 2: Nominal system responses for Example 1.

1/𝑠 for the step change of the load disturbance. It indicates
that tuning the adjustable parameter 𝜆 aims at the tradeoff
between the nominal performance of the closed-loop and
its robust stability. That is to say, decreasing 𝜆

 improves
the disturbance rejection performance of the closed-loop
but decays its robust stability in the presence of the pro-
cess uncertainty. On the contrary, increasing 𝜆

 tends to
strengthen the robust stability of the closed-loop but degrades
its disturbance rejection performance.

4. Simulation

Example 1. Consider the unstable process studied by Liu et al.
[20], 𝑃(𝑠) = 𝑒

−0.2𝑠
/𝑠(𝑠 − 1).

In the proposed method, take 𝜆 = 3.3𝜃 = 0.66, the
parameters of controllers are obtained, 𝑘

1
= 2.64, 𝜏

𝑖1
= 2.64,

𝜏
𝑑1

= 1.367, 𝛼 = 0.19, 𝑎
1

= 2.64, and 𝑎
2

= 3.61. As
for the controller 𝐾

2
(𝑠), transform the process as 𝑃(𝑠) =

100𝑒
−0.2𝑠

/(100𝑠 − 1)(𝑠 − 1), take 𝜆 = 2𝜃 = 0.4, and obtain

𝐾
2
(𝑠) = 3.02 (1 +

1

1.79𝑠
+ 1.06𝑠)

0.1𝑠 + 1

0.008𝑠 + 1
. (27)

The method proposed in [20] is better than others which can
be seen in this simulation effects, so only compare with the
method in [20]. By adding a unit step change to the set-point
input at 𝑡 = 0, an inverse unit step change of load disturbance
to process output at 𝑡 = 20, the simulation results are obtained
as shown in Figure 2.

Now suppose that there exists 30% increment for estimat-
ing the process time delay and 30% reduction for the time
constant of the process model; then the perturbed system
responses are provided in Figure 3.

It can be seen from the simulation results that the
proposed method gives better performances for the unstable
process.

Example 2. Consider a process studied by Liu and Gao [15],
𝑃(𝑠) = 0.1𝑒

−5𝑠
/𝑠(5𝑠 + 1).
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Figure 3: Perturbed system responses for Example 1.
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Figure 4: Nominal system responses for Example 2.

In the proposed method, as for controllers 𝐾
1
(𝑠), take

𝜆 = 0.8𝜃 = 4, and obtain 𝑘
1
= 9.375, 𝜏

𝑖1
= 12, 𝜏

𝑑1
= 2.933,

𝑎
1
= 12, and 𝑎

2
= 35.2. As for controller 𝐾

2
(𝑠), transform

the process as 𝑃(𝑠) = −10𝑒
−5𝑠

/(100𝑠 − 1)(−5𝑠 − 1), take
𝜆

= 0.8𝜃 = 4, and obtain the controller

𝐾
2
(𝑠) = 2.2 (1 +

1

22𝑠
+ 3.864𝑠)

2.5𝑠 + 1

0.8𝑠 + 1
. (28)

Add a unit step change to the set-point input at 𝑡 = 0 and an
inverse step change of load disturbance to the process output
at 𝑡 = 200. The simulation results are obtained as shown in
Figure 4, and the corresponding control action responses are
shown in Figure 5. It can be observed from the figure that
the control action response of the proposed method shows
smooth variation compared to that of Liu and Gao [15].

Now suppose that there exist 10% error for estimating
the process time delay and the time constant of the process
model, such as both of them are actually 10% larger. The
perturbed system responses are provided in Figure 6, and
the corresponding control action responses are shown in
Figure 7. It can be seen that the proposed control action
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Figure 5: Nominal system control signal for Example 2.
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Figure 6: Perturbed system responses for Example 2.

is smooth and the performance of disturbance rejection is
better than that of Liu and Gao [15].

5. Conclusion

In order to improve the system performance of distur-
bance rejection, a modified Smith predictor scheme has
been proposed based on a two-degree-of-freedom control
structure. In the proposed control structure, both of the set-
point response and the load disturbance response can be
tuned separately by the set-point tracking controller and the
disturbance estimator, respectively.Themost advantage of the
method is that the designed system has good performance
of disturbance rejection as well as performance of set-point
tracking. The two controllers are all designed in the form of
PID, and they are simple and easy to be used in process indus-
try. Comparisons with the previous methods demonstrate a
clear advantage of the proposedmethod in both nominal and
robust performances in disturbance rejection.
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Figure 7: Perturbed system control signal for Example 2.
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