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ABSTRACT
There exist various types of information in retail food pack-
ages, including food product name, ingredients list and use by
date. The correct recognition and coding of use by dates is es-
pecially critical in ensuring proper distribution of the product
to the market and eliminating potential health risks caused by
erroneous mislabelling. The latter can have a major negative
effect on the health of consumers and consequently raise le-
gal issues for suppliers. In this work, an end-to-end architec-
ture, composed of a dual deep neural network based system
is proposed for automatic recognition of use by dates in food
package photos. The system includes: a Global level con-
volutional neural network (CNN) for high-level food pack-
age image quality evaluation (blurry/clear/missing use by date
statistics); a Local level fully convolutional network (FCN)
for use by date ROI localisation. Post ROI extraction, the date
characters are then segmented and recognised. The proposed
framework is the first to employ deep neural networks for end-
to-end automatic use by date recognition in retail packaging
photos. It is capable of achieving very good levels of per-
formance on all the aforementioned tasks, despite the varied
textual/pictorial content complexity found in food packaging
design.

Index Terms— deep learning, optical character verifica-
tion, transfer learning, adaptation, maximally stable extremal
regions

1. INTRODUCTION

Whilst food availability is a primary concern in developing
nations and food quality/value a focal point in more affluent
societies, food safety is a requirement that is common across
all food supply chains. Pre-packaged food products, which
are incorrectly labelled (e.g. bearing an incorrect or illegi-
ble use by date) result in product recalls, as the fault could
lead to a food safety incident such as food poisoning. These
recalls are usually at very high financial cost to food man-
ufacturers and compromise their reputation. Recurring root
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causes for mistakes in food package labelling include but are
not limited to, human error and varying types of equipment
faults. Manual methods of package inspection create mun-
dane and repetitive tasks, therefore placing the human opera-
tor in an error-prone working environment. Moreover, these
checks also struggle to provide statistically significant cor-
rectness data on the packages as the checks are often per-
formed only once every 5 minutes. Therefore, a robust and
automatic system capable of recognising use by dates for ver-
ification is highly desirable to industrial manufacturers.

2. RELATED WORK

The introduction of supervisory Optical Character Verifica-
tion (OCV) and Recognition (OCR) systems for use by dates,
is both financially and safety-wise advantageous for suppli-
ers. However, currently existing OCV systems are exclu-
sively off-the-shelf and black-box commercial ones. More-
over, they heavily rely on consistency of date-code format,
packaging design and viewing angle, when ascertaining the
print quality of a known text by comparing it against a ref-
erence image. This consistency is almost unattainable due to
high variability of food packaging designs in the food indus-
try. Several traditional image processing methodologies have
been applied to images for detection/recognition of text re-
gions with good levels of success, including techniques such
as Stroke Width Transform (SWT) [1] and Maximally Stable
Extremal Regions (MSER) [2]). Deep learning approaches
by way of CNNs/FCNs have shown to be especially effective
in these tasks [3, 4, 5, 5, 6, 7, 8, 9, 10, 11]. Given the small
volume of available food packaging data, the risk of overfit-
ting is increased when training state-of-the-art architectures.
Effective techniques such as Dropout ([12, 13]), data augmen-
tation [14], and transfer learning (TL) [15] can help mitigate
this effect. TL involves the adaptation of low- to high-level
feature representations learnt from a different distribution to
solve new tasks [16]. In this work, TL is performed for adapt-
ing a light-weighted fully convolutional network architecture
in [3]. Inspired by the recent research in the field of text detec-
tion/recognition, state-of-the-art image processing and FCN



Fig. 1. Illustration of the proposed unified framework for use
by date OCV and OCR. The top row depicts the first network,
responsible for image quality evaluation and filtering. On the
bottom, the FCN architecture responsible for date ROI local-
isation followed by characters recognition.

techniques were combined to propose an end-to-end frame-
work for robust text detection/recognition in retail food pack-
aging.

3. THE PROPOSED APPROACH

To address the aforementioned food package challenges and
provide a robust machine vision solution for use by date
recognition, a unified deep learning framework was devised.
Concretely, both global and local approaches were studied
and combined to leverage the feature extraction capabilities
inherent to Deep Neural Networks (DNNs). Furthermore, by
utilising adaptation strategies such as TL, it was possible to
mitigate the negative effect of the small dataset available, as
well as provide meaningful correctness statistics and filtering
of inadequate images from the OCV pipeline. The structure
of the proposed end-to-end system can be observed in Fig.
1, which is comprised of two networks. The first network is
responsible for the pre-processing and selection of candidate
images for date recognition. During this procedure, the first
network acts as a filter of blurry/unreadable images or those
with missing day/month dates, which could trigger False Pos-
itives in the subsequent detection/recognition procedures. By
discarding inadequate images from the pipeline, it was possi-
ble to reduce the computational cost of the second network.
As a byproduct, the first network also produces useful statis-
tical information regarding the image quality and potentially
missing use by dates. In practice, this is a very desirable
property for food manufacturers. For example, a statistically
high volume of images with low quality/missing dates could
indicate possible equipment faults (printer/camera) and could

be reported for maintenance in a more timely manner. The
second part of the system consists of a Fully Convolutional
Neural Network (FCN), which is responsible for local pro-
cessing of images. Multiple levels of features from image
patches are extracted and exploited to localise the use by date
ROIs. Date characters could then be segmented and recog-
nised within the respective ROIs through classical image
processing and machine learning techniques.

3.1. CNN Transfer Learning

As depicted in the first row of Fig. 1, the first DNN is based on
conventional CNN architectures ([17, 18]). CNNs are com-
prised of filtering layers, in which a number of affine transfor-
mations and subsequent non-linearities are applied to an input
vector. It is common that CNNs use pooling layers to sum-
marise the activations of multiple adjacent filters within a sin-
gle response, and also add robustness to the model against in-
put translations. CNN architectures take as input three chan-
nelled images and through a series of volume-wise convolu-
tions and feature routing, are capable of selecting the optimal
features/filters for classification of particular objects. This in
turn eliminates the need for hands-on feature engineering ap-
proaches, as customary in classical Machine Learning and
Computer Vision. For the problem adressed in this work,
it was of particular interest to conduct transfer learning and
assess the adaptability of pre-trained CNN weights to food
package image datasets. In addition to the traditional archi-
tecture of Inception-V3, new fully-connected layers and a fi-
nal softmax layer were added. In order to optimise the TL
performance of the new network, a series of architectural de-
cisions were made empirically. The best performances were
achieved with a fully-connected network consisting of two
2048 unit hidden layers with Rectifier Linear Unit (ReLU :→
f(x) = max(0, x)) activation function. As previously al-
luded to, the risk of overfitting rises as the number of param-
eters increases w.r.t the number of training examples. Given
the scarcity of training data available, it is unfeasible to train
very deep models from scratch. Therefore, it was paramount
to introduce an effective regulariser in the new network as
well as to adapt previously learned low-level features by way
of TL. One of the most effective regularisation techniques is
Dropout [13]. In practice, to preserve more information in the
input layer of the network and thus help learning, the neuron
Dropout probability was set to 0.8, whereas for each hidden
fully-connected layer of the network it was set to 0.5. Con-
sidering the class unbalance of use by date information, it was
advantageous to use weighted categorical cross entropy as a
cost function (1). In (1), ωj is a weight computed for the jth

class of J total number of classes, as a function of the propor-
tion of instancesNj compared to the most populated class (2).
This discourages significant reduction of the loss for densely
populated classes. Adam optimisation was used as to include
adaptive learning rate, momentum, RMSprop and bias cor-



rection in weight updates, which helps to obtain faster con-
vergence rate than normal Stochastic Gradient Descent with
momentum [19].

L (x, x̂) = −(ωjx log(x̂) + (1− x) log(1− x̂)) (1)

ωj =
max({Ni}i=[1:J])

Nj
(2)

3.2. Fully Convolutional Neural Network

To effectively identify and recognise the use by date ROI
in food packaging, various types of textual/pictorial content
must be disregarded by the automated system. A DNN ap-
proach was devised to overcome this challenge. Specifically,
a FCN architecture originally developed for detecting text, as
described in greater detail in [3], was fine-tuned on the food
package datasets, for detecting use by date ROIs. The full
FCN architecture is shown in the lower part of Fig. 1, which
is mainly composed of three parts: feature extractor stem,
feature-merging branch and output layer. The stem part is a
PVANet[20], with interleaving convolution and pooling lay-
ers. Four levels of feature maps, denoted as fi are extracted
from the original input image, whose sizes are 1
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the original input image. Features from different scale levels
meet the requirements of detecting text regions with different
sizes. In the feature-merging branch, features are merged
with the following strategy:

gi =

{
unpool(hi) if i ≤ 3
conv3×3(hi) if i = 4

hi =

{
fi if i = 1
conv3×3(conv1×1([gi−1; fi])) if i = 4

(3)

where gi is the merge as found in [3] and hi is the merged fea-
ture map. The operator [; ], represents concatenation along the
channel axis. In each merging stage, the feature map from the
last stage is first fed to an unpooling layer to double its size,
then concatenated with the current feature map. A conv1×1

bottleneck cuts down the number of channels to reduce com-
putation, followed by a conv3×3 that fuses the information
to finally produce the output of this merging stage. Subse-
quently, a conv3×3 layer produces the final feature map of
the merging branch and feeds it to the output layer. The final
output layer contains several conv1×1 operations to project
32 channels of feature maps into a 1 channel score map Fs.
This map provides the likelihood that a pixel belongs to the
use by date region, as well as a multi-channel geometry map
Fg , which could either be a rotated box (RBOX) or quadran-
gle (QUAD) representing different geometries. The RBOX
geometry map contains a 4-channel map representing 4 dis-
tances from every pixel location to the top, right, bottom, left
boundaries of a rectangle enclosing the candidate use by date
region, as well as a 1-channel map representing the angle of
the related rectangle. QUAD geometry map is an 8-channel

map, which contains the coordinate shift from four corner
vertices of a quadrangle (representing candidate use by date
region) to every pixel position. The loss function to be opti-
mised can be defined as

L = Ls + λLg (4)

where Ls and Lg represent losses for score and geometry
maps respectively, while λ is a balancing parameter of the
two. The term Ls is defined as:

Ls = −βY ∗ log Ŷ − (1− β)(1− Y ∗) log(1− Ŷ ) (5)

where Ŷ and Y ∗ represent the predicted and groundtruth
score maps respectively. β is a balancing parameter. While
the Lg is defined as scale-invariant Intersection over Union
(IoU) loss, for the RBOX geometry map and scale-normalised
smoothed-L1 for the QUAD. The network was then fine tuned
end-to-end by optimising the defined loss function using the
Adam optimiser, until performance stopped improving. To
determine the final use by date region from outputs of the fine
tuned network, a threshold is firstly set to filter out obtained
output geometries with corresponding small scores. Remain-
ing geometries will then be merged by the locality-aware
Non-Maximum Suppression (NMS) methodology. Charac-
ters in the detected expiry date region can then be segmented,
with related features being extracted and classified to proper
categories. The segmentation, feature extraction and classi-
fication procedures can be implemented by well-built tool-
boxes, such as Tesseract OCR [21].

4. EXPERIMENTAL STUDY

Two datasets comprised of food package label images col-
lected by a leading food company were provided for research
purposes. The two datasets included 1404 and 6739 captured
images with different colours/contexts respectively. Fig. 2 is
exemplary of the datasets utilised. The images were first man-
ually annotated to form separate categories, namely: com-
plete dates, missing day, missing month, no date and unread-
able. In the case of the unreadable category, upon inspec-
tion, a date was not discernible from the background, poten-
tially due to heavy distortion, non-homogeneous illumination
or blur. Otherwise, images in which the day/month or both
were missing, were considered as incomplete. Moreover, it
was observed that some of these images included packaging
which had been folded at crucial points, digits fading over
time, or had human-made date occlusions. Annotated images
are divided into two groups, the first part is applied to train
the first network to classify the high-level image quality in-
formation (i.e. readable/unreadable, complete/partial or no
date). The performance of the trained network is evaluated
on a separate second group. As can be observed in Table 1,
despite the small training sets and high data variability, the
system was able to obtain high classification accuracy for all



Fig. 2. Demonstration of image variability. On the left, it is rela-
tively simple to localise/recognise the use by date. On the right side
it becomes significantly more complex.

Fig. 3. Date ROI localisation results from the network 2 procedure.

Table 1. Global based experiment results with network 1.
Complete vs. Dataset Images Accuracy %

Unreadable
1 645 vs 645 90.1
2 2847 vs 2847 96.8

Partial/No Date
1 645 vs 444 89.3
2 2954 vs 2954 95.9

Table 2. Local based experiment results with network 2.
Tested Clear Images Accuracy %

Dataset 1 240 98
Dataset 2 482 97.10

tasks. Furthermore, clear images including full date informa-
tion selected by the first DNN on two different datasets were
collected. The second (FCN) network was utilised in the use
by date ROI localisation in these images. 70% of collected
images were used for fine-tuning the FCN and 30% testing.
The detection accuracies are summarised in Table 2, for the
selected datasets. Examples are shown in Fig. 3, illustrat-
ing the FCN’s high detection accuracy on a variety of food
packages present in both datasets. By focusing solely on
the detected use by date ROI, the date characters can more
easily be recognised. The MSER algorithm is applied to seg-
ment and recognise the date from the extracted ROI region,
selected examples can be seen in Fig. 4. Finally, we illus-
trate one of the advantages of applying the cascade of two
networks. As shown in Fig. 5, a blurry image can lead to
False Positive recognition of use by dates. In this example,
the ground truth use by date is 18DEC; however, the recog-

Fig. 4. Examples of MSER based date character recognition results.

Fig. 5. Example of False Positive date recognition when omitting
network 1 verification and image/date quality evaluation.

nised date information, by adopting only the second network,
is closer to 18NOV . With the aid of the first DNN, this image
is classified as inadequate, thus it was not fed into the second
network for processing, therefore False Positive recognition
can be avoided and computational costs reduced.

5. CONCLUSION

In this work, we have proposed an end-to-end deep neural
architecture for the automatic verification and recognition of
use by dates in food package photos. The architecture consists
of two networks; the first is responsible for OCV of candidate
images for OCR. These images are then fed into the second
FCN which is responsible for the identification of use by date
ROIs. Date characters within the ROIs were then recognised
utilising the MSER algorithm. Promising experimental re-
sults have been obtained on a myriad of real life food pack-
age photos with varying textual/pictorial contexts. As a future
step, the current framework will be made more robust and ac-
curate in the use by date recognition of lower quality images,
ultimately targeting the deployment of a system to be adopted
in the food industry.
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