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DOOB’S MAXIMAL IDENTITY, MULTIPLICATIVE

DECOMPOSITIONS AND ENLARGEMENTS OF

FILTRATIONS

ASHKAN NIKEGHBALI AND MARC YOR

In the memory of J.L. Doob

Abstract. In the theory of progressive enlargements of filtrations, the
supermartingale Zt = P (g > t | Ft) associated with an honest time g,
and its additive (Doob-Meyer) decomposition, play an essential role. In
this paper, we propose an alternative approach, using a multiplicative
representation for the supermartingale Zt, based on Doob’s maximal
identity. We thus give new examples of progressive enlargements. More-
over, we give, in our setting, a proof of the decomposition formula for
martingales , using initial enlargement techniques, and use it to obtain
some path decompositions given the maximum or minimum of some
processes.

1. Introduction

Let
(
Ω,F , (Ft)t≥0 ,P

)
be a filtered probability space satisfying the usual

hypotheses (right continuous and complete). Given the end L of an (Ft)
predictable set Γ, i.e

L = sup {t : (t, ω) ∈ Γ} ,

(these times are also refered to as honest times), M. Barlow ([4]) and Jeulin
and Yor ([10]) have shown that the supermartingale:

ZL
t = P (L > t | Ft) ,

chosen to be càdlàg, plays an essential role in the enlargement formulae
with respect to L, i.e: in expressing a general (Ft) martingale (Mt) as a
semimartingale in

(
FL

t

)
t≥0

, the smallest filtration which contains (Ft), and

makes L a stopping time. This enlargement formula is:

Mt = M̃t +

∫ t∧L

0

d < M,Z >s

Zs−

+

∫ t

L

d < M, 1 − Z >s

1 − Zs−

, (1.1)
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2 ASHKAN NIKEGHBALI AND MARC YOR

where
(
M̃t

)
t≥0

denotes an
((
FL

t

)
,P

)
local martingale. Hence it is impor-

tant to dispose of an explicit formula for
(
ZL

t

)
t≥0

. In the literature about

progressive enlargements of filtrations, not so many examples are fully de-
veloped (see e.g. for example [26], [9] or [8]); indeed, the computation of(
ZL

t

)
is sometimes difficult. Moreover, the examples are developed essen-

tially in the Brownian setting, where as we shall see,
(
ZL

t

)
is continuous,

and no examples of discontinuous
(
ZL

t

)′
s are given.

In this paper, we first consider a special family of honest times g, and
then we later prove that this family is generic in the sense that every honest
time is in fact of this form (under some reasonable assumptions).

More precisely, we consider the following class of local martingales.

Definition 1.1. We say that an (Ft) local martingale (Nt) belongs to the
class (C0), if it is strictly positive, with no positive jumps, and limt→∞ Nt =
0.

Remark 1.2. Let (Nt) be a local martingale of class (C0). Then:

St ≡ sup
s≤t

Ns,

its supremum process, is continuous. This property is essential in our paper.
Hence, most of the results we shall state remain valid for positive local
martingales, which go to zero at infinity, and whose suprema are continuous.

We associate with a local martingale of class (C0), the supermartingale(
Nt

St

)
t≥0

, and the random time g defined as:

g ≡ sup {t ≥ 0 : Nt = S∞}

= sup {t ≥ 0 : St − Nt = 0} .

In Section 2, we prove that the associated supermartingale Z satisfies:

Zt ≡ P (g > t | Ft) =
Nt

St
, (1.2)

and then give the decomposition formula (1.1) in terms of the local mar-
tingale (Nt). This will provide us with some new, and explicit examples
of such supermartingales (Zt) which are discontinuous. We also establish
some relationship between the multiplicative representation (1.2) and the
Doob-Meyer (additive) decomposition of (Zt).

In Section 3, we study the problem of the initial enlargement of (Ft) with
the variable S∞, and then give a new proof of (1.1).

In Section 4, we show that the formula (1.2) is in fact very general. More
precisely, for any end of a predictable set L, under the assumptions (CA):

• all (Ft)-martingales are continuous (e.g: the Brownian filtration);
• L avoids every (Ft) -stopping time T , i.e. P [L = T ] = 0,
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the supermartingale ZL
t = P (L > t | Ft) may be represented as (1.2).

In Section 5, we give some new examples of enlargements of filtrations.
Moreover, as an illustration of our approach and the method of enlargements
of filtrations, we recover and complete some known results of D. Williams
([23]) about path decompositions of some diffusion processes, given their
minima. We add a new fragment in these path decompositions, by intro-
ducing a new family of random times, as defined in [16] and called pseudo-
stopping times, which generalize the fundamental notion of stopping times,
introduced by J.L. Doob. We take this opportunity to quote two passages,
resp. in the appendix of Meyer’s book (1966):

Les temps d’arrêt ont été utilisés, sans définition formelle,
depuis le début de la théorie des processus. La notion ap-
parâıt tout à fait clairement pour la première fois chez Doob
en 1936.

and in Dellacherie-Meyer’s book, volume I ([6]), p.184: 0194

Il a sans doute fallu autant de génie aux créateurs du calcul
différentiel pour expliciter la notion si simple de dérivée, qu’à
leurs successeurs pour faire tout le reste. L’invention des
temps d’arrêt par Doob est tout à fait comparable.

2. A multiplicative representation formula

2.1. Doob’s maximal identity. Let (Nt)t≥0 be a local martingale which

belongs to the class (C0), with N0 = x. Let St = sups≤t Ns. We consider:

g = sup {t ≥ 0 : Nt = S∞}

= sup {t ≥ 0 : St − Nt = 0} . (2.1)

To establish our main proposition, we shall need the following variant of
Doob’s maximal inequality, which we call Doob’s maximal identity:

Lemma 2.1 (Doob’s maximal identity). For any a > 0, we have:

(1)

P (S∞ > a) =
(x

a

)
∧ 1. (2.2)

Hence,
1

S∞
is a uniform random variable on (0, 1).

(2) For any stopping time T :

P
(
ST > a | FT

)
=

(
NT

a

)
∧ 1, (2.3)

where

ST = sup
u≥T

Nu.

Hence
NT

ST
is also a uniform random variable on (0, 1), independent

of FT .
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Proof. Formula (2.3) is a consequence of (2.2) when applied to the mar-
tingale (NT+u)u≥0 and the filtration (FT+u)u≥0. Formula (2.2) itself is
obvious when a ≤ x, and for a > x, it is obtained by applying Doob’s
optional stopping theorem to the local martingale (Nt∧Ta), where Ta =
inf {u ≥ 0 : Nu > a}. �

The next proposition gives an explicit formula for Zt ≡ P (g > t | Ft),
in terms of the local martingale (Nt). Without loss of generality, we as-
sume from now on that x = 1. Indeed, if N0 = x, we consider the local
martingale

(
Nt

x

)
which starts at 1.

Proposition 2.2. (1) In our setting, the formula:

Zt =
Nt

St
, t ≥ 0

holds.
(2) The Doob-Meyer additive decomposition of (Zt) is:

Zt = E [log S∞ | Ft] − log (St) . (2.4)

Proof. We first note that:

{g > t} = {∃ u > t : Su = Nu}

= {∃ u > t : St ≤ Nu}

=

{
sup
u≥t

Nu ≥ St

}
.

Hence, from (2.3), we get: P (g > t | Ft) = Nt

St
.

To establish (2.4), we develop
(

Nt

St

)
thanks to Ito’s formula, to obtain:

Zt = 1 +

∫ t

0

1

Ss
dNs −

∫ t

0

Ns

(Ss)
2 dSs.

Now, we remark that the measure dSs is carried by the set {s : Zs = 1};
hence:

Zt = 1 +

∫ t

0

1

Ss
dNs −

∫ t

0

1

Ss
dSs

Nt

St
= 1 +

∫ t

0

1

Ss
dNs − log (St) .

From the unicity of the Doob-Meyer decomposition, log (St) is the pre-

dictable increasing part of (Zt) whilst
(∫ t

0
1
Ss

dNs

)
is its martingale part.

As (Zt) is of class (D),
(∫ t

0
1
Ss

dNs

)
is a uniformly integrable martingale.

Now, let t → ∞: as Z∞ = 0, log S∞ = 1 +
∫ ∞
0

1
Ss

dNs and thus:

1 +

∫ t

0

1

Ss
dNs = E [log S∞ | Ft] , (2.5)

which proves (2). �
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Remark 2.3. It is well known, and it follows from (2.4), that the martingale
in (2.5) is in fact in BMO.

Corollary 2.4. Assuming that all (Ft) martingales are continuous, the fol-
lowing hold:

(1) log (St) is the dual predictable projection of 1{g≤t}: for any positive
predictable process (ks),

E (kg) = E

(∫ ∞

0
ks

dSs

Ss

)
;

(2) The random time g is honest and avoids any (Ft)stopping time T ,
i.e. P [g = T ] = 0.

Proof. Under our assumptions, the predictable and optional sigma algebras
are equal. Thus, it suffices to prove that g avoids stopping times, the other
assertions being obvious. Since log (St) is the dual predictable projection of
1{g≤t} and is continuous, then for any (Ft) stopping time T ,

E
[
1{g=T}

]
= E [(∆ log (S•))T ] = 0.

Thus we get P (g = T ) = 0. �

We can now write the formula (1.1) in terms of the martingale (Nt).

Proposition 2.5. Let (Xt)t≥0 be a local (Ft) martingale. Then, X has the

following decomposition as a semimartingale in (Fg
t ):

Xt = X̃t +

∫ t∧g

0

d < X,N >s

Ns−
−

∫ t

g

d < X,N >s

S∞ − Ns−

where
(
X̃t

)
is an (Fg

t ) local martingale.

Proof. This is a consequence of formula (1.1) and Proposition 2.2. �

We shall now give a relationship between (St) and E [log S∞ | Ft]. For
this, we shall need the following easy extension of Skorokhod’s reflection
lemma (see [12], p.72):

Lemma 2.6. Let y be a real-valued càdlàg function on [0,∞), such that y
has no negative jumps, and y(0) = 0. Then, there exists a unique pair (z, a)
of functions on [0,∞) such that:

(1) z=y+a
(2) z is positive, càdlàg and has no negative jumps,
(3) a is increasing, continuous, vanishing at zero and the corresponding

measure das is carried by {s : z(s) = 0}.

The function a is moreover given by

a(t) = sup
s≤t

(−y(s)) .
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Proposition 2.7. With

µt = E [log S∞ | Ft] ,

we have:

log (St) = sup
s≤t

µs − 1 ≡ µt − 1,

or equivalently:

St = exp (µt − 1)

Proof. From (2.4), we can write:

1 − Zt = (1 − µt) + log (St) .

From Lemma 2.6, we deduce that

log (St) = sup
s≤t

µs − 1.

�

2.2. Some hidden Azéma-Yor martingales. We shall now associate
with the two dimensional process

(log (St) , Zt)t≥0

a family of martingales reminiscent of Azéma-Yor martingales (see, e.g., [3])
which we shall now discuss. In fact, once again, we have to introduce a
slightly generalized version of what are usually called Azéma-Yor martin-
gales. Indeed, these martingales were originally defined for continuous local
martingales (see [20], Chapter VI), while we would like to define them for
local martingales without positive jumps. This extension can be dealt with
the following balayage argument:

Lemma 2.8. Let Y = M + A be a special semimartingale, where M is a
càdlàg local martingale, and A a continuous increasing process. Set H =
{t : Yt = 0}, and define gt ≡ sup {s < t : Ys = 0}. Then, for any locally
bounded predictable process (kt), (kgt) is predictable and

kgtYt = k0Y0 +

∫ t

0
kgsdYs. (2.6)

Proof. The proof is the same as the proof for continuous semimartingales.
The reader can refer to [5], p.144, for even more general versions of the
balayage formula. �

Now, we can state the following generalization of the classical Azéma-Yor
martingales:

Proposition 2.9. Let (Nt)t≥0 be a local martingale such that its supremum

process (St) is continuous (this is the case if Nt is in the class C0). Let f
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be a locally bounded Borel function and define F (x) =
∫ x
0 dyf (y). Then,

Xt ≡ F (St) − f (St) (St − Nt) is a local martingale and:

F (St) − f (St) (St − Nt) =

∫ t

0
f (Ss) dNs + F (S0) , (2.7)

Proof. In (2.6), take kt ≡ f (St), and Yt ≡ St − Nt. Then, we have:

f (Sgt) (St − Nt) =

∫ t

0
f (Sgs) d (Ss − Ns) .

But Sgt = St, hence:

F (St) − f (St) (St − Nt) =

∫ t

0
f (Ss) dNs + F (S0) .

In conclusion, for any locally bounded function f ,

F (St) − f (St) (St − Nt) =

∫ t

0
f (Ss) dNs + F (S0) ,

is a local martingale. �

Remark 2.10. Although very simple, these martingales played an essential
role in the resolution by Azéma and Yor of Skorokhod’s embedding problem
(see [20], chapter VI for more details and references).

Remark 2.11. In [15], a special case of Proposition 2.9, for spectrally negative
Lévy martingales is obtained by different means.

Now, we associate with the two dimensional process (log (St) , Zt)t≥0, a

canonical family of local martingales which are in fact of the form (2.7).

Proposition 2.12. Let f be a locally bounded and Borel function, and let
F (x) =

∫ x
0 dyf (y).

(1) The following processes are local martingales:

F (log (St)) − f (log (St)) (1 − Zt) , t ≥ 0. (2.8)

(2) Denoting K (x) = F (x − 1) and k (x) = f (x − 1), then the local
martingales in (2.8) are seen to be equal to:

K (µt) − k (µt) (µt − µt) , t ≥ 0. (2.9)

Proof. (1). The fact that (2.8) defines a local martingale may be seen as an
application of Ito’s lemma (when f is regular), followed by a monotone class
argument.

(2). Formula (2.9) is obtained by a trivial change of variables, and the
fact that: 1 − Zt = µt − µt, which was derived in Proposition 2.7. �

Remark 2.13. Similar formulas are derived in [17] from different considera-
tions.
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3. Initial expansion with S∞ and enlargement formulae

In this Section, we shall deal with the question of initial enlargement of
the filtration (Ft) with the variable S∞. This problem cannot be dealt with
the powerful enlargement theorem of Jacod (see [9]), but can be treated by
a careful combination of different propositions in [8]. However, we shall give
a simple proof which can also be adapted to deal with some other situations.
Eventually, we will use our result about the initial expansion of (Ft) with
the variable S∞ to recover formula (1.1).

Let us define the new filtration

F
σ(S∞)
t ≡

⋂

ε>0

(Ft+ε ∨ σ (S∞)) ,

which satisfies the usual assumptions. The new information σ (S∞) is brought
in at the origin of time and g is a stopping time for this larger filtration.
More precisely:

Lemma 3.1. The following hold:

(1)
g = inf {t : Nt = S∞} ;

and hence g is an
(
F

σ(S∞)
t

)
stopping time.

(2) Consequently:

Fg
t ⊂ F

σ(S∞)
t .

Proof. (1) The measure dSt is carried by the set {t : Nt = St}. As g =
sup {t : Nt = St}, the process (St) does not grow after g, which also satisfies:

g = inf {t : St = S∞} ;

hence g is an
(
F

σ(S∞)
t

)
stopping time.

(2) It is obvious. �

Now we introduce some standard terminology.

Definition 3.2. We shall say that the pair of filtrations
(
Ft,F

σ(S∞)
t

)
satis-

fies the (H ′) hypothesis if every (Ft) (semi)martingale is a
(
F

σ(S∞)
t

)
semi-

martingale.

We shall now show that the pair of filtrations
(
Ft,F

σ(S∞)
t

)
satisfies the

(H ′) hypothesis and give the decomposition of a (Ft) local martingale in(
F

σ(S∞)
t

)
. For this, we need to know the conditional law of S∞ given Ft.

Proposition 3.3. For any Borel bounded or positive function f , we have:

E (f (S∞) |Ft) = f (St)

(
1 −

Nt

St

)
+

∫ Nt/St

0
dsf

(
Ns

x

)
(3.1)

= f (St)

(
1 −

Nt

St

)
+ Nt

∫ ∞

St

dx
f (x)

x2
.
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Proof. The proof is based on Lemma 2.1; in the following, U is a random
variable, which follows the standard uniform law and which is independent
of Ft.

E (f (S∞) |Ft) = E
(
f

(
St ∨ St

)
|Ft

)

= E
(
f (St)1{St≥St}|Ft

)
+ E

(
f

(
St

)
1{St<St}|Ft

)

= f (St)P
(
St ≥ St|Ft

)
+ E

(
f

(
St

)
1{St<St}|Ft

)

= f (St)P

(
U ≤

Nt

St
|Ft

)
+ E

(
f

(
Nt

U

)
1{

U<
Nt
St

} |Ft

)

= f (St)

(
1 −

Nt

St

)
+

∫ Nt/St

0
dxf

(
Nt

x

)
.

A straightforward change of variable in the last integral also gives:

E (f (S∞) |Ft) = f (St)

(
1 −

Nt

St

)
+ Nt

∫ ∞

St

dy
f (y)

y2
.

�

One may now ask if E (f (S∞) |Ft) is of the form (2.7). The answer to
this question is positive. Indeed:

E (f (S∞) |Ft) = f (St)

(
1 −

Nt

St

)
+ Nt

∫ ∞

St

dy
f (y)

y2

= St

∫ ∞

St

dy
f (y)

y2
− (St − Nt)

(∫ ∞

St

dy
f (y)

y2
−

f (St)

St

)
.

Hence,

E (f (S∞) |Ft) = H (1) + H (St) − h (St) (St − Nt) ,

with

H (x) = x

∫ ∞

x
dy

f (y)

y2
,

and

h (x) = hf (x) ≡

∫ ∞

x
dy

f (y)

y2
−

f (x)

x
=

∫ ∞

x

dy

y2
(f (y) − f (x)) .

Moreover, again from formula (2.7), we have the following representation of
E (f (S∞) |Ft) as a stochastic integral:

E (f (S∞) |Ft) = E (f (S∞)) +

∫ t

0
h (Ss) dNs. (3.2)

Let us sum up these results, introducing some notations:

λt (f) ≡ E (f (S∞) |Ft) (3.3)

= f (St)

(
1 −

Nt

St

)
+ Nt

∫ ∞

St

dx
f (x)

x2
; (3.4)
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and

λt (f) = E (f (S∞)) +

∫ t

0
λ̇s (f)dNs, (3.5)

where:

λ̇s (f) = hf (Ss) . (3.6)

Moreover, there exist two families of random measures (λt (dx))t≥0 and(
λ̇t (dx)

)
t≥0

, with

λt (dx) =

(
1 −

Nt

St

)
δSt (dx) + Nt1{x>St}

dx

x2
(3.7)

λ̇t (dx) = −
1

St
δSt (dx) + 1{x>St}

dx

x2
, (3.8)

such that

λt (f) =

∫
λt (dx) f (x) (3.9)

λ̇t (f) =

∫
λ̇t (dx) f (x) . (3.10)

Eventually, we notice that there is an absolute continuity relationship be-
tween λt (dx) and λ̇t (dx); more precisely,

λ̇t (dx) = λt (dx) ρ (x, t) , (3.11)

with

ρ (x, t) =
−1

St − Nt
1{St=x} +

1

Nt
1{St<x}. (3.12)

Now, we can state the main theorem of this section.

Theorem 3.4. Let (Nt)t≥0 be a local martingale in the class C0 (recall N0 =

1). Then, the pair of filtrations
(
Ft,F

σ(S∞)
t

)
satisfies the (H ′) hypothesis

and every (Ft) local martingale (Xt) is an
(
F

σ(S∞)
t

)
semimartingale with

canonical decomposition:

Xt = X̃t +

∫ t

0
1{g>s}

d < X,N >s

Ns−
−

∫ t

0
1{g≤s}

d < X,N >s

S∞ − Ns−
,

where
(
X̃t

)
is a

(
F

σ(S∞)
t

)
local martingale.

Remark 3.5. The following proof is tailored on the arguments found in [26],
although our framework is more general: we do not assume that our filtration
has the predictable representation property with respect to some martingale
nor that all martingales are continuous.

Proof. We can first assume that X is in H1; the general case follows by
localization. Let Λs be an Fs measurable set, and take t > s. Then, for any
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bounded test function f , λt (f) is a bounded martingale, hence in BMO,
and we have:

E (1Λsf (A∞) (Xt − Xs)) = E (1Λs (λt (f)Xt − λs (f)Xs))

= E (1Λs (< λ (f) ,X >t − < λ (f) ,X >s))

= E

(
1Λs

(∫ t

s
λ̇u (f) d < X,N >u

))

= E

(
1Λs

(∫ t

s

∫
λu (dx) ρ (x, u) f (x) d < X,N >u

))

= E

(
1Λs

(∫ t

s
d < X,N >u ρ (S∞, u)

))
.

But from (3.12), we have:

ρ (S∞, t) =
−1

St − Nt
1{St=S∞} +

1

Nt
1{St<S∞}.

It now suffices to note (from Lemma 3.1) that (St) is constant after g and g
is the first time when S∞ = St, or in other words:

1{S∞>St} = 1{g>t}, and 1{S∞=St} = 1{g≤t}.

This completes the proof. �

Theorem 3.4 yields a new proof of the decomposition formula in the pro-
gressive enlargement case. More precisely, we have:

Corollary 3.6. The pair of filtrations (Ft,F
g
t ) satisfies the (H ′) hypothesis.

Moreover, every (Ft) local martingale X decomposes as:

Xt = X̃t +

∫ t

0
1{g>s}

d < X,N >s

Ns
−

∫ t

0
1{g≤s}

d < X,N >s

S∞ − Ns
,

where
(
X̃t

)
is a (Fg

t ) local martingale.

Proof. Let X be an (Ft) martingale which is in H1; the general case follows
by localization. From Theorem 3.4

Xt = X̃t +

∫ t

0
1{g>s}

d < X,N >s

Ns
−

∫ t

0
1{g≤s}

d < X,N >s

S∞ − Ns
,

where
(
X̃t

)
t≥0

denotes an
(
F

σ(S∞)
t

)
martingale. Thus,

(
X̃t

)
, which is

equal to:

Xt −

(∫ t

0
1{g>s}

d < X,N >s

Ns
−

∫ t

0
1{g≤s}

d < X,N >s

S∞ − Ns
,

)
,

is (Fg
t ) adapted (recall that Fg

t ⊂ F
σ(S∞)
t ), and hence it is an (Fg

t ) martin-
gale. �
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4. A multiplicative characterization of Zt

Usually, in the literature about progressive enlargements of filtrations, it
is assumed that the conditions (CA) are satisfied. Now, we shall prove that
under this assumption the supermartingale ZL

t = P (L > t | Ft), associated

with an honest time, can be represented as

(
Nt

St

)

t≥0

, where Nt is a positive

local martingale. More precisely, we have the following:

Theorem 4.1. Let L be an honest time. Then, under the conditions (CA),
there exists a continuous and nonnegative local martingale (Nt)t≥0, with
N0 = 1 and limt→∞ Nt = 0, such that:

Zt = P (L > t | Ft) =
Nt

St

Proof. Under the conditions (CA), (Zt)t≥0 is continuous and can be written

as (see [1] or [5] for details):

Zt = Mt − At,

where (Mt) and (At) are continuous, Z0 = 1 and dAt is carried by {t : Zt = 1}.
Then, for t < T0 ≡ inf {t : Zt = 0}, we have:

log (Zt) =

∫ t

0

dMs

Zs
−

1

2

∫ t

0

d < M >s

Z2
s

− At,

hence:

− log (Zt) = −

(∫ t

0

dMs

Zs
−

1

2

∫ t

0

d < M >s

Z2
s

)
+ At; (4.1)

and, from Skorokhod’s reflection lemma, we have:

At = sup
u≤t

(∫ u

0

dMs

Zs
−

1

2

∫ u

0

d < M >s

Z2
s

)
. (4.2)

Now, combining (4.1) and (4.2), we obtain:

Zt =
Nt

St
,

where

Nt = exp

(∫ t

0

dMs

Zs
−

1

2

∫ t

0

d < M >s

Z2
s

)

is a local martingale starting from 1, and

St = sup
u≤t

(
exp

(∫ u

0

dMs

Zs
−

1

2

∫ u

0

d < M >s

Z2
s

))

= exp

(
sup
u≤t

(∫ u

0

dMs

Zs
−

1

2

∫ u

0

d < M >s

Z2
s

))

= exp (At) .

We finally note that, since ZT0
= 0, limt↑T0

Nt = 0, which allows to define
Nt for all t ≥ 0. �
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Corollary 4.2. The supermartingale Zt = P (L > t | Ft) admits the follow-
ing additive and multiplicative representations:

Zt =
Nt

St

Zt = Mt − At.

Moreover, these two representations are related as follows:

Nt = exp

(∫ t

0

dMs

Zs
−

1

2

∫ t

0

d < M >s

Z2
s

)

St = exp (At) ;

and

Mt = 1 +

∫ t

0

dNs

Ss
= E (log S∞ | Ft) ,

At = log St.

Proof. It is a consequence of Proposition 2.2 and Theorem 4.1. �

Now, as a consequence of Theorem 4.1, we can recover the enlargement
formulae and the fact that the pair of filtrations

(
Ft,F

L
t

)
satisfies the (H ′)

hypothesis:

Corollary 4.3. Let L be an honest time. Then under the conditions (CA),
the pair of filtrations

(
Ft,F

L
t

)
satisfies the (H ′) hypothesis and every (Ft)

local martingale X is an
(
FL

t

)
semimartingale with canonical decomposition:

Xt = X̃t +

∫ t∧L

0

d < X,Z >s

Zs
+

∫ t

L

d < X, 1 − Z >s

1 − Zs
,

where
(
X̃t

)
t≥0

denotes an
((
FL

t

))
local martingale.

Proof. It is a combination of Theorem 4.1 and Corollary 3.6. �

Remark 4.4. We then see that under the assumptions (CA), the initial en-
largement of filtrations with A∞ amounts to enlarging initially the filtration
with S∞, the terminal value of the supremum process of a continuous local
martingale in C0.

We shall now outline another nontrivial consequence of Theorem 4.1 here.
In [2], the authors are interested in giving explicit examples of dual pre-
dictable projections of processes of the form 1g≤t, where g is an honest
time. Indeed, these dual projections are natural examples of increasing in-
jective processes (see [2] for more details and references). With Theorem
4.1, we have a complete characterization of such projections:

Corollary 4.5. Let g be an honest time and assume the assumptions (CA)
hold. An increasing process Ct is the dual predictable projection of 1g≤t if
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and only if there exists a continuous local martingale Nt in the class C0 such
that

Ct = log St.

The previous results can be naturally extended to the case where the
supermartingale Zt has only negative jumps; we gave a special treatment
under the hypothesis (CA) because of its practical importance. We just
give here the extension of Theorem 4.1; the corollaries are easily deduced.

Proposition 4.6. Let L be an honest time that avoids stopping times. As-
sume that ZL

t has no positive jumps. Then, there exists a local martingale
(Nt)t≥0, in the class C0, with N0 = 1, such that:

(
ZL

t =
)
Zt = P (L > t | Ft) =

Nt

St

Proof. We use the same notations as in the proof of Theorem 4.1. For
t < T0 ≡ inf {t : Zt = 0}, we have:

− log (Zt) = −




∫ t

0

(
dMs

Zs−
−

1

2

d < M c >s

Z2
s−

)
+

∑

0<s≤t

(
log

(
1 +

∆Zs

Zs−

)
−

∆Zs

Zs−

)
+At.

Now, from Lemma 2.6,

At = sup
s≤t




∫ t

0

(
dMs

Zs−
−

1

2

d < M c >s

Z2
s−

)
+

∑

0<s≤t

(
log

(
1 +

∆Zs

Zs−

)
−

∆Zs

Zs−

)
 .

Now, combining the last two equalities, we obtain:

Zt =
Nt

St
,

where

Nt = exp

(∫ t

0

(
dMs

Zs−
−

1

2

d < M c >s

Z2
s−

)) ∏

0<s≤t

(
1 +

∆Zs

Zs−

)
exp

(
−

∆Zs

Zs−

)
.

�

5. Examples and applications

In this section, we look at some specific local martingales Nt, and use
the initial enlargement formula with S∞, to get some path decompositions,
given the maximum or the minimum of some stochastic processes. Our aim
here is to illustrate how techniques from enlargement of filtrations can be
applied. To have a complete description for the path decompositions, we
associate with g a random time, called pseudo-stopping time, which occurs
before g. Eventually, we give some explicit examples of supermartingales Zt

with jumps.
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5.1. Pseudo-stopping times. In [16], we have proposed the following gen-
eralization of stopping times:

Definition 5.1. Let ρ : (Ω,F) → R+ be a random time; ρ is called a
pseudo-stopping time if for every bounded (Ft) martingale we have:

E (Mρ) = E (M0) .

David Williams ([24]) gave the first example of such a random time and
the following systematic construction is established in [16]:

Proposition 5.2. Let L be an honest time. Then, under the conditions
(CA),

ρ ≡ sup

{
t < L : ZL

t = inf
u≤L

ZL
u

}
,

is a pseudo-stopping time, with

Zρ
t ≡ P (ρ > t | Ft) = inf

u≤t
ZL

u ,

and Zρ
ρ follows the uniform distribution on (0, 1).

The following property, also proved in [16], is essential in studying path
decompositions:

Proposition 5.3. Let ρ be a pseudo-stopping time and let Mt be an (Ft)
local martingale. Then (Mt∧ρ) is an (Fρ

t ) local martingale.

In our setting, Proposition 5.2 gives:

Proposition 5.4. Define the nonincreasing process (rt) by:

rt ≡ inf
u≤t

Nu

Su
.

Then,

ρ ≡ sup

{
t < g :

Nt

St
= inf

u≤g

Nu

Su

}
,

is a pseudo-stopping time and rρ follows the uniform distribution on (0, 1).

5.2. Path decompositions given the maxima or the minima of a
diffusion. Now, we shall apply the techniques of enlargements of filtrations
to establish some path decompositions results. Some of the following results
have been proved by David Williams in [23], using different methods. Jeulin
has also given a proof based on enlargements techniques in the case of tran-
sient diffusions (see [8]). Here, we complete the results of David Williams
by introducing the pseudo-stopping times ρ defined in Proposition 5.4, and
we detail some interesting examples.
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5.2.1. The killed Brownian Motion. Let

Nt ≡ Bt,

where (Bt)t≥0 is a Brownian Motion starting at 1, and stopped at T0 =

inf {t : Bt = 0}. Let

St ≡ sup
s≤t

Bs.

Let

g = sup {t : Bt = St}

and

ρ = sup

{
t < g :

Bt

St
= inf

u≤g

Bu

Su

}
.

From Doob’s maximal identity, ST0
= Sg is distributed as the reciprocal of

a uniform distribution (0, 1), i.e. it has the density: 1[1,∞) (x)
1

x2
.

Proposition 5.5. Let (Bt)t≥0 be a Brownian Motion starting at 1 and
stopped when it first hits 0. Then:

•
Bρ

Sρ
follows the uniform law on (0, 1), and conditionally on

Bρ

Sρ
= r,

(Bt) is a Brownian Motion up to the first time when Bt = rSt.

• (Bt) is an (Fg
t ) and

(
F

σ(ST0
)

t

)
semimartingale with canonical de-

composition:

Bt = B̃t +

∫ t∧g

0

ds

Bs
−

∫ t∧T0

g

ds

ST0
− Bs

, (5.1)

where
(
B̃t

)
is an F

σ(ST0
)

t Brownian Motion, stopped at T0 and in-

dependent of ST0
. Consequently, we have the following path decom-

position: conditionally on ST0
= m:

(1) the process (Bt; t ≤ g) is a Bessel process of dimension 3, started
from 1, considered up to Tm, the first time when it hits m;

(2) the process (Sg − Bg+t; t ≤ T0 − g) is a (Fg+t) three dimen-
sional Bessel process, started from 0, considered up to Tm, the
first time when it hits m, and is independent of (Bt; t ≤ g).

Proof. The results concerning the decomposition until ρ are consequences of
the results of Subsection 5.1. The decomposition formula is a consequence

of Theorem 3.4. Since
(
B̃t

)
is an F

σ(ST0
)

t local martingale, with t ∧ T0 as

its bracket, it follows from Lévy’s theorem that it is an F
σ(ST0

)
t Brownian

Motion. Moreover, it is independent of F
σ(ST0

)
0 = σ (ST0

). Now, condition-
ally on ST0

= m, with Tm = inf {t : Bt = m}, (Bt) satisfies the following
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stochastic differential equation:

Bt = B̃t +

∫ t∧Tm

0

ds

Bs
.

Hence it is a three dimensional Bessel process up to Tm.
It also follows from the decomposition formula that:

Bg+t = B̃g+t +

∫ g

0

ds

Bs
−

∫ t∧(T0−g)

0

ds

Sg − Bg+s
.

This equation can also be written as:

Sg − Bg+t = −
(
B̃g+t − B̃g

)
+

∫ t∧(T0−g)

0

ds

Sg − Bg+s
.

Now,
(
B̃g+t − B̃g

)
is an (Fg+t) Brownian Motion, starting from 0, and is

independent of Fg. Taking β̃t ≡ −
(
B̃g+t − B̃g

)
, which is also an (Fg+t)

Brownian Motion, starting from 0, independent of Fg, the process ξt ≡
Sg − Bt satisfies the stochastic differential equation:

ξt = β̃t +

∫ t∧(T0−g)

0

ds

ξs
;

hence it is a three dimensional Bessel process, started at 0, and considered
up to Tm, and conditionally on Sg, is independent of Fg. �

5.2.2. Some recurrent diffusions. The previous example can be generalized
to a wider class of recurrent diffusions (Xt), satisfying the stochastic differ-
ential equation:

Xt = x + Bt +

∫ t

0
b (Xs) ds, x > 0 (5.2)

where (Bt) is the standard Brownian Motion, and b is a Borel integrable
function. The infinitesimal generator L of this diffusion is:

L =
1

2

d2

dx2
+ b (x)

d

dx
.

Let T0 ≡ inf {t : Xt = 0), and denote by s the scale function of X, which is
strictly increasing and which vanishes at zero, i.e:

s (z) =

∫ z

0
exp

(
−2b̂ (y)

)
dy,

where

b̂ (y) =

∫ y

0
b (u) du.

Hence,

Nt ≡
s (Xt∧T0

)

s (x)
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is a continuous local martingale belonging to the class C0. If St denotes the
supremum process of Nt and X t the supremum process of Xt, we have:

St =
s
(
X t∧T0

)

s (x)
.

Now, let

g = sup
{
t < T0 : Xt = Xt

}
,

and

ρ = sup

{
t < g :

Xt

Xt

= inf
u≤g

Xu

Xu

}
.

Proposition 5.6. Let (Xt) be a diffusion process satisfying equation (5.2).
Then:

•
Xρ

Xρ

follows the uniform law on (0, 1), and conditionally on
Xρ

Xρ

= r,

(Xt) is a diffusion process, up to the first time when Xt = rXt, with
the same infinitesimal generator as X.

• (Xt) is an (Fg
t ) and an

(
F

σ(XT0
)

t

)
semimartingale with canonical

decomposition:

Xt = B̃t+

∫ t

0
b (Xu) du+

∫ t∧g

0

s′ (Xu)

s (Xu)
du−

∫ t∧T0

g

s′ (Xu)

s
(
XT0

)
− s (Xu)

du, (5.3)

where
(
B̃t

)
is an F

σ(XT0
)

t Brownian Motion, stopped at T0 and in-

dependent of XT0
. Consequently, we have the following path decom-

position: conditionally on XT0
= m:

(1) the process (Xt; t ≤ g) is a diffusion process started from x > 0,
considered up to Tm, the first time when it hits m, with infini-
tesimal generator

1

2

d2

dx2
+

(
b (x) +

s′ (x)

s (x)

)
d

dx
.

(2) the process (Xg+t; t ≤ T0 − g) is a (Fg+t) diffusion process, started
from m, considered up to T0, the first time when it hits 0, and is
independent of (Xt; t ≤ g); its infinitesimal generator is given
by:

1

2

d2

dx2
+

(
b (x) +

s′ (x)

s (x) − s (m)

)
d

dx
.

(3) XT0
follows the same law as s−1

(
1

U

)
, where U follows the

uniform law on (0, 1).

Proof. The proof is exactly the same as the proof of Proposition 5.5, so we
will not reproduce it here. �
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5.2.3. Geometric Brownian Motion with negative drift. Let

Nt ≡ exp
(
2νBt − 2ν2t

)
,

where (Bt) is a standard Brownian Motion, and ν > 0. With the notation
of Theorem 3.4, we have:

St = exp

(
sup
s≤t

2ν (Bs − νs)

)
,

and

g = sup

{
t : (Bt − νt) = sup

s≥0
(Bs − νs)

}
.

Before stating our proposition, let us mention that we could have worked
with more general continuous exponential local martingales, but we pre-
ferred to keep the discussion as simple as possible (the proof for more general
cases is exactly the same).

Proposition 5.7. With the assumptions and notations used above, we have:

(1) The variable sups≥0 (Bs − νs) follows the exponential law of param-
eter 2ν.

(2) Every local martingale X is an
(
F

σ(S∞)
t

)
semimartingale and de-

composes as:

Xt = X̃t + 2ν < X,B >t∧g −2ν

∫ t

g

Ns

S∞ − Ns
d < X,B >s,

where X̃t is an
(
F

σ(S∞)
t

)
local martingale.

(3) Conditionally on S∞ = m, the process (Bt − νt; t ≤ g) is a Brown-
ian Motion with drift +ν up to the first hitting time of its maximum
m/2ν.

Proof. From Doob’s maximal equality,
(
exp

(
sups≤g

(
2νBs − 2ν2s

)))−1
fol-

lows the uniform law and hence sups≥0 (Bs − νs) follows the exponential law
of parameter 2ν.

The decomposition formula is a consequence of Theorem 3.4 and the fact
that: dNt = 2νNtdBt.

To show (3), it suffices to notice that Bt − νt is equal to B̃t + νt in the

filtration
(
F

σ(S∞)
t

)
, with

(
B̃t

)
an

(
F

σ(S∞)
t

)
Brownian Motion which is

independent of S∞. �

5.2.4. General transient diffusions. Now, we consider (Rt), a transient dif-
fusion with values in [0,∞), which has {0} as entrance boundary. Let s be
a scale function for R, which we can choose such that:

s (0) = −∞, and s (∞) = 0.
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Then, under the law Px, for any x > 0, the local martingale

(
Nt =

s (Rt)

s (x)
, t ≥ 0

)

satisfies the conditions of Theorem 3.4, and we have:

Px (g > t|Ft) =
s (Rt)

s (It)

where
g = sup {t : Rt = It} ,

and
It = inf

s≤t
Rs.

We thus recover results of Jeulin ([8], Proposition 6.29, p.112) by other
means. Jeulin used this formula and gave a quick proof of a theorem of
David Williams ([23]), using initial enlargement of filtrations arguments.
Our proof would follow the same lines and so we refer to the book of Jeulin.
We would rather detail an interesting example: the three dimensional Bessel
process.

Proposition 5.8. Let (Rt) be a three dimensional Bessel process starting
from 1, and set, as above, It = infs≤t Rs, and g = sup {t : Rt = It}. Define

ρ by: ρ = sup

{
t < g :

It

Rt
= infu≤g

Iu

Ru

}
.Then:

(1) The variable
Iρ

Rρ
follows the uniform law on (0, 1) and, condition-

ally on Iρ = rRρ, (Rt, t ≤ Tr) is a three dimensional Bessel process
starting from 1, up to the first time Tr when It = rRt.

(2) I∞ ≡ Ig follows the uniform law on (0, 1);
(3) Conditionally on I∞ = r, the process (Rt, t ≤ g) is a Brownian

Motion starting from 1 and stopped when it first hits r.

Proof. There exists (β)t≥0, a Brownian Motion, such that

Rt = 1 + βt +

∫ t

0

ds

Rs
.

(1) follows easily from the results of Subsection 5.1. Now, from Ito’s
formula, it follows that

1

Rt
= 1 −

∫ t

0

dβs

R2
s

;

hance, it is a local martingale. In
(
F

σ(I∞)
t

)
,

βt∧g = β̃t −

∫ t∧g

0

ds

Rs
,

where
(
β̃t

)
is an

(
F

σ(I∞)
t

)
Brownian Motion independent of I∞. Hence,

Rt∧g decomposes as

Rt∧g = β̃t
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in
(
F

σ(I∞)
t

)
, and this completes the proof for (3), and (2) is an immediate

consequence of Doob’s maximal identity. �

Remark 5.9. The previous method applies to any transient diffusion (Rt)t≥0,

with values in (0,∞), and which satisfies:

Rt = x + Bt +

∫ t

0
duc (Ru) ,

where c : R+ → R allows uniqueness in law for this equation. These dif-
fusions were studied in [22] to obtain some extension of Pitman’s theorem
(see also [26]).

5.3. Some examples of Zt with jumps. We shall conclude this paper
by giving some explicit examples of discontinuous Z ′s. Let X be a Poisson
process with parameter c and let Nt = Xt − ct. N is a martingale in the
natural filtration (Ft) of X. Every local martingale Y in this filtration may
be written as:

Yt = Y0 +

∫ t

0
ksdNs,

where k is an (Ft) predictable process. Now, for f : R+ → R+ a locally
bounded and Borel function, let

Ef
t = exp

(
−

∫ t

0
f (s) dXs + c

∫ t

0
(1 − exp (−f (s))) ds

)

Ef
t is an Ft local martingale which can be represented as:

Ef
t = 1 +

∫ t

0
Ef

s− (exp (−f (s)) − 1) dNs.

If
∫ ∞
0 f (s) ds = ∞, then limt→∞ Ef

t = 0.

Proposition 5.10. Let f be a nonnegative locally bounded and Borel func-

tion on R+, such that limt→∞ Ef
t = 0. Define:

g = sup
{

t : Ef
t = E

f
t

}
,

where

E
f
t = sup

s≤t
Ef

s .

Then:

(1) sups≥0

(
−

∫ t
0 f (s) dXs + c

∫ t
0 (1 − exp (−f (s))) ds

)
is distributed as

a random variable with the exponential law with parameter 1;
(2) The supermartingale Zg

t associated with g is given by:

P (g > t | Ft) =
Ef

t

E
f
t

;
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(3) Every Ft local martingale Yt

(
=

∫ t
0 ksdNs

)
is a semimartingale in

the filtration F
σ
(
E

f
∞

)

t , with canonical decomposition:

Yt = Ỹt+c

∫ t∧g

0
ks (exp (−f (s)) − 1) ds−c

∫ t

g
ks (exp (−f (s)) − 1)

Ef
s

E
f
∞ − Ef

s

ds,

where Ỹt is an F
σ
(
E

f

∞

)

t local martingale.
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impliquant l’injectivité de certains processus croissants, Sém.Proba. XXXII, Lecture
Notes in Mathematics 1686, (1998), 316-327.
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