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������	 The parametric resonances of the blades in floating offshore 
wind turbines are theoretically and experimentally investigated. In the 
theoretical analysis, each blade is pinned to a horizontal, rotating shaft and 
has a spring with rotational stiffness at the end. The blade is subjected to 
horizontal excitation which represents winds; the rotating shaft to vertical 
excitation which represents waves. The equation of motion for the blade 
inclination angle includes parametric excitation terms with three different 
frequencies, i.e., the rotational speed of the blade, and the sum of and 
difference between the rotational speed and wave excitation frequency. 
Numerical simulations are conducted for the corresponding linearized 
system, and it is found that unstable vibrations appear at several rotational 
speed ranges. An empirical approach is used to determine the regions 
where the unstable vibrations appear. Swept-sine tests are conducted to 
determine the frequency response curves for the nonlinear system and 
demonstrate that the parametric resonances appear at similar rotational 
speeds as those of the unstable regions. In experiments, parametric 
resonances were observed at the rotational speeds and wave excitation 
frequencies predicted by the theoretical analysis. 

���������������
In order to solve energy problems such as the depletion of the limited supply of fossil fuels 
and the safety of nuclear power generation, cleaner energy sources are being developed. 
One such source is wind power generation. Although most wind power is generated from 
land-based wind turbines, floating offshore wind turbines are attracting attention because 
they can generate comparatively constant wind power throughout the year. Due to severe 
meteorological conditions, there are limited demonstration tests that verify the safety of 
such turbines [1]. There are also few academic studies on the vibrations of floating offshore 
wind turbines, despite the influence such research could have on their commercialization.

This paper investigates the parametric resonances of floating offshore wind turbine 
blades. In the theoretical analysis, a model is used in which the blade is subjected to 
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horizontal wind excitation, and a rotating shaft to vertical, harmonic excitation, which 
represents the motion of waves. In the numerical simulations for the corresponding 
linearized system, unstable vibrations are observed because the equation of motion for the 
inclination angle of the blade includes parametric excitation terms. Then, the regions where 
the unstable vibrations appear are theoretically determined. When the nonlinearity of the 
blades is considered, the swept-sine test is performed to calculate frequency response 
curves. These curves are then compared to the theoretical results of the linearized system. 
Experiments are also conducted to confirm the validity of the theoretical analysis. 

�����������������������

���������������
������

Figure 1 shows a spar-type floating wind turbine consisting of a spar buoy, tower, nacelle 
and three blades. The blades are subjected to winds, and the spar buoy is subjected to wave 
motion. In the orthogonal stationary coordinate system O-xyz, the z-axis coincides with the 
wind direction and a horizontal rotating shaft of the blade in the nacelle. 

Figure 2 shows the theoretical model of an arbitrary blade. The effect of gravity on the 
stability of a rotating cantilever beam in a vertical plane was investigated [2]. However, 
here, for simplicity, the blade is modeled as a rigid flat plate with length l, width b,
thickness h, and mass m=�lbh (�: density). The blade is assumed to be pinned to a 
horizontal, rotating shaft at point P and has a spring with rotational stiffness k at point P. 
The inclination angle of the blade is designated as �, which is measured from the vertical 
plane O-xy. The blade is subjected to horizontal wind excitation, which has vertical, 
uniform wind speeds V0. The rotating shaft is subjected to vertical, harmonic excitation 
yP=bysin�t, hereafter referred to as wave excitation. Lagrange’s equation is employed to 
obtain the equation of motion for the blade as follows: 
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where � is the rotational speed of the blade, c is the damping coefficient, g is the 
acceleration of gravity, and �a is the air density. Equation (1) includes parametric excitation 
terms with three different frequencies, i.e., �, �+�, and ���. The dimensionless quantities 
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are applied to Eq. (1) to obtain the dimensionless equation of motion as 
2 2 2

0
1 1 1 1(1 sin )sin sin sin 2 cos 0
3 2 6 2y ac k b t t bV� � � � � � � � �� � � � � � � � ��� � 2 .   (3) 

Note that all primes in Eq. (2) are omitted in Eq. (3) and hereafter for simplicity although 
the quantities are still dimensionless in the theoretical analysis and results. 

�����������������������������������������

When a linear model of the blade is considered, the corresponding linearized system of Eq. 
(3) is given as 

2 21 1 1 (1 sin )sin 0
3 3 2 yc k b t t� � � � �� �� � � � � � � �� �� �
�� � .       (4)

The natural frequency p of the system without parametric excitations in Eq. (4) is given as 
23p k �� � .       (5) 

A Mathieu’s equation [3] includes a single parametric excitation term. For example, it is 
well known that unstable vibrations may appear in a pendulum whose supporting point 
vertically moves [4]. Equation (4), however, includes parametric excitation terms with 
different three frequencies, i.e., �, �+�, and ���. By conducting numerical simulations of 
Eq. (4), it is found that the following unstable vibrations, each of which includes a 
predominant frequency, appear as follows: 

( ) 2, ( ) 2, ( 2 ) 2, ( 2 ) 2, ( 3 ) 2, ( 3 ) 2,� � � � � �� � � � � � � � � � � � �     (6)
These unstable vibrations appear at different rotational speed ranges, hereafter referred to as 
unstable regions. Because periodic vibrations of predominant frequencies may also appear, 
the following empirical approach, based on the simulation results, is used to determine the 
boundaries of the unstable regions. The first-order approximate solution for the periodic 
vibration of (���)/2 is assumed as 

� � � �1 2cos ( ) 2 sin ( ) 2a t a� �� � � � � � t� .     (7) 
Substituting Eq. (7) into Eq. (4) generates the frequency components (�+�)/2, (�+3�)/2, 
(��3�)/2, (3�+�)/2, and (3��3�)/2. A further substitution of the second-order 
approximate solution, including these frequency components, into Eq. (4), subsequently 
generates additional frequency components (�±5�)/2, (3�+3�)/2, (3�±5�)/2, (5���)/2, 
(5�+3�)/2, and (5��5�)/2. A final substitution of the third-order approximate solution, 
including all the generated frequency components, into Eq. (4), results in the equation 

1 1 � �� � ,         (8) 
where 1  is a vector whose elements are the amplitudes of the frequency components, and 

1  is a matrix whose elements consist of the system parameters. The condition for the non-
trivial solutions of the periodic vibrations is given as 

�
�

1det ( ) 0�� .        (9) 
Equation (9) can be used to determine the boundaries of the unstable regions. The 
boundaries for the unstable regions of other periodic vibrations of predominant frequencies 
such as (��2�)/2 and (��3�)/2 can also be determined using the same empirical approach 
which resulted in Eq. (9). 
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������� Unstable regions in the (�, by) plane when �=0.3 in 
Fig. 3. 

Figure 3 shows the numerical results for the linearized system in the (�, �) plane when the 
values of the parameters are l=1.0, b=0.2, h=0.02, k=2.6, c=0.01, and by=0.02. Symbols 
and  represent the stable and unstable vibrations, respectively, calculated from the 
numerical simulations of Eq. (4). Shaded areas show the unstable regions where unstable 
vibrations may appear, based on the equations such as Eq. (9). When p=(�+n�)/2 (n=±1, 
±2, ±3…) in Eq. (5), theoretical curves can be calculated from the following equation: 

22 2 3 ( 1, 2, , 3n p n k n� � �� � � � � � � � � � � � �, ) .  (10) 
The broken lines represent these curves, and the unstable region corresponding to the curve 
for n in Eq. (10) is designated as Un. Unstable regions U1, U2, and U3 appear for �<5.5,
while unstable regions U�1, U�2, and U�3 appear for �>5.5. Figure 3 demonstrates that the 
theoretical boundaries of unstable regions are in agreement with the simulation results. 

Figure 4 shows the time histories calculated from Eq. (4) at �=0.3 in Fig. 3. The value 
of � in Figs. 4(a)-(e) corresponds to the same name in Fig. 3 for unstable regions U2, U1,
U�1, U�2, and U�3, respectively. The amplitudes of these time histories are irregular and 
confirm the appearance of unstable vibrations. 

Figure 5 shows the unstable regions in the (�, by) plane when �=0.3. The horizontal, 
dash-dotted line corresponds to Fig. 3 where the wave excitation amplitude by is 0.02. The 
dash-dotted line intersects five unstable regions at nearly the same values of � as in Figs. 3 
and 4, corroborating their results. Furthermore, Fig. 5 also effectively demonstrates that the 
number and width of the unstable regions depend significantly on the value of by, i.e., as the 
value of by increases, both the number and width of the unstable regions increase. 
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���������������������

Equation (3) includes the nonlinear terms such as sin�, sin2� and cos2�. Figure 6 shows the 
frequency response curves for this nonlinear system. These curves are obtained by applying 
the swept-sine test to Eq. (3) when � and �t are replaced by �t+�0 and (1/2)�t2+�0t,
respectively. The vertical axis represents the maximum amplitudes �max of � at any instant 
in time. The values of the parameters are V0=3.8, �a=0.08, and �=�1.0×10-6. Here, �
represents the acceleration of the sine sweep excitation. The values of the other parameters 
are the same as those in Fig. 3. The solid (red) and broken (black) lines represent �max for 
deceleration and acceleration, respectively. The shaded areas represent the unstable regions 
obtained from the linear analysis. In Fig. 6(a), when �=5.0, the response curves bend to the 
left and exhibit soft-type nonlinear characteristics, whereas they bend to the right and 
exhibit hard-type nonlinear characteristics in Fig. 6(b) when �=6.5. In both Figs. 6(a) and 
6(b), parametric resonances occur near the rotational speeds of the unstable regions. 
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����������������������
In order to confirm the validity of the theoretical results, experiments were conducted. 
Figure 7 shows a sketch of the experimental setup. A blade consisting of a solid body and 
spring steel was fixed to a horizontal, rotating shaft which contained pulley 1. A motor was 
used to power a flat belt between pulleys 1 and 2. Pulley 1 was mounted on a 
parallelogrammatic link, and an exciter was used to simulate vertical wave motion. The 
acceleration of the blade was measured by a wireless motion sensor attached to the blade. 
The dimensions of the experimental apparatus are listed in Table 1. 
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Rotating shaft

Flat belt
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Motion sensor

Counterweight

Pulley 2

Pulley 1

ω

Ω

������� Sketch of the experimental setup. 

���������Dimensions of the 
experimental apparatus. 

Blade:
Mass m=0.1687 kg 
Length l=0.09 m 
Width b=0.05 m 
Thickness h=0.005 m 

Spring steel: 
Spring stiffness k=6.01 Nm/rad 
Damping coefficient  

                  c=8.89×10-6 Nms/rad 
Motion sensor: 

Mass 0.0456 kg 
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Figure 8 shows a comparison between the 
theoretical and experimental results in the (�, �) plane 
when the wave excitation amplitude was by=1.6 mm. 
The shaded areas show the unstable regions where 
unstable vibrations appeared in the theoretical analysis 
of the linearized system. In experiments, parametric 
resonances were observed at �=10, 15, and 20 rpm for 
several values of the wave excitation frequency �, as 
shown by the vertical (red) lines. Because the 
experimental data for parametric resonances were 
observed near the unstable regions, it can be concluded 
that the theoretical analysis for a linearized system can 
be used to predict where parametric resonances may 
occur in a nonlinear system. 

Figures 9(a)-(e) show the time histories observed at �=20 rpm in Fig. 8, when the wave 
excitation frequencies were �=8.67, 8.96, 9.59, 9.94, and 10.28 Hz, respectively. These 
time histories confirm the appearance of parametric resonances. 

�������������
The parametric resonances of a floating wind turbine blade were theoretically and 
experimentally investigated. In the corresponding linearized system, unstable vibrations 
appeared at several rotational speeds � when the natural frequency p of the system satisfied 
the condition p=(�+n�)/2 (n=±1, ±2, ±3, …). In the nonlinear system, parametric 
resonances occurred near the rotational speeds and wave excitation frequencies of the 
unstable regions predicted by the theoretical analysis of the corresponding linear system. 
Experiments further confirmed the validity of the theoretical analysis and results. 
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