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Abstract We study open point sets in Euclidean spaces R
d without a pair of points

an integral distance apart. By a result of Furstenberg, Katznelson, and Weiss such sets
must be of Lebesgue upper density 0. We are interested in how large such sets can be
in d-dimensional volume. We determine the exact values for the maximum volumes
of the sets in terms of the number of their connected components and dimension. Here
techniques from diophantine approximation, algebra and the theory of convex bodies
come into play. Our problem can be viewed as a counterpart to known problems on sets
with pairwise rational or integral distances. It possibly opens a new research direction
with strong links to topology and measure theory.

Keywords Excluded distances · Euclidean Ramsey theory · Integral distances ·
Erdős-type problems

Mathematics Subject Classification 52C10 · 52A40 · 51K99

1 Introduction

Is there a dense set S in the plane so that all pairwise Euclidean distances between
the points are rational? This famous open problem was posed by Ulam in 1945, see
e.g. [18,39]. Unlike this, a construction of a countable dense set in the plane avoiding
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rational distances is not hard to find, see e.g. [27, Problems 13.4, 13.9]. If all pairwise
distances between the points in S are integral and S is non-collinear, i.e. not all points
are located on a line, then S is finite [2,17]. Having heard of this result, Ulam guessed
that the answer to his question would be in the negative. Of course the rational numbers
form a dense subset of a coordinate line with pairwise rational distances; also, on a
circle there are dense sets with pairwise rational distances, see e.g. [1,2]. It was proved
by Solymosi and De Zeeuw [37] that the line and the circle are the only two irreducible
algebraic curves containing infinite subsets of points with pairwise rational distances.
Point sets with rational coordinates on spheres have been considered in [34]. There is
interest in a general construction of a planar point set S(n, k) of size n with pairwise
integral distances such that S(n, k) = A ∪ B where A is collinear, |A| = n − k,
|B| = k, and B has no three collinear points. The current record is k = 4 [11]. And
indeed, it is very hard to construct a planar point set, no three points on a line, no four
points on a circle, with pairwise integral distances. Kreisel and Kurz [28] found such
a set of size 7, but it is unknown if there exists one of size 8.

The present paper is concerned with a problem that may be considered as a coun-
terpart to those just described, namely with large point sets in R

d without a pair of
points an integral distance apart. We write fd(n) for the supremum of the volumes
λd(P) of open point sets P ⊂ R

d with n connected components without a pair of
points whose distance apart is a positive integer. We determine the exact values of the
function fd(n) for all d and n.

This problem is related to the famous Hadwiger–Nelson open problem of deter-
mining the (measurable) chromatic number of R

d , see e.g. [12, Problem G10]. Here
one can also ask for the highest density of one color class in such a coloring, that
is, we may ask for the densest set without a pair of points a distance 1 apart. In [31]
such a construction in R

3 has been given. In the plane the best known example, due
to Croft [13], consists of the intersections of hexagons with circles and attains a den-
sity of 0.2294. The upper bounds are computed in [5,14]. Point sets avoiding a finite
number k of prescribed distances are considered e.g. in [10] and [12, Problem G4], so
the point sets avoiding all distances that are positive integers correspond to the case
with an infinite number κ of excluded distances. It is known [21] that for each subset
U of the plane with positive density, there is a constant d(U) such that all distances
greater than d occur between the points of U . The same result is true in higher dimen-
sions [33]. It follows that in every dimension d ≥ 2, the Lebesgue measurable sets
avoiding integral distances, which are of interest here, must be of upper density 0, so
we consider the supremum of their volumes instead.

The paper is organized as follows: in Sect. 2 we introduce the basic notation and
provide characterizations of arbitrary open point sets without pairs of points an inte-
gral distance apart. After stating first relationships between the upper bounds for the
maximum volumes of those sets with different numbers of connected components
we continue in Sect. 3 by considering a relaxed problem. We evaluate the maximum
volumes of sets avoiding integral distances in the special case where the connected
components of the sets are open balls. In our crucial constructions we make use of
Weyl’s theorem from diophantine approximation and the fact, we derived from Mann’s
theorem, that the lengths of the diagonals of a regular p-gon are linearly independent
over Q whenever p is a prime. In Sect. 4 we approach the main problem of evaluating
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the function fd(n) in the general case. For two-component opens sets (n = 2) we
provide a complete solution in Sect. 4.1. Motivated by the necessary conditions for
open point sets to avoid integral distances we consider d-dimensional open sets with n
connected components of diameter at most 1 each whose intersection with every line
has a total length of at most 1. At the end of Sect. 4.1 we state a conjecture on the exact
values of ld(n) which bears a strong resemblance to the problems of geometric tomog-
raphy, see e.g. [22]. In Sect. 4.2 we provide some upper bounds for ld(2) with d ≥ 2.
The main problem of generally evaluating fd(n) is finally settled in Sect. 4.3. In Sect. 5
we give a summary of the results obtained and draw the appropriate conclusions.

2 General Observations and Basic Notation

Denote by dist(x, y) the Euclidean distance between two points x, y ∈ R
d and by

dist(V, W ) := inf{dist(x, y) | x ∈ V, y ∈ W } the distance between two subsets V
and W of R

d . The minimal width of V , i.e. the minimum distance between parallel
support hyperplanes of the closed convex hull of V , will be denoted by width(V ), and
λd will stand for the Lebesgue measure in R

d .
At first we observe that the diameter of any connected component of an open set

avoiding integral distances, i.e. having no points an integral distance apart, is at most 1.

Lemma 1 Let P ⊆ R
d be an open set avoiding integral distances. Then for every

connected component C of P we have diam(C) ≤ 1.

Proof Suppose there is a connected component C with diam(C) > 1, then there exist
x1, x2 ∈ C such that dist(x1, x2) > 1. Since C is open, it is path connected, so there
is a point x on the image curve of a continuous path in C joining x1 and x2 such that
dist(x1, x) = 1. �	

By the isodiametric inequality the open ball Bd ⊂ R
d centered at the origin with

unit diameter has the largest volume among measurable sets in R
d of diameter at most

1, see e.g. [19], [6, Chap. 2]. Thus we have

fd(1) = λd
(
Bd

) = πd/2

2d · �
( d

2 + 1
) =

⎧
⎪⎪⎨

⎪⎪⎩

π
d
2

2d
(

d
2

)
! for d even,

(
d−1

2

)
! · π

d−1
2

d! for d odd.

The first few values are given by λ1(B1) = 1, λ2(B2) = π
4 , λ3(B3) = π

6 , and

λ4(B4) = π2

32 . We remark that the volume of the scaled ball B with diameter m in R
d

is λd(B) = mdλd(Bd).
Next we characterize 1-dimensional open sets containing a pair of points an integral

distance apart.

Lemma 2 A non-empty open set P ⊆ R contains a pair of points x, y ∈ P with
dist(x, y) ∈ N if and only if either λ1(P) > 1 or there is a pair of connected com-
ponents (i.e. disjoint open intervals) C1, C2 of P such that dist(C1, C2) /∈ N and
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λ1(C1 ∪ C2) > 
dist(C1, C2)� − dist(C1, C2). If λ1(P) ≤ 1, then there exists a shift
f : x �→ x + a of R such that f (P) ∩ Z = ∅.

Proof The restriction of the canonical epimorphism φ : R → R/Z, x �→ x + Z

= (x − �x�) + Z, to the interval [0, 1) is a continuous bijection of [0, 1) onto the
1-dimensional torus T = R/Z, the inverse map φ|−1

[0,1) being continuous at all points

except φ(0) = 0 + Z = Z ∈ T. We consider the retraction φ1 := φ|−1
[0,1) ◦ φ : R →

[0, 1), that is, φ1(x) = x − �x� for all x ∈ R (i.e. φ1(x) = x mod 1 is the fractional
part of x). We observe that the image under φ1 of any open interval (x, y) of length
y − x < 1 is either the open interval (φ1(x), φ1(y)) = (x − n, y − n) of the same
length φ1(y) − φ1(x) = (x − n) − (y − n) = y − x , whenever both x and y are in
(n, n + 1), for some n ∈ Z, or the union of two disjoint connected components

[0, φ1(y)) ∪ (φ1(x), 1) = [0, y − n) ∪ (1 − (n − x), 1)

of the same total length (y − n) + (n − x) = y − x , whenever x < n < y, for some
n ∈ Z. If y − x = 1, then similarly either φ1((n, n + 1)) = (0, 1) or φ1((x, y)) =
[0, y − n) ∪ (1 − (n − x), 1) = [0, 1) \ {y − n} whenever x < n < y for some n ∈ N.
Hence, in general, the total length of the connected components of φ1((x, y)) is y − x ,
whenever y − x ≤ 1.

Let P be the disjoint union of open intervals Ci , say, with total length λ1(P) =∑
i λ1(Ci ) > 1. Then by Lemma 1 i ≥ 2 and λ1(Ci ) ≤ 1 for all i . We thus have

from above that the total length of the connected components of all the images φ1(Ci )

equals
∑

i λ1(Ci ) > 1. Hence at least two images φ1(Ck) and φ1(C j ) must overlap, so
there exists z ∈ φ1(Ck)∩φ1(C j ), that is, x0 −�x0� = y0 −�y0� for some x0 ∈ Ck and
y0 ∈ C j . Thus x0 − y0 = �x0� − �y0� ∈ Z \ {0}, hence dist(x0, y0) ∈ N.

If λ1(C1 ∪ C2) > α for some connected components C1 = (a, b) and C2 = (c, d)

of P with dist(C1, C2) = c − b = m − α, where m ∈ N, 0 < α < 1, so that

dist(C1, C2)� − dist(C1, C2) = α, we can take a point x in the leftmost interval, say
x ∈ C1 and a point y ∈ C2 so that the length of (x, b) ∪ (c, y) is α < λ1(C1 ∪ C2) =
(b − a) + (d − c). Then

dist(x, y) = (b − x) + m − α + (y − c) = α + m − α = m ∈ N.

Conversely, suppose there are x, y ∈ P with dist(x, y) = k ∈ N. If x and y lie in
the same connected component Ci of P , then λ1(Ci ) > k ≥ 1 because Ci is open, hence
λ1(P) > 1. Suppose x and y lie in distinct connected components of P , say x < y
and x ∈ C1 = (a, b), y ∈ C2 = (c, d), and let λ1(P) ≤ 1. Then (b − a)+ (d − c) ≤ 1
as well whence the distance between the components is dist(C1, C2) = c − b /∈ N,
because c−b < dist(x, y) < c−b+[(b−a)+(d −c)] ≤ c−b+1. Let c−b = m−α

where m ∈ N, 0 < α < 1. Then

α = m + b − c < m + 1 + b − c < (d − a) + (b − c)

= (b − a) + (d − c) = λ1(C1 ∪ C2),
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since m + 1 < d − a because m + 1 ≤ k < d − a. Thus either λ1(P) > 1 or there is
a pair of required connected components of P .

If λ1(P) ≤ 1, then λ1(Ci ) ≤ 1 for all i, so the total length of the connected
components of all the images φ1(Ci ) equals

∑
i λ1(Ci ) = λ1(P), as shown previously.

If λ1(P) < 1, then clearly, φ1(P) �= [0, 1). If λ1(P) = 1, then again φ1(P) �= [0, 1),
whenever the images φ1(Ci ) are not pairwise disjoint. Suppose all the images φ1(Ci )

are pairwise disjoint and P ∩ Z �= ∅. Then there is exactly one C j = (a, b) that meets
Z. Hence the complement [0, 1) \ φ1(C j ) = [φ1(b), φ1(a)] is a non-open set in R

that cannot be covered by the images φ1(Ci ) of the other connected components of P ,
since they are all open intervals, so φ1(P) �= [0, 1) as well. Thus in all the cases we
have φ1(P) �= [0, 1). Take φ1(a) ∈ [0, 1)\φ1(P), a ∈ R, that is, φ1(a)∩φ1(P) = ∅.
Then φ(a) ∩ φ(P) = ∅, i.e. (a + Z) ∩ (P + Z) = ∅, so (P − a) ∩ Z = ∅ and the
required shift is f : x �→ x + (−a). �	

Applying Lemma 2 we establish a criterion for an open set to avoid integral distances
in all dimensions.

Theorem 1 An open point set P ⊆ R
d does not contain a pair of points with integral

distance if and only if for every line L
(i) λ1(P ∩ L) ≤ 1 and

(ii) if L hits a pair of distinct connected components C1, C2 of P in the intervals
C1∩L, C2∩L with dist(C1∩L, C2∩L) = r /∈ N, then 
r�−r ≥ λ1((C1∪C2)∩L).

Another criterion, which we will also be using is:

Lemma 3 Let P be a d-dimensional disconnected open set all of whose connected
components are of diameter of at most 1. Then P contains a pair of points with integral
distance if and only if

(
dist(C1, C2), diam(C1 ∪ C2)

) ∩ N �= ∅

for some of its connected components.

Proof Since all connected components of P are open with diameter at most 1, any
two distinct points of P with integral distance must be in two different components,
say C1 and C2. Let x ∈ C1, y ∈ C2 with d(x, y) = n ∈ N. We then select two small
closed balls B(x, ε1) � C1 and B(y, ε2) � C2 centered at x and y respectively with
radii ε1, ε2 > 0. The line L through x and y meets the two balls in the intervals, say
[x1, x2] � B(x, ε1) and [y1, y2] � B(y, ε2), where x1, x2 ∈ C1 and y1, y2 ∈ C2.
With this we have

dist(C1, C2) < min
1≤i, j≤2

d(xi , y j ) < d(x, y)

= n < max
1≤i, j≤2

d(xi , y j ) < diam(C1 ∪ C2).

Conversely, if dist(C1, C2) < n < diam(C1 ∪ C2) for an integer n, then there exist
x1, x2 ∈ C1 and y1, y2 ∈ C2 such that

dist(C1, C2) < d(x1, y1) < n < d(x2, y2) < diam(C1 ∪ C2).
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Joining x1 with x2 in C1 and y1 with y2 in C2 by continuous paths, we can find x ∈ C1
and y ∈ C2 on the image curves of these paths with d(x, y) = n. �	

In some situations it is helpful if we are able to assume that the components of the
point sets in question are not too close to each other. Specifically, we will be using the
fact that in such cases the connected components of the sets have disjoint closures.

Lemma 4 Let C1, C2 be distinct connected components of a d-dimensional open point
set P without a pair of points an integral distance apart. If λd(C1 ∪ C2) > λd

(
Bd

)
,

then dist(C1, C2) ≥ 1.

Proof Making use of the isodiametric inequality we deduce from λd(C1 ∪ C2) >

λd
(
Bd

)
that diam(C1∪C2) > 1. By Lemma 1 we have diam(C1) ≤ 1 and diam(C2) ≤ 1.

So we can choose x1 ∈ C1, x2 ∈ C2 with dist(x1, x2) > 1. If dist(C1, C2) < 1, then
there exist x̄1 ∈ C1 and x̄2 ∈ C2 such that dist(x̄1, x̄2) < 1. Since C1 and C2 are
open, they are path connected, hence we can join x1 and x̄1 by a continuous path in
C1 and similarly x2 and x̄2 in C2 and on the image curves of these paths we then find
x ′

1 ∈ C1 and x ′
2 ∈ C2 such that dist(x ′

1, x ′
2) = 1, but P avoids integral distances, a

contradiction. Thus we have dist(C1, C2) ≥ 1. �	
As Lemma 1 and Theorem 1(i) will be our main tools in estimating upper bounds

for fd(n), we denote by ld(n) the supremum of the volumes λd(P) of open point sets
P ⊆ R

d with n connected components of diameter at most 1 each (condition (a)), and
with total length of the intersection with every line at most 1 (condition (b)). Clearly
ld(1) = fd(1) = λd

(
Bd

)
and fd(n) ≤ ld(n) for all d and n. We remark that omitting

condition (b) trivializes the problem of estimating the extreme volumes, the extremal
configurations obviously consist of n disjoint open d-dimensional balls of diameter 1.
Dropping condition (a) makes the problem more challenging. It turns out that there are
open connected d-dimensional point sets P with infinite volume λd(P) and diameter
diam(P) even though the length of the intersection of P with every line L is at most
1, i.e. λ1(P ∩ L) ≤ 1 for all L.

Example 1 For integers n ≥ 1 and d ≥ 2, denote by Ad
n the d-dimensional open

spherical shell, or annulus, centered at the origin with inner radius n and outer radius
n + 1

dnd , i.e. Ad
n are bounded by concentric (d − 1)-dimensional spheres centered at

the origin. These shells will guarantee that the volume of their union is unbounded
as n tends to infinity. So far the constructed point set is disconnected. To obtain a
connected point set, we denote by Bd

n the d-dimensional open spherical shell cen-
tered on the y-axis at n + 3

4 with inner radius 1 and outer radius 1 + 1
n4 . With this

P = ∪n≥30
(Ad

n ∪ Bd
n

)
is open and connected with infinite volume and diameter even

though the length of its intersection with every line is at most 1. In Fig. 1 we depicted
such a configuration in dimension d = 2 containing the first few annuli. The detailed
computations demonstrating the assertions claimed are provided in the appendix, see
Sect. A.1.

In order to make the problem of evaluating the functions fd(n) and ld(n) more
tractable, we consider both problems in the special case, where the connected compo-
nents are restricted to d-dimensional open balls. We denote the corresponding maxi-
mum volumes by f ◦

d (n) and l◦d(n) respectively. Clearly we have f ◦
d (n) ≤ fd(n) and
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Fig. 1 Concentric annuli with
infinite area but finite lengths
of line intersections (color figure
online)

f ◦
d (n) ≤ l◦d(n) ≤ ld(n). In Sect. 3 we determine the exact values of both functions

l◦d(n) and f ◦
d (n) for all d and n.

Based on a simple averaging argument, any given upper bound on one of the four
introduced maximum volumes for n components yields an upper bound for k ≥ n
connected components in the same dimension.

Lemma 5 For each k ≥ n we have ld(k) ≤ k
n · 	1 whenever ld(n) ≤ 	1 and

fd(k) ≤ k
n · 	2 whenever fd(n) ≤ 	2.

Proof Let P be a d-dimensional open set with corresponding property in either case
and k ≥ n connected components. The volume of each of the

(k
n

)
different unions of n

connected components inheriting these properties is at most 	i . Since each component
occurs exactly

(k−1
n−1

)
times in those unions, the stated inequalities hold. �	

3 Unions of Open d-Dimensional Balls

Here we consider open point sets P that are unions of n disjoint d-dimensional open
balls of diameter at most 1 each such that they either do not contain a pair of points
with integral distance or intersect each line in the intervals with total length at most 1.
As introduced in the previous section we denote the supremum of possible volumes
of such P by f ◦

d (n) and l◦d(n) respectively.
In dimension 1 we can consider one open interval of length 1 − ε and n − 1 open

intervals of length ε
n , where 1 > ε > 0, arranged in a unit interval so that they are

pairwise disjoint. The set does not have a pair of points an integral distance apart
and the total length of the n intervals tends to 1 as ε approaches 0. It follows from
Theorem 1 that f ◦

1 (n) = l◦1(n) = 1 for all n. For n = 1, by the isodiametric inequality,
only the volumes of d-dimensional open balls of diameter 1 attain the maximum values
f ◦
d (1) = l◦d(1) = λd

(
Bd

)
.
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Lemma 6 For d, n ∈ N, we have l◦d(n) ≤ max
(
1, n

2d

) · λd
(
Bd

)
.

Proof Consider n disjoint open d-dimensional balls with diameters X1 ≤ 1, . . . , Xn

≤ 1, where we can assume w.l.o.g. that X1 ≤ · · · ≤ Xn ≤ 1. Clearly in dimension 1
we have l◦1(n) = l1(n) = 1 = λ1(B1) for all n ∈ N and for all dimensions d, we
have l◦d(1) = ld(1) = λd(Bd), so in the cases where either d or n is 1 the stated
inequality holds, hence we can assume that d ≥ 2 and n ≥ 2. Then by Theorem 1
we have Xi + X j ≤ 1 for all 1 ≤ i < j ≤ n. If Xn ≤ 1

2 , then
∑n

i=1 Xd
i ≤ n

2d

so the required inequality holds. Otherwise we have Xi ≤ 1 − Xn and it remains
to maximize the function gd(x) := xd + (n − 1)(1 − x)d with domain [ 1

2 , 1]. Since
gd(x)′′ = d(d −1)xd−2 +d(d −1)(n−1)(1−x)d−2 > 0, every inner local extremum
of gd is a minimum, so the global maximum of gd is attained at the boundary of the
domain. Finally, we compute gd(1) = 1, gd

( 1
2

) = n
2d , hence the lemma follows. �	

Remark The special case of balls of diameter 1
2 is directly related to point sets with

pairwise integral distances. Let P be the union of n d-dimensional open balls of
diameter 1

2 each without a pair of points an integral distance apart. Then the distance
between the centers of the balls must be of the form di, j + 1

2 for some integers di, j . By
dilation with a factor of two we obtain the set of n centers of the balls with pairwise
odd integral distances. However, it has been shown in [23] that for such sets n ≤ d +2,
where equality is possible if and only if d + 2 ≡ 0 (mod 16). The exact maximum
number of odd integral distances between points in the plane has been determined
in [32].

Theorem 2 We have l◦d(n) = max
(
1, n

2d

) · λd
(
Bd

)
for all d ≥ 2.

Proof By Lemma 6 it suffices to provide configurations (asymptotically) attaining the
upper bound.

For an arbitrary 1 > ε > 0 we consider the union of 1 d-dimensional open ball of
diameter 1 − ε and n − 1 disjoint open balls of diameter ε

n−1 arranged in the interior
of an open ball of diameter 1. As ε tends to 0, the volume of the union tends to λd

(
Bd

)
.

For the remaining part we consider the union of n open d-dimensional balls with
diameter 1

2 centered at the vertices of a regular n-gon with circumradius k. Clearly,
for k large enough, every line hits at most two balls. �	

Another construction consists of n open d-dimensional balls with centers(
i · k, i2, 0, . . . , 0

)
and diameter 1

2 for 1 ≤ i ≤ n. If k is large enough then again
there is no line intersecting three or more balls.

Corollary 1 We have f ◦
d (n) = l◦d(n) = λd

(
Bd

)
for d ≥ 2 and n ≤ 2d .

It turns out that, in fact, the equalities f ◦
d (n) = l◦d(n) = max

(
1, n

2d

) · λd
(
Bd

)
hold

in all dimensions d ≥ 2. To explain the underlying idea, we first consider the special
case where d = 2 and n = 5, i.e. the first case that is not covered by Corollary 1.

Lemma 7

f ◦
2 (5) = 5π

16
≈ 0.9817477.
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1
2 −

2
+

k

1
2

−
2ε

ε

Fig. 2 Integral distance avoiding open set for d = 2 and n = 5

Proof For each integer k ≥ 2 and 1
7 > ε > 0, we consider a regular pentagon P with

side length 1
2 −2ε+k. At each of the vertices of P we place an open circle of diameter

1
2 − 2ε, see Fig. 2. Since each component has diameter less than 1, there is no pair of
points at integral distance inside one of the five components. For two points a and b
from different components we either have

k < dist(a, b) < k + 1,

whenever the discs are adjacent with their centers located on an edge of P , or

(1 + √
5

2

)
· k +

√
5 − 1

4
− 2ε < dist(a, b) <

(1 + √
5

2

)
· k + 3 + √

5

4
− 5ε

otherwise.
Let [α] denote the positive fractional part of a real number α, i.e. there exists an

integer l with α = l + [α] and 0 ≤ [α] < 1. If, given ε > 0, one can find an integer k
such that

[(1 + √
5

2

)
· k +

√
5 − 1

4
− 2ε

]
< 3ε,
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then the point set with parameters k and ε does not contain a pair of points with integral
distance.

Since 1+√
5

2 is irrational, we can apply the equidistribution theorem, see e.g. [38,40],

to deduce that
( 1+√

5
2

) · N is dense (even uniformly distributed) in [0, 1). The same

holds true if we shift the set by the fixed real number
√

5−1
4 − 2ε > 0. Thus we can

find a suitable integer k for each ε > 0. As ε tends to 0, the total area of the five
components approaches 5π

16 which is best possible by Lemma 6. �	
We illustrate this by a short list of suitable values of k:

[√
5 − 1

4
+

(1 + √
5

2

)
· 6

]
≈ 0.01722,

[√
5 − 1

4
+

(1 + √
5

2

)
· 61

]
≈ 0.00909,

[√
5 − 1

4
+

(1 + √
5

2

)
· 116

]
≈ 0.00096,

[√
5 − 1

4
+

(1 + √
5

2

)
· 1103

]
≈ 0.00051,

and

[√
5 − 1

4
+

(1 + √
5

2

)
· 2090

]
≈ 0.00005.

We shall generalize Lemma 7 to an arbitrary dimension d ≥ 2 and arbitrary number
n of connected components. The idea is to locate the centers of n small d-dimensional
balls of diameter slightly less than 1

2 at some points Ci in a two-dimensional sub-plane
so that the set of different pairwise distances αi between their centers are linearly
independent over the rational numbers. So either the distances coincide or they are
rationally independent. The appropriate candidates for the center points Ci would be
the vertices of a regular p-gon, where p is an odd prime. We use a theorem of Mann,
see [29], to prove the desired property of the distances. The condition that the point set
in question avoids integral distances can be translated into a system of inequalities of
the form [α1 · k] < ε, . . . , [αl · k] < ε, where k ∈ N, and we are looking for an integer
k such that the above fractional parts of the scaled pairwise distances are arbitrarily
small. By a theorem of Weyl, see e.g. [40, Satz 3] or a textbook on Diophantine
Approximation like e.g. [9], such systems have solutions if the αi are irrational and
linearly independent over Q (Weyl actually proves equidistribution while we only
need denseness, a weaker result that Weyl himself attributes to Kronecker).

We remark that a similar construction, using the vertices of a regular hexagon does
not work. Here the lengths of the occurring diagonals are given by 1,

√
3, and 2. The

necessary inequalities

[(
k + 1

2
− 2ε

)
· li −

(1

2
− 2ε

)]
=

[
k · li +

(1

2
li − 1

2

)
+ (2 − 2li ) · ε

]
< 3ε,
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where li denote the lengths of the diagonals, are trivially satisfied for li = 1, but cannot
hold for li = 2 and small ε. We remark that very recently Mann’s theorem was used
in another problem from discrete geometry see [15,35].

Theorem 3 (Mann [29]) Suppose we have

k∑

i=1

aiζi = 0,

with ai ∈ Q, the ζi roots of unity, and no sub-relations
∑

i∈I aiζi = 0, where ∅ �=
I � [k]. Then

(
ζi/ζ j

)m = 1

for all i, j , with m = ∏
p≤k prime p.

The vertices of a regular p-gon with a circumcircle of radius 1 centered at the origin
are given by

(
cos

( j · 2π

p

)
, sin

( j · 2π

p

))

for 0 ≤ j ≤ p − 1. Using complex notation they coincide with the pth roots of unity

ζ ′
j = cos

( j · 2π

p

)
+ i · sin

( j · 2π

p

)
.

The distance between vertices 0 and j is given by 2 sin
( j ·2π

2p

)
. Since sin(π − α) =

sin(π), there are only (p − 1)/2 distinct distances in a regular p-gon, attained for
1 ≤ j ≤ (p − 1)/2. We remark that this is not too far away from the minimal number
of distinct distances in the plane, which is bounded below by c · p

log p for a suitable
constant c, see [24]. We can express these distances in terms of 2pth roots of unity

ζ j = cos
( j · 2π

2p

)
+ i · sin

( j · 2π

2p

)

via

2 sin
( j · 2π

2p

)
= ζ j − ζ2p− j

i

for all 1 ≤ j ≤ p−1
2 .

123



110 Discrete Comput Geom (2013) 50:99–123

Lemma 8 Given an odd prime p, let

α j = ζ j − ζ2p− j

i
for 1 ≤ j ≤ p − 1

2
,

where the ζ j are 2pth roots of unity. Then the α j are irrational and linearly independent
over Q.

Proof A folklore result, see e.g. [30], states that sin(πq), where q ∈ Q, is a rational
number if and only if sin(πq) ∈ { − 1,− 1

2 , 0, 1
2 , 1

}
. Since p is odd this cannot

occur in our context. It remains to show that the α j are linearly independent over Q.
Suppose to the contrary that there are rational numbers b j for 1 ≤ j ≤ l ≤ p−1

2 with
∑l

j=1 b jα j = 0. We then have

l∑

j=1

(
b jζ j − b jζ2p− j

) = 0.

Now let J be a subset of those indices j , 2p − j such that
∑

j∈J a jζ j = 0, where
a j ∈ {±b j }, and no sub-relation adds up to 0. We have |J | ≤ p −1. Hence by Mann’s
Theorem (ζ j1/ζ j2)

2 = 1 for all j1, j2 ∈ J , since

gcd
(

2p,
∏

t≤p−1 prime
t
)

= 2.

With this we obtain j2 = j1 + p for j1 < j2. Since J is a subset of

{
1, . . . ,

p − 1

2

}
∪

{
2p − p − 1

2
, . . . , 2p − 1

}
,

this is impossible and the α j have to be linearly independent over Q. �	
Theorem 4 For d ≥ 2 we have f ◦

d (n) = max
(
1, n

2d

) · λd
(
Bd

)
.

Proof Since f ◦
d (n) ≤ l◦d(n) we conclude from Theorem 2 the upper bound f ◦

d (n) ≤
max

(
1, n

2d

) ·λd
(
Bd

)
. For the construction we fix an odd prime p with p ≥ n. For each

integer k ≥ 2 and each 1
4 > ε > 0 we consider a regular p-gon P with side lengths

2k · sin
(

π
p

)
, i.e. with radius k. At n arbitrarily chosen vertices of the p-gon P we

place the centers of d-dimensional open balls with diameter 1
2 − 2ε. Since each of the

n components has a diameter less than 1 there is no pair of points at integral distance
inside one of these n components. Next we consider two points a and b from two
different components. By α we denote the distance of the centers of the corresponding
open balls. From the triangle inequality we conclude

α −
(1 − 4ε

2

)
< dist(a, b) < α +

(1 − 4ε

2

)
.
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Since the occurring distances α are given by 2k sin
(

π
p

)
) for 1 ≤ j ≤ p−1

2 we look for
a simultaneous solution of the system

[
2k · sin

( jπ

p

)
− 1

2
+ 2ε

]
≤ 4ε

with k ∈ N. By Lemma 8 the factors 2 sin
( jπ

p

)
are irrational and linearly independent

over Q, so by Weyl’s Theorem [40] the systems admit a solution for all ε.
Therefore, for every 0 < ε < 1

4 we can choose a suitable value of k and con-
struct a point set without pairs of points an integral distance apart with a volume of
n
( 1

2 − 2ε
)d · λd(Bd). As ε approaches 0 this volume tends to n

2d · λd(Bd). For small
values of n we consider, for an arbitrary ε > 0, one open d-dimensional ball of diam-
eter 1 − ε and d − 1 open d-dimensional balls of diameter ε

d arranged in an open
d-dimensional ball of diameter 1, see the proof of Theorem 2. As the diameter of the
whole set is less than 1 there is no pair of points with integral distance. �	

Thus, in the case of spherical components the values of l◦d(n) and f ◦
d (n) are com-

pletely determined. For general components the problem is more challenging for n ≥ 2
and will be addressed in the following section.

4 Bounds for ld(n) and the Exact Value of fd(n)

In dimension 1 we can consider one open interval of length 1−ε and n−1 open intervals
of length ε

n , where 1 > ε > 0, arranged in the unit interval so that they are pairwise
non-intersecting. Obviously there is no pair of points with integral distance and the
total length of the n intervals tends to 1 as ε approaches 0. Thus we can conclude
f1(n) = l1(n) = 1 from Theorem 1. For n = 1 component the unique example
achieving the maximum volume of fd(1) = ld(1) = λd

(
Bd

)
is the d-dimensional

open ball with diameter 1. For n, d �= 1 the problem gets more involved. In Sect. 4.1
we treat the case of n = 2 components. In general we are only able to obtain some
lower and upper bounds, which is executed in Sect. 4.2 for ld(n) and in Sect. 4.3 the
exact value of fd(n) is determined.

4.1 Two Components

At first we will start to obtain an upper bound in the case of two components. To this
end, we remark that we can reformulate the condition of Lemma 3 as diam(C1 ∪C2) ≤⌊

dist(C1, C2)
⌋+1. Next we use Lemmas 3 and 4 to deduce some structural information

on the pairs of connected components C1, C2 in a d-dimensional integral distance
avoiding set P . Due to Lemma 4 there exist parallel hyperplanes H2 and H3 such that,
after a possible relabeling of the components, C1 is on the left hand side of H2, C2 is
on the right hand side of H3, and H2 is on the left hand side of H3. W.l.o.g. we assume
dist(H2, H3) ≤ dist(C1, C2). By Lemma 3 there exist two further hyperplanes H1,
H4 being parallel to H2 and H3 such that C1 is on the right hand side of H1 and C2 is
on the left hand side of H4. In other words, C1 lies between H1 and H2, and C2 lies
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Table 1 Values of λd (Sd ) and λd (Cd ) for small dimensions

d 2 3 4 5

λd(Sd)

√
3

8 + π
12 ≈ 0.4783 11π

96 ≈ 0.3600 π
384 · (9√

3 + 4π
) ≈ 0.2303 203π2

15360 ≈ 0.1304

λd(Cd) π
12 −

√
3

16 ≈ 0.1535 5π
192 ≈ 0.0818 π2

96 − 3
√

3π
256 ≈ 0.0390 53π2

30720 ≈ 0.0170

between H3 and H4. W.l.o.g. we can assume dist(H1, H4) ≤ diam(C1 ∪C2). Thus for
d1 := dist(H1, H2) and d2 := dist(H3, H4) we have d1 + d2 ≤ 1 by Theorem 1(i).
Clearly d1 and d2 are upper bounds for the width of C1 and C2, respectively.

For a convex body K in R
d with diameter D and minimal width ω an upper bound

on its d-dimensional volume V has been found in [25, Theorem 1], namely:

V ≤ λd−1(Bd−1) · Dd

arcsin ω
D∫

0

cosd θ dθ. (1)

Equality holds if and only if K is the d-dimensional spherical symmetric slice with
diameter D and minimal width ω. In the planar case some more inequalities relating
several descriptive parameters of a convex set can be found in [36]. Since we will
extensively use d-dimensional spherical symmetric slices with diameter 1 and width
1
2 , we denote them by Sd . Viewing Sd as a truncated d-dimensional ball of unit diameter
we denote the two isomorphic cut-off bodies by Cd and call them caps, i.e. we have
λd(Bd) = λd(Sd) + 2 · λd(Cd).

λd(Sd) = λd−1(Bd−1)

π
6∫

0

cosd θ dθ, (2)

λd(Cd) = 1

2
· (λd(Bd) − λd(Sd)

)
. (3)

In Table 1 we give the first exact volumes and refer to the Appendix, i.e. Sect. A.2,
for further equivalent expressions.

Lemma 9 For d ≥ 2, we have fd(2) ≤ 2λd(Sd).

Proof With the notation as introduced above we estimate the total volume of the closed
convex hulls of the two connected components conv(C1), conv(C2),

λd(conv(C1)) + λd(conv(C2)),

where both components have a diameter of at most 1, C1 has a width of at most d1,
and C2 has a width of at most d2, using Inequality (1). We thus have

λd(conv(C1)) ≤ λd(Bd−1)

arcsin d1∫

0

cosd θ dθ
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d · k + 1
2 − 2

k

diameter 1

d · k

1
2 − 2

k

− 2
k

1
2 − 2

k

Fig. 3 Truncated circles—a construction of two components without integral distances

and

λd(conv(C2)) ≤ λd(Bd−1)

arcsin d2∫

0

cosd θ dθ.

Since both right hand sides are strictly monotone in d1, d2, respectively, we can assume
w.l.o.g. that d1 + d2 = 1. So it suffices to maximize the function

arcsin x∫

0

cosd θ dθ +
arcsin(1−x)∫

0

cosd θ dθ

for x ∈ [0, 1]. After a straightforward calculation we conclude that the unique maxi-
mum is attained at x = 1

2 . �	
Lemma 10

fd(2) ≥ 2 · λd(Sd).

Proof For an arbitrary integer k ≥ 5 we place a d-dimensional ball with diameter 1− 2
k

at the origin and cut off the spherical cap at the hyperplanes with value ±( 1
4 − 1

k

)
of the

first coordinate. By S1 we denote the resulting truncated ball. Another such truncated
ball S2 is located with a shift of dk + 1

2 − 2
k in the direction of the first coordinate (see

Fig. 3 for a drawing of the two-dimensional case). Both S1 and S2 have a diameter
less than 1 for all k ∈ N so that they contain no pair of points with integral distance.
For two points a ∈ S1 and b ∈ S2 we have

dk < dist(a, b) <

√

(d − 1)
(

1 − 2

k

)2 +
(

dk + 1 − 4

k

)2 ≤ dk + 1,

so that S1 ∪ S2 contains no pair of points with integral distance.
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Fig. 4 Two 3-dimensional components with the enclosing balls and enclosing cylinder

Finally we remark that the volume of S1 ∪ S2 approaches 2 · λd(Sd) as k tends
to ∞. �	

Combining Lemma 9 with Lemma 10 yields:

Corollary 2 For d ≥ 2 we have fd(2) = 2λd(Sd).

One might conjecture that the upper bound from Lemma 9 is also valid for ld(2), see
Conjecture 1. Technically, we have used Lemmas 3 and 4, but it might be possible to
come up with another approach which does not rely on these properties. In this context
we would like to remark that related problems can be quite complicated, e.g. it is quite
hard to determine the equilateral n-gon with diameter 1 and maximum area [3,4].

Conjecture 1 For n ≥ 2 and d ≥ 2 we have ld(n) = n · λd(Sd).

4.2 Bounds for ld(n)

Using exhaustion over lines, we can conclude two first upper bounds for ld(n).

Lemma 11 For d ≥ 2, we have ld(2) ≤ λd−1
(
Bd−1

) · (
√

2d
d+1

)d−1
.

Proof By Lemma 1 both connected components, denoted by C1 and C2, are of diameter
at most 1, so Jung’s theorem [16,26] yields the enclosing balls B1, B2 for these

components of diameter
√

2d
d+1 . So there is an enclosing cylinder, having a (d − 1)-

dimensional ball of diameter
√

2d
d+1 as its base, containing the closed convex hull

conv(B1 ∪ B2). The diagram is depicted in Fig. 4, where we remark that the two
enclosing balls B1, B2 might intersect in general. By exhausting the cylinder with the
lines parallel to the line trough the centers of B1 and B2, i.e. using a suitable Riemann
integral or Fubini’s theorem, and applying Theorem 1(i) we conclude that the volume

of C1 ∪ C2 is at most λd−1
(
Bd−1

) · (
√

2d
d+1

)d−1. �	
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Fig. 5 A component contained
in the convex hull of another

The estimates for the first few upper bounds of ld(2) in Lemma 11 are:

l2(2) ≤ 2√
3

≈ 1.1547, l3(2) ≤ 3π

8
≈ 1.1781,

l4(2) ≤ 8
√

2π

15
√

5
≈ 1.0597, l5(2) ≤ 25π2

288
≈ 0.8567

and ld(2) tends to 0 as the dimension d approaches infinity.
The enclosing balls are a bit wasteful. The universal cover problem, first stated in

a personal communication of Lebesgue in 1914, asks for the minimum area A of a
convex set U containing a congruent copy of any planar set of diameter 1, see [8]. For
the currently best known bounds 0.832 ≤ A ≤ 0.844 and generalizations to higher
dimensions we refer the interested reader to [7, Sect. 11.4]. In this paper we will not use
this concept. The restriction to d-dimensional open balls as components has already
been treated in Sect. 3.

In dimension d = 2 the upper bound from Lemma 11 can be improved easily.

Lemma 12

l2(2) ≤ 1.

Proof Let P be a planar open point set consisting of two components C1 and C2 each of
diameter at most 1. If one of them is contained in the closed convex hull of the other, see
Fig. 5 for an example, then we have λ2(P) ≤ λ2(B2) = π

4 < 1. Otherwise, we select
any support line L through the boundary points of C1 and C2 so that both regions are
in the same half-plane determined by L. We then consider the strip parallel to this line
with smallest possible width w containing both regions, see Fig. 6. Since both C1 and C2
have diameter at most 1 we have w ≤ 1. By exhausting the strip with the lines parallel
to L and applying Theorem 1 we conclude that the area of C1 ∪ C2 is at most 1. �	

4.3 The Exact Value of fd(n)

By combining Lemmas 9 and 5 we obtain the upper bound fd(n) ≤ nλd
(
Sd

)
. In the

remaining part of this subsection we will describe a construction which asymptotically
achieves this upper bound.
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Fig. 6 Two components between two parallel lines

Fig. 7 p-gon Construction: integral distance avoiding point set for d = 2 and p = n = 5

As a first step we remark that we can improve slightly the construction from The-
orem 4. For d ≥ 2 we choose a prime p ≥ n and locate n open balls of diameter
1 − 2ε, where ε is suitably chosen, at n out of the p vertices of the regular p-gon. For
each two balls we cut off spherical caps in the directions of the lines connecting two
centers resulting in a width of 1

2 − 2ε. If the radius of the regular p-gon approaches
infinity we can assume that ε can tend to 0. So to compute the asymptotic volume of
this construction it suffices to consider a regular p-gon P of fixed radius > 2, where
we locate n open balls at the vertices of P and cut off spherical caps such that the com-
ponents have a width of 1

2 in the direction of each line connecting two used vertices,
i.e. the centers of the n balls. For future reference we call this construction the p-gon
construction. An example with p = n = 5 in dimension d = 2 is depicted in Fig. 7.

Theorem 5 For d ≥ 2 and n ≥ 2 we have fd(n) = nλd(Sd).

Proof Lemmas 9 and 5 yield the upper bound fd(n) ≤ nλd(Sd). By Lemma 10 we can
assume that n ≥ 3. For arbitrary ε let Sd,ε be a d-dimensional spherical symmetrical
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slice with diameter 1 − 2ε and minimal width 1
2 − 2ε. As ε tends to 0, the volume

of Sd,ε approaches λd(Sd). In the following we provide a construction of an open
n-component point set P ′ avoiding integral distances each of whose connected n
components contains a congruent copy of Sd,ε.

Consider a regular p-gon P with circumradius k, the parameters p and k to be
specified. We enumerate clockwise the vertices of P from 1 to p and assume w.l.o.g.
that the line through vertices 1 and 2 is the x-axis. At each vertex 1 ≤ i ≤ n ≤ p
we place the center of an open d-dimensional ball of diameter 1 − ε. For each pair of
the n balls we cut off spherical caps in the direction of the lines through their centers
resulting in a width of 1

2 − ε. We denote the union of the resulting n open sets by P .
Consider further all 2 · (n

2

)
cutting hyperplanes that cut off the spherical caps from

the initial open balls. As the number p of vertices of the p-gon P increases, with n
fixed, all those hyperplanes tend to be orthogonal to the x-axis. Now choose a prime
p large enough so that each connected component of P contains a d-dimensional
spherical symmetrical slice with diameter 1 − 2ε and minimal width 1

2 − 2ε whose
cutting hyperplanes are orthogonal to the x-axis. By P ′ we denote the subset of P
which is the union of those Sd,ε’s.

There exists a number k1 such that for k ≥ k1 each line hits at most two connected
components of P ′. Since the diameter of each of its connected components is at most
1 − 2ε, the pairwise distances between the points within the same component are
non-integral. Let a and b be two points in different connected components. By the
construction the distance between the corresponding centers is given by 2k · sin

( jπ
p

)

for a suitable integer j . Thus

dist(a, b) ≥ 2k · sin
( jπ

p

)
− 1

2
+ ε.

There exists a number k2 such that for k ≥ k2, we have

dist(a, b) ≤ 2k · sin
( jπ

p

)
+ 1

2
− ε,

since all the lines joining the centers of the connected components of P ′ then to be
horizontal, as k increases (compare the proof of Lemma 10).

Thus, provided that k ≥ max(K1, k2), the system of inequalities

[
2k · sin

( jπ

p

)
− 1

2
+ ε

]
≤ 2ε

has a solution, the distance dist(a, b) cannot be integral, so P ′ does not contain a pair
of points with integral distance. By Lemma 8 and the Weyl theorem the above system
admits indeed a solution. �	

5 Conclusion

Problems related to point sets with pairwise rational or integral distances were one
of Erdős’ favorite subjects in combinatorial geometry. In the present paper we study
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some kind of a counterpart to this type of problems by asking for the largest open
d-dimensional set P of points without a pair of points an integral distance apart, i.e.
that with the largest possible volume fd(n), where n denotes the number of connected
components of P . As a relaxation we have also considered d-dimensional open point
sets consisting of n connected components, each having a diameter at most 1, such
that the intersection with every line has a total length of at most 1. The corresponding
maximum volume was denoted by ld(n). While the assumption on diameters of the
connected components seems to be a bit technical, geometrical objects with specified
intersections with lines or higher-dimensional subspaces are interesting in their own
right. So far we were not able to prove that the maximum volumes ld(n) are bounded
if we drop the condition on the diameters. In this context we just mention the famous
Kakeya problem of whether a Kakeya set in R

d , i.e. a compact set containing a unit
line segment in every direction, has Hausdorff dimension d, see e.g. the review [41]
or [12, Problem G6].

By restricting the shapes of the connected components to d-dimensional balls, we
were able to determine the exact values of the corresponding maximum volumes f ◦

d (n)

and l◦d(n), respectively. Also the values of fd(n) could be determined exactly, while
for ld(n) we only have the lower bound ld(n) ≥ fd(n), which we conjecture to be
tight.
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Appendix

In order to keep the main part of the paper more accessible we have moved some side
remarks and technical calculations to this appendix.

A. 1 Details of the Annuli Construction

We have to ensure that Construction 1 satisfies the proposed properties. First we remark
that both Ad

n and Ad
n+1 meet Bd

n for n ≥ 1. Thus P is a connected open set in R
d . The

volume λd
(Ad

n

)
is given by

λd(Bd) ·
((

2n + 2

dnd

)d − (2n)d
)

= λd(Bd) · 2d ·
((

n + 1

dnd

)d − nd
)

≥ λd(Bd) · 2d · 1

n
.

Since the harmonic series diverges to infinity, the d-dimensional volume of P is
unbounded.

Now we consider the intersection of a lineLwith a d-dimensional annulusCd (r1, r2)

with inner radius r1 and outer radius r2 centered at the origin. Due to symmetry we
can assume that L is parallel with the x-axis, i.e.
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L = { (
1 0 . . . 0

)T · λ + (
0 a2 . . . ad

)T | λ ∈ R
}
.

By symmetry we can further assume ai ≥ 0 for all 2 ≤ i ≤ d. To ease notation we

set l :=
√∑d

i=2 a2
i . We remark Cd(r1, r2) ∩ L = ∅ for l2 > r2

2 . The x-coordinates
of the intersections of L with the d-dimensional sphere of radius r1 are given by

±
√

r2
1 − l2, as long as l2 ≤ r2

1 . Similarly the x-coordinates of the intersections of L
and the d-dimensional sphere of radius r2 are given by ±

√
r2

2 − l2, as long as l2 ≤ r2
2 .

For l2 ≤ r2
1 we have

λ1
(Cd(r1, r2) ∩ L) = 2 ·

(√

r2
2 −

∑d

i=2
a2

i −
√

r2
1 −

∑d

i=2
a2

i

)

︸ ︷︷ ︸
=:h1(a2,...,ad )

.

Since

∂h1

∂ai
(a2, . . . , ad) = ai ·

( 1
√

r2
1 − ∑d

i=2 a2
i

− 1
√

r2
2 − ∑d

i=2 a2
i

)
≥ 0,

we can assume l2 ≥ r2
1 for the maximum length of the intersection. If the ai are

restricted by an inequality l2 ≤ k2 ≤ r2
1 the maximum length of the intersection is

bounded from above by 2
√

r2
2 − k2 − 2

√
r2

1 − k2.

For r2
1 ≤ ∑d

i=2 a2
i ≤ r2

2 we have

λ1
(Cd(r1, r2) ∩ L) = 2 ·

√

r2
2 −

∑d

i=2
a2

i
︸ ︷︷ ︸

=:h2(a2,...,ad )

and

∂h1

∂a2
(a2, . . . , ad) = −ai · 1

√
r2

2 − ∑d
i=2 a2

i

≤ 0,

so that the extremal values are taken at
∑d

i=2 a2
i = r2

1 where we have λ1
(Cd(r1, r2)∩L)

≤ 2
√

r2
2 − r2

1 .
Thus for an arbitrary line L we have

λ1
( ∪n≥30 Bd

n ∩ L) ≤
∞∑

n=30

2

√
(
1 + 1

n4

)2 − 12 ≤
∞∑

n=30

2
√

3

n2 < 0.12.
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For the remaining part we restrict ourselves on lines being parallel to the x-axis. If
l < 30 then

λ1
( ∪n≥30 Ad

n ∩ L) ≤ 2

√
(
30 + 1

d · 30d

)2 − 302

+
∞∑

n=31

2

√
(
n + 1

dnd

)2 − l2 − 2
√

n2 − l2

≤ 0.366 + 2
∞∑

n=31

2
n

2
√

n2 − 302
< 0.47.

For l ≥ 30 we have

λ1
( ∪n≥30 Ad

n ∩ L) ≤ 4

√
(�l� + 1

d · �l�d

)2 − �l�2

+
∞∑

n=�l+2�
2

√
(
n + 1

dnd

)2 − l2 − 2
√

n2 − l2

≤ 0.732 + +2

∞∫

�l+1�

1

x
√

x2 − l2
d x

= 0.732 + 2

l
· arcsin

( l

�l + 1�
)

≤ 0.732 + 2

l
· π

2
< 0.84.

Since 0.12 + max(0.47, 0.84) < 1 we have λ1(P ∩ L) < 1 for each line L.

A. 2 Volumes of Truncated Balls and Caps

In Table 1 we have stated the volumes of truncated d-dimensional balls of unit diameter
Sd and the cutt-off bodies, i.e. caps, Cd for small dimensions d. Due to Eqs. (2) and

(3) it suffices to compute the values v(d) := ∫ π
6

0 cosd(x) d x . The first few values are
given by v(1) = 1

2 , v(2) = 1
8 · √3 + 1

12 · π , v(3) = 11
24 , and v(4) = 9

64 · √3 + 1
16 · π .

Using integration by parts we can immediately compute

v(d) =
⎧
⎨

⎩

(2m−1)!!
(2m)!! · ( 1

2 · ∑m−1
k=0

(2k)!!
(2k+1)!! ·

√
3

2 · ( 3
4

)k + π
6

)
for d = 2m,

(2m)!!
(2m+1)!! · 1

2 · ∑m
k=0

(2k−1)!!
(2k)!! · ( 3

4

)k for d = 2m + 1.
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Given the integer sequence A091814 from the “On-line encyclopedia of integer
sequences” v(d) can be written as

A091814(d)) · ( d−1
2

)!
d! · 2

d+1
2

for all odd d. Benoit Cloitre contributed the following second order recursion formula:
v(1) = 1

2 , v(3) = 11
24 , and

v(2n − 1) = 1

8n − 4
· ((14n − 17) · v(2n − 3) − 6(n − 2) · v(2n − 5))

for n ≥ 3. A similar recursion formula can be obtained for even d, where v(d) can be
written as

q(d) · √
3 +

(d−1
d
2

)

2d · 3
· π

for rational numbers q(d).
Additionally one can compute the corresponding ordinary generating function:

F(z) :=
∞∑

k=0

v(k)zk =
∞∑

k=0

π
6∫

0

(z cos t)k d t =
π
6∫

0

d t

1 − z cos t

= 2√
1 − z2

arctan
(√1 + z

1 − z
· tan

π

12

)
.

We will apply singularity analysis in order to determine the asymptotic behavior of
an := Fα(z)[zn], where slightly more generally

Fα(z) := 2√
1 − z2

arctan
(√1 + z

1 − z
· α

)
,

see e.g. [20, chapter VI]. The main singularity is at z = 1 since there is a compensation
for z = −1. From

arctan
(√1 + z

1 − z
· α

)
= π

2
+ O

(
(1 − z)

1
2
)
,

2√
1 + z

= √
2 + O(1 − z), and

[
zn] 1√

1 − z
= 1√

πn
+ O

( 1

n
3
2

)
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we conclude

an =
√

π

2n
+ O

( 1

n
3
2

)
.

So we have v(d) ∼
√

π
2d .
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2. Anning, N.H., Erdős, P.: Integral distances. Bull. Am. Math. Soc. 51, 598–600 (1945)
3. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons. J. Glob. Optim. 38(2),

163–179 (2007)
4. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons—an update. In: Pardalos,

P.M. et al. (eds.) Lectures on Global Optimization. Papers Based on the Presentations at the Workshop
on Global Optimization: Methods and Applications, Toronto, Canada, May 11–12, 2007. American
Mathematical Society (AMS), Providence, RI; The Fields Institute for Research in Mathematical
Sciences, Toronto. Fields Institute. Communications 55, 1–16 (2009)

5. Bachoc, C., Nebe, G., de Oliveira Filho, F., Vallentin, F.: Lower bounds for measurable chromatic
numbers. Geom. Funct. Anal. 19, 645–661 (2009)

6. Bollobás, B. (ed.): Littlewood’s Miscellany, revised edn., vol. VII. Cambridge University Press, Cam-
bridge (1986)

7. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
8. Brass, P., Sharifi, M.: A lower bound for Lebesgue’s universal cover problem. Int. J. Comput. Geom.

Appl. 15(5), 537–544 (2005)
9. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Math-

ematics, vol. 193. Cambridge University Press, Cambridge (2012)
10. Bukh, B.: Measurable sets with excluded distances. Geom. Funct. Anal. 18(3), 668–697 (2008)
11. Campbell, G., Goins, E.H.: Heron triangles, diophantine problems and elliptic curves. Preprint. www.

swarthmore.edu/NatSci/gcampbe1/papers/heron-Campbell-Goins.pdf (2004)
12. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved problems in geometry. In: Unsolved Problems in

Intuitive Mathematics, vol. II. Springer, New York (1994)
13. Croft, H.: Incidence incidents. Eureka 30, 22–26 (1967)
14. de Oliveira Filho, F.M., Vallentin, F.: Fourier analysis, linear programming, and densities of distance

avoiding sets in R
n . J. Eur. Math. Soc. 12(6), 1417–1428 (2010)

15. de Zeeuw, F.: An algebraic view of discrete geometry, Ph.D. Thesis, The University of British Columbia
(2011). https://circle.ubc.ca/handle/2429/38158

16. Dekster, B.V.: The Jung theorem in metric spaces of curvature bounded above. Proc. Am. Math. Soc.
125(8), 2425–2433 (1997)
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