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Abstract—Thermographic inspection has been widely applied
to Non-Destructive Testing and Evaluation (NDT&E) with
capabilities of rapid, contactless and large surface area detection.
Image segmentation is considered essential for identifying and
sizing defects. To attain a high level performance, specific
physics-based models that describe defects generation and enable
the precise extraction of target region are of crucial importance.
In this paper, an effective genetic first order statistical image
segmentation algorithm is proposed for quantitative crack
detection. The proposed method automatically extracts valuable
spatial-temporal patterns from unsupervised feature extraction
algorithm and avoids a range of issues associated with human
intervention in laborious manual selection of specific thermal
video frames for processing. An internal genetic functionality is
built into the proposed algorithm to automatically control the
segmentation threshold to render enhanced accuracy in sizing
the cracks. Eddy Current Pulsed Thermography (ECPT) will be
implemented as a platform to demonstrate surface crack
detection. Experimental tests and comparisons have been
conducted to verify the efficacy of the proposed method. In
addition, a global quantitative assessment index F-Score has been
adopted to objectively evaluate the performance of different
segmentation algorithms.
Index Terms — Thermography, Non-Destructive Testing and

Evaluation, image segmentation, Genetic functionality, F-Score.

I. INTRODUCTION

n contrast to conventional NDT&E methods [1-4], infrared
thermography (IRT) offers prominent advantages which
include abilities to inspect over a large detection area
within a short interval and provides capabilities of

contactless as well as high spatial resolution [5,6]. Research on
non-destructive testing (NDT) methods for fatigue crack
detection has begunover the last 100 years. Magnetic Particle
Testing (MT) is effective for detecting surface and near surface
discontinuities. This technique has been widely adopted in
industry. However, the MT testing is augmented with
complicated detection process. The surface of the sample
requires pretreatment and the measurement consumes
relatively long duration. In addition, it pollutes the
environment. IRT is applicable to a wide range of materials,
including composites and metallic materials [7]. IRT is
generally divided into two major groups: passive infrared
thermography (PIT) and active infrared thermography (AIT)
[8]. ECPT is an AIT technique developed to provide accurate
information by considering the amount of thermal radiation
and heat transfer for conductive material. ECPT has potential

to replace MT technique due to its rapid inspection over a large
area and sensitivity with near surface defects [9, 10]. In the
presence of defect, the resultant eddy current will be distorted
and the heat shows an abnormal expression that increases the
temperature contrast between the defective region and
defect-free areas. In previous work, ECPT has been used for
damage detection in metallic alloy [11], carbon fiber
reinforced plastic [12] and crack detection of rolling contact
fatigue of rail tracks [13]. Our previous study reported an
unsupervised feature extraction algorithm on ECPT for
automatic pattern separation [14]. He et al. used time-to-peak
feature for wall thinning and inner defects characterization
[15]. Liu et al. proposed the thermo-optical flow entropy
tracking method to trace the heat flow and characterize the
degree of fatigue damage [16].

Image segmentation aims to separate the desired foreground
object from background [17]. These segmentation methods are
usually classified into four major categories: threshold-based,
region growing, edge detection, and hybrid methods [18].
Stelios [19] proposed a local search based on genetic
sequential image segmentation algorithm for the classification
of remotely sensed images. Sanchez et al. [20] improved the
parameters selection for an automatic multiband image
segmentation on the basis of a seeded region growing-merging
approach. Liu [21] presented an efficient multiscale low rank
representation for image segmentation. Jian and Jung [22]
presented interactive image segmentation by using adaptive
constraint propagation (ACP) for semantic segmentation.
Wang et al. [23] proposed the eigen-decomposition of an
anisotropic diffusion operator for image segmentation. Hell
[24] reported an approach to fast multi-label color image
segmentation by using convex optimization techniques. Tang
[25] discussed a novel sparse global/local affinity graph over
superpixels of an input image to capture both short- and
long-range grouping cues. Zhang [26] proposed an
unsupervised FCM-based image segmentation method by
paying closer attention to the selection of the local information.
Noha and Leo [27] provided a contrast driven elastica model
which can accommodate high curvature objects. Dong [28]
presented a novel sub-Markov random walk algorithm with
label prior for seeded image segmentation. Li et al. [29]
proposed a segmentation approach to automatically detect
cracks from magnetic tile images by using the fast discrete
Curvelet transform. Tan [30] provided an image layering and
confidence analysis for small target detection in infrared
image. Swita [31] introduced optimization methods to
K-means segmentation algorithm for thermal images. Huang
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and Wu [32] employed the multilayer level set method to
segment infrared thermal image for layered structures defect
of carbon fiber reinforced plastic (CFRP).

In reviewing the current defect detection methods for ECPT,
two major challenges have been identified. Firstly, there is a
lack of capability in automating the detection and
identification of cracks. Secondly, the need to improve the
detectability and enhance the resolution of small cracks. The
latter is the main point of achieving Quantitative NDT&E.
However, most recent methods are limited to manual selection
of the contrastive components. The results are acceptable but
generally not predictable. The proper contrastive components
have to be empirically selected. In addition, there is a lack of
appropriate segmentation algorithm that takes into account the
physics behavior of defects in inductive thermography. This
ambiguous case prevents the use of inductive thermography
imaging in automated environments. Thus, automated image
segmentation for crack separation is crucially required for
ECPT. This paper proposes a new method that incorporates the
physics characteristics of defect behavior in IRT to derive the
first order statistical properties (FOSP) of defect segmentation
and utilizes the genetic algorithm to automatically adapt the
statistical features for further optimization of the threshold
selection. The proposed method has consistent performance
and strong de-noising capability. The comparison in terms of
the F-score has been undertaken for different segmentation
algorithms through the real experiments. Experimental tests on
man-made metal defects and natural defects have been
conducted to show the validity of the proposed algorithm.

The remainder of this paper is organized as follows: Firstly,
the introduction of methodology and the proposed method are
presented in Section II. The results and discussion are
presented in Section III. Finally, conclusions and further work
are drawn in Section IV.

II. METHODOLOGY

A. Image segmentation methods (ISMs)

Typical ISMs based on threshold approach are briefly
presented. These include maximum between-class variance
(BCV or Otsu) [33], Iterative thresholding (IT) [34], and
Hamadani [35]. These methods segment the target from the
background by using a certain threshold. Other related
methods consist of K-means algorithm [36] and seeded region
growing (RG) method [37].

B. Proposed FOSP-GA method

1) Physics-pattern model of inductive thermography

The infrared camera records both the spatial and the transient
response of temperature variation of the specimen. This can be
represented as a spatial-transient tensor Y , which has
dimension 

Transient
Spatial

x yN N N 


. According to Maxwell’s equations,

the theory of the electromagnetic (EM) field in the ECPT
system can be deduced. When an EM field is applied to a
conductive material, the temperature increases owing to

resistive heating from the induced eddy current which is
known as the Joule heating. The sum of the generated resistive
heat Q is proportional to the square of the magnitude of the
electric current density. Current density, in turn, is
proportional to the electric field intensity vector E


. The

following equation expresses this relationship:
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σ is dependent on temperature, and 0 is the conductivity at
the reference temperature 0T and  is the temperature
coefficient of resistivity, which describes how resistivity
varies with temperature. In general, by taking account of heat
diffusion and Joule heating [38], the heat conduction equation
of a specimen can be expressed as:
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where  , , ,T T x y z t is the temperature distribution, k is the
thermal conductivity of the material (W/m K), which is
dependent on temperature.  is the density (kg/m3), pC is

specific heat (J/kg K).  , , ,q x y z t is the internal heat
generation function per unit volume, which is the result of the
eddy current excitation. From the above analysis, it becomes
clear that the variation of temperature spatially and its transient
response directly reveals the intrinsic properties variation of
the conductive material.

In order to pave the way to interpreting the physics
characteristics of the defect behavior, the system of ECPT is
firstly shown in Fig. 1. The excitation signal generated by the
excitation module is a small period of high frequency current.
The current in the coil will induce the eddy current and
generate the resistive heat in the conductive material. If a
defect exists, the distribution of eddy current (EC) and thermal
diffusion will be disturbed. Specifically, when the EC
encounters a discontinuity, e.g. crack, it will be forced to divert,
leading to an increase of the EC density within the vicinity of
the defect as shown in Fig. 1(b). The arrow indicates the
direction of the EC while the length of the arrow represents the
EC intensity. Fig. 1(a) shows the numerical simulations for the
fusion of eddy current and temperature distribution which are
performed using COMSOL Multi-physics simulation software.
The distribution of the EC in Fig. 1(a) as marked by a rectangle
area is shown in Fig. 1(b). Consequently, this will lead to
variation in the resultant surface heat spatial distribution and
the transient response of temperature. These variations are
captured by an infrared camera. For surface crack, prominent
features can be observed at both tip and bottom of the crack, as
shown in Fig. 1(a). Once the prominent features of the crack
are extracted, then the location of the crack can be readily
identified and quantified.

2) Physics-based interpretation of crack behavior

Based on the above analysis of physics characteristics of the
defect behavior in inductive thermography, it can be readily
inferred that defect areas radiate more heat than background
area. This indicates that the defect preserves large amount of
energy, and is located at the top-end of the image histogram.



In order to obtain specific defect status from the histogram as a
priori information for image segmentation, the defect thermal
images will be tested and analyzed.

Fig. 1: Inductive Thermography and interpretation of defect behavior.

It should be noted that the thermal image contains only one
waveband, i.e. the infrared waveband. Therefore, the adopted
thermal image is the pseudo color image. In order to analyze
the data, Fig. 2(a) is mapped directly to the histogram without
data transformation and compression, as shown in Fig. 2(b).
The distribution of real temperature values is then mapped into
the digital level of the histogram in Fig. 2(b). Fig. 2(a)
illustrates the simulation result for surface crack at 0.04s,
which is the early response of eddy current heating and has the
largest contrast between defective and non-defective area. The
segmentation result by manually selecting the threshold on the
dotted line of Fig. 2(b) is displayed in Fig. 2(d). The result
shows that the background and the defect are optimally
separated. However, when the threshold is located on the left
side of the dotted line in Fig. 2(b), such as the selection
threshold at position 1#, unwanted background information is
included. This can be seen in Fig. 2(c). When the threshold is
located on the right side of the dotted line (such as position 2#),
the result shows the worse performance of defect segmentation.
According to Fig. 2(c)-(e), it can be seen that threshold falls on
the right of the dotted line in Fig. 2(b) can be expected to
render a good segmentation result. Otherwise, the segmented
image will contain background interference. Independent
Component Analysis (ICA) [14] has the capability to
automatically extract the spatial and temporal information of
defects according to the whole thermography sequence
without any training knowledge. This process avoids the issue
of manual selection of the specific thermal frame. Generally,
the 3~6 independent components can be used to describe the
main information contained in the whole thermography
sequence. In addition, the independent component with the
maximum kurtosis contains significant defect information and
this is adopted as the pre-segmented image. In this paper, the
ICA is used as a pre-processing method for the original
thermography sequence.

3) Derivation of proposed FOSP-GA method

It is hypothesized that the defect and background could be
effectively separated by selecting an optimal threshold
boundary. The optimal defect segmentation result can be
obtained by using the threshold that falls into the appropriate
boundary of the defect related histogram range. In order to
effectively separate the defect from the background, this paper
considers the strategy that 1) divides the histogram equally
into multiple groups and 2) performs automatic threshold
selection for separation. The mean pixel value of each group is
used as a candidate boundary and threshold. The total number
of pixel in each group represents the weight. The rate of
change of the weight is computed by calculating the first order
derivative, and the maximum elbow point is taken as an
alternation of the weight to distinguish the defect and
background. The proposed strategy is to adaptively seek a
threshold boundary to maximally distinguish the defect from
the background. Fig. 3 illustrates the histogram partition into 5,
10 and 100 groups, respectively. The dots indicate the
selection of different thresholds with their corresponding
segmentation results shown in Fig. 4.

Fig.4 shows that selecting different grouping numbers of
histogram significantly affects the determination of threshold,
which leads to varied segmentation performance. Based on the
above analysis, a new FOSP-GA method is proposed on the
basis of a combination of the first order statistical properties
(FOSP) with genetic algorithm (GA). The proposed method
combines the genetic functionality with the FOSP to
automatically control the segmentation threshold so as to
render better accuracy in locating as well as sizing the defect.

4) Proposed FOSP-GA algorithm

Fig. 5: Flow diagram of the proposed FOSP-GA.
(Note: MATLAB© demo code of the proposed method can be found in
http://faculty.uestc.edu.cn/gaobin/en/lwcg/153408/list/index.htm)

Concerning the statistical characteristics, the histogram
shows the distribution of the pixel number for each different
pixel value. With regard to the FOSP, the histogram is equally
divided into n groups ( 2n ) and the width of each group is
calculated as follows:



(a) (b)

(c) (d) (e)
Fig. 2: (a) Crack thermal image at 0.04s; (b) histogram of (a); (c) segmentation result of (a) at position 1#;

(d) segmentation result of (a) on the dotted line; (e) segmentation result of (a) at position 2#.

(a) (b) (c)
Fig. 3: Histogram with various groups: (a) histogram is equally divided into 5 groups, (b) histogram

is equally divided into 10 groups, (c) histogram is equally divided into 100 groups.

(a) (b) (c)
Fig. 4: Segmentation results under different thresholds.

n
VVV minmax  (10)

where Vmax and Vmin are maximum and minimum value of the
pixel in the image, respectively. Subsequently, Vi can be
defined as:

)...,2,1,0(,min niViVVi  (11)
Each group can be specifically expressed as:
V0~V1,V1~V2,...,Vn-1~Vn, i.e., Vi~Vi+1. The next step is
accumulating the corresponding pixel number uv of pixel value
v that falls within Vi~Vi+1 and calculating the average pixel
value of each group:
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where Wi denotes average pixel value of each group, that is, a
candidate boundary of defect and background. Si demonstrates
the weight of each group. Obviously, it is a discrete model and
the first order derivative of Si is computed as follows:

1 0, ( 1,2,..., . where 0)i i ik S S i n S    (13)
The maximum absolute value of ki is searched and this is
denoted as kmax. The term kmax is considered as an alternation of
weight for the distinction of the defect and background. Owing
to the target which distributes in the top-end of the histogram,
the right side of kmax is taken as the target area. If i is equal to n,
threshold T was determined as Wn, otherwise, T is Wi+1.
Accordingly, the threshold determination can be achieved.

However, the non-optimized selection of the different
grouping number for histogram indirectly introduces
unwanted interference to the determinations of both kmax and T.
In order to search for a suitable quantity of division, genetic
algorithm (GA) [39] is incorporated into FOSP. The process is
shown in Fig. 5. The specific description can be summarized:

(i) Code and initialize population: chromosomes are
generated by binary code which represent all solutions. In the
work, an upper limit of 256 bins is sufficient for the FOSP in
processing the inductive thermal image. Therefore the
quantity of division of the histogram can be represented as 8
bit binary, i.e. a chromosome. The procedure is creating the
initial population with chromosomes randomly sampled from
an independent and identically distributed library. The
creation should be neither too large nor small. Otherwise, this
leads to the slow convergence speed or non-optimal solution.
In this work, 10 chromosomes are set as the initial population,
and the encoded initial population serves as the current
generation.

(ii) FOSP and Fitness function: A fitness function is defined
to evaluate each chromosome where the greater the value, the
stronger the ability to survive. In our work, image entropy is
chosen as fitness function:





n

i
ii ppH

0

log (14)

where pi represents the frequency of pixel value i in the image.
Image entropy denotes that aggregation of the pixel value
distribution, which reflects the average information of the
image. For inductive thermal images, the number of pixels in
the defect is few relative to the whole image, that is, the defect
is small and has sparse characteristic. Therefore, the larger the
entropy, the better the segmentation result. Since entropy is a
measure of certainty, the entropy has been selected as the
fitness function.

(iii) Selection of genetic seed: For the fitness of each
chromosome, the fine chromosome is inherited to the next
population. In our work, the rule is selected that the
chromosomes of the current population are randomly replaced
by chromosomes in last population whose fitness value is
greater than those of the current population.

(iv) Crossover: Crossover refers to some bits of the two
chromosomes are exchanged in the current population, and

cross-operation is implemented based on crossover probability
(Pc) to generate a new population. The greater the crossover
probability, the more bits (i.e. genes) are exchanged, and the
faster the convergence rate of the solution. However, a large
crossover probability is unfavorable for determining an
optimal solution for values 0.4~0.9 are considered. Here the
crossover probability is set as 0.4.

(v) Mutate: On the basis of mutation probability (Pm), some
bits of chromosomes in the current population are changed
from 1 to 0, or 0 to 1, and the new generation is formed. It
is important to note that if Pm exceeds 0.5 GA can suffer from
inferior optimization ability. Here, the mutation probability is
set as 0.3.

(vi) Regenerate: After the genetic operation, a new
population is generated. The current generation covers the last
generation. In addition, the new generation is set as the current
generation, and then go to ii).

(vii) Genetic algebra: The program selects a genetic algebra
as the determined conditions of termination for the
optimization loop. When algorithm has progressed a certain
generation, the optimal solution can be obtained and ordinarily
the genetic algebra is selected as 50~500. In our work, in order
to ascertain the convergence of the solution, the genetic
algebra is set as 50. When a predetermined genetic algebra is
completed, the chromosome with largest fitness is selected as
the best result that is decoded as the inverse process of
encoding. All the above parameter settings are validated by
using Monte-Carlo repeated experiments involving more than
20 independent trials in order to obtain robust results.

C. Quantitative detectability assessment

The evaluation can be classified into the following four
results: True positive (TP): a defect exists and is detected;
False positive (FP): no defect exists but one is identified; False
negative (FN): a defect exists but is not detected; True
negative (TN): no defect exists and none is detected. Both TP
and FN outcomes represent the total opportunities for positive
calls (effective number of defects) while both FP and TN
outcomes represent the total opportunities for false alarms
(effective number of no defects). Thus, the precision and recall
can be defined as:

Precision TP
TP FP




Recall TP
TP FN




(15)

The desired results of the application of NDE procedures
are defect detection (signal present) or signal non-detection
(signal absent). In order to balance the judgement of precision
and recall, F-score is used as a measure of test accuracy,
namely:

2

2
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
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

 
(16)

where =1 is a default value that relatives weight the
Precision and Recall. In order to objectively perform
quantitative assessment for different ISMs, the output of image
segmentation is compared to their corresponding ground truth
that is generated by a human, that is, the pixel region of the
defect is annotated manually. Once the defect area (tip or
bottom region) is separated automatically by the proposed



algorithm FOSP, morphological operations are subsequently
implemented to connect the tips as well as bottom region to
obtain the reconstruction result. This result and the ground
truth are used to calculate F-Score for quantitative evaluation
of defect according to Eqn. (16). In inductive thermography,
the main objective is to automatically extract the tips and
bottoms of the cracks, which is sufficient to identify the
defects as well as quantitatively perform the measurement.

III. RESULTS AND DISCUSSION

A. Sample Preparation and Experiments setup

The experimental set-up is shown in Fig. 6. The 304#
stainless steel was adopted in the experiment, and a line
inductor with an outer radius of 3.5mm and inner radius of
2.5mm was used and is positioned perpendicular to the sample
and at 90 degrees to the middle position of the defect (see Fig.

7).
In the experiment, only one edge of the rectangular coil is

used to stimulate eddy current to the underneath sample. In
this study, the frame rate of 100 Hz is chosen, 380 Arms and 256
kHz are used, and 200 millisecond videos are recorded in the
experiments.

Fig. 6: Experiment setup. Fig. 7: Test specimen

B. Performance analysis and evaluation of different image
segmentation method

(a) (b) (c)
Fig. 8: (a)-(c) Thermal patterns in the real experiments.

(a) (b) (c)
Fig. 9: (a)-(c) The corresponding pre-segmented images of Fig. 8(a)-(c).

TABLE I: SEGMENTATION RESULTS OF VARIOUS METHODS IN THE EXPERIMENT.
TP I TP II TP III

Otsu



IT

Hamadani

FOSP-GA

K-Means

RG

(a) (b) (c)
Fig. 10: (a)-(c) Evolution curve of FOSP-GA for TP I, II, III, respectively in the experiment.



(a) (b) (c)
Fig. 11: (a)-(c) Histogram for TP I, II, III, respectively in the experiment.

For crack detection, three typical thermal patterns (TPs)
can be observed in Fig.8. These are (i) thermal information is
more significant than that at the tip in Fig.8(a), (ii) thermal
information of both crack tips and bottom is equally significant
in Fig.8(b), and (iii) thermal information of the crack tip is
more conspicuous than that at the bottom (see in Fig.8(c)).
These imply that the use of the prominent features can directly
locate as well as measure the size of the crack.

Extracting prominent features (Fig.9) are influenced by
several impact factors such as sensitivity of the camera, the
effects of environmental noise and error introduced in the
experiments. Otsu, IT, Hamadani K-Means, RG and
FOSP-GA are used for segmentation and the results are shown
in Table I. The corresponding F-Scores have been computed in
Table II. The experiment results illustrate that the proposed
method provides significant improvement and performs better
than others. Otsu, IT, Hamadani and K-means methods are
vulnerable to background interference in ECPT experiments.
So far only the RG and the proposed method perform more
robustly in the presence of interference, and significant
emphasis is placed on the achievement of uneven excitation
that is availably depressed. In Fig. 10, the evolution curves
have reached the steady state with the genetic algebras equal
to 6, 23 and 10 for TP I, II and III, respectively. The
corresponding histograms are divided into 5, 3 and 5 groups,
respectively. Fig. 11 shows that the thresholds of Otsu, IT and
Hamadani are far from the terminal region of the histogram.
These are 1.8544, 2.6255 and 2.0844 for TP I, 1.4972, 3.5052
and 2.1182 for TP II, 0.9783, 2.3722 and 1.9983 for TP III,
respectively. On the other hand, the thresholds are obtained
with 6.1133, 4.7207 and 6.9995 for FOSP-GA, which are
approaching the top-end of the histogram that fall in the target
area. Thus, defects can be accurately segmented based on
FOSP-GA. In Table II, the mean F-Scores of FOSP-GA have
been improved by 64.15%, 49.42%, 60%, 57.01% and 5.7%
compared to Otsu, IT, Hamadani, K-means and RG,
respectively. It is very evident that the FOSP-GA provides a
significant improvement and delivers the best result for
extracting the target for stimulated thermal image.

TABLE II: F-SCORE FOR VARIOUS ISMS IN THE EXPERIMENT.
Experiment

TP I TP II TP III average
Otsu 0.0400 0.0506 0.0245 0.0384
IT 0.1020 0.3134 0.1417 0.1857

Hamadani 0.0649 0.0879 0.0868 0.0799
K-Means 0.1207 0.0689 0.1398 0.1098

RG 0.4019 0.6658 0.8010 0.6229
FOSP-GA 0.4783 0.6667 0.8947 0.6799

The time cost of the algorithms has been computed and the
results are shown in Table III. The proposed method
FOSP-GA and RG consume longer time than other methods
while FOSP-GA is able to effectively improve the detection
performance.

Table III: Runtime comparison (s)
Experiment

TP I TP II TP III average
Otsu 0.683 0.742 0.643 0.689
IT 0.109 0.114 0.111 0.111

Hamadani 0.112 0.110 0.101 0.108
K-Means 0.689 0.623 0.598 0.609

RG 3.012 3.100 3.198 3.103
FOSP-GA 3.140 2.812 2.928 2.960

More validation studies of natural cracks with complex
geometries are tested based on ECPT. In Fig. 12(a), a natural
crack (i.e. ellipse marked area) is generated by intergranular
corrosion in nuclear industry material. The
pre-segmented image is acquired and shown in Fig. 12(b).
Otsu, IT, Hamadani, K-means, RG and FOSP-GA have been
used to segment the natural crack related to the thermal pattern,
and the results are shown in Fig. 13.

As the F-Score is a pixel level evaluation index, however, it is
difficult to calibrate ground truth of natural crack. The
evaluation index based on region is used to evaluate the
segmentation quality of natural crack. The segmented image
from different segmentation algorithms are compared to their
corresponding ground truth image. The performance and
accuracy of segmentation methods are evaluated based on
parameters of true positive rate (TPR), false positive rate
(FPR). In order to assess the accuracy of image segmentation,
the value of TPR and FPR are calculated using
TPR=TP/(TP+FN) and FPR=FP/(TP+FP). An accurate
segmentation result should be have TPR closes to 1, while
FPR should be as low as possible [40]. Raw thermal image or
pre-segmented image from ICA can be regarded as ground
truth, defect and background are considered as various events
to carry out the examination of the overlapping. Defects are
considered as event1 and event2, i.e. ellipse marking area of
Fig. 12(b). Table IV shows the comparison of segmentation
performance.

TABLE IV: SEGMENTATION PERFORMANCE ANALYSIS.
Otsu IT Hamadani K-Means RG FOSP-GA

TPR 1 1 1 1 1 1

FPR 2/3 2/3 2/3 2/3 3/5 1/2



According to TPR in Table IV, it can been seen that defects
are detected by the six methods. However, Otsu, IT,
Hamadani, K-means and RG provide higher FPR than

FOSP-GA, which interprets the FOSP-GA performs the best
segmentation results in overall.

(a) (b)
Fig. 12: (a) Natural crack, (b) pre-segmented image.

(a) (b)

(c) (d)

(e) (f)

Fig. 13: (a)-(f) Segmentation results of Otsu, IT, Hamadani, FOSP-GA, K-Means and RG.



(a) (b) (c) (d)
Fig. 14: (a) Turbine blade with thermal fatigue natural crack; (b) the original thermal image of (a);

(c) pre-segmented image; (d) segmentation result by FOSP-GA.

(a) (b) (c)

(d) (e)
Fig. 15: (a)-(e) The segmentation results of Figure 11(c) by using Otsu, IT, Hamadani, K-Means and RG, respectivel.

In addition, a test specimen of a turbine blade with a thermal
fatigue natural crack is used to evaluate the performance of
FOSP-GA and this is shown in Fig. 14(a). In this study, a
helmholtz coil is chosen as the excitation coil. This is a
different type of coil compared to the line coil. The placement
of the coil is shown in Fig. 14(a) and it will excite the whole
region under the circle. An original thermal image is shown in
Fig. 14(b). It is difficult to distinguish the defect if the location
of defect is unknown in advance, and the real defect is not easy
to be judged in the original thermal image. ICA is used to
process the original thermography sequence to extract the
defect information and eliminate false positives. The
pre-segmentation image is shown in Fig. 14(c). Furthermore,
this image is subsequently processed by the FOSP-GA whose
segmentation result is shown in Fig. 14(d).

In addition, Otsu, IT, Hamadani, K-means and RG method
are used for comparison as shown in Figure 15(c). The results
are shown in Fig. 15 where the presence of different levels of
background interference. The background interference is
especially serious for results from Otsu, IT Hamadani and
K-means. In overall, it can be seen that the proposed method
FOSP-GA provides the best result.

IV. CONCLUSION AND FUTURE WORK

This paper has proposed a physics-based FOSP-GA image
segmentation method to quantitatively analyze defects for

application in inductive thermography imaging. The
segmentation threshold is determined based on the FOSP, and
GA is applied to automatically determine the optimal
statistical feature and the threshold selection. Quantitative
defect detectability is objectively assessed and compared with
Otsu, IT, Hamadani, K-means and RG by using global
evaluation F-Score. The obtained results from conducted
experimental studies have consistently shown that the
proposed FOSP-GA has outperformed other segmentation
methods. It has accurately segmented the defects from
background and effectively inhibited the influences of uneven
excitation and noise. The work can be further applied to other
types of defects detection and quantitative evaluation such as
the inspection of fatigue crack on steel blade for automated
visual inspection of defects.
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