
Automating the Object-Oriented Software Development
Process: Workshop Report

Mehmet Aksit and Bedir Tekinerdogan

TRESE project, CTIT, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands.

email: {aksit | bedir }@cs.utwente.nl, www server: http://wwwtrese.cs.utwente.nl

Abstract. Cost-effective realization of robust, adaptable and reusable software
systems demands efficient and effective management of the overall software
production process. Current object-oriented methods are not completely
formalized and lack the ability of reasoning about the quality of processes and
software products (artifacts). There is a need for new modeling formalisms,
which enable the quantification of the required quality attributes and support
the automation of the object-oriented development process (AOOSD). The
ECOOP’98 AOOSD workshop was organized to identify the important issues
in this direction.

1. Introduction

Object-oriented technology is increasingly applied by software industry and there is
strong evidence that this trend will continue in the near future. To be able to fully
utilize the object technology, however, the software companies demand CASE
environments that can effectively support the object-oriented software development
process. The ECOOP’98 workshop "Automating the Object-Oriented Software
Development" (AOOSD) was organized to discuss the important topics in this
context. During the workshop, 9 papers were presented which discussed the various
perspectives of the automation process. In the following section a framework is
presented to classify these papers.

2. The Automation Framework

Figure 1 represents the conceptual framework, which was interactively defined
during the workshop to discuss, classify and relate various issues and activities in
relation to automating the object-oriented software development process. This
framework is structured around three general domains: real-world domain, method
domain and computation domain.

As shown by Figure 1, various kinds of persons may be involved in development and
usage of a software system. These are symbolically illustrated as multiple
stakeholders, end-users, domain engineers, method engineers and software
engineers. Some persons may have multiple roles, such as being a stakeholder, user,
and a domain expert. The stakeholders have generally different and sometimes
conflicting interests. The domain engineer has an in-depth understanding of the
application domain. For example, software, which supports developing and applying

S. Demeyer and J. Bosch (Eds.): ECOOP’98 Workshop Reader, LNCS 1543, pp. 474-476, 1998.
 Springer-Verlag Berlin Heidelberg 1998

insurance products, requires in-depth expertise in this field. The domain engineer
may provide this knowledge. The method engineer is responsible to define the
method. This can be a general method, such as OMT, or a special method, for
example, for developing insurance products. In the latter case, the method engineer
has also to be a domain engineer. The software engineer utilizes the method to
develop software system.

In Figure 1, the method domain is organized in multiple levels. Each level may be
described in terms of a set of artifacts, related knowledge sources, process and
management and control activities. An artifact may be defined in terms of its
notation, a set of heuristics rules to utilize the artifact, and possibly some constraints.
These constraints may be also defined by rules. There are causal relations among the
artifacts, since they depend on each other in some order. Sometimes knowledge
sources can be expressed within the description of the artifacts, which result in
dedicated artifacts. Process may further restrict the causal relations among artifacts.
Management and control activities aim at reaching the global objectives of its level.
Assume for example that an insurance product has to be developed. At level (i+1),
the domain engineer defines some basic insurance concepts. At level (i), by using
these concepts, the method engineer constructs a dedicated method for delivering
insurance products. At level (i-1), the software engineer applies this method to create
an insurance product.

The computation domain enables software systems to be executed on processors.
This domain is also characterized by various concerns defined at various levels.
Automating the software development process means mapping some of the elements
of the real world and the method domains to the elements of the computation
domain. High-level mechanisms are defined to ease the mapping process, such as
object-oriented languages, agents, dedicated computation models and tools. Through
this mapping process, efficiency and effectiveness of the activities in the real-world
and method domains have to be improved. Efficiency means that more work can be
done for per unit of money. Effectiveness means that the computation process may
help the activities to get closer to the objectives.

The papers presented during the workshop can be classified according to this
framework. Related to the real-world domain, two papers were presented. The paper
“The Case of Cooperative Requirement Writing” by Ambriola and Gervasi aims at
supporting cooperation among the stakeholders. The paper “Conceptual Predesign as
a Stopover for Mapping Natural Language Requirements Sentences to State Chart
patterns”, by Kop and Mayr aims at eliminating the so-called impedance mismatch
between the real-world and method domains.

The remaining papers mainly correspond to the method layer. Among these, two
papers evaluate the state-of-of-the art CASE technology. The paper “Software
Quality in the Objectory Process”, by van den Berg evaluates how software quality
assurance is realized in Rational Objectory. The paper “Evaluating OO-CASE Tools:
OO Research Meets Practice”, by Greefhorst, van Elswijk, Maat and Maijers
provides a general evaluation of four object-oriented CASE tools.

475Automating the Object-Oriented Software Development Process: Workshop Report

Three papers present formalisms to support a set of general-propose artifacts. The
paper “Systematic Construction of UML Associations and Aggregations Using
cOlOr Framework”, by Barbier formalizes relationships among classes. The paper
“Formalizing Artifacts of Object-Oriented Analysis and Design Methods”, by Saeki
defines means to transform artifact specifications to a formal language such as object
Z. The paper “Providing Automatic Support for Heuristic Rules of Methods” by
Tekinerdogan and Aksit aims at formalizing the heuristic rules of methods such as
OMT.

Two papers present tools to help developing dedicated software systems. These
environments support various levels in software development and introduce general
purpose and dedicated artifacts. The paper “Using the MetaGen Modeling and
Development Environment in the FIBOF Esprit Project”, by Lesueur, Revault, Sunye
and Ziane, presents a meta-CASE tool to develop application specific software
systems. This system is tested in a banking domain. The paper “From Visual
Specifications to Executable Code”, by Enn Tyugu, presents a set of tools which are
suitable in producing software systems for simulation and network management.

Fig. 1. The context of automation in object-oriented software development.

real-world domain

method domain

multiple stakeholders

end users

Level (i)

Level (i-1)

Level (i+1)

domain engineer

knowledge sources

software engineer

management and control

process

method engineer
causaility

notation notation

artifact(1) artifact(n)

heuristics heuristics

constraints constraints

processors

 languages
(object-oriented, etc.)

agents

repositories

tools

networkinginterfacing

virtual
machines

computation domain

476 M. Aksit and B. Tekinerdogan

	1. Introduction
	2. The Automation Framework

