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Online Algorithm for Leasing Wireless Channels in
a Three-Tier Spectrum Sharing Framework

Gourav Saha, Alhussein A. Abouzeid, and Marja Matinmikko-Blue

Abstract—The three-tier spectrum sharing framework (3-TSF)
is a spectrum sharing model adopted by the Federal Commu-
nications Commission. According to this model, under-utilized
federal spectrum like the Citizens Broadband Radio Service band
is released for shared use where the highest preference is given
to Tier-1 followed by Tier-2 (T2) and then Tier-3 (T3). In this
paper, we study how a wireless operator, who is interested in
maximizing its profit, can strategically operate as a T2 and/or a
T3 user. T2 is characterized by paid but "almost" guaranteed and
interference-free channel access while T3 access is free but has
the lesser guarantee and also faces channel interference. So the
operator has to optimally decide between paid but better channel
quality and free but uncertain channel quality. Also, the operator
has to make these decisions without knowing future market
variables like customer demand or channel availability. The main
contribution of this paper is a deterministic online algorithm
for leasing channels that has finite competitive ratio, low time
complexity, and that does not rely on the knowledge of market
statistics. Such algorithms are desirable in the early stages of the
deployment of 3-TSF because the knowledge of market statistics
may be rather inaccurate. We use tools from the ski-rental
literature to design the online algorithm. The online optimization
problem for leasing channels is a novel generalization of the ski-
rental problem. We, therefore, make fundamental contributions
to the ski-rental literature, the applications of which extend
beyond this paper. We also conduct simulations using synthetic
traces to compare our online algorithm with the benchmark and
state-of-the-art algorithms.

Index Terms—CBRS band, spectrum sharing, spectrum li-
censes, opportunistic spectrum access, online algorithms, ski-
rental problem, competitive ratio

I. INTRODUCTION

The demand for wireless Internet access is ever growing
and there is a notion that the wireless spectrum is getting
scarce. The President’s Council of Advisors on Science and
Technology (PCAST) called the notion of spectrum scarcity
a “fundamental misunderstanding” [1] arising due to under-
utilization of spectrum. In support of the PCAST report [1], the
FCC decided to release the underutilized Citizens Broadband
Radio Service (CBRS) band for shared use [2] and finalized
the rules in [3]. CBRS band is a 150 MHz wide federal
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Figure 1. The Three-Tier Spectrum Sharing Framework and our System Model.

spectrum band spanning 3.55 − 3.7 GHz used primarily for
US government radar systems. The shared use of CBRS band
follows the Three-Tier Spectrum Sharing Framework (3-TSF)
as shown in Figure 1: Tier-1 (T1), also called the “Incumbent
tier,” consists of federal users who have the highest priority
access to any channel and are guaranteed interference pro-
tection from lower tiers. Tier-2 (T2) is called the “Priority
Access Licenses (PAL) tier.” T2 users can lease the channels
by participating in auctions which happen periodically in time
duration of years; currently it is three years [3]. The contract
duration of a channel lease is also three years after which it is
again put to auction. T2 users can use the leased channels
whenever T1 users are not using it. They are guaranteed
interference protection from Tier-3 users. Tier-3 (T3) is called
the “Generalized Authorized Access (GAA) tier.” T3 users
can opportunistically use a channel for free provided that it
is not used by T1 or T2 users. A T3 user is not guaranteed
interference protection from T1, T2 or even other T3 users.
The number of opportunistic channels available for T3 users
can change in a time scale which is much smaller1 compared
to T2 which operates in time scale of years. The Spectrum
Access System (SAS) is a central database which keeps record
of channel states [2]. It is also a policy engine which enforces
the three tier hierarchy.

In this paper, we study how to maximize the profit of a
wireless operator, which serves customer demand by using
shared channels governed by 3-TSF. We consider a time
slotted model. In every time slot, the wireless operator has to
decide the amount of customer demand to reject, the amount
of customer demand to serve using opportunistic channels
and the number of channels to lease. A channel lease has
a contract duration of years while a time slot ranges from
minutes to days. Therefore, a leased channel can be used to
serve the demand of the current as well as the future time

1Our conversations with experts suggests that the number of opportunistic
channels can change in time scale of minutes to days.
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slots. Given that the cost of leasing a channel is substantial,
possibly millions of dollars, the benefit of leasing a channel
relies on future demand, channel availability, etc. The operator
has to make the decisions without the future knowledge of
these variables. The online nature of the problem leads to
the following uncertainties when the operator wants to lease
a channel: 1) Uncertainty in demand: Leasing a channel is
profitable if the demand is high in the future time slots.
2) Uncertainty in availability and quality of opportunistic
channels: Leasing a channel is profitable if there are not
enough channels for opportunistic use in future time slots
or if the opportunistic channels have high interference. 3)
Uncertainty in channel availability for leasing: Other oper-
ators may lease all the channels in the future time slots.
It is also possible that the operator does not win channel
leases in future auctions. Therefore, it may be profitable to
lease channels in the current time slot. 4) Uncertainty in T1
channel usage: Leasing channels is profitable if T1 usage is
low in the future time slots. The operator may also have to
lease additional channels to compensate for those channels
which gets preempted by T1 usage in the future time slots.
5) Uncertainty in service price: Service price is the operator’s
income for serving a unit of customer demand. If service price
is high in future time slots, then rejecting customer demand
will lead to higher losses. Therefore, it is better to lease
channels to serve customer demand. Due to these uncertainties,
maximizing the profit of the wireless operator using 3-TSF is
a challenging online optimization problem which we address
in this paper.

Our online optimization problem has striking resemblance
with ski-rental problem (SRP). In SRP, a skier has to decide
between renting or buying a pair of skis without knowing
the number of days he/she will be skiing. In our problem,
buying skis is equivalent to leasing a channel while renting
skis is equivalent to rejecting demand and serving the accepted
demand using opportunistic channels. The unknown number
of ski days can be mapped to uncertainty in demand and
opportunistic channel availability. Using this analogy, we
design a deterministic online algorithm for leasing channels
which has finite competitive ratio. Despite many similarities
with SRP, our problem has a distinct feature not found in other
ski-rental literature; the uncertainty in channel availability for
leasing. Due to this uncertainty the operator may have to wait
to lease a channel. In order to get practically viable competitive
ratio, we upper bound the wait time, the time difference
between when an operator decides to lease a channel to
when it leases a channel. This is achieved by lower bounding
the average channel availability for leasing (assumption A3).
Higher average channel availability implies lower wait time.

In terms of related work, [4] has a lot of resemblance with
our work. In [4], the authors modeled the demand and channel
availability statistics as a discrete time markov chain. It then
used tools from stochastic dynamic programming to design an
online algorithm for leasing channels. Their online algorithm
has pseudo-polynomial time complexity if the optimization
horizon is greater than the lease duration. It should be noted
that resemblance between our work and [4] only exists in
the mathematical abstraction of the problem. However, our

problem statements are different. Problems similar to [4]
have been addressed in [5], [6]. In [5], a network operator
in a non-cooperative market has to optimally decide the
portfolio of dedicated spectrum (equivalent to leasing) and
shared spectrum (equivalent to opportunistic use) to maximize
the expected profit. A similar problem is addressed in [6]
but from the perspective of risk-averse, risk-neutral and risk-
seeking wireless operators. These works [4], [5], [6] assume
knowledge of market statistics. There are other bodies of
work that are of importance to the 3-TSF. In [7], the authors
designed a network protocol and an SAS which implements
the rules of the 3-TSF. The work done in [8] considers a
market where an operator can operate in either T2 or T3. It
investigates the incentive of an operator to enter such a market
in presence of competition. Other areas of research can be of
significance to the 3-TSF though they are not directly related.
From an economic standpoint, research in the field of spectrum
contracts [9], [10], auctions and pricing [11] help to understand
if the 3-TSF is economically attractive for potential investors.
From a technical standpoint, dynamic channel allocation is
of significant importance to 3-TSF. It is crucial to consider
blocking probability [12] and co/adjacent channel interference
[13] while doing dynamic channel allocation.

We now present an overall outline of the paper. We start by
presenting the system model in Section II-A. In our system
model, the operator can serve customer demand by operating
as T2 and/or a T3 user. In order to maximize its profit, the
operator has to strategically operate as T2 and/or a T3 user.
This is mathematically captured using optimization problem
OP1 formulated in Section II-B. OP1 does not provide
much insight as to how we can solve the problem online.
In this regard, we derive Theorem 1 in Section II-D which
decouples OP1 into two optimization problems OP2 and
OP3. The optimal solution of OP2 can be found using only
online information and using standard algorithms. However,
we need offline information to find the optimal solution of
OP3. Since offline information is not available in practice,
we find a deterministic online algorithm to solve OP3 as
follows. First, we note that OP3 has strong resemblance
with the optimization problem considered in [14]. In [14], the
authors leveraged the Bahncard Problem, a variant of SRP, to
design their online algorithm. This inspires us to relate OP3
to SRP in Section III-A. We show that OP3 can be reduced
to a modifed version of SRP called MSRP, where MSRP is
SRP in the presence of wait time. We design a deterministic
online algorithm for MSRP in Section III-B and prove that
it has an optimal competitive ratio. Second, we draw insight
from the study of MSRP to design a deterministic online
algorithm for OP3, and hence OP1, in Section III-C. We also
derive its competitive ratio in Theorem 4 and time complexity
in Theorem 5. In Section IV, we present simulations using
sysnthetic traces to compare our online algorithm with other
benchmark algorithms. These simulations reveal useful trends
concerning the performance of our online algorithm. Finally
we conclude the paper in Section V with a brief discussion of
the immediate extensions to this work.

The main contributions of this paper are as follows. First,
our system model is novel as it captures key elements of 3-
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TSF such as the three-tier hierarchy and the low QoS asso-
ciated with using opportunistic channels. Second, we design
a deterministic online algorithm for MSRP that is optimal
in the sense of competitive ratio. This algorithm is a non-
trivial extension of the conventional breakeven algorithm for
SRP. For example, while the conventional breakeven algorithm
is based on one threshold, the online algorithm for MSRP
is based on two thresholds. The study of MSRP constitutes
the principal theoretical contribution of the paper which may
have applications beyond the problem considered in this paper.
Third, our online algorithm for OP1 does not require statistical
knowledge of the involved random processes like demand and
channel availability. Such algorithms will be desirable in the
early stages of deployment of 3-TSF because the knowledge
of market statistics will be rather inaccurate or completely
unknown. Also, our algorithm has a polynomial time com-
plexity irrespective of the optimization horizon. Fourth, this
paper adds a new application area to the SRP. In the past, SRP
inspired online algorithm designs for TCP acknowledgement
[15], cloud computing [14], data center power optimization
[16] and automobile idling [17].

II. PROBLEM FORMULATION

In this section we first propose our system model which
captures key elements of the 3-TSF. We then formulate
optimization problem OP1 which is a generalization of the
profit maximization problem of the operator. The underlying
assumptions in our problem formulation is listed next. We
end this section by introducing Theorem 1 which helps in
the following ways. First, it effectively reduces the number
of decision variables from three to two. Second, it provides
a quantitative framework to understand the online nature of
OP1. Third, it lays the groundwork which helps us relate our
optimization problem with SRP in Section III-A.

A. System Model

There is a market consisting of many operators. A total
of M channels are released for shared use following the
3-TSF. The operators use these channels to serve customer
demand. One such operator, labelled “The Operator” is shown
in Figure 1. The objective is to maximize the profit of the
operator. In our model, the operator can work as T2 and/or
T3 user. We consider a time slotted model where a time slot,
also called epoch, may range from minutes to days. In every
epoch t ∈ {1, . . . , T}, the operator receives dt demand from
the customers. Customer demand is assumed to be a discrete
variable which can be expressed in bits per second (bps), e.g.,
one unit of customer demand equals 5 kbps. Our model also
considers that PAL auctions can be conducted in every epoch,
i.e. real time auctions. This is a deviation from the current
3-TSF in which PAL auctions are conducted every three years
[3]. However, it is plausible to envision real time auctions in
the near future. Upon receiving the demand, the operator has
to make the following decisions in every epoch:

1) Amount of demand to reject. This is denoted by gt. The
operator accepts to serve (dt − gt) demand using either
opportunistic channels and/or leased channels.

Table I
A TABLE OF FREQUENTLY USED NOTATIONS.

Notation Description
t tth epoch.
T Optimization horizon.
M Total number of channels.

H Spectral efficiency of a channel. It is defined as the amount
of demand which can be served per channel.

dt Amount of demand at epoch t.
dM Upper bound on dt, dt ≤ dM .
gt Amount of demand the operator rejected at epoch t.
pt Operator’s income per unit demand served at epoch t.

pM

Upper bound on Hpt, the maximum revenue which the
operator can earn per channel at epoch t. Mathematically,
Hpt ≤ pM .

τ Contract duration of a channel lease.

P
Price that the operator pays per channel lease. In general,
pM � P < τpM .

M l
t Number of channels available for leasing at epoch t.
lt Number of channels the operator leases at epoch t.

vt
Total number of channels that all the other operators leases
at epoch t

Wt
Total number of channels that all the operators in the market
lease at epoch t.

Mo
t

Number of channels the operator can opportunistically use at
epoch t.

ot
Amount of demand served using opportunistically available
channels at epoch t

At Number of active channel leases the operator has at epoch t.

λt
Number of active channel leases of the operator that got pre-
empted by T1 users at epoch t, λt ≤ At.

ft (x) A function to penalize opportunistic channel use.

ϕt
ϕt = (dt , λt , pt , Mo

t , vt , ft (·)), a tuple which forms
the input to optimization problem OP1.

µl

Lower bound on the moving average of M l
t over τ epochs,

µl ≤

to∑
t=to−τ+1

Ml
t

τ
; ∀to.

rt

It implies renting. Mathematically, rt = gt + ot, the sum of
rejecting gt demand and serving ot accepted demand using
opportunistic channels.

Ft (x) Renting function: A function to penalize the renting action.
Dt Effective demand, Dt = dt +Hλt .

ψt
ψt = (Dt , vt , Ft (·)), a tuple which forms the input to
optimization problem OP3.

η Wait time to purchase one or many channel/ski leases.
ηM Upper bound on wait time η, η ≤ ηM .

(x)+ Positivity operator: (x)+ = max (0, x)
Z+ Set of non-negative integers.

2) Amount of accepted demand to serve using opportunistic
channels. This is denoted by ot, where ot ≤ dt − gt. In
doing so, the operator behaves as a T3 user. The operator
serves (dt − gt − ot) demand using leased channels.

3) Number of channels to lease in order to serve the
accepted demand. This is denoted by lt. In doing so,
the operator behaves as a T2 user.

The operator’s income per unit demand served is pt. Our
model considers that pt is decided by the market and not by
the operator. As mentioned in [4], such situation arises under
perfect competition market model which is widely studied in
the economic literature [18].

Our model captures the three-tier hierarchy. The priority
of T1 users over T2 users is captured by λt. λt denotes the
number of active channel leases of the operator which gets
pre-empted by T1 users at epoch t. The priority of T1 and
T2 users over T3 users is captured by Mo

t . Mo
t is the number

of channels the operator can use opportunistically for free at
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epoch t. It is equal to the number of channels which are not
being used by T1 and T2 users.

Our system model also penalizes opportunistic use of chan-
nels due to their uncertain quality.. This is done using the
function ft (ot) which is time-varying and is assumed to be
convex and monotonically increasing in ot. It can have two real
world interpretations: First, to account for harmful interference
in an opportunistic channel, the operator has to transmit at a
higher power level2. In this case ft (ot) respresents the cost to
transmit at a higher power level. Second, the customers may
have lower preference for opportunistic channels compared
to leased channels because opportunistic channels may face
higher interference. Hence, the operator may charge pt per
unit demand served using leased channels and p̃t ≤ pt per
unit demand served using opportunistic channels. This can be
captured by setting ft (ot) = (pt − p̃t) ot.

B. The Optimization Problem OP1

The operator wants to maximize its net profit in optimization
horizon T given by

P =

T∑
t=1

(pt (dt − gt)− Plt) =

T∑
t=1

ptdt︸ ︷︷ ︸
1st term

−
T∑
t=1

(ptgt + Plt)︸ ︷︷ ︸
2nd term

(1)
In (1), pt (dt − gt) is the operator’s revenue for serving

(dt − gt) demand at epoch t. P is the price to lease one
channel. The operator leases lt channels at epoch t incuring a
net cost of Plt. In our model, the operator has no control over
dt and pt (refer to Section II-A) and hence the 1st term of
(1). However it has control over the 2nd term as gt and lt are
decision variables. Therefore, maximizing P is equivalent to
minimizing the 2nd term. In order to penalize the opportunistic
use of channels, we add the function ft (ot) to the 2nd term.
This leads to the following optimization problem:

OP1


min

{gt,ot,lt}
C =

T∑
t=1

(ptgt + ft (ot) + Plt)

subject to: gt + ot +H (At − λt) ≥ dt
0 ≤ gt ; 0 ≤ ot ≤ HMo

t ;

0 ≤ lt ≤M l
t − vt

In the first constraint of OP1, At =
t∑

i=(t−τ+1)

li is the

number of active channel leases at epoch t where τ is the
contract duration of a channel lease. However λt ≤ At
active leases are pre-empted by T1 users3 leaving effectively
(At − λt) active channel leases. One channel can be used to
serve H units of customer demand, where H is the spectral
efficiency. Therefore, (At − λt) channels can be used to serve
H (At − λt) demand. Remaining demand is either rejected,
gt, or served by using opportunistic channels, ot.

The amount of demand that can be served using oppor-
tunistic channels, ot, cannot exceed HMo

t (third constraint).

2Transmit power of T3 users cannot cross a threshold as specified by the
FCC rules governing 3-TSF.

3The SAS will try to relocate the channel of T2 user if it gets preempted
by T1 user. λt models such relocations of channels too.
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Figure 2. A figure illustrating a typical sequence of events for an operator in
3-TSF. The black histogram represents customer demand, dt. The dashed red
line representsHAt, the amount of customer demand which can be served us-
ing active channel leases. The pink, blue and the yellow regions represent the
amount of demand served by active channel leases, min (dt , H (At − λt)),
the amount of demand served by using opportunistic channels, ot, and the
amount of demand rejected, gt, respectively.

However the operator may choose not to utilize the entire
channel capacity HMo

t because opportunistic channel use is
penalized by function ft (ot).

The number of channels leased by the operator, lt, and the
total number of channels leased by all the other operators,
vt, at epoch t is decided by the auction conducted in the tth

epoch. lt and vt must satisfy lt+ vt ≤M l
t (fourth constraint),

where M l
t is the number of channels available for leasing at

epoch t. The time evolution of M l
t is governed by4

M l
t+1 = M l

t −Wt +Wt−τ+1 where (2)
Wt = lt + vt (3)

In (2), Wt and Wt−τ+1 are the total number of channels that
all the operators leases at epoch t and t− τ + 1 respectively.
Since the contract duration of a lease is τ , Wt−τ+1 channel
leases re-appear in the market at epoch (t+ 1).

The input to OP1 is the tuple ϕt =
(dt , λt , pt , M

o
t , vt , ft (·)) which consists of six time

sequences. The sequence of decision variables gt, ot and
lt forms the output of OP1. The cost C incurred by OP1
is a function of the sequence ϕt. In OP1, all the variables
except pt and P are discrete variables. In particular, the
variables lt , λt , M

o
t , M

l
t ∈ {0, . . . ,M}. The variables

dt , gt , ot ∈ {0, . . . , dM}; dM being the maximum demand.
The variables dt, gt and ot are expressed in unit demand.

Remark 1 (Epoch duration): To enforce three tier hierarchy,
the epoch duration should be chosen such that the probability
that λt or Mo

t change within an epoch is sufficiently low.
Optimization of epoch duration has been addressed in [19].

We now consider an example to better understand how the
operator serves customer demand in 3-TSF. Figure 2 illustrates
a typical sequence of events for the operator. In this example,
a channel can serve upto 100 Mbps of customer demand and
hence H = 100 Mbps. The contract duration of a lease is
τ = 8 epochs. Therefore, a channel leased at epoch 4 expires
at epoch 12. Observe that the operator also leases 2 channels
at epoch 7. In some epochs all the demand is served using
leased channels (like epoch 2). In other epochs some of the
demand is served using opportunistic channels (like epoch 3)
or it may be rejected (like epoch 7). Of course, the operator can

4Equations (2) and (3) is valid even for t < 1. However lt = 0 ; ∀t < 1.
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combine all the three actions in some epochs (like epoch 5).
It is possible that in some epochs (like epoch 6) the operator
is not able to use all its active leases because some of them
got preempted by T1 users. Epoch 9 illustrates all the key
parameters of our system model and how they relate to OP1.

C. Assumptions

We first discuss the key assumptions in our system model
with justifications.
A1: We assume that the cost of leasing a channel is a

constant P . In practical situations the cost may be time-
varying sequence Pt. If Pt belongs to a probability
distribution F , then the constant P can be justified as
the mean of F . Similar explanation applies to spectral
efficiency H which is expected to be time varying
depending on the channel conditions. Without this as-
sumption, the competitive ratio will be unbounded [20].
However, in Section IV, we evaluate the performance of
our algorithm using time varying Pt and Ht.

A2: λt and Mo
t are set in the beginning of every epoch

and do not change in the entire duration of the epoch.
This can be guaranteed by choosing epoch duration
appropriately (see Remark 1).

Other than the assumptions on system model, we also need
to impose the following assumptions in order to design online
algorithms with provable theoretical bounds:
A3: Moving average of M l

t over τ epochs is lower bounded
by µl. Mathematically,

0 < µl ≤

to∑
t=to−τ+1

M l
t

τ
; ∀to (4)

Qualitatively, µl is a measure of the channel availability
for leasing. Higher µl implies more availability and
hence lower wait time. This assumption is used in Propo-
sition 1 to upper bound the wait time. It should be noted
that this assumption is not restrictive for the following
reasons. First, our proposed algorithm in Section III-C
does not rely on the knowledge of µl. We have used
this assumption to derive the competitive ratio of the
proposed algorithm in Theorem 4. Second, there are
many works in literature which assume that the involved
random process has a certain mean [21]. Some even
assume the entire probability distribution [4], [22]. This
assumption is similar with the only difference that unlike
these works, we are dealing with time-average instead of
ensemble average. Third, this assumption can be viewed
as a constraint to limit the power of the adversary. Works
like [4], [23] dealing with competitive analysis have
made similar assumptions.

A4: Hpt is upper bounded by pM , i.e. Hpt ≤ pM ;∀t. The
term Hpt is the maximum revenue which the operator
can earn per channel at epoch t. Knowledge of pM is
assumed while designing our algorithm in Section III-C.

A5: The functions ft (x) can be evaluated for any x. Eval-
uation of ft (x) is the most computationally demanding
operation in our algorithm as it may sometimes involve
solving an optimization problem [24].

D. Decoupling of OP1

We prove here that OP1 can be decoupled into two sub-
problems. The first sub-problem is to decide the maximum
amount of demand to serve by using channels opportunisti-
cally. The second sub-problem captures the online nature of
leasing channels.

Theorem 1: Let

OP2

{
ot = arg min

0≤ot≤min(dt ,HMo
t )

− ptot + ft (ot)

Define the following

Ft (rt) , ft (min (rt , ot)) + pt (rt − ot)+ (5)
Dt , dt +Hλt (6)

where Dt is the effective demand and Ft (rt) is the renting
function. Then the optimal solution g∗t , o∗t and l∗t of OP1 can
be obtained by solving the optimization problem

OP3


min
{rt,lt}

C =
T∑
t=1

[F t (rt) + Plt]

subject to: rt +HAt ≥ Dt

0 ≤ rt ; 0 ≤ lt ≤M l
t − vt

for the optimal solution rt and lt and then setting

g∗t = (rt − ot)+ ; o∗t = min (rt , ot) ; l∗t = lt (7)

Proof: Please refer to Appendix A of the supplementary
material.

Theorem 1 decouples OP1 into OP2 and OP3. While OP1
has three decision variables, OP2 has one decision variable
and OP3 has two decision variables. The inputs to OP2 are
dt, pt, Mo

t and ft (·). The output of OP2 is ot, the maximum
amount of demand that can be served using opportunistic
channels for optimal results.

To get an intuitive understanding of ot, let us ignore that
ot is an integer and also satisfies ot ≤ HMo

t . At ot = ot,
the slope of ft (ot) is equal to pt, i.e. f

′

t (ot) = pt. This is
depicted in Figure 3, where the black curve in Region 2, which
is tangent to ft (ot) at ot = ot, is parallel to the blue curve.
For ot < ot (Region 1 of Figure 3), ft (ot + 1)−ft (ot) < pt,
implying that the loss incurred by serving a demand using
opportunistic channel is less than the loss incurred by rejecting
the demand. The opposite is true for ot > ot (Region 2 of
Figure 3). Therefore, the operator will not serve more than ot
demand by using channels opportunistically. To solve OP2,
the operator needs the knowledge of dt, pt, Mo

t and ft (·) for
the current epoch. In other words, OP2 can be solved using
only online information. Also, as discussed in Appendix A,
the function ht (ot) = −ptot + ft (ot) is unimodal. We can
therefore use tools like binary search or fibonnaci search [25]
to solve OP2 in O (log2 (dM )) time.

The input to OP3 is the tuple ψt = (Dt , vt , Ft (·)) which
consists of three time sequences. The sequence of decision
variables lt and rt forms the output of OP3. The variable lt,
as usual, implies leasing channels (T2). The new variable rt
implies renting. Mathematically, rt = gt + ot. If at epoch
t, the operator rejects gt demand and serves ot accepted
demand using opportunistic channels (T3), then we say that
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Figure 3. A toy example of a renting function Ft (rt). In this example
pt = 1 and ft (ot) = 1

8
o2t . By solving OP2, we get ot = 4. In the above

plot, ptgt is plotted against gt, ft (ot) is plotted against ot and Ft (rt) is
plotted against rt. This figure depicts ot and the two terms of the renting
function, ft (min (rt , ot)) and pt (rt − ot)+, as given by (5).

the operator served rt = gt + ot demand by renting. So in
every epoch, the operator has to decide how much to rent
and how much to lease in order to serve Dt effective demand
as given by (6). Consider the scenario where the operator
serves rt demand by renting. Out of the rt demand served
by renting, min (rt , ot) demand was served by using channels
opportunistically incurring a loss of ft (min (rt , ot)) while the
remaining (rt − ot)+ demand was rejected incurring a loss of
pt (rt − ot)+. This is done in order to minimize losses (refer
to the previous paragraph). Therefore, the net loss incurred to
serve rt demand by renting is Ft (rt) as given by (5). Ft (rt)
is called the renting function and has the following properties:

Property 1: Ft (rt) is monotonically increasing in rt.
Property 1 suggests that for a lease sequence, lt, and the

corresponding sequence of the number of active leases, At,
the optimal sequence rt which minimizes OP3 is given by

rt = (Dt −HAt)+ (8)

Property 2: First derivative of Ft (rt) is bounded as follows:

Ft (rt + 1)− Ft (rt) ≤ pt ≤
pM
H

; ∀rt (9)

According to Property 2, the operator’s loss in an epoch to
serve H demand by renting is atmost pM . The operator can
also serve H demand by leasing a channel which costs P .
Under any practical situation, pM � P implying that serving
demand by renting is profitable in the short run. However, the
loss incurred to serve H demand by renting over a period of
τ epochs can be τpM which in general is greater than P ,
i.e. τpM > P . This suggests that leasing is profitable in the
long run. This is similar to SRP where renting skis is better in
the short run while buying skis is better in the long run. For
OP3, leasing channels is similar to buying skis while rejecting
demand and serving the accepted demand using opportunistic
channels is similar to renting skis. This discussion shows why
rt is called renting5 in order to map OP3 with SRP.

Property 3: Ft (rt) is convex in rt.
The proof of these properties are straightforward. However,

they are included in Appendix B of the supplementary material
for the sake of completeness.

5“Renting” and “leasing” are indeed synonyms but in this paper they are
differentiated based on cost and contract duration. Renting has a contract
duration of 1 epoch and cost much less compared to leasing.

OP3 captures the online nature of leasing channels. This

can be explained as follows. Let ai =
t−1∑

j=i−τ+1

lj denote the

number of active leases in epoch i ≥ t if the operator leases
zero channels in epoch t. The net rental cost saved by leasing
lt > 0 channels in epoch t is

∆ =

t+τ−1∑
i=t

[
Fi

(
(Di −Hai)+

)
− Fi

(
(Di −H (ai + lt))

+
)]

A necessary condition for the optimality of lt is ∆ ≥ Plt,
i.e. the net rental cost saved by leasing lt channels should be
greater than the cost of leasing lt channels. To compute ∆,
the operator must know Di , Fi (·) ; ∀i ∈ {t, . . . , t+ τ − 1}.
To calculate Di , Fi (·) for i > t, the operator needs future
knowledge of ψi (or equivalently ϕi ) . This suggest that online
information is not enough to decide the optimal lt.

Remark 2 (Optimal algorithm for OP3): Optimal algorithm
for OP3 needs offline information, i.e. the entire sequence
ψt ; ∀1 ≤ t ≤ T should be known in advance. The optimal
algorithm can be formulated as a dynamic programming prob-
lem similar to [14, Section 3]. It has a pseudo-polynomial time
complexity of O (T (Mτ + log2 (dM ))) which is intractable
under any practical scenario. A detailed discussion of the
optimal algorithm is not required to understand the online al-
gorithm for OP3. However, we have included it in Appendix C
of the supplementary material for the sake of completeness.

Remark 3 (Comparison with [14] and theoretical contribu-
tion): OP3 resembles the optimization problem considered in
[14]. In [14], a cloud computing user has to decide the number
of virtual machines it wants to reserve (similar to leasing) and
the number of virtual machines it wants to use on-demand
(similar to renting). A cloud computing user may reserve as
many virtual machines it wants but the operator cannot lease
more than M l

t − vt channels at tth epoch. This is the major
difference between our work and [14]. Up to our knowledge,
no work in ski-rental literature has dealt with similar situations.
Designing and analysing online algorithms for such situations
constitutes the theoretical contribution of this paper.

III. DETERMINISTIC ONLINE ALGORITHM

This section contains the main result of the paper, a deter-
ministic online algorithm for leasing channels. We approach
this in steps. In Section III-A we propose a special case of
OP3 called the Modified Ski-Rental Problem (MSRP) and
show that is not possible to get a practically viable competitive
ratio for MSRP without constraining M l

t . Having proposed
MSRP, we design an optimal deterministic online algorithm
to solve MSRP in Section III-B. Study of MSRP leads to
two outcomes. First, it suggests a possible structure of the
online algorithm for OP3. Second, it provides a lower bound
on the competitive ratio which no online algorithm for OP3
can break. Using the insights drawn from studying MSRP, we
design and analyze a deterministic online algorithm for leasing
channels in Section III-C.

Competitive ratio preliminaries: The operator has to decide
(rt , lt) using only the knowledge of ψi till the tth epoch.
This has to be done in a certain optimal sense called the
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competitive ratio (CR). CR is a relative measure of an online
algorithm with respect to an optimal algorithm. Define the
sequence ψ = {ψ1, ψ2 . . . , ψT }. Let CA (ψ) and Copt (ψ) be
the cost incurred by a deterministic online algorithm A and
the optimal algorithm opt respectively. A is c−competitive iff

c = sup
ψ∈S

CA (ψ)

Copt (ψ)

where the set S contains all possible values of ψ. A smaller
c implies a better online algorithm. Competitive analysis is
often thought of as a two player game between an adversary
which generates ψ to maximize the ratio CA(ψ)

Copt(ψ) and the online
algorithm A which tries to minimize the ratio.

A. Modified Ski-Rental Problem

In this section we propose a modification of the classical
SRP called MSRP as follows:

1) A skier needs one ski6 a day. Skiing vacation is at most
τ days (equal to the lease period) but can end on the yth

day (where 0 ≤ y ≤ τ ) if the skier gets injured while
skiing. In the context of OP3, the effective demand
structure is : Dt = 1 ; 1 ≤ t ≤ y and Dt = 0 ; t > y.

2) A shop rents out a ski for pM dollars per day and leases
out a ski for P dollars, where pM � P . The lease period
is τ > 1 days. In the context of OP3, Ft (rt) = pMrt.

3) A ski can serve only one skier at a time. In the context
of OP3, H = 1.

4) The shop has a total of M skis for lease. The number
of skis available for leasing on the tth day is M l

t where
M l
t is governed by (2) and (3). For MSRP, lt and vt are

the number of skis “the skier” and the “other skiers”
lease on day t respectively.

5) Skis are available for leasing on the first day. In the
context of OP3, M l

1 > 0.
The above five points shows that OP3 can be reduced to

MSRP by constraining Dt, Ft (rt), H and M l
1. Hence, MSRP

is a special case of OP3. If the shop has infinitely many skis
to lease; M =∞, then there will always be skis available for
leasing; M l

t > 0 ; ∀t. In this case MSRP reduces to SRP. For
SRP, the well known optimal online deterministic algorithm is
the breakeven algorithm which can be stated as follows. Say
the skier is still skiing on the kth day. If the net renting cost
pMk ≥ P , the skier should lease a ski on the kth day. Else,
the skier should rent. CR of this algorithm is 2.

If M is finite then it is possible that M l
t = 0 for some t.

The key difference between SRP and MSRP is the availability
of ski leases. The skier may decide to lease on the kth day
only to find that M l

k = 0 because the other skiers have leased
all the M skis. Without any constraint on M l

t , the wait time
of the skier to purchase a ski may be infinite. In worst case
scenario, the skier has to keep renting till her vacation ends
incurring a cost of τpM while the offline algorithm which can
foresee the future will lease a ski on the 1st day. Hence the
CR is τpM

P . This discussion leads to the following theorem.
Theorem 2: In the absence of any constraint on M l

t , no
online algorithm for MSRP can achieve a CR lesser than τpM

P .

6From now on, “a ski” or “one ski” implicitly means a pair of skis.

Theorem 2 extends to OP3 as well because MSRP is a
special case of OP3. We therefore constrain M l

t using (4).
In (4), µl characterizes the average availability of channel/ski
leases in the market. Higher the availability, lower the wait
time. In the following, we give a formal definition of waitime
and upper bound it using assumption A3.

Definition 1 (Wait Time): Say that the skier/operator decides
to purchase l leases at epoch tl. The wait time η is the
minimum number of epochs the skier/operator has to wait to
purchase all the l leases. Mathematically,

η = inf

{
δ ≥ 0 |

tl+δ∑
t=tl

M l
t ≥ l+

tl+δ∑
t=tl

vt

}
(10)

In (10), l+
tl+δ∑
t=tl

vt is the net demand of lease in the time

period [tl , tl + δ] while
tl+δ∑
t=tl

M l
t is the net channel/ski lease

sold in the time period [tl , tl + δ].
Proposition 1: If moving average of M l

t is lower bounded
by µl (assumption A3) , then η ≤ ηM (µl), where ηM (µl)
can be characterized as follows. If µl = M

τ , ηM (µl) = ∞.
For µl > M

τ , consider the following linear inequalities in
M l =

{
M l

0,M
l
1, . . . ,M

l
τ−1
}
∈ Zτ+

M l
0 = M (11)

M l
t+1 ≤ M l

t ; 0 ≤ t ≤ τ − 2 (12)
τ−1∑
t=θ+1

M l
t−

θ−1∑
t=η

M l
t ≥ τµl + (θ − η)w (13)

+ (θ − η)M l
τ−1 − (θ − η + 1)M ; η ≤ θ ≤ τ − 1

M l
η −M l

τ−1 ≤ M − w (14)

−M l
η−1 +M l

τ−1 ≤ −M + w − 1 then, (15)

ηM (µl) = sup {0 ≤ η ≤ τ − 1 | 0 ≤ w ≤M ; (11)-(15) are
simultaneously feasible in M l if η > 0 or (11)-(14)

are simultaneously feasible in M l if η = 0
}

(16)

Proof: Please refer to Appendix D of the supplementary
material.

In (13), θ is an index variable and in (13)-(15), w is the
number of leases the skier/operator decides to purchase at a
given epoch. For any µl satisfying M

τ < µl ≤ M , the time
sequence M l

t = M ; 0 ≤ t ≤ τ − 1 satisfies (11)-(14) if
η = 0 and w = 0. Hence, there exists an ηM (µl) for any µl
satisfying M

τ < µl ≤M . Proposition 1 gives a mechanism to
find ηM (µl), the maximum wait time ηM for a given µl. This
can be done by starting from η = τ and then decreasing η till
(11)-(15) are simultaneously feasible in M l. Inequalities (11)-
(15) constitutes a Integer Program which can be solved using
solvers like Gurobi7. A typical plot of ηM (µl) is shown later
in Section III-C. We would like to stress that the workings of
Algorithm 1 and Algorithm 2 do not rely on the computation
of ηM (µl). ηM (µl) is calculated only to find the CR of these
algorithms. Hence, time complexity of the integer program
does not effect the time complexity of these algorithms.

7If M is large, we can approximate the integer program with a linear
program (continous) to improve the time complexity.
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B. Online Algorithm for MSRP

In this section, we design an online algorithm for MSRP
which has the best CR, assuming that the wait time η ≤
ηM (µl). This gives us insights into designing a deterministic
online algorithm for leasing channels.

The offline algorithm can foresee the yth day when the skier
will get injured. It leases a ski on the 1st day if ypM ≥ P ,
else it keeps renting a ski everyday till the yth day. Hence,
the cost incurred by the offline algorithm is

Coff = min (ypM , P ) (17)

The online algorithm does not know y in advance. Our
objective is to design an optimal online algorithm which
decides if and when to lease a ski. We first consider online
algorithms having the structure n → b. This structure can be
explained as follows. The skier decides to lease on the nth day
if he/she is still skiing. After deciding to lease, the skier waits
till the (n+ η)

th day when the leases are available again. On
the (n+ η)

th day, the skier may lease a ski if he/she is still
skiing (b = 1) or keep renting till the vacation ends (b = 0).
We first study the case when b = 1, i.e. the skier definitely
leases after the wait time.

In MSRP, the scalar variable y and the sequence vt are
the inputs to the online algorithm. In competitive analysis, an
adversary chooses y and vt to maximize the CR. If the skier
leases a ski on the kth day, the adversary will injure the skier
on the kth day (i.e. y = k), since waiting further can only
increase the offline cost Coff without increasing the online
cost Con. The adversary controls the wait time η by setting
the time sequence vt. This is because vt decides M l

t (see (2)
and (3)) and hence the wait time η. If the skier decides to
lease on the nth day, CR as a function of n is

c (n) = sup
0≤η≤ηM

npM + ηpM + P

min (npM + ηpM , P )
(18)

In (18), the skier lease a ski on (n+ η)
th day. Hence,

the online cost is Con = (n+ η) pM + P . As discussed
before, the adversary will injure the skier on the (n+ η)

th

day to maximize CR. Hence, Coff = min ((n+ η) pM , P ).
To simplify (18), we consider the following two cases:

Case-1 (npM + ηpM < P ): In this case, c (n) =
sup

0≤η≤ηM

npM+ηpM+P
npM+ηpM

. Consider the inequality x+A
x+B ≤ A

B

which holds if x ≥ 0 and A ≥ B > 0. In npM+ηpM+P
npM+ηpM

,
x = ηpM , A = npM + P and B = npM . Hence, c (n) =

sup
0≤η≤ηM

npM+ηpM+P
npM+ηpM

= npM+P
npM

.

Case-2 (npM + ηpM ≥ P ): In this case, c (n) =
sup

0≤η≤ηM

npM+ηpM+P
P = npM+ηMpM+P

P .

Based on Case-1 and Case-2, (18) can be simplified as

c (n) = max

(
npM + P

npM
,
npM + ηMpM + P

P

)
(19)

The online algorithm should select n to minimize c (n)
in (19). In (19), the functions npM+P

npM
and npM+ηMpM+P

P
are monotonically decreasing and monotonically increasing
repsectively for n > 0. Hence, the optimal n = nop which

n

C
o
m
p
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iv
e
R
a
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o

nop

Figure 4. The dashed-blue curve, the dashed-green curve and the solid-
red curve are typical plots of functions c1 (n) = npM+P

npM
, c2 (n) =

npM+ηMpM+P
P

and c (n) = max (c1 (n) , c2 (n)) respectively. Note that
the minima of c (n), denoted as nop, is the intersection of c1 (n) and c2 (n).

minimizes c (n) can be obtained by equating npM+P
npM

and
npM+ηMpM+P

P . This is shown in Figure 4. Equating npM+P
npM

and npM+ηMpM+P
P we get,

z2op + ηMpMzop − P 2 = 0 (20)

where zop = noppM , is the optimal net renting cost after which
the skier should decide to lease a ski. For z = zop, the CR is

c (zop) =
(

1 +
zop
P

)
+
ηMpM
P

(21)

Remark 4 (Intuition behind zop ≤ P ): Note that zop ≤ P .
In SRP, a ski is leased when the net rental cost reaches a
threshold of P . MSRP on the other hand has a threshold of
zop which is less than P . This proactive nature of leasing
in MSRP arises due to the risk of M l

t becoming 0 in future
epochs.

To this end, we only discussed the case when b = 1, i.e.
the skier definitely leases after the wait time. However, this is
not always the optimal strategy. Consider the following cases:

Case-A (b = 1): In this case the skier leases after the wait
time of η. If the skier decided to lease after incurring a rental
cost z, then CR is z+ηpM+P

P .
Case-B (b = 0): In this case the skier keeps renting till the

end of vacation and hence the CR is τpM
P .

It is optimal to lease after the wait time only if
z + ηpM + P

P
≤ τpM

P
⇐⇒ η ≤ τ − (z + P )

pM
(22)

For z = zop, inequality (22) is guaranteed if

ηM ≤ τ −
(zop + P )

pM
(23)

Algorithm 1 and Proposition 2 summarize our discussion.
Nnote that Algorithm 1 is based on two thresholds. First, zop
as defined in (20). zop is the optimal net renting cost after
which the skier decides to lease a ski. This is implemented in
line 3 of Algorithm 1. Second, ηM as defined in (23). ηM is the
maximum wait time after which the skier rejects its decision
to lease a ski. This is implemented in line 6 of Algorithm 1.

Proposition 2: Among all online algorithms for MSRP with
structure n → b, Algorithm 1 has the best CR of copt (µl) =
copt (ηM (µl)) where ηM (µl) is given by (16) and

copt (ηM ) =

{(
1 +

zop
P

)
+ ηMpM

P ; ηM ≤ τ − (zop+P )
pM

τpM
P ; ηM > τ − (zop+P )

pM
(24)
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Algorithm 1: A deterministic online algorithm for MSRP.

1 Initialize decided = 0 and leased = 0. decided = 1 if
the skier decides to lease a ski and 0 otherwise.
leased = 1 if the skier leases a ski and 0 otherwise.

2 repeat

3 if
t∑
i=1

pi ≥ zop AND decided = 0 then

4 The skier decides to lease a ski. Hence, set
decided = 1. Also, set tl = t indicating the day
when the skier decided to lease a ski.

5 end
6 if decided = 1 AND leased = 0 AND M l

t > 0 AND
t− tl ≤ ηM then

7 The skier leases a ski. Hence, set leased = 1.
8 end
9 if leased = 0 then

10 The skier rents a ski.
11 end
12 until “The skier is injured”

Proposition 3: Algorithm 1 achieves the best CR for MSRP.
Proof: The universe of all possible online algorithms for

MSRP can be abstracted as follows:
n1 → b1︸ ︷︷ ︸
1st Stage

→ n2 → b2︸ ︷︷ ︸
2nd Stage

→ n3 → b3︸ ︷︷ ︸
3rd Stage

· · ·

The above abstraction is divided in stages. Each stage
has the same structure as that of n → b discussed before.
Transition from stage i to stage i+ 1 happens if in stage i the
skier decides not to lease after the wait time (i.e. bi = 0) but
then at a later time it decides to lease again.

Say that in the 1st stage, the skier uses Algorithm 1 and
decides not to lease after the wait time, i.e. b1 = 0. This
happens when the wait time η > τ − (zop+P )

pM
. The maximum

possible renting cost after the wait time is

pM (τ − nop − η) < pM

(
τ − zop

pM
− τ +

(zop + P )

pM

)
= P

Since the maximum renting cost after the wait time is lesser
than the cost of a lease, it is better to keep renting till the end
of vacation. Hence if the skier decides not to lease in the 1st

stage, it is not optimal to lease at a later time. Therefore 2nd

stage (and hence the later stages) is not required to design an
optimal algorithm; 1st stage is sufficient. Hence, Algorithm 1
achieves the best CR for MSRP.

Theorem 3: An online algorithm for OP3 cannot achieve a
CR lesser than copt (µl).

Proof: This directly follows from the fact that MSRP is a
special case of OP3.

C. Online Algorithm for Leasing Channels

Motivated by the online algorithm for MSRP designed in
Section III-A, we suggest a threshold based algorithm for
leasing channels. There are two threshold criteria:

1) The operator decides to lease a channel when the net
incremental renting cost exceeds zth.

Algorithm 2: Azth : a deterministic online algorithm for
leasing channels in Three-Tier Spectrum Sharing Frame-
work.

1 Initialize a time sequence at. Set at = 0 , ∀t. at is the
virtual number of active leases at epoch t.

2 Repeat steps 3-10 for all epochs. Let current epoch be t.
3 Learn dt, pt, λt, Mo

t and ft (ot).
4 Compute ot by solving OP2. Set Dt = dt +Hλt.
5 repeat
6 Compute the net incremental rental cost R from epoch

t− τ + 1 to current epoch t.
7 if R ≥ zth then
8 The operator decides to lease a channel. Hence the

current epoch t is enqueued into the FIFO queue.
9 Set ai = ai+1 ; i = t−τ+1, . . . , t−1 to update the

history of ai’s. This shows that previous mistakes
have been accounted.

10 Set ai = ai + 1 ; i = t, . . . , t + τ − 1 to updates
future ai’s. This show that an additional virtual
lease is available in future epochs.

11 end
12 until R ≥ zth

13 repeat
14 Read timestamp from the FIFO queue. Let the time

stamp read tl. Set wait time η = t− tl.
15 If η > τ − (zth+P )

pM
, then Dequeue timestamp from the

FIFO queue.
16 until η > τ− (zth+P )

pM
AND “FIFO Queue is Not Empty”

17 Find the number of timestamps in the FIFO queue. Let it
be Lt. Place a bid for min

(
Lt , M

l
t

)
channel leases in the

current auction.
18 Let the operator win lt channel leases. Dequeue lt times-

tamps from the FIFO queue.

19 Number of active lease is At =
t∑

i=t−τ+1

li. Serve

min (Dt , HAt) demand using active leases.
20 Set rt = (Dt −HAt)+. Serve ot = min (rt, ot)

demand by using channels opportunistically. Reject
gt = (rt − ot)+ demand

2) The operator rejects the decision to lease a channel if
the wait time exceeds τ − (zth+P )

pM
.

In Algorithm 2, we present a threshold based algorithmAzth
based on a generic threshold zth. However in this paper we
only consider AP , i.e. Azth with zth = P .

Remark 5 (Why zth = P?): Our analysis in Section III-B,
suggests that Azop should have the best CR. To find zop we
need knowledge of µl, which depends on market statistics. Our
key motivation in this work is to design an online algorithm
for leasing channels that does not rely on the knowledge of
market statistics. We therefore explore AP 8 and compare its
CR with copt (µl), the optimal CR for OP3.

Algorithm 2 can be divided into five steps.

8zth = P has special significance because in classical SRP, P is the
breakeven threshold for leasing a ski.
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Step 1 [Line 3 (Learn ϕt)]: Recall that the tuple
ϕt = (dt , λt , pt , M

o
t , vt , ft (·)) is the input to OP1. At

epoch t, the operator knows dt and pt. If the SAS preempts λt
channels at epoch t, then the operator can use only (At − λt)
active channel leases. Since the operator knows At, it can
find λt. We assume that Mo

t can be learned by querying the
SAS9. ft (·) depends on the state of the opportunistic channels
which can be estimated, possibly using QoS reviews from the
customers. It is to be noted that our algorithm does not assume
the knowledge of vt.

Step 2 [Line 4 (Calculate ot)]: The operator computes ot,
the maximum amount of demand that can be served using
free opportunistic channels for optimal results (line 4). This
involves solving OP2 which can be done using binary/
fibonacci search. The renting function Ft (rt) is implicitly
dependent on ot; see (5). Hence we need to compute ot in
order to evaluate Ft (rt) in Step 3. The operator also computes
the effective demand Dt using (6).

Step 3 [Line 5-12 (Deciding to Lease or Not)]: The operator
maintains a time sequence at, the virtual number of active
leases at epoch t. The reason why at is virtual will be made
obvious shortly. The sequence at helps the operator to decide
the number of channels it wants to lease in the current epoch.
At current epoch t, the operator looks back τ epochs and calcu-
lates the net incremental renting cost (line 6). Net incremental
renting cost R is the net renting cost10 which could have been
saved in the time period [t− τ + 1, t] if the operator has one

additional lease. Mathematically, R =
t∑

i=t−τ+1

γ (ai) where

γ (ai) = Fi

(
(Di −Hai)+

)
− Fi

(
(Di −H (ai + 1))

+
)
(25)

In (25), r (ai) is the incremental renting cost at epoch
i. As shown in Figure 5, r (ai) = 0 if Hai ≥ Di.
Fi

(
(Di −Hai)+

)
and Fi

(
(Di −H (ai + 1))

+
)

are the
renting costs in the ith epoch to serve the demand above the
red and the blue graphs respectively in Figure 5, respectively.

If R ≥ P then the operator could have minimized the loss
by leasing a channel in epoch t−τ+1. To compensate for this
mistake the operator decides to lease a channel. The current
timestamp t is enqueued in the FIFO queue (line 8) as shown
in Figure 6. A virtual lease is purchased at epoch t− τ + 1 to
indicate that a corrective measure has been taken for the past
mistake (line 9). Without such update the operator will take
corrective measure for the same mistake multiple times. The
future ai’s are also updated assuming that the operator can
purchase an additional lease in the current epoch (line 10).
The discussion in this paragraph shows that the operator may
not have at active lease at epoch t and hence it is called the
virtual number of active leases.

9The rules governing what SAS can reveal to the operators are still under
consideration by the FCC. Hence, it is not clear if the SAS can reveal Mo

t
to the operators. However, if the SAS can reveal Mo

t to the operators, it is
likely to do so truthfully. We assume that this is because SAS is a federal
entity.

10The net incremental renting cost R should not be confused with the net
renting cost ∆ defined in Page 6. While R is calculated looking backward in
time, ∆ is calculated looking forward in time. Also, R is the net renting cost
which could have been saved by leasing one additional channel. However, the
definition of ∆ considers that the operator can lease more than one channel.

Dt

Hat

H · (at + 1)

t

4 4 00 0 0 23 11 1 1

t− τ + 1

M
l
t =

η

Figure 5. An illustration of net incremental renting cost and wait time. When
Hat < Dt (Hat ≥ Dt), i.e. the red graph is below (above) the black graph,
a non-zero (zero) incremental renting cost r (at) is incurred. This is depicted
using grey (white) epochs in the upper strip. In this example, wait time η = 3.

Enqueue 201805601130

Read

Dequeue

Figure 6. A FIFO Queue containing time stamps. Timestamps are enqueued
behind the queue while they are read and dequeued from the front of the
queue.

Step 3 is repeated until R < P . When R < P , it indicates
that purchasing any more additional lease is costlier than
renting. This is a direct consequence of Property 3. Hence
the operator decides not to purchase any additional leases.

Step 4 [Line 13-18 (To Lease or Not)]: The operator starts
by dequeueing the timestamps from the FIFO queue whose
corresponding wait time η > τ − 2P

pM
(line 13-16.). Let Lt

denote the number of time stamps in the FIFO queue after this
operation. The wait time corresponding to these Lt timestamps
is less than τ − 2P

pM
and hence the operator wants to lease Lt

channels in the current epoch. But there may be only M l
t

channels available for leasing. Hence the operator places a
bid for min

(
Lt , M

l
t

)
channels (line 17). If the operator wins

lt ≤ min
(
Lt , M

l
t

)
channels, it dequeues lt timestamps from

the FIFO queue (line 18) indicating that a channel has been
leased corresponding to each of these lt leasing decisions.

A FIFO queue is used to process timestamps in the order in
which they were generated. Otherwise it is possible that the
wait time of a timestamp, which could have been below the
threshold τ − 2P

pM
gets rejected because it was processed at a

later epoch.
Step 5 [Line 19-20 (Calculate ot and gt)]: If there are

At active leases, then by Property 1, rt = (Dt −HAt)+
demand are served by renting (line 20). Finally the amount of
demand to serve using opportunistic channels and the amount
of demand to reject is given by (7).

Theorem 4: If the moving average of M l
t is lower bounded

by µl (assumption A3), then the CR of AP is cP (µl) =
cP (ηM (µl)) where ηM (µl) is given by (16) and

cP (ηM ) =

{
2 + ηMpM

P ; ηM ≤ τ − 2P
pM

τpM
P ; ηM > τ − 2P

pM

(26)

Proof: Please refer to Appendix E of the supplementary
material.

In Figure 7 we show a typical plot of maximum wait time
ηM and CR of AP as a function of µl. Figure 7.b. shows that
the CR of AP is close to the optimal CR copt (µl).
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Figure 7. (a) A typical plot of normalized maximum wait time ηM , i.e.
ηM
τ

, vs normalized µl, i.e. µl
M

. It is obtained by solving the IP Feasibility
Problem stated in Proposition 1 for various values of µl. In a typical plot,
ηM (µl) = 0 ; ∀µl ≥ M/2. This plot does not show the isolated case when
ηM (µl) = ∞ for µl = M

τ
. (b) A typical plot comparing the CR of AP

(Theorem 4) with the most optimal CR (Proposition 2). It should be noted
that when µl = M

τ
, maximum wait time ηM (µl) =∞, however cP (µl) =

copt (µl) = τpM
P

, a finite CR.

Theorem 5: The time complexity of AP is
O (log2 (dM ) + 2τM).

Proof: By assumption A5, the evaluation of ft (·) con-
tributes to the time complexity of AP . All other operations
in an epoch is absorbed (up to a constant factor) by the time
taken for evaluating ft (·). To compute ot (line 4), f t (·) has to
be evaluated O (log2 (dM )) times (provided that we are using
binary/ fibonacci search). To compute R in every iteration of
the repeat-until loop (line 6), f t (·) has to be evaluated O (2τ)
times. There is a maximum of M channels to lease and hence
there can be at most M iterations of the while loop. Hence
there are O (log2 (dM ) + 2τM) evaluations of ft (·) in a given
epoch.

IV. SIMULATION RESULTS

In this section we present simulations that compare the
online algorithm AP with a number of benchmark algorithms.
We also study how AP utilizes opportunistic channels as a
function of a few trace parameters. Since real-world traces of
mobile operators are not available in public domain, we use
synthetic traces in our simulations. In doing so we can evaluate
the performance of AP under various statistical properties of
the traces.

Setup and trace generation: We start by defining the func-
tion ft (x) which penalizes opportunistic channel use. In our
simulation, ft (x) captures the power (and hence the cost)
required to serve demand using opportunistic channels. Chan-
nels are assumed to have Shannon capacity. Hence ft (x) =

Nt

(
2

x
Mot − 1

)
where the channel bandwidth has been normal-

ized to 1 and Nt is the average noise power experienced by
opportunistic users at epoch t. For the chosen ft (x), the solu-
tion for the unconstrained OP2 is ot =

Mo
t

log(2) log
(

Mo
t pt

Nt log(2)

)
.

We would like to control ot such that ot = βtHMo
t where

βt ∈ (0, 1] is the quality factor which governs the fraction
of the available opportunistic channel capacity, HMo

t , which
should be used for optimal performance. This can be done by
setting Nt =

Mo
t pt

2Hβt log(2)
.

Time sequences dt, λt, pt, Mo
t , vt and the quality factor βt

forms the input to OP1. We model these time sequences as

Table II
DEFAULT SIMULATION SETTINGS.

1 EPOCH = 1 HOUR, τ = 1 YEAR, T = 10τ , pM = 1, τpM
P

= 5, M = 50,
dM = 15, H = 1, WINNING PROBABILITY OF THE OPERATOR= 0.5

Trace # of States State Space Mean (µ) CV (σ
µ

)
dt dM + 1 {0, . . . , dM} 4 0.9
Mo
t M + 1 {0, . . . ,M} 2 0.5
pt 50 {0.8pM , . . . , pM} 0.95pM 0.05
βt 50 {0.05, . . . , 1} 0.66 0.35

λt M + 1 {0, . . . ,M} M
10

1

vt 3 {0, . . . , 2} M
τ

0.05

discrete time markov chain (DTMC). This is motivated by the
existing literature: for dt, pt, vt (see [4]), for λt, Mo

t (see [26])
and for βt (see [27]). The mean and coefficient of variation
(CV11) of the stationary distribution of all the six DTMC’s
can be controlled12.

Default simulation settings are shown in Table II. These
settings are used in the simulations unless stated otherwise.
We assume that the operator wins a channel with probability
0.5. Based on [2], [3], we choose an epoch duration of 1 hour,
τ = 1 year, M = 50 channels. pM is normalized to 1 and P
is set such that τpM

P = 5. Default trace properties of the six
time sequences are set to some acceptable value as tabulated
in Table II. Two of these trace properties needs further
explanation. First, we assumed that the channel occupancy
of T1 users is 10%. Hence we choose mean of λt as M

10 .
Second, a mean vt of M

τ implies that it takes an average of τ
epochs for the other operators to purchase all the M channel
leases. The default value of spectral efficiency H is 1. This
is because of simulation constraints. If we choose a higher
spectral efficiency, we have to simultaneously increase the
maximum demand dM to conduct any meaningful simulations.
The following issues are encountered as dM increases: (a)
Time complexity of the MDP algorithm (described later in this
section) increases. (b) Difficulty in convergence of the optimal
algorithm. (c) Higher RAM requirement to store the markov
matrix of dt. Hence H is set to 1 for most of the simulations
except when we study the effect of varying spectral efficiency.
We would like to stress that the simulation results will not
change even if H is large. This is because our simulation
results study normalized cost, the ratio of two costs. If H
increases, both the costs will increase proportionally. Hence,
the normalized cost will remain the same.

In the first half of this section, we compare AP with
some benchmark algorithms. To do this we use the following
definition of normalized cost: “Cost incurred by AP to the
cost incurred by the benchmark algorithm.”

Comparison with trivial online algorithms: We compare AP
with two trivial online algorithms: i) Opportunistic use only:
This algorithm never leases any channel. It uses the available
opportunistic channels and rejects the remaining demand. ii)
Lease when needed: This algorithm leases channels whenever
the number of active channel leases is less than the demand,
provided there are channels available for leasing. Leasing a

11CV is the ratio of standard deviation to the mean. CV can be used as a
measure of erratic nature of a trace. Higher the CV, more erratic is the trace.

12The problem of designing a Markov matrix whose stationary distribution
has a given mean and CV can be formulated as a linear program.
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Figure 8. The performance of AP with respect to two trivial algorithms. For
each value of σ

µ
, we considered 4 values of µ and for each (σ, µ) pair, the

normalized cost has been averaged over 100 traces.

channel is not advisable if the demand is erratic. This is
because there is a higher probability that the demand may
decrease after we lease a channel. Therefore “opportunistic use
only” works better when the demand is erratic (Figure 8.a.)
and “lease when needed” works better when demand is smooth
(Figure 8.b.). If the number of available opportunistic channels
is erratic, it is better to lease a channel because there may not
be opportunistic channels available in the future. This intuition
is validated by Figures 8.c. and 8.d. Figure 8 shows that AP
outperforms these trivial algorithms except when σd

µd
≥ 2.95.

Comparison with statistics based online algorithms: To
implement AP we do not require any knowledge of the statis-
tics of the six traces. Therefore AP will be desirable in the
early stages of the deployment of 3-TSF because knowledge
of market statistics will be limited or none13. We illustrate
the advantage of AP by comparing it with two statistics
based algorithms: i) Markov Decision Process (MDP): This
algorithm was proposed in [4]. It is a state-of-the-art work
and its mathematical abstraction is similar to our work. MDP
needs complete knowledge of the Markov matrices of all the
traces. It can be implemented online only if T ≤ τ 14. In our
case T > τ and hence we use the following heuristic. We
divide the optimization horizon T into T

τ frames and apply the
algorithm to each frame separately. ii) Static Leasing Strategy:
This algorithm uses the stationary distribution of the traces to
compute the number of active leases required to minimize the
expected cost. It then tries to maintain the optimal number of
active leases subject to lease availability. Performance of such
algorithms is prone to error in the statistical model. Figure 9
shows the normalized cost when µd is erroneous. As shown in
Figure 9, AP performs better than both the algorithms if there
is an error of ±50% in µd. In this simulation, all statistical
parameters except µd are known accurately. Also due to the
high time complexity of MDP, we could only simulate for
τ = 1 week.

13Statistics based algorithms like [4] will outperformAP if market statistics
is sufficiently accurate. Accurate market statistics will be available after the
3-TSF is in operation for a sufficiently long time.

14The MDP based algorithm has a linear time complexity if T ≤ τ and
pseudo-polynomial for T > τ . pseudo-polynomial time complexity is too
high to be implementable online.
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Figure 9. The performance of AP with respect to two statistics based
algorithms. For each % error in µd, the normalized cost has been averaged
over 100 traces.

Remark 6 (Robustness of MDP): One may argue that ±50%
error margin in µd is large and hence MDP is quite robust.
However this is only due to statistical modeling error of the
random process dt. There are other random processes like Mo

t ,
λt, pt and vt which may also be subject to statistical modeling
error. The statistical error margin for each random process may
significantly decrease if we consider the cumulative effect of
all the random processes. Due to high time complexity of
MDP, we could not study the cumulative effect of all the
random processes on its performance.

Comparison with optimal algorithm: As discussed in Re-
mark 2, the optimal algorithm for OP3 (and hence OP1) is
an offline algorithm based on dynamic programming. It has
pseudo-polynomial time complexity and hence very difficult to
simulate. We therefore simplify OP3 as follows: Mo

t = 0 ; ∀t,
λt = 0 ; ∀t and βt = ∞ ; ∀t (and hence ft (x) = 0). With
these simplifications, the renting function Ft (rt) = ptrt. This
simplifies OP3 to a Linear Integer Program which can be
solved using standard IP solvers. We could only simulate for
τ = 1 week, because even the standard IP solvers have high
time complexity. For this entire simulation we use a common
trace of M l

t . The moving average of M l
t is shown in Figure

10.a. For this trace of M l
t ,

µl
M ≈ 8.8

50 = 0.18. We conduct
four simulations. In the first two simulations, the lease price
P is constant at τpM

5 and we vary the CV of demand dt.
In one of the simulations, the operator wins a channel with
probability 0.25 and in the other it wins with probability 0.75.
For µl

M = 0.18 and P = τpM
5 , the CR is 5 as shown in Figure

7.b. As shown in Figure 10.b. and 10.c., the normalized cost15

of AP is much lower than CR. Therefore AP performs much
better in practice. Comparing Figure 10.b. and 10.c. we also
note that the performance of AP is not too sensitive to the
channel winning probability of the operator.

In the third simulation we study the effect of time varying
lease price Pt. Pt is assumed to be a DTMC with 50 states
equally spaced in the period

[
τpM
10 , 3τpM10

]
. The mean of Pt

is kept fixed at µP = τpM
5 and the CV σP

µP
is varied. Figure

7.d. shows that the normalized cost increases with CV. This
observation can be explained as follows. Variation of Pt may
lead to the following scenarios: Pt decreases (increases) in

15In a loose sense, CR is the suprema of the normalized cost.
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Figure 10. (a) The moving average of M l
t ,

to∑
t=to−τ+1

Ml
t

τ
, used in this

simulation. (b) $ (c): The performance of AP , for constant lease price,
with respect to optimal algorithm. The winning For each value of σd

µd
,

we considered 4 values of µd and for each (σd, µd) pair, we averaged
the normalized cost over 100 traces. (d) $ (e): The performance of AP ,
for varying lease price (varying spectral efficiency), with respect to optimal
algorithm. µd and σd is kept fixed at 4 and 1.5 respectively. For each value
of σP

µP
( σH
µH

), the normalized cost has been averaged over 100 traces.

future epochs. In such a case, the optimal algorithm will
lease later (now). Probability of such scenarios increases as Pt
becomes more erratic, i.e. the CV of Pt increases. Since AP
has online knowledge of Pt, it cannot make such decisions and
hence underperforms as CV of Pt increases. Similar results
are found when spectral efficiency Ht is time varying. Ht is
assumed to be a DTMC with 10 states equally spaced in the
period [1, 10]. Mean of Ht is kept fixed at µH = 5 and CV
σH
µH

is varied. As expected, the normalized cost increases with
CV. This is shown in Figure 7.e.

In the rest of this section, we study the effect of a few trace
parameters on the performance of AP . In this regard, we use
the following definition of normalized cost: “Cost incurred by
AP when it uses the opportunistic channels to the cost incurred
by AP when it does not use the opportunistic channels.”
This normalized cost is a measure of the value of available
opportunistic channels. Lower normalized cost implies higher
value of the available opportunistic channels.

Effect of quality factor βt: We conducted two simulations
to understand the effect of quality factor βt. In our first
simulation, we study the effect of the mean quality factor
µβ on the normalized cost. As µβ increases, the available
opportunistic channels become more valuable. Hence, the
normalized cost decreases with increase in µβ as shown in
Figure 11.a.

In our second simulation, we study the effect of the er-
roneous prediction of quality factor βt. Implementation of
AP relies on computing ft (o) which in turn relies on the
knowledge of βt. The quality factor βt depends on channel
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Figure 11. a) The effect of mean quality factor µβ on the normalized cost. The
normalized cost for each value of µβ is averaged over 100 traces. Standard
deviation of βt, σβ , was held constant at 0.35 throughout the simulation. b)
Effect of erroneous βt on the normalized cost. The normalized cost for each
value of standard deviation is averaged over 100 traces.

states like number of users in a given channel, the transmission
power of individual users, etc. The operator does not have
direct access to this information, it can only infer it (possibly
through customer feedback). Hence βt is prone to error.
Understanding the effect of erroneous βt on the normalized
cost (same as defined before) is important. To do this we add
White Gaussian noise with zero mean to βt and compute the
normalized cost incurred by AP as we increase the standard
deviation of the Gaussian noise. This is shown in Figure 11.b.
As expected, the normalized cost increases. More importantly,
with standard deviation as high as 100% of the mean of the
quality factor, we can still reduce the incurred cost by 1.75%
if we use the available opportunistic channels.

V. CONCLUSION

For a wireless operator that operates in T2 and T3 of the
Three-Tier Spectrum Sharing Framework, it is important to
strategically decide the amount of demand to accept/reject,
amount of demand to serve using opportunistically available
channels (T3) and the number of channels to lease (T2),
in order to minimize the total cost. Such decisions rely
on demand and channel availability patterns which can be
considered as random processes. In this paper, we used tools
from ski-rental literature to design an algorithm that makes
online decisions without any knowledge of the statistics of
the involved random processes. We argue that our algorithm
will be of importance in the early stages of the deployment of
Three-Tier Spectrum Sharing Framework because the operator
will have either limited or no knowledge of market statistics.
Our algorithm has bounded competitive ratio which is nearly
optimal when compared with the least possible competitive
ratio. In the process of designing an online algorithm for
leasing channels, we formulated and studied the modified
ski-rental problem which is the state-of-the-art in ski-rental
literature.

We are interested in addressing the following three issues
in later works. First, the online algorithm for leasing channels
which we designed has sub-optimal competitive ratio. We are
interested in designing an online algorithm which is optimal
in the sense of competitive ratio. Second, we are interested in
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designing randomized online algorithms for leasing channels.
Third, we would like to explore other assumptions, like the
lower bound on the moving average of the number of channels
available for leasing, through which we can derive a better
bound on the competitive ratio.
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