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Abstract

Ovarian cancer has poor survival rates due to a combination of diagnosis at advanced 

disease stages and disease recurrence as a result of platinum chemotherapy resistance. 

High-grade serous ovarian cancer (HGSOC), the most common ovarian cancer subtype, 

is conventionally treated with surgery and paclitaxel/carboplatin combination 

chemotherapy. Initial response rates are 60–80%, but eventually the majority of 

patients become platinum-resistant with subsequent relapses. Extensive research on 

individual biomarkers of platinum resistance has revealed many potential targets for 

the development new treatments. While this is ongoing, there are also epigenetic, 

DNA repair, genome and immune changes characterised in platinum-resistant HGSOC 

that can be targeted with current therapies. This review discusses biomarkers of 

platinum chemotherapy resistance in ovarian cancer with a focus on biomarkers that 

are targetable with alternative treatment combinations to those currently used. After 

decades of research focused on elucidating the biological cause of platinum resistance, 

future research needs to focus on using this knowledge to overcome resistance for 

patients with ovarian cancer.

Introduction

Ovarian cancer has an annual worldwide incidence of 
approximately 240,000 and annual mortality rate of 
152,000 (Ervik et al. 2016). The high annual mortality 
rate is due to a combination of diagnosis at advanced 
disease stages and disease recurrence as a result of 
chemotherapy resistance. There are several subtypes 
of ovarian cancer with differing histology, anatomical 
origins and molecular profiles resulting in vastly 
different inherent sensitivities to chemotherapy. Herein, 
we review biomarkers of platinum chemotherapy 
resistance in ovarian cancer with a focus on biomarkers 

that are potentially targetable for future treatment 
combinations.

Ovarian cancer subtypes

There are 2 major subtypes of ovarian cancer that are 
determined by the tissue of origin and classified as either 
epithelial and non-epithelial. Non-epithelial ovarian 
cancers include sex cord stromal, germ cell and non-
specified ovarian cancers. Epithelial ovarian cancers include 
transitional cell, mucinous, clear cell and serous ovarian 
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cancer. The focus of this review is the epithelial ovarian 
cancer subtypes, in particular the most common, HGSOC.

Epithelial ovarian cancer

Epithelial ovarian cancer (EOC) is an umbrella term that 
covers a diverse groups of tumours that can be classified 
into different subtypes based on the 2 main pathways of 
tumorigenesis according to a unifying theory proposed by 
Kurman and Shih (Shih Ie & Kurman 2004, Kurman & 
Shih Ie 2010). Type 1 EOC are considered to be genetically 
stable, slow to develop and are usually contained within the 
ovary at presentation. Therefore, most are diagnosed at an 
early stage and respond well to mostly surgical treatment. 
They consist of low-grade serous, low-grade endometrioid, 
clear cell, mucinous and transitional or Brenner tumours 
that have developed from clearly recognised precursor 
lesions or borderline tumours (Kurman & Shih Ie 2010). 
Conversely, type 2 EOCs are highly invasive, grow quickly 
and are thus typically diagnosed at an advanced stage. 
These aggressive tumours consist mainly of high-grade 
serous, high-grade endometrioid, malignant mixed 
mesodermal tumours and undifferentiated carcinoma 
(Kurman & Shih Ie 2010).

Correct diagnosis of the subtype and stage of EOC is 
extremely important as each subtype responds differently 
to standard treatment options, and late-stage disease has 
poor survival rates. Despite these differences, almost all 
ovarian cancers are treated initially with surgical removal 
of tumour tissue termed ‘debulking’, followed by 6 courses 
of paclitaxel/carboplatin combination chemotherapy (in 
some cases with the addition of bevacizumab). However, 
upfront surgery is not appropriate for some patients, and 
neoadjuvant combination chemotherapy is administered 
prior to surgery. After debulking surgery, EOC is 
surgically staged based on the International Federation of 
Gynecologists and Obstetricians (FIGO) criteria (Prat et al. 
2015). Most type 2 EOCs are diagnosed at stage IIIC or 
higher resulting in poor survival rates. Neoadjuvant 
chemotherapy regimes can affect the cellular architecture 
and morphological features of the tumour, thus making 
correct subtyping difficult if this treatment approach is 
used (McCluggage 2008).

Serous ovarian cancer

Serous ovarian cancer (SOC) is the most common subtype, 
accounting for ~70% of all ovarian cancers. SOC is not 
a single disease but is composed of high-grade serous 

ovarian cancer (HGSOC) and low-grade serous ovarian 
cancer (LGSOC). These are not two grades of the same 
neoplasm but rather distinctly different tumour types 
(O’Neill et al. 2005, McCluggage 2008) with vastly variable 
clincopathologic features and behaviours (Kurman 2013) 
derived from different pathogenetic pathways of formation 
(Malpica  et  al. 2007). HGSOC generally affects older 
women who present at a later FIGO stage. Even though 
there is an initial response to treatment, they become 
resistant over time and have an overall poorer prognosis. 
LGSOC is mainly diagnosed in younger women, is slow 
growing (McCluggage 2008), and more likely to be non-
responsive to chemotherapy and ultimately has a better 
prognosis than HGSOC with a longer overall survival time 
(Ramalingam 2016).

HGSOC is characterised by a number of histological 
features that are not exclusive to the subtype, however are 
favoured by it. The cellular architecture is, predominantly 
and sometimes exclusively, papillary in nature across 
large sheets of cells and is associated with slit-like 
rather than round gland formations and psammoma 
bodies (Clements & Young 2008, Ramalingam 2016). 
For a diagnosis of HGSOC based on the two-tier grading 
system by Malpica and colleagues (Malpica  et  al. 2004), 
carcinomas must have nuclear atypia often in the form 
of multinucleated cells as well as >12 mitoses per 10 high-
power fields. Solid variants do occur with minimal or no 
papillary or glandular differentiation making it difficult to 
determine morphologically if the tumour is HGSOC or an 
undifferentiated carcinoma. HGSOC is also characterised 
by p53 mutations (Vang et al. 2016), detected as aberrant 
p53 using immunohistochemistry (IHC) or by targeted 
next-generation sequencing (Cole et al. 2016).

There have been many theories on the origins of 
HGSOC. Originally, it was considered that HGSOC 
originates directly from the surface epithelium 
undergoing metaplastic changes. The ‘incessant 
ovulation’ hypothesis first proposed by Fathalla in 1971, 
described continual ovulation resulting in a repetitive 
cycle of damage and repair to the ovarian surface 
epithelium (OSE), leading to an increase in inflammation 
and hormonal level fluctuations resulting in oxidative 
DNA damage (Fathalla 1971). Humans are at an increased 
risk of this damage and repair cycle due to the high 
number of uninterrupted ovulation cycles compared to 
other animal models that have ‘rest periods’. However, 
there has been an increase in pharmacologically induced 
non-ovulatory rest periods since the introduction of the 
oral contraceptive pill (OCP).
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The second theory was that it derives from cortical 
inclusion cysts (CIC) found within the ovary. These 
cysts are developed from the invagination of OSE that 
forms Müllerian type tissue and then is subjected to 
neoplastic transformation (Kurman 2013, Banet & 
Kurman 2015, Zeppernick  et  al. 2015). Although it has 
been speculated that HGSOC is of ovarian origin, there 
has been no definitive identification of a precursor legion. 
Therefore, a paradigm shift away from the ovary towards 
the epithelium of the fimbriated end of the fallopian 
tube developed (Kurman 2013, Zeppernick  et  al. 2015, 
Ramalingam 2016), wherein serous tubal intraepithelial 
carcinoma forms as a precursor to HGSOC. Although it 
is believed that 50–60% of HGSOC originate from the 
fallopian tube (Kroeger & Drapkin 2017), many are found 
to contain p53 mutations that are identical to those found 
in the corresponding serous tubal in situ carcinoma (STIC), 
thus suggesting a genetic connection between the tumour 
and the STIC (Kindelberger  et  al. 2007, Lee  et  al. 2007). 
This relationship has also been observed on the protein 
level, with HGSOC staining positive for PAX8, a Müllerian 
marker. However, staining negative for the mesothelial 
marker calretinin, indicating that HGSOC’s expression 
profile is closer to that of the fallopian tube than that of the 
surface epithelium of the ovary (Zeppernick et al. 2015). 
Although there are several possible pathways and varied 
conceivable originating sites, the exact cell of origin of 
HGSOC has not been fully elucidated and requires further 
investigation to allow for a better understanding of this 
disease.

Chemotherapy

Platinum chemotherapy

Platinum chemotherapy was accidentally discovered in 
1965 when it was first observed that a platinum compound 
was inhibiting cell division in E. coli (Rosenberg  et  al. 
1965). The compound was later named ‘cisplatin’ and 
its effect on the division of cancer cells was confirmed 
in animal studies in 1970 (Rosenberg & VanCamp 1970). 
Clinical trials began soon after in 1972, and in 1978, 
cisplatin was approved in the USA by the Federal Drug 
Administration (FDA) for the treatment of testicular, 
bladder and ovarian cancer. The discovery was a turning 
point for the treatment of advanced ovarian cancer.

There are now 5 platinum chemotherapy analogues 
approved for use in the treatment of cancer: cisplatin, 
carboplatin, oxaliplatin, nedaplatin and lobaplatin. 

The mechanism of action for the analogues used 
most commonly to treat ovarian cancer, cisplatin and 
carboplatin; is direct insertion of platinum into DNA to 
form crosslinks (Fig. 1). The resultant structural distortion 
of the DNA is either removed by specific DNA repair 
processes or it triggers a signalling cascade resulting in 
apoptosis.

Cisplatin or carboplatin monotherapy is used to treat 
some solid tumours, with testicular cancer obtaining 
cure rates of over 90% (Verhoeven et al. 2013). Platinum 
monotherapy is rarely used in HGSOC treatment 
(reviewed in Harter  et  al. 2010), it is only occasionally 
used for treatment of elderly patients where combination 
chemotherapy is not well tolerated.

Combination chemotherapy

HGSOC is most commonly treated with a combination of 
carboplatin and paclitaxel (Stuart  et  al. 2011), a tubulin 
target that blocks mitotic spindle assembly and halts 
cell division (Kampan  et  al. 2015). Many other agents 
are used in combination with platinum chemotherapies 
after relapse. These incude pegylated doxorubicin (TopII 
inhibitor, blocks replication) (Staropoli  et  al. 2014), 
gemcitabine (nucleoside analog, blocks DNA replication) 
(Pfisterer  et  al. 2006), trabectedin (transcription factor 
blocker) (D’Incalci & Galmarini 2010) and bevacizumab 
(angiogenesis inhibitor) (Oza et al. 2015).

Subtype-specific response to chemotherapy

Paclitaxel and carboplatin combination chemotherapy 
produces initial response rates in HGSOC of 60–80% 
(Selvakumaran  et  al. 2003), but eventually the majority 
of patients become platinum resistant with subsequent 
relapses. Clear cell, transitional cell, mucinous and LGSOC 
are predominantly resistant to platinum chemotherapy 

Figure 1
Mechanism of action for platinum chemotherapy. Platinum binds to the 
N-7 position of adjacent guanine (G) bases resulting in interstrand or 
intrastrand crosslinks.

Downloaded from Bioscientifica.com at 04/27/2019 12:53:48AM
via free access

https://doi.org/10.1530/ERC-17-0336


Printed in Great Britain
Published by Bioscientifica Ltd.https://doi.org/10.1530/ERC-17-0336

http://erc.endocrinology-journals.org © 2018 Society for Endocrinology

R306B van Zyl et al. Biomarkers of platinum 
resistance in ovarian cancer

25:5Endocrine-Related 
Cancer

resulting in low-use of platinums in treatment regimes 
for these subtypes. The high level of resistance in these 
subtypes is problematic when assessing older studies 
that did not differentiate outcome analysis based on 
histological subtype. More recently, it has become standard 
practice to identify serous vs non-serous subtypes of 
ovarian cancer. In future studies, to assess new treatments 
or combinations, it would be ideal to segregate results of 
histological subtypes to ascertain accurate responses for 
each subtype.

Platinum chemotherapy resistance

Patients treated with platinum chemotherapy are 
categorized as either platinum sensitive or platinum 
resistant based on the amount of time from end of 
treatment to relapse, referred to as the platinum-free 
interval. The platinum-free interval is distinct from the 
progression-free interval (PFI) most commonly used to 
assess clinical trial outcomes (Davis  et  al. 2014). Davis 
et al. (2014) highlights this distinction in a 2014 review 
of platinum-resistant ovarian cancer; PFI is defined as 
the time from diagnosis to relapse, including the time 
undergoing first-line surgery and chemotherapy. The 
authors concluded that platinum-free interval is a more 
accurate way to categorize platinum response or sensitivity 
for ovarian cancer.

Platinum response is generally classified into 
refractory, resistant, partially-sensitive or sensitive. The 
Gynecologic Cancer InterGroup (GCOG) consensus 
statement recommended the following timelines for 
platinum response classifications: (1) Platinum-refractory: 
progression while receiving last line of platinum-
based therapy or within 4  weeks of last platinum dose;  
(2) Platinum-resistant: progression-free interval since 
last line of platinum of less than 6 months; (3) Partially 
platinum sensitive: progression-free interval since last line 
of platinum of 6–12 months and (4) Platinum sensitive: 
progression-free interval since last line of platinum of 
more than 12 months (Stuart et al. 2011).

Platinum-sensitive ovarian cancer has a median 
survival of 2  years, with a range of 3  months to over 
10 years. Platinum-resistant ovarian cancer has a median 
survival of 9–12  months and less than 15% respond to 
subsequent chemotherapy (Davis et al. 2014). Ultimately, 
almost all HGSOC patients become platinum resistant 
and succumb to the disease (Davis et al. 2014).

There has been a large body of research focused on 
identifying the mechanisms underlying HGSOC platinum 

resistance. The most studied mechanisms are within the 
cancer cells themselves, including p53 (Reles et al. 2001, 
Yang-Hartwich  et  al. 2015) and genomewide mutations 
(Patch  et  al. 2015), epigenetic changes (Wei  et  al. 2006, 
Vang  et  al. 2013, Chang  et  al. 2017) and dysfunctional 
DNA repair (Barakat  et  al. 2010). Possibly working 
together in concert, these genetic mechanisms lead to 
genomic instability that allows cancer cells to adapt and 
survive DNA damage caused by platinum chemotherapy. 
Although all these mechansisms have been associated 
with resistance, the exact mechanisms remain undefined.

Similarly the presence of cancer stem cells (CSCs) 
(Steg  et  al. 2012) and epithelial-to-mesenchymal 
transition (EMT) (Marchini  et  al. 2013, Chebouti  et  al. 
2017) is associated with platinum resistance in HGSOC. 
Platinum chemotherapy is most effective on proliferating 
cells that make up the majority of rapidly growing cancer; 
therefore, it is hypothesized that populations of latent 
CSCs and mesenchymal-like cells are less likely to respond 
to platinum chemotherapy. In addition to changes to 
the genome and phenotype of HGSOC cancer cells, the 
tumour microenvironment, in particular, immune cell 
infiltration, angiogenesis and hypoxia have also been 
implicated in platinum chemoresistance.

To date, the complete set of mechanisms underlying 
platinum chemotherapy resistance and how they interact 
is not fully understood. The ultimate goal of establishing 
biomakers is to further this understanding and to assist 
clinicians and patients to make better informed treatment 
decisions. Some of the previously reported biomarkers 
have high potential for developing targeted therapies 
or for re-purposing non-traditional chemotherapies to 
improve treatment of platinum-resistant HGSOC. The 
main mechanisms of resistance and subtypes of biomarkers 
reported to date are reviewed in the following sections.

Mechanisms and biomarkers of resistance

Cancer stem cells

The cancer stem cells (CSCs) model of disease progression 
remains controversial as the process is still largely 
uncharacterized. CSCs are a relatively small subset of 
cancer cells that indefinitely self-renew, initiate and 
maintain tumour growth and may remain in quiescence 
for prolonged periods (Clevers 2011, Prasetyanti & 
Medema 2017). In HGSOC, they have been associated 
with platinum resistance and disease recurrence (Steg et al. 
2012, Pylvas-Eerola  et al. 2016). The mechanism of CSC 
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associated platinum resistance is largely uncharacterised, 
but quiescence during chemotherapy remains the most 
likely mechanism. Quiescent ovarian CSCs are largely 
unaffected by chemotherapy as it relies on cell division to 
damage DNA and elicit an effect (Ottevanger 2017).

Markers of CSCs have been extensively studied 
in HGSOC, with ALDH and CD133 (Silva  et  al. 2011, 
Kryczek et al. 2012) being the most consistently replicated 
markers in both model systems and HGSOC tissue 
(Silva  et al. 2011, Ruscito  et al. 2017). Efforts have been 
made to identify CSCs markers for development of new 
treatments for HGSOC, from which the most promising 
so far is bone morphologenetic protein 2 (BMP2). BMP2 
is upregulated in ovarian cancer cells (Le Page et al. 2006) 
and has been associated with poor prognosis (Le Page et al. 
2009). An ovarian cancer cell hierarchical differentiation 
pattern in which BMP2 acts as a feedback mechanism 
promoting ovarian CSC expansion and suppressing 
progenitor proliferation was recently reported (Choi et al. 
2015), but further studies to confirm this discovery 
in clinical populations is needed before directing new 
treatments towards this target. The evidence for HGSOC 
CSCs as targetable biomarkers of platinum resistance is 
compelling, but has yet to be translated into prognostic 
testing or development of targeted treatments.

Epithelial-mesenchymal transition

EMT is a process whereby cells undergo a series of 
changes that result in a transition from an epithelial cell 
phenotype to a mesenchymal cell phenotype (reviewed in 
Thiery & Sleeman 2006). The process is intricately linked 
to the presence of CSCs and many studies have focused 
on the role of CSCs in EMT resulting in cancer progression 
and treatment resistance. There is a substantial body 
of evidence that EMT is a vital component of cancer 
progression, particularly in HGSOCs (Takai  et  al. 2014). 
HGSOCs develop from epithelial cells but often display 
a mesenchymal phenotype, particularly if platinum 
resistant (Marchini et al. 2013, Chebouti et al. 2017).

Extensive molecular profiling of HGSOC has also 
identified a subgroup of HGSOC that exhibits a distinct 
mesenchymal gene expression profile (Yoshida et al. 2009, 
Cancer Genome Atlas Research 2011). Marchini and 
coworkers analysed gene expression profiles of 23 patient-
matched treatment – naïve and platinum-resistant 
(after several lines of platinum therapy) HGSOC tumour 
samples. A resistance gene expression signature indicative 
of TGFβ-mediated EMT was identified and confirmed in a 
validation set of 52 EOCs (Marchini et al. 2013).

Despite the pivotal role EMT seems to play on HGSOC 
progression, development of therapeutics to specifically 
target and reverse EMT has proven difficult due to the 
complexity of the EMT process. Key components of the 
EMT process are also involved in apoptosis, metabolism, 
cell proliferation, angiogenesis and cell growth 
(Huang  et  al. 2012). PI3K-AKT-mTOR inhibitors are the 
most promising therapeutic targets for EMT reversal, 
but ascertaining if the disease control is a result of EMT 
reversal or suppression of the other processes previously 
mentioned will be difficult to achieve. Another approach 
to reversing EMT may be targeting the epigenetic 
alterations that drive the transition. These include 
HGSOC-specific microRNAs, DNA methylation and 
histone acetylation patterns.

miRNAs

MicroRNAs (miRNAs) are short (18–25 nucleotides) non-
coding fragments of RNA that bind to and inhibit mRNA. 
There are over 1000 human miRNAs and most have been 
associated with regulation of mRNA in normal and disease 
processes. miRNAs can regulate multiple mRNAs and 
subesquent proteins that are pivotal for drug response, 
therefore, inhibiting specific miRNAs to overcome 
platinum resistance is appealing.

Several mechanisms to target miRNAs are currently in 
development for cancer treatment including expression 
vector ‘miRNA sponges’ (Ebert  et  al. 2007, Chen  et  al. 
2014), antisense or mimic oligos (Trang  et  al. 2011) 
and small molecule inhibitors (SMIRs) (Watashi  et  al. 
2010). SMIRs are the most promising therapeutic target 
for miRNAs, but significant barriers to delivery of these 
non-small-molecule agents and pharmacodynamic 
and pharmacokinetic properties are still major issues to 
overcome (Monroig Pdel et al. 2015). Several recent studies 
have focused on determining miRNAs involved in HGSOC 
platinum resistance (Table 1). The most promising targets 
to date are miR-622 (Choi et al. 2016), which targets the Ku 
pathway and downregulates NHEJ; miR-484 that targets 
VEGFB and VEGFR2 pathways and tumour vasculature 
(Vecchione et al. 2013); and a miRNA profile of 9 miRNAs 
that are involved in regulation of EMT and TGF/WNT 
signalling(Boac  et  al. 2016). Overexpression of miR-27a, 
miR-23a, miR-30c, Let-7g, miR-199a-3p (Eitan et al. 2009), 
miR-141-3p (Ying et al. 2015) and many others (reviewed 
in Yu et al. 2017) have also been associated with cisplatin 
resistance in HGSOC, therefore, determing which miRNAs 
are the best for miRNA targeted therapy development will 
be a challenge.
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Biomarkers that can be targeted using 
existing therapeutics

DNA methylation

DNA methylation is a key epigenetic regulator of gene 
expression. Aberrant DNA methylation has long been 
recognized as a contributing factor to the development 
of cancer. DNA methylation biomarkers have proven 
to be robust prognostic biomarkers of HGSOC. Wei 
and coworkers reported a set of 112 methylated loci 
that predicted progression-free survival after platinum 
chemotherapy with 95% accuracy (Wei  et  al. 2006). 
Progression-free survival after platinum chemotherapy 
was significantly shorter for patients with higher levels of 
methylation, suggesting that CpG island methylation is 
a strong biomarker to target to overcome chemotherapy 
resistance (Wei et al. 2006). Similarly, the Cancer Genome 
Atlas Network (Cancer Genome Atlas Research 2011) 
reported 168 genes as epigenetically silenced in HGSOC 
due to elevated DNA methylation and reduced tumour 
expression. The consistent methylation profiles reported 
for HGSOC (Gloss & Samimi 2014) have been a target for 
testing new combination treatment regimes (Fig. 4).

Cancer therapeutics to inhibit DNA methyltransferases 
have been successfully developed and approved for 
treatment. In 2004, azacitidine (DNA and RNA DNMT 

inhibitor) was approved for treatment of myelodysplastic 
syndrome (MDS), followed by decitabine (DNA-specific 
DNMT inhibitor) approval in 2006. DNMT inhibitors 
are cytotoxic when given at higher doses, but Fang et al. 
(2010) were the first to assess decitabine at repeated low 
dose to reduce DNA methylation and re-instate cisplatin 
sensitivity in a Phase 1 clinical trial for HGSOC. The 
combination was well tolerated with minimal adverse 
events. The follow-up Phase 2 trial reported 12/17 
platinum-resistant patients had a complete response, 
partial response or stable disease after repeated low-dose 
decitabine followed by carboplatin (Matei  et  al. 2011, 
2012, Fang  et  al. 2014). This is in contrast to Glasspool 
et al. (2014) who reported that the addition of a single-
dose of decitabine 7  days before carboplatin reduced 
the efficacy of carboplatin in patients with partially 
platinum-sensitive HGSOC (relapsed 6–12  months after 
previous platinum therapy). The study authors concluded 
that assessment of patient selection strategies, different 
treatment schedules and alternative DNMT inhibitors 
should be considered.

Azacitidine and carboplatin combination treatment 
for platinum-resistant HGSOC was assessed in a phase 
1b/2a clinical trial (Fu  et  al. 2011). Thirty patients 
received azacitidine for 5  days and carboplatin on day 
2 every 28  days. The overall response rate (ORR) was 

Table 1 miRNAs associated with HGSOC platinum resistance.

miRNA Action Effect on platinum chemotherapy Reference

Let-7b Overexpression in HGSOC Poor survival and resistance to 
chemotherapy

Tang et al. (2014)

miR-9 Downregulates BRCA1
High levels in SOC

Sensitizes to cisplatin
Better response and longer PFS

Sun et al. (2013)

miR-21 Over expression in HGSOC from the TGCA
Over expression in A2780 cisplatin-resistant cells 

regulates Programmed cell death 4, c-IAP2  
and NAV3

Shorter PFS
Cisplatin resistance

Chan et al. (2014)
Pink et al. (2015)

miR-27a
miR-23a
miR-30c
Let-7g
miR-199a-3p

Overexpression in stage I and stage III HGSOC Cisplatin resistance Eitan et al. (2009)

miR-141-3p Overexpression in OC cell lines Cisplatin resistance Ying et al. (2015)
miR-146a Overexpression in SOC omental lesions Cisplatin resistance Vang et al. (2013)
miR-150 Overexpression in SOC omental lesions Cisplatin resistance Vang et al. (2013)
miR-181a Over expression in SOC

Suppresses Smad7 and mediates EMT
Cisplatin resistance, shorter OS  

and PFS
Pink et al. (2015)

miR-484 Low expression in SOC, targets VEGFB and VEGFR2 
pathways and tumour vasculature

Poor chemotherapy response 
(stable or progressive disease)

Does not mediate chemoresistance 
in vitro

Vecchione et al. 
(2013)

miR-622 Targets the Ku pathway and downregulates NHEJ Mediates chemoresistance Choi et al. (2016)
Profile of 9 miRNAs Regulation of EMT and TGF/WNT signaling Mediates chemoresistance Boac et al. (2016)
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13.8% (4/29; 95% CI, 10.1–17.5%): 1 patient achieved a 
clinical complete response, 3 patients achieved clinical 
partial response and 10 patients had stable disease, with a 
median survival of 14 months (Fu et al. 2011). The results 
of clinical trials that have combined demethylating agents 
and carboplatin indicate that repeated low-dose, patient 
selection or inclusion of additional agents is required to 
achieve clinical benefit from this combination, and it is a 
promising area for further studies.

Histone deacetylases

Histone acetylation is another component of epigenetic 
regualtion of gene expression. Histone deacetylases 
(HDAC) actively mediate the level of acetylation of 
histone structures, when high deacetylation is present 
the result is suppression of gene expression (reviewed in 
Ropero & Esteller 2007). Altered expression and mutations 
in HDACs have been reported in most cancers (Fraga et al. 
2005), therefore, HDAC inhibitors were developed as 
promising cancer therapeutics.

Human HDACs are grouped into classes based on 
their homology to yeast HDACs. HDAC inhibitors that 
target the different structures of Class I, II and IV HDACs 
are made up of hydroxamic acids, carboxylic acids, 
benzamides, epoxides and cyclic peptides (Delcuve et al. 
2012). The common mechanism of action for HDAC 
inhibitors is hyperacetylation of histones resulting in an 
open chromatin structure. The open chromatin structure is 
thought to allow better access for DNA-damaging therapies 
such as platinum chemotherapy, resulting in higher levels 
of apoptosis (Sato  et  al. 2006). DNA methyltransferase 
and HDAC inhibitors are synergistic in re-expression 
of epigenetically silenced genes (Cameron  et  al. 1999), 
therefore, combination therapies targeting epigenetic 
regulation of platinum resistance are of intense interest.

Falchook et al. (2013) assessed the safety and efficacy 
of combination DNMT inhibitor azacitidine, HDAC 
inhibitor valproic acid and carboplatin in a cohort of 32 
patients with treatment-resistant solid tumours, including 
10 platinum-resistant ovarian cancer patients. Among the 
patients with ovarian cancer, three (30%) achieved minor 
partial responses or stable disease lasting ≥4 months. Dose 
delays and reductions due to adverse events, including 
grade ≥3 fatigue and neutropenia in the majority of 
patients, made assessment of the combination difficult. 
The authors concluded that lower continuous treatment 
doses and patient selection by methylation status warrants 
further follow-up studies.

DNA repair

Homologous recombination repair
Homologous recombination repair (HR) repairs double-
strand breaks that occur as a result of many DNA-
damaging insults including ionizing radiation and 
chemotherapy (Powell & Kachnic 2003). The mechanistic 
role of HR in platinum chemotherapy response is to repair 
double-strand DNA breaks that occur at sites of platinum 
crosslinks during DNA replication. BRCA1 and BRCA2 
are members of the (HR) repair pathway (Fig. 2) and have 
been associated with risk of developing HGSOC (reviewed 
in Powell & Kachnic 2003). The Cancer Genome Atlas 
network used integrated analysis of mRNA, miRNA, 
methylation and DNA copy number to determine that 
approximately 50% of HGSOC are HR deficient (Cancer 
Genome Atlas Research 2011), indicating that DNA repair 
deficiency is a key driver of HGSOC.

BRCA mutations
Germline mutations in BRCA1 and BRCA2 are the most 
established risk factor for HGSOC. The largest study of 
BRCA mutation incidence to date (n = 1001), reported 
14.1% of ovarian cancer patients have a germline BRCA 
mutation, with the highest incidence of 22.6% in HGSOC 
patients (Alsop et al. 2012). HR deficiency resulting from 
BRCA mutations leads to an accumulation of double-
strand breaks after platinum chemotherapy, which in 
turn causes increased apoptosis and platinum sensitivity. 
It is well established that BRCA mutation carriers with 
HGSOC are more sensitive to platinum chemotherapy 
regimes and have longer overall survival than non-carriers 
(Vencken  et  al. 2011, Alsop  et  al. 2012, Rudaitis  et  al. 
2014). Initially sensitive to platinum, BRCA mutation 
carriers eventually become resistant (Alsop et al. 2012) and 
attempts to inhibit other components of the HR pathway 
for further treatment have proven successful for some 
HGSOC patients, in particular, PARP inhibitors (reviewed 
in Scott et al. 2015).

PARP inhibitors are a synthetically lethal therapeutic 
cancers with DNA repair defects, particularly BRCA1 
or BRCA2 mutations. In HR-deficient tumours, PARP 
inhibition blocks a downstream DNA repair process, which 
triggers apoptosis. Olaparib, is the first PARP inhibitor to 
be approved in most countries as maintenance treatment 
for patients with platinum-sensitive, relapsed ovarian 
cancer and a germline or somatic BRCA1/2 mutation or as 
monotherapy for advanced ovarian cancer patients with a 
germline BRCA1/2 mutation (Pujade-Lauraine et al. 2017).
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BRCAness
In addition to germline BCRA mutations, somatic BRCA 
mutations occur in HGSOCs. Moschetta and colleagues 
recently reviewed studies reporting somatic BRCA 
mutations and concluded 5–7% of HGSOC contain 
somatic BRCA mutations (Moschetta  et  al. 2016). 
Hypermethylation of the BRCA1 promoter results in 
reduced expression of BRCA1 resulting in a HR-deficient 
phenotype in approximately 11% of HGSOCs (Geisler et al. 
2002, Patch  et  al. 2015). Similarly, amplification of 
EMSY, which encodes a BRCA2-binding partner, leads to 
impairment of BRCA2 function (Wilkerson  et  al. 2011). 
Collectively, somatic BRCA mutations, hypermethylation 
of BRCA1 promoter and EMSY amplification all result 
in HGSOC phenotypes and platinum chemotherapy 
response similar to germline BRCA mutation carriers and 
are referred to as HGSOC with ‘BRCAness’.

In recent times, the BRCA ‘wild-type’ HGSOC 
subtype has not received as much attention as the BRCA 
mutant/BRCAness subtype with HR deficiency. The BRCA 
‘wild-type’ or HR proficient subtype are more likely to 
be platinum resistant; therefore, it is a strong clinical 
subgroup to target for further development of platinum 
resistance biomarkers.

Intricate biological processes such as DNA repair 
rarely work in isolation. Most often, many of the proteins 
associated with a particular pathway have overlapping 
roles in multiple pathways and each process interacts with 
other similar processes. DNA repair is no exception, of the 
6 DNA repair pathways HR interacts most closely with 
nucleotide excision repair (NER), the process responsible 
for recognizing platinum-induced DNA crosslinks as bulky 
adducts before double-strand breaks occur.

Nucleotide excision repair
The NER pathway consists of approximately 30 proteins 
that remove helix-distorting lesions such as platinum 
chemotherapy crosslinks via a step-wise process: damage 
recognition, unwinding of the DNA locally around damage, 
incision of damaged DNA by endonucleases and DNA 
resynthesis and ligation (Costa et al. 2003) (Fig. 2). There 
are two branches of damage recognition that converge on 
a common repair pathway: transcription coupled repair 
(TCR) and global genome repair (GGR). TCR is linked 
to active gene transcription and is initiated when RNA 
polymerase is stalled at DNA damage during transcription. 
GGR however is not dependent on transcription and scans 

Figure 2
Nucleotide Excision Repair and Homologous Recombination Pathways. (A) Nucleotide excision repair recognises platinum-induced interstrand and 
intrastrand crosslinks and a co-ordinated process of DNA unwinding, incision, excision and synthesis follows. The process can result in a DNA double-
strand break, which is recognised by homologous recombination repair. (B) Homologous recombination repair recognises double-strand breaks and 
initiates a process of single strand DNA formation, coating, filament formation, strand invasion and a final step of DNA synthesis.
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the entire genome including both active and silent genes 
and non-transcribed regions using DNA damage-binding 
proteins XPC and UV-DDB (DDB1 and DDB2) (Nouspikel 
2009). Early studies found an association between higher 
expression of NER mRNA (Dabholkar  et  al. 1992, 1994) 
before treatment with platinum resistance in ovarian 
cancer. This suggested over-active NER repairs platinum-
induced DNA crosslinks before double-strand breaks 
can occur, indicating that NER expression could be a 

predictive biomarker of platinum response. This area has 
received little interest in the last 10  years, possibly due 
to the seemingly opposite discovery that when quantified 
after platinum chemotherapy, low NER expression has 
been associated with platinum resistance (Stevens  et  al. 
2005, Barakat et al. 2010).

Recognition of excessive DNA crosslinks by the GGR 
portion of the NER pathway triggers apoptosis rather 
than attempting to repair the damage (Stoyanova  et  al. 

Figure 4
Therapeutic targets: epigenetic and immune 
biomarkers of HGSOC platinum chemotherapy 
resistance. Potential nuclear therapeutic targets/
biomakers for platinum-resistant HGSOC are 
histone deactylases (HDA), DNA methylation (mC) 
and high C(C>T)C mutation load across the 
genome. Potential cell surface for platinum-
resistant HGSOC are tumour-specific antigens and 
PDL-1 (PD-1 on T-cells).

Figure 3
The role of DNA repair deficiencies in high-grade serous ovarian cancer (HGSOC) platinum chemotherapy resistance. (A) NER-and HR-proficient  
(NER+ and HR+) HGSOC is hypothesised to be sensitive to platinum chemotherapy if apoptosis is greater than DNA repair. (B) NER-deficient (NER−) and 
HR+ HGSOC is hypothesised to be platinum resistant due to lack of platinum cross-link recognition by NER. (C) NER+ and HR-deficient (HR−) HGSOC is 
hypothesised to be platinum sensitive due to NER triggering apoptosis and DNA double-strand breaks that are not repaired by HR. (D) NER− and 
HR− HGSOC is hypothesised to be platinum resistant due to lack of NER triggered apoptosis and a high mutation load.
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2009) (Fig. 3). Therefore, lack of induction of GGR after 
platinum chemotherapy results in a reduction of both 
cross-link repair by the NER pathway and apoptotic 
signalling, ultimately leading to limited or no response to 
platinum treatment. Lower levels of NER post-platinum 
chemotherapy have been confirmed in ovarian cancer 
studies including low DDB2 in platinum-resistant ovarian 
cancer cell lines (Barakat  et  al. 2010) and low XPA in 
platinum-resistant ovarian cancer tumours (Barakat et al. 
2010). In addition, low NER and platinum resistance has 
been reported for several other cancer types including 
non-small-cell lung cancer, gastric cancer, colorectal 
cancer and melanoma (Bowden  et  al. 2010, 2013). NER 
proteins are a promising area in biomarker development 
for platinum resistance for use in real-time clinical settings 
after platinum treatment has concluded.

NER recognizes DNA crosslinks caused by platinum 
chemotherapy and converts the cross-link to a DNA double-
strand break. HR is then required to repair the double-
strand break to prevent apoptosis (Stergiou  et  al. 2011) 
(Fig. 3). For HGSOC with BRCA mutations or ‘BRCAness’ 
HR deficiency is already present. If deficient NER is also 
present, it may be the cause of the eventual platinum 
resistance seen in HR-deficient HGSOC. In addition, if 
deficient NER is not processing the DNA crosslinks into 
double-strand breaks, there is no requirement for HR to 
repair double-strand DNA breaks. Therefore, targeting HR 
deficiency with PARP inhibitors is ineffective, this requires 
further investigation but may be the underlying cause of 
PARPi failure in some patients (Fig. 3).

Platinum-resistant HGSOC with functional NER and 
HR deficiency is likely to be sensitive to trabectedin, 
a transcription factor inhibitor (Schoffski  et  al. 2011). 

Trabectedin shows decreased activity (2- to 8-fold) in 
NER-deficient cell lines, while cells deficient in HR are 
approximately 100 times more sensitive to the drug, 
indicating that trabectedin relies on DNA double-strand 
breaks (Herrero et al. 2006).

More studies into the role of NER and HR in HGSOC 
platinum resistance are required to understand the 
relationship and potentially develop ways to subtype 
HGSOC based on NER and HR proficiency.

Mutation load

The relationship between DNA repair dysfunction and 
increased mutation load across the cancer genome 
is well established (Alexandrov  et  al. 2013, Le  et  al. 
2015). Ovarian cancer has a lower mutation load than 
cancer types such as melanoma and non-small-cell lung 
cancer, which have a high mutation load as a result 
of environmental and chemical carcinogen exposure 
(Alexandrov  et  al. 2013). The cancer types with high 
mutational load have historically been difficult to 
treat, but have shown exceptional response to immune 
checkpoint inhibitors (Le et al. 2015, Antonia et al. 2016, 
Ugurel et al. 2017). Patch and coworkers recently reported 
a significant C(C>T)C platinum chemotherapy imprint 
in the genome of platinum-resistant HGSOC (Patch et al. 
2015). The platinum chemotherapy imprint is similar 
to the C>T UV-fingerprint consistently seen across the 
melanoma genome (Pleasance et al. 2010). Both platinum 
chemotherapy and UV-light DNA damage require NER and 
HR to either repair the damage or trigger apoptosis. If only 
one of the pathways is functional, it may compensate for 
the other when challenged with platinum chemotherapy. 

Table 2 Biomarkers for alternative treatment for platinum-resistant HGSOC.

Biomarkers of platinum-resistant 
HGSOC

 
Alternative treatment

Evidence of response to 
alternative treatment

 
References

High mutation load Checkpoint inhibitor 
Immunotherapy (anti-CTLA4  

and anti-PD1)

Melanoma
NSCLCs
Mismatch repair 

deficient colorectal 
cancer

Takai et al. (2014), Tang et al. 
(2014), Thiery & Sleeman 
(2006)

CD8, PD-1 and PD-L1-expressing 
cells inside tumours

Checkpoint inhibitor 
Immunotherapy (anti-CTLA4  

and anti-PD1)

Melanoma Tumeh et al. (2014)

Low or absent NER and BRCA 
mutation/BRCAness

PARP inhibitors Ovarian cancer Reviewed in Reles et al. (2001)

Normal NER and and BRCA 
mutation/BRCAness

Trabectidin Sarcoma Stoyanova et al. (2009)

Methylation marker panel 
 
 

Azacytidine and carboplatin
Azacitidine, valporic acid (HDAC 

inhibitor) and carboplatin 

Ovarian cancer
Ovarian, prostate, 

cervical and colorectal 
cancer

Nouspikel (2009)
Prasetyanti & Medema (2017)  
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This further supports the need for both NER and HR to 
be further developed as dual biomarkers of platinum 
resistance in HGSOC.

The increase in mutation load in platinum-resistant 
HGSOC is likely to be a strong predictor of response to 
immune checkpoint inhibitors, due to the increase in 
cancer-specific antigens (Fig.  4). Therefore, platinum 
resistance itself is a potential biomarker for predicting 
HGSOC responders to checkpoint inhibition. However, it 
has become clear from extensive clinical trial follow-up 
in melanoma that mutation load alone is not the 
strongest predictor of durable response to checkpoint 
inhibition. The extent and subtype of tumour-infiltrating 
lymphocytes (TILs), immune cell subsets in peripheral 
blood and the extent of disease are also strong predictors 
of response.

Immune cell subsets

The recent advancement of immune checkpoint 
inhibitors such as anti-PD1 (pembrolizumab, nivolumab 
and avelumab) and anti-CTLA4 (ipilumimab) monoclonal 
antibodies has led to biomarker development in relation 
to TILs (Tumeh et al. 2014) and circulating immune cell 
subsets (Huang et al. 2017). Pretreatment tumour samples 
obtained from patients that responded to anti-PD1 
immunotherapy had higher numbers of CD8+, PD-1 and 
PD-L1-expressing cells at the invasive tumour margin and 
inside tumours (Tumeh et al. 2014). Several studies have 
performed similar analysis in HGSOC and found higher 
levels of CD8+ TILs in stromal tissue were associated with 
better overall survival. Lo et al. (2017) reported increased 
densities of CD3+ and CD8+ and PD-1+ T-cells in HGSOC 
after platinum chemotherapy. However, the increase in 

these T-cell subtypes was dependent on presence before 
treatment, indicating that platinum chemotherapy can 
induce a desired immune response, but only if the required 
T-cells are already present in the tumour (Tumeh  et  al. 
2014). It is feasible that TILs present in platinum-resistant 
HGSOC before and after treatment could be used to 
predict response to checkpoint inhibitors (Fig. 4).

Conclusion

There is a suite of approved cancer therapeutics, with 
established safety and toxicity profiles, that should be 
assessed in the immediate future based on biomarkers 
of platinum-resistant HGSOC (Table  2). Several early 
phase clinical trials using methylation, HDAC and 
immunotherapy agents have already reported promising 
results (Table  3). Retrospective analysis of specific 
biomarkers in patient cohorts that received these therapies 
may shine a light on why a good response occurred in 
only a subset of patients, which will inform a new round 
of trials with selected patient populations.

Patient selection, dose selection, treatment timing 
and different combinations of the therapies listed in 
Table 2 will also be key to identifying effective treatments. 
Rather than focussing on single proteins, pathways or 
biological processes, as new therapeutics are developed 
the highly mutated, immunogenic and epigenetically 
altered platinum-resistant HGSOC phenotype should be 
exploited to overcome treatment resistance.
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Table 3 Clinical trials using agents to target high-grade serous ovarian cancer platinum resistance biomarkers.

Agents Biomarker target Outcomes Reference

Decitabine, repeated low-dose 
followed by cisplatin

DNA methylation Phase 1: Minimal adverse events Fang et al. (2010)

Decitabine, repeated low-dose 
followed by cisplatin

DNA methylation Phase 2: 12/17 platinum-resistant 
patients had CR, PR or SD

 Matei et al. 
(2011, 2012)

Azacitdine and carboplatin DNA methylation Phase 1b/2a: ORR 4/29 patients (1 CR, 3 
PR, 10 SD), median survival of 
10 months

Fu et al. (2011)

Azacitidine, valproic acid and 
carboplatin

DNA methylation and histone 
deactylation

Phase 2: 3/10 patients had PR or SD Falchook et al. 
(2013)

Avelumab (anti-PD-L1 immune 
checkpoint inhibitor)

High mutation load (heavy 
platinum pretreatment)

Phase 1b: 41/75 patients had PR or SD Disis et al. (2015)

Pembrolizumab (anti-PD-1 
immune checkpoint 
inhibitor)

Expression of PD-1 and High 
mutation load (heavy platinum 
pretreatment)

Phase 1b: 9/26 patients has CR, PR or SD Varga et al. 
(2015)

Nivolumab (anti-PD-1 immune 
checkpoint inhibitor)

High mutation load (heavy 
platinum pretreatment)

Phase 1b: 9/20 CR, PR or SD Hamanishi et al. 
(2015)
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