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Abstract

We present novel families of wavelets and associated filterbanks for the analysis and repre-
sentation of functions defined on circulant graphs. In this work, we leverage the inherent
vanishing moment property of the circulant graph Laplacian operator, and by extension,
the e-graph Laplacian, which is established as a parameterization of the former with
respect to the degree per node, for the design of vertex-localized and critically-sampled
higher-order graph (e-)spline wavelet filterbanks, which can reproduce and annihilate
classes of (exponential) polynomial signals on circulant graphs. In addition, we discuss
similarities and analogies of the detected properties and resulting constructions with
splines and spline wavelets in the Euclidean domain. Ultimately, we consider general-
izations to arbitrary graphs in the form of graph approximations, with focus on graph
product decompositions. In particular, we proceed to show how the use of graph products
facilitates a multi-dimensional extension of the proposed constructions and properties.

Keywords: graph signal processing, graph wavelet, sparse representation, circulant
graphs, splines

1. Introduction

There exists a certain fascination with the idea of transferring fundamental signal
processing insights to the higher-dimensional domain of graphs and implications thereof.
Concurrently, the breadth of emerging applications, in light of the availability of large
complex data, arising from i.a. social or biological information structures, has created a
need for advanced representation and processing techniques.

Notably, the appeal of operating with respect to data encapsulated within the higher-
dimensional dependency structures of a graph lies not only in the potential for superior
data processing for real-world applications, but also becomes apparent in the develop-
ment of a corresponding mathematical framework, which seeks to extend conventional
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signal processing properties to the graph domain, thus naturally challenging the struc-
tural confinement of existing frameworks and posing intriguing new questions.

The breadth of contributions towards the aforementioned problem statement encompass
the novel field of Graph Signal Processing (GSP), having predominantly evolved from
two different model assumptions: the collective of works originating from spectral graph
theory ([1], [2]), with the graph Laplacian matrix as the central operator on the one hand,
and the more generalized setting with focus on the graph adjacency matrix, expanding
on concepts from i.a. algebraic signal processing [3], on the other hand.

The notion of wavelets on graphs, in particular, presents a promising avenue to facili-
tate sophisticated processing of complex data, which is captured in the graph signal and
underlying graph, beyond classical wavelet theory, due to the potential to operate with
respect to the inherent geometry of the data in a more localised manner. A range of
designs have been proposed, including the diffusion wavelet [4], the biorthogonal and
perfect reconstruction filterbank on bipartite graphs ([5], [6]), and the spectral graph
wavelet [7], tailored to satisfy a set (or subset) of properties, which evolved from the
traditional domain, such as localization in the vertex or spectral graph domain, criti-
cal sampling and invertibility, along with notions of graph-specific downsampling and
graph-coarsening for a multiscale representation, as well as to facilitate generalizations
to arbitrary graphs, for applications such as image processing [1]. In particular, sparsity
on graphs via wavelet analysis would appear as a natural extension to its foundation
in the discrete-time domain, and some works have opened its discussion through topics
such as the wavelet coefficient decay at small scales of graph-regular signals [8] via the
spectral graph wavelet transform, the tight wavelet frame transform on graphs [9], as well
as the overcomplete Laplacian pyramid transform with a spline-like interpolation step
[10]. These approaches so far lacked a concrete graph wavelet design methodology which
targets the annihilation of graph signals, or, alternatively, the identification of classes of
graph signals which can be annihilated by existing constructions.

With the overall agenda to explore sparsity and sparse representations on circulant
graphs, we seek to build a bridge from the Euclidean to the graph domain traversing
the topics of graph spline wavelet theory and multi-dimensional signal processing on
graphs, while providing an intuition behind the emerging spline-like graph functions as
an underlying theme. The appeal of circulant graphs pertains to their convenient set
of properties such as Linear Shift Invariance (LSI)[11], which facilitate intuitive down-
sampling and shifting operations, as well as to their link with the traditional domain
of signal processing, where the Graph Fourier Transform (GFT) of a circulant graph is
a simple permutation of the DFT. Further, circulant matrices (and hence graphs) can
be efficiently stored as they are entirely characterized by only one row. Our main focus
lies on undirected circulant graphs, as the associated symmetry yields real-valued filters,
however, as will be revealed in Sect. 3, most properties can be generalized to directed
circulant graphs, reaffirming the established similarities with classical splines.

In this work, we present novel families of higher-order graph (e-)spline wavelets and

associated filterbanks on circulant graphs, inspired by the critically sampled ‘spline-like’

graph wavelet filterbank by Ekambaram et al. [12] and the classical (e-)spline wavelets

([13],[14]), which can reproduce and annihilate certain classes of graph signals. By lever-

aging the vanishing moment property of the e-graph Laplacian matrix, as a generalization
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of the classical graph Laplacian, we discover (e-)spline-like functions, which bear similar
properties to the traditional cases ([15], [14]), and give rise to associated wavelet and
filterbank constructions, a subset of which we previously introduced in ([16], [17]). In
particular, we identify the classes of smooth graph signals, which can be annihilated on
the vertices of circulant graphs up to a graph-dependent border effect, as (exponential)
polynomials.

We eventually provide generalizations to the developed theory by proposing to approxi-
mate arbitrary graphs as either communities of partitioned circulant sub-graphs or graph
(Kronecker) products of circulant graphs, the latter of which serve as the building blocks
of a multi-dimensional extension. Here, we resort to employing graph products to both
generalize wavelet analysis to arbitrary graphs and facilitate lower-dimensional process-
ing, while inducing and /or preserving sparsity where applicable, and proceed to introduce
multi-dimensional separable and non-separable graph wavelet transforms.

Contributions. We list the main original contributions in this paper as follows:

1. Novel families of higher-order circulant graph spline wavelets, which extend tradi-
tional vanishing moment properties to the graph domain, and associated filterbanks

2. Novel families of higher-order circulant graph e-spline wavelets, which extend van-
ishing exponential moment properties to the graph domain, and associated filter-
banks

3. Multi-dimensional separable and non-separable graph spline wavelet transforms,
which generalize properties and operations to arbitrary graphs through graph prod-
ucts

Related Work. To the best of our knowledge, there do not exist comparable graph
wavelet constructions on circulant graphs with the aforementioned reproduction and
annihilation properties. While established graph wavelet constructions, such as the spec-
tral or tight graph wavelet ([7], [9]) may achieve sufficiently sparse representations in
the graph wavelet domain, i.a. for appropriate design choices of the associated wavelet
kernel, there is no concrete (or intuitive) theory on what types of graph signals can
be annihilated, beyond the class of piecewise-constant signals, in particular, using the
properties and connectivity of the graph at hand. Sparsity on graphs has been more
specifically addressed in dictionary learning on graphs [18], which is concerned with the
problem of identifying an (overcomplete) basis D under which a given graph signal y can
be sparsely represented as y = Dx. Furthermore, multi-dimensional wavelet analysis has
been considered for bipartite graphs as the operation with respect to separate edge sets
on the same vertex set within a bipartite subgraph decomposition [5]. In our proposed
framework for graph approximation and wavelet analysis via graph product decomposi-
tion, the notion of multiple dimensions arises from the graph product operation itself,
with each factor constituting a separate dimension. The present work on graph spline
wavelet theory further provides the foundation for the sparse graph signal sampling and
graph coarsening framework, developed in a complementary manuscript [19)].

This paper is organised as follows: we introduce the notation and background theory

in Section 2, and proceed to discuss the collective of derived graph wavelet families as

well as set them into the context of classical spline theory in Section 3. Subsequently,

in Section 4, we expand the framework through the introduction of graph products. In
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Section 5, we present concrete examples illustrating the application of derived graph
wavelet transforms in both an artificial and data-driven setting, before concluding with
an outlook on future work in Section 6. The appendix contains all proofs not included
in the main text.

2. Preliminaries

2.1. Notation

We denote vectors with boldfaced lower case letters x and matrices with boldfaced up-

percase letters A. Let 1y and Oy define the constant column vectors of length NV
B

X
with entries of 1’s and 0’s respectively, and [ BB} be the vector with samples of x
y

at positions in index set B and y at positions in complement BB7 with partitions x?

and yBG possibly interlacing. The vector and matrix norms, we will most frequently
make use of, are the lp-pseudo-norm, denoted with ||x|lo = #{i : =; # 0}, the lo-

1/2
norm, given by ||x||2 = (Zf\;l |xz|2) and the Frobenius-norm of a matrix A, given

by [|Allr = \/2111 > i=1 14 4]?. In addition, we define the Frobenius inner product

between matrices A and B as (A, B)r = tr(ATB). Given a matrix L and the sets of in-
dices A and B, the notation L(A, B) indicates that the corresponding rows and columns
in L are chosen. At last, we note that, contrary to classical wavelet theory, we reverse
the notation of dual pairs, by denoting the synthesis filters with (G, I:I) and the analysis
filters with (G, H).

2.2. GSP Theory: Circulant Graphs

For the ensuing discussion, we consider graphs, which are undirected, connected, (un-
)weighted, and do not contain any self-loops. Let a graph G = (V| E) be defined by a
set V = {0, ..., N — 1} of vertices, with cardinality |V| = N, and a set E of edges. The
connectivity of G is given via its adjacency matrix A, with A; ; > 0 if there is an edge
between nodes 7 and j, and A; ; = 0 otherwise, and its degree matrix D, which is diago-
nal with entries D; ; = Zj A; ;. The non-normalized graph Laplacian matrix L=D — A

of G has a complete set of orthonormal eigenvectors {ul}lj\; ', with corresponding non-
negative eigenvalues 0 = A\g < A1 < --- < Ay_1.

Circulant graphs represent a special class of graphs as they reveal a set of convenient
properties, which can be used for the preservation of traditional signal processing con-
cepts and operations (see Fig. 1 for examples). In particular, a circulant graph G is
defined via a generating set S = {s1,...,sn}, with 0 < s < N/2, whose elements indi-
cate the existence of an edge between node pairs (i, (i &= sg)n), Vsi € S, where () is the
mod N operation; more intuitively, a graph is circulant if its associated graph Laplacian
is a circulant matrix under a particular node labelling [11]. Furthermore, we can define
the symmetric, circulant graph Laplacian matrix L, with first row [lp ... Iy_1], via its
representer polynomial {(z) = Zﬁgl l;z* with 277 = 2zN=J. In particular, I(z) gives rise
to the eigenvalues of L, as ordered by the DFT-matrix, at frequency locations Q%k via
1(e*¥") = A, k=0,..,N —1[20]. Let the M-connected ring graph G, as part of a
sub-class of circulant graphs, be defined via the generating set S = {1, ..., M}, such that
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Figure 1: Circulant Graphs with generating sets S = {1}, S = {1,2}, and S = {1, 3} (f. left).

there exists an edge between nodes i and j, if (i — j)y < M is satisfied. The associated
circulant graph Laplacian matrix is banded of bandwidth M. Another relevant class is
that of bipartite graphs, which are characterized by a vertex set V= X UY consisting
of two disjoint sets X and Y, such that no two vertices within the same set are adjacent.
In GSP theory, a graph signal x is traditionally a real-valued scalar function defined
on the vertices of a graph G, with sample value z(¢) at node 4, and can be represented
as the vector x € R [1]; in this work, we extend this definition to include complex-
valued graph signals x € CV, for illustration purposes, while maintaining real weights
between connections on G. The Graph Fourier Transform (GFT) % of x defined on G,
is the representation in terms of the graph Laplacian eigenbasis U = [ug| - - - Jluy_1] such
that x = Ufx, where H denotes the Hermitian transpose, extending the concept of the
Fourier transform to the graph domain [1]. We note that in case of a circulant graph,
the GFT can be represented by the traditional DFT, up to a permutation, as circulant
matrices are diagonalisable by the DFT-matrix.

Due to their regularity, circulant graphs lend themselves for defining meaningful down-
sampling operations. As established by Ekambaram et al. in [11], one can downsample
a given graph signal by 2 on the vertices of G with respect to any element s € S. For
simplicity, we resort to the simple downsampling operation with respect to the outmost
cycle (s; = 1) of a given circulant G, i.e. skipping every other labelled node, assuming
that the graph at hand is connected such that s; € S, and N = 2" for n € N. In ad-
dition, the same authors introduced a set of vertex-domain localized filters constituting
the ‘spline-like’ graph wavelet filterbank on circulant graphs ([12],[21]), which satisfies
critical sampling and perfect reconstruction properties:

Theorem ([12]). The set of low-and high-pass filters, defined on an undirected connected
circulant graph with adjacency matriz A and degree d per node, take (weighted) averages
and differences with respect to meighboring nodes at 1-hop distances of a given graph
stgnal, and can be expressed as:

Hpp = % (IN + j;) (1)
o1 (10— 2) .

The filterbank is critically sampled and invertible as long as at least one node retains the
low-pass component, while the complementary set of nodes retains the high-pass compo-
nents.
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Multiscale analysis can be conducted by iterating the result on the respective down-
sampled low-pass branches, where corresponding coarsened graphs are obtained through
suitable reconnection strategies [21].

2.2.1. Downsampling and Reconnection on Circulant Graphs

Succeeding the definition of a wavelet transform on a circulant graph, we examine
the problem of identifying suitable coarsened graph(s) on the vertices of which the down-
sampled low-and high-pass-representations of the original graph signal can be defined, so
as to facilitate a multiresolution decomposition in the graph domain. While a downsam-
pling pattern can be easily identified, it is not straight-forward to determine if or how
to reconnect the reduced set of vertices. In general, the set of desired properties of a
coarsened graph, comprising closure, preservation of the initial connectivity and spectral
characterisation of the graph and/or graph type, among others, (see [10] for a more de-
tailed review), is rather difficult to satisfy entirely, and priorities need to be set in keeping
with the overall goal to be achieved. Since we are interested in a sparse graph wavelet
representation, and the obtained sparsity K may increase with the bandwidth M of the
adjacency matrix, as will be clarified later on, we favor a graph reconnection which re-
duces or maintains M when conducting multiresolution analysis. Kron-reduction [22] is a
commonly used method, which employs a sub-matrix approximation scheme, thus taking
into account the entire given graph Laplacian matrix for a more accurate dimensionality-
reduced graph-representation, yet it often leads to denser graphs (and thus an increased
matrix bandwidth) due to its maximum reconnection. In particular, given the graph
Laplacian matrix L and an index set V,, of retained nodes, Kron-reduction evaluates the
graph-Laplacian matrix L of the coarsened graph as

L=L(V,,Va) — L(V,, VOLWVE vEHL(v,, vHT.

In the traditional domain, the downsampled signal samples are ‘reconnected’ through a
simple stacking operation, whose graph-analogy on a simple cycle would correspond to the
reconnection of 2-hop neighbours, yet a straight-forward graph generalization is hindered
by the overall complex connectivity of a graph, making it unclear to which extent one
generally needs to reconnect downsampled nodes. For a multilevel sparse graph wavelet
representation, we therefore resort to two variations, both of which preserve circularity
with little or no reconnection, to determine the coarse graph G: (1) we do not reconnect
nodes, and only keep existing edges (with exception of maintaining s = 1 € S to ensure
that G is connected), (2) we (re-)connect a subset of nodes, such that G is identical in
structure to the initial G, i.e. it has the same generating set .S.

We note that while the former approach leads to the sparsest possible solution, as given
an M-connected (banded) circulant graph, we continuously remove edges resulting from
odd elements in the generating set, reducing its band, it fails to preserve the global
connectivity of the initial graph, which for the objective at hand, we deem of secondary
importance. In addition, it produces the trivial simple cycle for bipartite circulant graphs.
The latter approach, while leading to a slightly less sparse representation due to the
constant bandwidth, reconnects a subset of nodes, which were initially connected via a
path, and preserves connectivity through an exact replication in lower dimension. In
the complementary work on sampling theory on graphs ([19], Lemma 4.2), it is further
proved that the latter approach specifically preserves spectral graph information.
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3. Families of Spline Wavelets on Circulant Graphs

The concept of graph-specific smoothness of a signal x on a graph G with graph
Laplacian matrix L has been introduced via the graph Laplacian quadratic form Sp(x) =
xTLx, and successfully leveraged in i.a. denoising schemes [1], however, it provides
little information on the actual sparsity of graph signals, as measured per the [g-norm
||Lx||o. Therefore, in this work, we choose to adhere to the standard, graph-independent,
notion of annihilation of polynomial or exponential signals (for a given labelling), when
considering compressibility of graph signals.

In classical signal processing, a high-pass filter h with taps hj is known to have N
vanishing moments when it is orthogonal with respect to the subspace of polynomials of
up to degree N — 1, that is when

My, :thk” =0, for n=0,...,.N—1,
keZ

where m,, is the n-th order moment of h. Coincidentally, a filter H(z) with N vanishing
moments is characterized by N zeros at z = 1. In [4], this property is extended to graphs
and manifolds by defining the number of vanishing moments of a scaling function as the
number of eigenfunctions of the given diffusion operator T to which the former is orthog-
onal, up to a precision measure. Further, in [23] the eigenvectors of the graph Laplacian
are selected as the basis for ‘generalized vanishing moments’ on graphs. However, this
definition of vanishing moments on graphs does not accommodate equivalencies between
the graph and traditional domain, when considering for instance discrete periodic (time)
signals on a simple cycle.

Contrary to the above, we therefore choose to maintain the traditional definition through-
out this work for purposes of illustrating analogies to our developed spline wavelet theory
on circulant graphs, yet will briefly revisit this interpretation when discussing the prop-
erties and implications of the novel e-graph Laplacian operator.

Definition 3.1. A graph signal p € RY defined on the vertices of a graph G is (piece-
wise) polynomial if its labelled sequence of sample values, with value p(¢) at node ¢, is the
discrete, vectorized version of a standard (piecewise) polynomial, such that p = ZQK:1 pjo
1it,.¢,,1), where t; = 0 and tx 1 = N, with pieces p;(t) = Z(?:O aq td, j=1,.., K, for
t € Z=Y, coefficients aq; € R, and maximum degree D = deg(p;(t)).

In the following discussion, we develop a set of novel Graph Wavelet Transform (GWT)
designs, which are localised in the vertex domain, critically sampled, invertible, and
finally, tailored to the annihilation of polynomial graph signals, the foundation of which
is laid by the ensuing result:

Lemma 3.1. For an undirected, circulant graph G = (V, E) of dimension N, the asso-
ciated representer polynomial 1(z) = lg + Zf\il l;i(2* + 27%) of graph Laplacian matriz L,
with first row [lg Iy la ... 3 l1], has two vanishing moments. Therefore, the operator
L annihilates polynomial graph signals of up to degree D = 1, subject to a border effect
determined by the bandwidth M of L, provided 2M << N.



Proof. The representer polynomial of L with degree d = vail 2d; per node and sym-
metric weights d; = A; (i4;),, can be expressed as:

M
(2) = (—dyz ™ — . —diz7 td—diz— .. —dpy2™) =) di(2' = 1)(z7" = 1),
i=1

whereby factors are divisible by (2! — 1) respectively using the equality 2" — 1 =
(2 —1)(1 + 2+ ... + 2"1), thus proving that the matrix L has two vanishing moments.
Therefore, for a sufficiently small M with respect to the dimension NV of the graph G, or
in other words, if the adjacency matrix of G is a symmetric, banded circulant matrix of
bandwidth M, the corresponding L annihilates linear polynomial graph signals on G' up
to a boundary effect. O

Given that L is circulant, we can generalize this property by considering L*, k € N,
which has 2k vanishing moments due to the equivalency between polynomial and circulant
matrix multiplication. In general, we observe that for an arbitrary graph G, whose graph
Laplacian matrix L has rows of the above form, we may achieve similar annihilation, yet
this property is not carried over to higher order k. Following the interpretation of the
graph Laplacian matrix as a high-pass filter, this insight gives rise to a new range of
graph wavelet filterbanks, whose high-pass filters can annihilate higher-order polynomial
graph signals for a sparse graph wavelet domain representation, as we will demonstrate
in the next sections.

3.1. Graph Spline Wavelets

We begin by showing that the ‘spline-like’ graph wavelet transform (see Eqns. (1)-
(2)) can be generalized to higher order by raising its filters to the k-th power, thereby
incorporating the previously detected vanishing moment property:

Theorem 3.1. Given the undirected, and connected circulant graph G = (V, E) of di-
mension N, with adjacency matriz A and degree d per node, we define the higher-order
graph-spline wavelet transform (HGSWT), composed of the low-and high-pass filters

1 A\"
Hip = ok (IN + d) (3)

1 AN

whose associated high-pass representer polynomial Hyp(z) has 2k vanishing moments.
This filterbank is invertible for any downsampling pattern, as long as at least one node
retains the low-pass component, while the complementary set of nodes retains the high-
pass components.

Proof. See Appendix A.1.

In particular, given a graph signal p € RY defined on G, the HGSWT yields

- 1 1 1 - 1 -
p= <2(IN +K)Hrp + 5(11\7 - K)HHP) p= i(IN +K)PrLp + i(IN —K)bup
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Figure 2: Localization of the HGSWT filters for £ = 2 in the graph vertex domain for graph G with
S = {1,2}: shown at vertex v = 5 € V on G (left), and the corresponding graph filter functions at
alternate vertices.

where K is a diagonal sampling matrix, with K;; =1ati=0,2,...., N—2and K; ; = -1
otherwise, i.e. we downsample w.r.t. s =1 € § and retain even-numbered nodes. The
resulting signals prp, pgp € RV represent low-and high-pass versions of p on G within
a k-hop local neighborhood N (i, k),Vi € V. The higher the degree of the filterbank, the
higher the number of vanishing moments, and the less localized it becomes in the vertex
domain. In Figure 2, the low-and high-pass graph filter functions of the HGSWT are
plotted for £ = 2 and furthermore the spread in the vertex domain is illustrated for a
sample circulant graph.

A bipartite circulant graph G is characterized by a generating set S which contains only
odd elements s;, € S for even dimension N, with the simple cycle S = {1} as a natural
example; we note the following interesting property of the HGSWT, when G is such:

Corollary 3.1. When G is an undirected, circulant, bipartite graph, with adjacency
matriz A of bandwidth M, the polynomial representation Hypp(z) of the low-pass filter
Hyp in Eq. (3) can reproduce polynomial graph signals up to degree 2k — 1, subject to a
border effect determined by the bandwidth Mk of Hyp, provided 2Mk << N.

Proof. Similarly, as in Lemma 3.1, we can express the representer polynomial as

1
Hpp(z) = W(sz*M totdiz b d b diz o dy ™R

1 i —i
= | 54 > di(z" +1)(z7" 4+ 1)

1<i<M,i€2Z++1

and note that the RHS factors (z 4 1)*(27! + 1)¥, since (2* + 1) has a root at z = —1
only for i € 2Z + 1. According to the Strang-Fix condition ([24], [25]), this is necessary
and sufficient for ensuring the reproduction of polynomials. O

It becomes evident that our use of the spline-wavelet terminology is well-founded, since
in the case of bipartite circulant graphs the polynomial reproduction property can be
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generalised to higher order k, and graph filters (3)-(4) respectively reproduce and anni-
hilate polynomial graph signals up to degree n = 2k-1, bridging the gap to the traditional
domain. We will elaborate more thoroughly on similarities with the classical spline and
spline wavelets in Sect. 3.3.

Further, the matrix Q = D + A, chosen as the low-pass filter in present constructions,
is also known as the signless Laplacian and has been studied for its spectral properties
[26]. For a connected graph, Q is a positive semi-definite matrix, whose smallest (simple)
eigenvalue is 0 if and only if the graph is bipartite; its multiplicity is further equal to the
number of connected bipartite components [27]. A more generalized form of this result
has been independently derived in Cor. 3.3 of Sect. 3.2.

In particular, the characteristic polynomials, i.e. the eigenvalues, of the signless and
traditional graph Laplacian are known to be the same for a bipartite graph. Notably,
the eigenvalues of the bipartite adjacency matrix are symmetric with respect to zero [2].
This is further illustrated within the derived reproduction property of Cor. 3.1 for cir-
culant bipartite graphs; here, the frequency parameters z = e and —2 = eM
k=0,...,N —1, as incorporated in the relation Hyp(—z) = Hyp(z), induce graph- ﬁlter
eigenvalues that are shifted by N/2 in their position within the DFT-ordered spectrum,
following the spectral folding A(—z) = —A(z) of the representer polynomial A(z) of the
adjacency matrix A.

3.2. Graph E-Spline Wavelets

Inspired by the generalized framework of cardinal exponential splines [14] in the
classical domain, we proceed to identify a new class of graph signals and graph wavelets
which maintain and extend these properties to the graph domain.

Definition 3.2. A complex exponential polynomial graph signal y € CV with parameter
a € R, is defined such that node j has sample value y(j) = p(j)e’®, for polynomial
p € RY of degree deg(p(t)).

In accordance with the definition of e-splines in the classical domain via a differential
operator, and our previous result on the graph Laplacian, we introduce the e-graph
Laplacian as a generalized graph difference operator:

Definition 3.3. Let G = (V, E) be an undirected, circulant graph with adjacency matrix
A and degree d = ZM 2d; per node with symmetric weights d; = A; 44y, Then the

parameterlsed e-graph Laplacian of G is given by L, =D, — A, with exponential degree
dy = Z 1 2d; cos(aj).

The standard graph Laplacian L can be therefore regarded as a special case of the e-
graph Laplacian L, for o = 0, however, with dy < d the matrix ceases to be positive
semi-definite otherwise.

Lemma 3.2. For an undirected, circulant gmph G = (V, E) of dimension N, the associ-
ated representer polynomial l~( )= lo + Zl 1 1;(2" +27%) of the e-graph Laplacian matriz
L., with first row [ZNO Lily . Il 1], has two vanishing exponential moments, i.e. the
operator Ly, annihilates complex exponential polynomial graph signals with exponent +ic
and deg(p(t)) = 0. Unless o = 2% for k € [0, N — 1], this is subject to a border effect
determined by the bandwidth M of L., provided 2M << N.
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Proof. Consider the representer polynomial [ (2) of Lq:

I(z) = Zde cos(aj) —dj(z? +277) = Zdj(l —e" (1 —e ") (—=27)

j=1

where we note that (1 — eT*@27!) is a factor of (1 — e*?®J27), which corresponds to two
exponential vanishing moments [14]. O

As we require the weights of a graph wavelet filter H to be symmetric and real-valued,
the construction of L, with polynomial factors (1 — e®z~1)(1 — e~"*z~1) ensures this.

The focus in this work is restricted to the class of complex exponential polynomial graph
signals of the form y(t) = p(t)e’®*, o € R, which can be represented by trigonometric
splines in the traditional domain, however, one can expand the framework by letting
a = —if,5 € R. In particular, this parameterization gives rise to real exponential
polynomials, which can be represented in terms of hyperbolic functions of the form
(cosh(Bt),sinh(ft)), thereby inducing the class of hyperbolic splines [14], with redefined
e-degree d = 22/[:1 2dy, cos(—ifk) = ;:[:1 2dy, cosh(Sk).

To provide an intuition behind the structure of the e-graph Laplacian, we make the
following remark:

Remark 3.1. The eigenvalues {)\j}é\]:_ol of a circulant matrix, and in particular of A

in Lemma 3.2, can be expressed as A\; = 224:1 2dy, cos (27;\]fj) , 7=0,.,N—-1. We
note that all circulant matrices have the same eigenbasis U. Hence, when we restrict
a = 2%3 and j € [0, N — 1], the nullspace of the corresponding e-graph Laplacian L.
consists of its j-th eigenvector u;, where u; represents a complex exponential graph
signal with a = 2% and deg(p(t)) = 0. In particular, we have d, = \;j, and for a = 0

this becomes the maximum eigenvalue cio = d = Amaz, Whose associated eigenvector is
the all-constant W4 = 1y, i.e. the nullspace of standard graph Laplacian L. This

facilitates the reinterpretation of the e-graph Laplacian as L, = A\; Iy — A, for oo = 2%

and j € [0, N —1], or more generally, (\;Ixy —A)u; = Oy, with L., representing the shift
of L by Aj —d = —\; toward annihilation of u;, where {\; };V;Ol denotes the spectrum of

L. Depending on eigenvalue multiplicities, the nullspace of Ly, is accordingly extended.

Revisiting our initial discussion on vanishing moments, it becomes evident that the an-
nihilation property of the e-graph Laplacian is related to the definition of vanishing
moments on graphs by Coifman et al. in [4], as the nullspace of the former consists of (a
subset of) its eigenvectors; however, we do not extend this definition up to a precision
metric, and note that our chosen operator is parametric. The significance of our approach
lies in the fact that annihilation is also local, and not restricted to the nullspace of the
operator L.. Even though we are mainly interested in properties pertaining to circulant
graphs, one may consider extending the idea of a ‘nullspace-shifted’ graph Laplacian
operator to all regular graphs, for which it is known that L and A share the same eigen-
basis [2], as well as arbitrary graphs, extending the classes of graph signals which can be
annihilated on their nodes.

In addition, while the ordered eigenvalues of L, are no longer nonnegative, their inter-
pretation as graph frequencies which order the corresponding eigenvectors in terms of
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the number of their oscillations (zero crossings) [1] remains valid, with the only differ-
ence that the graph frequency d — A; of L becomes the new zero or DC-frequency in
L, = (AIn — A). Further, the e-graph Laplacian quadratic form can be expressed as
Sea(x) = xTLox = (do — d)||x]|3 + xTLx = (do — d)||x]|3 4 Sa(x).

Based on these insights, we proceed to design a graph e-spline wavelet filterbank, fol-
lowing a similar line as the (higher-order) graph-spline wavelet filterbank. In order to
generalize the types of graph signals which can be reproduced and/or annihilated by a
GWT, we incorporate multiple parameters @ = (g, ...,ar) € RT via a simple circular
convolution of the graph filter functions, resulting in an invertible transform:

Theorem 3.2. The higher-order graph e-spline wavelet transform (HGESWT) on a
connected, undirected circulant graph G, is composed of the low-and high-pass filters

T k
Hor, =[] g (6T + %) (5)

T k
Hup, = H 2% <5nIN - 3) (6)

where A is the adjacency matriz, d the degree per mode and parameter 3, is given by
Bn = d“T" with dg, = ij:1 2d; cos(anj) and & = (ai,...,ar). Then the high-pass filter
annihilates complex exponential polynomials (of deg(p(t)) < k — 1) with exponent tic,
form=1,....,T. The transform is invertible for any downsampling pattern as long as the
eigenvalues v; of % satisfy |Bn| # |vil, ¢ = 0,..., N — 1, under either of the sufficient
conditions

(i) k € 2N, or

(i1) k € N and By, T such that Yy, f(vi) = [T-_1 (82 = 72)* > 0 or f(v;) < 0.

If parameters f3,, are such that B, = ~;, for up to T distinct values, the filterbank
continues to be invertible under the above as long as B, # 0 and at least ZZ;I m; low-

pass components are retained at nodes in set Vo such that {vyix(Va)YZ10Z™ (and,

if eigenvalue —v; exists, complement {V_lk(V(E)}if,f::fn‘) form linearly independent

sets, where my; is the multiplicity of v; and {vi; i}, are the eigenvectors respectively
associated with £v;.

Proof. See Appendix A.2.

The essential property of the above transform, which is captured in the proof, is that
invertibility is governed by the parameters 3,,. In particular, in the case where the chosen
Br coincide with the magnitude(s) of certain eigenvalues {7;}; of normalized adjacency
matrix %, a suitable downsampling pattern needs to be selected such that the eigenvec-
tors {v; }ik associated with {7;}; remain linearly independent after downsampling. It
is easily inferred that this can become challenging for certain graph topologies as well as
when the number T of such parameters 3, is large. In particular, circulant adjacency
matrices may exhibit large eigenvalue multiplicities as a result of increased graph connec-
tivity. For instance, the normalized adjacency matrix of an unweighted complete (and
hence circulant) graph of dimension N has v; = —é of multiplicity N — 1 and vpaz = 1,
12



which is simple. In this case, the transform is invertible for 8 = 1, but not for g = —é,
when downsampling is conducted w.r.t. s = 1 € S. This may be remedied i.a. by
introducing distinct edge weights.

We further note that the graph filter powers k may also be chosen to differ for each unique
factor, provided that the invertibility conditions remain satisfied. Moreover, Thm. 3.2
equivalently applies to real exponentlal polynomial signals with e-degree parameteriza-
tion of the form d;, = Zk 1 2dy cosh(ak), cosh(z) € [1 oo) Vz. In particular, for this
instance the 1nvert1b1hty conditions simplify and take the form of those in Thm. 3.1 due

to the property ‘ > 1> |y, j €0 N —1], facilitating a more convenient signal
analysis.

Further, one deduces that the HGESWT of Thm. 3.2 converges to the HGSWT' of
Thm. 3.1 2 for « — 0 and § = %" — 1, in which case the conditions on invertibility
are relaxed, and, as a consequence of this structural similarity, one can detect similar

reproduction properties for circulant bipartite graphs as in Cor. 3.1:

Corollary 3.2. Let G = (V, E) be an undirected, bipartite circulant graph with adjacency
matriz A of bandwidth M, and e-degree d,. Then the low-pass filter H;p, of Eq. (5)
reproduces complex exponential polynomial graph signals y with exponent tia, up to a
border effect determined by the bandwidth Mk of Hyp, , provided 2Mk << N.

Proof. The representer polynomial Hyp_(z) is of the form

M
(dpz™ + . 4+ dyz ' + Zde cos(aj) + dyzt + ... + dpr2M)E
j=1

Hpp, (2) =

(2d)

k

M
%4 E (L4 e 21+ e ™0 (z70) |, je2zt +1,

where (1 4 eT@271) is a factor of (1 4 e**®727) if j is odd, i.e. the elements in the
generating set of G are odd. This filter therefore satisfies the generalized Strang-Fix
conditions for the reproduction of exponentials [28]. O

At last, we deduce the following property pertaining to the low-pass filter, which we will
leverage for further graph wavelet constructions:

Corollary 3.3. Let G = (V, E) be an undirected, circulant graph with adjacency matric
A and degree d = Zjvil 2d; per node with symmetric weights d; = A; (j44)y- Then the
low-pass filter Hpp. of Eq. (5) is invertible unless (i) G is bipartite while B, satisfies
1Bl = il or (i) Bn = —7vi, i€[0 N—1].

21t should be noted that invertibility of the wavelet transforms in Thms 3.1 and 3.2 does not require A
to be a circulant matrix. In particular, for the former, it is sufficient that % be replaced by the normalized
adjacency matrix A = D-Y/2AD~1/2 of an undirected connected graph [2], and for the latter, its
eigenbasis V is subject to similar constraints, if chosen parameters 3, coincide with the eigenvalues of
A (see Appendix A.2). However, (higher-order) vanishing moments are lost and downsampling becomes
less intuitive and/or accurate when applying these transforms to non-circulant graphs.
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Proof. See Appendix A.3.

Prior to broadening the range of graph wavelet constructions on the basis of the aforemen-
tioned families, we conduct further analysis of the characteristic structure of the latter.
Here, we focus on a bipartite circulant graph scenario, as this case is particularly relevant
due to its dual vanishing moment property. Contrary to standard biorthogonal wavelet
filterbanks, the proposed graph spline wavelet constructions exhibit well-defined analysis
filters, while their corresponding synthesis filters lack a concrete characterization. Let
the general analysis matrix of a graph wavelet transform be denoted by

‘I’¢2HLP}

W —
{'I)¢2HHP

for downsampling matrices W o, ® 5 € RN/2XN " which respectively retain even and odd
numbered nodes, and graph-based low-and high-pass filters Hy p, Hy p, whose respective
representer polynomials are expressed by Hpp(z), Hgp(z). Given that W is invertible,
and contains two sets of basis functions, their corresponding duals, which we denote
by Hpp(z), Hyp(z) exist in W—1 = [(®2Hp)" (®9Hpp)"], by definition of a
biorthogonal system [29]. In general, the following relations hold for ¢, j € {LP, H P}

Hi(2)H;(2) + Hi(=2)H;j(=2) =0, i #j

where Hyp(2) = zHpp(—2) is established in proposed constructions.®> By substitution
into the above, we observe that Hyp(z) = 2~ Hpp(—z) must equivalently hold for the
dual pair. This can be proved directly through the simple inversion of the analysis
modulation matrix (as is done for classical perfect reconstruction filterbanks, see e.g.
[30]), which we omit for brevity, and further reveals that the derived synthesis filters are
rational functions whose zeros coincide with those of the analysis filters, i.e. Hy p(z) and
Hpyp(z) have the same vanishing moments.

3.3. Splines on Graphs
In the classical domain of signal processing, the B-spline of degree zero [33, repre-

senting the box-function,
1, z€[0,1)
0 _ ) )
Bi(z) = { 0, otherwise
is defined through the action of discrete (finite difference) operator A {-}, with z-
transform (1 — 27'), on the step function z9 such that 89 (z) = Aya%; here 2 =
D={§(x)} is the Green’s function of continuous first-order differential operator D{-} [15].
A spline of degree n is then obtained through (n+ 1)-fold convolution of the box function

5_(8’”"0) = B (z) = B * B x ...+ 8% (z), and similarly constructed through the higher-

. An+1 n
order operator ATT'{-}, with z-transform (1 — 271)"*!, such that 7% (z) = *Tz*,
where 27} is the one-sided power function [15].

The connection between the continuous and discrete time domain is established via
the identity*: Vf € S/, AT{f} = Bf_l * D™{f}, and more generally via AY{f} =

3Here, in an abuse of notation, we incorporate a shift z, equivalently to the traditional z-transform,
to signify that odd-numbered rows retain the high-pass component.
4Here, S’ denotes Schwartz’s class of tempered distributions.
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BY % (D — al){f} for operator A% (z) = (1 — e*2~!) and exponential spline 8¢, with
a € C. In particular, AT{-} can be regarded as a discrete approximation of the contin-
uous (D — al){-} ([31], [15], [14]). Such (exponential) polynomial splines, as solutions
of certain variational problems, form a subset of the more generalized variational splines
(321, [33])-

The graph Laplacian matrix can be viewed as an approximation of the continuous Lapla-
cian operator —V? via the discrete Laplacian, which motivates the consideration of splines
on graphs, nevertheless, a brute-force generalization of standard definitions is primarily
hindered by the fact that the former is singular. In [34], variational splines on graphs
are determined as the Green’s functions of the approximate graph differential opera-
tor (£ + ely)? for small € > 0, t € R*, which minimize the Sobolev norm, of the form
(L+e€Iy)~te; for normalized graph Laplacian £ and elementary basis vector e; € RY with
ei(i) = 1 and e;(k) = 0 for k # 4. Furthermore, Chung et al. [35] define the Green’s func-
tion of a connected graph, without a direct reference to splines, as G = ) 2,50 )\%_ujuf ,
with normalized graph Laplacian eigenvectors u; and associated eigenvalues \;, and
propose closed-form expressions for elementary cases, including the simple cycle graph,
which are further extended to Cartesian graph products [36].

Spline wavelet transforms in the Euclidean domain are commonly characterized by (dual)
scaling functions which are (combinations of ) polynomial splines, with the Cohen-Daubechies-
Feauveau wavelet as a prominent example [15]. In order to provide a more intuitive link
between the spline-like properties of our graph wavelet functions and the traditional B-
spline, we consider the case of a graph signal residing on the vertices of a simple cycle
graph, which we denote with Gg,—(1), as the least connected example of a circulant
graph. This graph-representation can be regarded as an analogy to a periodic signal in
the discrete domain, where existing edges indicate the sequence of sample values [1].

The rows and columns of the low-pass filter matrix in Eq. (3) of the HGSWT, given by

05 025 0 .- 0 025]F

025 05 025 0 0
HLP = )

025 0 - 0 025 05]

produce traditional higher-order splines via convolution of the discrete linear spline
B_(B’O) (t) (for k = 1) with itself, thus creating the notion of a spline-wavelet filterbank.
The corresponding (high-pass) graph Laplacian in Eq. (4), not only provides the stencil
approximation of the second order differential operator for certain types of graphs such
as lattices [21], but in the case of a simple cycle, and symmetric circulant graphs by
extension, gains the actual vanishing moment property. It therefore appears that this
spline property can be directly extended to bipartite circulant graphs, whose associated
HGSWT filters retain both the reproduction and annihilation property of traditional
spline-wavelets, as noted in Cor. 3.1. Similarly, the rows and columns of the low-pass fil-
ter matrix Hy p_ in Eq. (5) of the HGESWT (at k = 1) describe a second-order e-spline,
15
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Figure 3: The HGSWT filter functions at k = 1 for different bipartite circulant graphs, N = 16.
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Figure 4: The HGESWT filter functions (k = 1) for different bipartite circulant graphs at o = %r,
N = 16.

arising from two convolved complex conjugate first-order e-splines

[0.5cos(a)  0.25 0 - 0 025 ]
0.25 0.5cos(e) 025 0  --- 0
Hyp, =
| 025 0 <.+ 0 025 0.5cos(q)]

By considering powers of Hy p_, we obtain the polynomial e-spline basis functions, while
the multiplication by low-pass filters of different parameters «,,, as in Thm 3.2, results
in convolved heterogeneous e-spline basis functions. From Cor. 3.2, we gather that the
exponential polynomial reproductive properties can be similarly extended to bipartite
circulant graphs.

In particular, for a bipartite circulant graph, we may interpret the resulting graph
spline-like function, which we denote as column 7 of the generalized low-pass operator
(JQIN +Ae; = (QCZQIN - I:a)ei for e-degree dy = 22421 2dy, cos(ak), as a convolution
of the discrete (e-)spline Bg_m’_w‘)(t) of order 2 with a function ¢¢(t), which depends
on the connectivity of the graph at hand. Thereby, we introduce a link to graphs and
make the notion of a ‘graph-spline’ which converges to the ‘classical’ discrete spline as
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e-Spline Continuous Operator Order Graph (e-)Spline Matrix Operator — Order
BOO() D} =4, 2 (2dIy — Lo)e; Lo 2
B0 ¢) D¥{} = 4 2n (2dIy — Lo)"e; Ly 2n
Blics=io) (1) (D —iad) * (D +iad){} 2 (2daIy — Lo)e; Lo 2
Blie—ion e =ie) (4) (D —ial)™ + (D +ial)"{} 2n (2daIy — Lo)"e; L 2n
Blicr—ion, iom,—iam) (1) [T™ (D — i, )" * (D +ia,1)™{}  2mn || [/, (2da,In — La,)"e; I, I:Zf 2mn

Table 1: Comparison between the continuous e-Spline and Graph e-Spline Definitions

Gs — Gg,—(1) for an arbitrary circulant bipartite graph G5 with generating set .S, more
concrete. Figures 3 and 4 compare the low-and high-pass functions of the HGSWT
and HGESWT respectively for different bipartite graph examples which correspond to
second-order graph (e-)splines, with the traditional (e-)spline represented through the
simple cycle.

Our motivation for the use of the spline-terminology for functions (QJQI N — I:a)ei origi-
nates from its reproduction properties for (exponential) polynomials and hence structural
similarity with its classical counterparts, as well as its definition through a suitable dif-
ferential operator, i.e. the parameterised graph Laplacian | however, it should be
clarified that these do not constitute Green’s functions of L. In comparison, the vari-
ational graph splines in [34] of the form (£ + ely) te;, t > 0 inherit only approximate
properties for (exponential) polynomial reproduction when £ is circulant, and contrary
to the proposed spline constructions, the former are neither well-characterized on the
graph nor compactly supported, and therefore of lesser interest as basis functions for
graph wavelets.

We summarize and compare the classes of spline-like functions on bipartite circulant
graphs and their classical continuous counterparts in Table 1 in relation to order, with
the symmetrization " (z) = 8% (:17 + "T'H)

3.3.1. The directed graph spline

The collective of results pertaining to vanishing moments of graph operators can be
extended to the case when A is the adjacency matrix of a directed circulant graph és,
and the corresponding graph Laplacian is replaced by a first order (normalized) difference
operator of the form S = Iy — 4, similarly defined as in [3]. Let edge (4, (i + s;)n) in
Gy be directed from node i to (i + si)n, for si € S; as a result of degree-regularity (i.e.
the in-and out-degrees of each node are the same) and circularity, A maintains the DFT-
matrix as its basis. The representer polynomial of operator S then possesses one vanish-
ing moment, which can be generalized to higher order k, while the degree-parameterised

S, = dfi“ Iy— %, featuring the, now complex, e—flegree dio = Z,iu:l dre™**  per node,
possesses one vanishing exponential moment, i.e. S, respectively annihilate exponential
graph signals with exponent +ia. Generalizations also apply to the reproduction prop-

erties of low-pass filters of the form Hyp, B = 2% (dj“ In+ %) in the bipartite case,

whereby (linear combinations of) the rows of Hyp, , (at k = 1) reproduce exponentials

with reversed exponent Fic (and vice versa for the columns).

The invertibility of the graph spline wavelet filterbank construction in Thm 3.1 remains

intact for directed graphs at k = 1, as by the Perron Frobenius Thm. [37] for nonnega-
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tive matrices, % maintains an (albeit complex) spectrum with |v;| < Ymaz and Vimee = 1
of multiplicity 1 corresponding to eigenvector 15; here A is required to be primitive,
ie. A¥ > 0 for some k € N to ensure |y;| < Vmaz [37]. Otherwise, invertibility of
the transform for all remaining graph cases depends on the downsampling pattern and
requires that the ‘downsampled’ eigenvectors associated with ~; and —v; (for |y;| = 1)
form linearly independent sets respectively. Similarly, the proof of the graph e-spline
wavelet transform in Thm 3.2 may be extended to accommodate directed graphs under
further restrictions.

The study of the directed graph case is covered to a lesser extent in spectral graph
theory, however, [38] defines the combinatorial graph Laplacian of a directed graph as
a symmetrization via the probability transition matrix P. When the graph is directed,
strongly connected and circulant, this would correspond to L=1Iy— AJ;?H, which is
equivalent to the normalized graph Laplacian of its undirected counterpart. This defi-
nition gives rise to interesting generalizations, where the undirected normalized e-graph
Laplacian can be expressed via the decomposition

s dy A+AH S, +SE S ,+SH,
EO[ - 7IN - = = P
2d 2d 2 2

with d, = Cz-m +d_,. In other words, the annihilation property of the e-graph Laplacian
is preserved in the case of a directed circulant graph through the Hermitian transpose,
where cﬂa can be simultaneously interpreted as the degree which annihilates complex
exponentials with exponent +ia on the graph of A and —ia on the graph of A (and
vice versa for d_). This ties in with our previous discussion on graph spline similarities
and analogies, as in the undirected case, the (e-)graph Laplacian operator is a graph
extension of a traditional second order derivative operator, thereby giving rise to graph
spline-like functions and associated wavelets in degree steps of 2, suggesting that the
directed first-order graph difference operator S. provides an extension to the traditional
first-order differential operator. For the directed cycle, we therefore ascertain a compre-
hensive analogy with the traditional spline and e-spline definitions.

As we are primarily interested in real valued node degrees and (symmetric) graph
filters, we will continue to focus on the undirected case.

3.4. Complementary Graph (E-)Spline Wavelets

The introduced wavelet transforms can annihilate (complex exponential) polynomial
graph signals in the high-pass branch, yet do not reproduce such in the low-pass branch,
unless the graph at hand is also bipartite, as shown in Cors. 3.1 and 3.2. In addition,
it becomes apparent that while the proposed filterbanks are well-defined in the analy-
sis domain, they lack a straightforward synthesis representation. At last, we point to
the fact that both low-and high-pass filters have compact support of the same length
2MFk+1, based on the given A, while the support of their corresponding synthesis filters
is comparatively larger (exponentially decaying).

In light of this, we develop a new class of graph wavelet filterbanks on circulant
graphs, by making use of traditional spectral factorization techniques ordinarily em-
ployed for the creation of biorthogonal perfect reconstruction filterbanks (also used in
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[6] to create bipartite spectral graph filters), in order to satisfy the additional desired
properties. Here, within a generalized approach, one can specifically tailor the design
of analysis and synthesis filters to incorporate variable reproduction and annihilation
properties, while ensuring localization and compact support in the vertex domain.

In particular, since the filtering operation of a discrete-time signal in traditional signal
processing can be defined as the matrix-vector product between a circulant matrix and
the given signal-vector, spectral factorisation in the z-domain is directly applicable to
circulant graphs, establishing a convenient analogy to the graph domain. Thus, we can
achieve that the filter matrices in the analysis and synthesis branch are of finite and
‘balanced’ bandwidth for 2Mk < N. We further note that this type of filterbank, con-
trary to the preceding, facilitates only the standard alternating downsampling pattern
on circulant graphs, where every other node is skipped.

k
Let us consider the simple spline case first. Given analysis high-pass filter Hyp(z) = ééil))k

with 2k vanishing moments, we can determine the synthesis lowpass filter as Hyp(z) =
Hpyp(—z) and thus, the analysis lowpass filter Hyp(z) via the biorthogonality relations
of a traditional filterbank [29], with P(z) = Hpp(z)Hyp(2) subject to the constraint
of the half-band condition® P(z) + P(—z) = 2. By requiring that the resulting filter
Hpp(z) = ZZ:O 7(2* +27%) is symmetric (on an undirected graph), we obtain the equal-
ity

- : . 1 Moo NFyTo
PE) = 1+ s (P 474) = L (d - Y1+ >> (Z e

=0 i=1 =0

(7)
where P(z) is a polynomial of odd powers. In addition, we may further impose the
restriction that the analysis and synthesis filters have an equal number of vanishing
moments 2k, by setting Hrp(2) = (2 + 1)*(2~1 +1)¥R(2), where R(z) is the polynomial
to be determined.

For k = 1, we require the highest degree of each side of Eq. (7) tobe 2L+1=M 4+ T,
and consider the L+ 1 constraints ps,, =0, n =1,..., L, and pg = 1, and T + 1 unknowns
ri, © = 0,...,T. Thus, to obtain a unique solution to the resulting linear system, we
require L =T = %, or T'= M — 1. For a higher-order filterbank with & > 1, the
constraints change as follows: T'= L = %7 or T'= Mk — 1. If we further impose
that both synthesis and analysis filters have an equal number of vanishing moments, we
need to include the additional factor (z + 1)¥(z=! + 1)* for Hyp(z) = ﬁl(z)k, and
require T'= Mk + k — 1.

The necessary existence of a complementary analysis low-pass filter for a given high-pass
filter of graph G, follows from the Bézout theorem:

Theorem (Bézout [28]). Given C(z) € R[z], there exists a polynomial D(z) € R[z] such
that
C(2)D(z) + C(—z)D(—z) =2

5Since the set up of our filterbank is such that even-numbered nodes retain the low-pass and odd-
numbered nodes the high-pass component, we are technically considering orthogonality between the
shifted zHgp(2) and its dual Hrp(2) = —2~1((—2)Hgp(—2)), but omit this notation for simplicity.
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if and only if C(z) has neither zero as a root, nor a pair of opposite roots. In this
case, there exists a unique polynomial Do(z) € R[z] satisfying the above and such that
degDy(z) < C(z) — 1. The set of all polynomials D(z) € R[z] that satisfy the above is

{Do(2) + 2A(2®)C(=2), Mz) € R[]}

In our case, we observe that C(z) = Hpgp(—z) cannot have a zero root since d =
Zi\il 2d;, > 0 (as we only consider nonnegative weights d; > 0). Furthermore, C(z)
contains pairs of opposing roots such that Hgp(—2) = Hgp(z) if the generating set S
of the graph at hand contains only even elements; however, as we assume that G is con-
nected with s =1 € S, this cannot occur in our framework. We can equivalently resort
to spectral factorization for bipartite graphs, however, since both P(z) and Hyp(z) are
odd degree polynomials, R(z) is required to be of higher degree T than the remaining
factor in P(z) in order to produce a non-trivial solution. This gives rise to an underdeter-
mined linear system, which can be uniquely solved by imposing additional constraints on
the coefficients r; (such as roots at z = —1). The proposed biorthogonal graph wavelet
constructions for circulant graphs are captured in the following theorem:

Theorem 3.3. Given the undirected, and connected circulant graph G = (V, E) of di-
mension N, with adjacency matric A and degree d per node, we define the higher-order
‘complementary’ graph-spline wavelet transform (HCGSWT) via the set of analysis fil-
ters:

() i 1 AN
Hypan = CHpp = 2?0 (IN + d) (8)
1 AN”
H an = 57 Iy ——
nrn =5z (1= ) )
and the set of synthesis filters:
Hipoyn = citHgpan o Iup (10)
Hupsyn = ccHrpan o ILp (11)

where Hpp o is the solution to the system from Eq. (7) under specified constraints, with
coefficient matriz C arising from the relation HLp,anI:IZ}, where applicable (see Cor.
3.3). Here, o is the Hadamard product, c;,i € {1,2} are normalization coefficients, and
Ipp/up circulant indicator matrices with first row of the form [I —1 1 —1 ..].

Proof. Follows from above discussion.

As a result of spectral factorization, the shape and vertex spread of Hyp,, does not
coincide exactly with the adjacency matrix of the graph (and its powers), but rather
encompasses a subset S; C N(i, l~c) of vertices, per node i within its /;—hop local neighbor-
hood, whereby k depends on the initial constraints we impose on Hy,p 4n ().

We therefore establish a structural link to the analysis branch of the HGSWT in Thm
3.1, in particular, to the higher-order low-pass graph filter Hyp of Eq. (3), which is
based on the adjacency matrix, via the graph filter given by symmetric circulant coeffi-
cient matrix C in (); here, C can be determined via matrix inversion of Hyp (when G
is non-bipartite, see Cor. 3.3 for o = 0).
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Moreover, we note that given initial graph signal p € RY and letting p € R" denote the
graph signal in the GWT domain, as in Sect. 3.1, the synthesis stage can be expressed
as follows:

1 1 -
(2 ((In+ K)HLP,syn)T + 3 (v — K)HHP,syn)T> P =D,

for K;; =1 at even-numbered positions and K, ; = —1 otherwise.

We proceed analogously for the graph e-spline case. According to ([28], Thm. 1), for
a scaling filter H;(z) at level j to reproduce a function of the form P(t)e™™!, where
degP(t) < (L, — 1) and L,, is the multiplicity of ~,,, it is necessary and sufficient that
the former be divisible by the term Ry;+(2) = [[_, (1 + e mz1), ¥j < jo — 1, with
5= (71, ., 7m)T € CM | i.e. satisfying the generalized Strang-Fix conditions for suitable

~. Here, H;(z) must not contain roots of opposite sign.

Mirroring the constructions in Thm. 3.3 and given analysis high-pass filter Hyp_ (2) =
l‘aaj) with 2 vanishing exponential moments, we determine the analysis lowpass filter
Hpp,(z), which can be expressed as an extension of Eq. (5) via a coefficient matrix C
(subject to constraints, see Cor. 3.3). By imposing the constraints of Bézout’s Thm.

[28], and setting P(z) = Hpp, (2)Hpup, (—2), we arrive at an equality of the form

L , . 1 (. Y o . r , .
P(2) =14 poia (24271 = 2d (da D GG 2_1)> (Z ri(2' +277)

i=0 i=1 i=0

(12)
and solve the emerging linear system in a similar fashion as discussed for Eq. (7) for
unknown symmetric coefficients r; of Hyp_(z).
Moreover, for the analysis and synthesis filters to have (an equal number of) vanishing
moments, we require Hy p_(2) = (2+¢€'*)(1+e 27 1)R(2), where R(2) is the polynomial

to be determined. This scheme can be generalised to higher order for & = (aq, ..., ar)
7 k
such that Hyp,(2) = [[1_, 45, and Hyp,(2) = [Th_, (2 + 2cos(an) + 27 )ER(2),

n=1 n=1

however, a solution R(z) exists only if the remainder term in P(z) does not contain zero
and/or opposing roots [28].

The possibility of a multiresolution representation of the filterbank, is conditional upon
the existence of real-valued filters, which maintain their reproduction/annihilation prop-
erties up to a certain level j < J—1. In the classical domain, the filters of a non-stationary
biorthogonal exponential wavelet filterbank with exponent & = (ay, ..., ar) (as described
in [28]) do not contain roots of opposite sign nor the zero root at level j, as long as there
are no distinct o, o’ in @ that satisfy 27 (a — o’) = i(2k + 1)7, for some j < J — 1 and
k € Z. Otherwise, a multilevel representation is only possible up to a finite level J — 1,
when this condition ceases to be fulfilled. This result becomes particularly relevant when
considering e-spline graph wavelet filterbanks of higher order. For instance, opposing
roots occur at j = 0 for the case e = —e!® at a = 7/2,37/2, and we cannot cre-
ate filterbanks for these parameters. The discussed approach gives rise to the following
filterbank:

Theorem 3.4. Given the undirected, and connected circulant graph G = (V, E) of di-
mension N, with adjacency matriz A and degree d per node, we define the higher-order
21
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‘complementary’ graph e-spline wavelet transform (HCGESWT) via the set of analysis
filters:

(*) K] AN
H;p.an = CHpp, = Cg ok <5nIN + d> (13)
T k
Hupgan = g 2% </87LIN - 3) (14)
and the set of synthesis filters:
Hip, syn = ctHup. ano Inp (15)
Hyp, syn = c2Hrp  an o ILp (16)

where Hpp. on 15 the solution to the system from Eq. (12) for & under specified con-
straints, with coefficient matriz C arising from the relation Hp, p&}anﬁi}j& where appli-
cable (see Cor. 3.8). Here, c;,i € {1,2} are normalization coefficients, and Irp,rp are
circulant indicator matrices with first row of the form [1 —1 1 —1 ..].

This coincides with the previous HCGSWT in the simple spline case for & = 0.

4. Graph Products and Approximations: A Multidimensional Extension

In order to facilitate a generalization of our developed framework to arbitrary graphs,

we require a means to compute circulant graph approximations to existing structures in
a given network.
We have previously resorted to employing an adjacency matrix approximation scheme
([39],[16]), which determines the nearest circulant graph approximation G' to the given
graph G with adjacency matrix A € RY*Y by minimizing the error norm ming cCOn [|[AP—
AHF over the space C of all N x N circulant matrices. If GG is sparse or a posteriori
sparsified by removing edges of small weight, the approximation can be subjected to
a prior node relabelling P based on the RCM-algorithm [40] in order to minimize the
bandwidth of A. This facilitates a restructuring such that A¥ is (locally) closer to circu-
lant (sub-)structures and hence reduces the number of complementary edges in A. The
closed-form solution is therefore obtained as

N-—1
. 1
A=Y =
N

=0

<AP,Hi>FHi,

for circulant permutation matrix IT with first row [0 1 0...], and the graph signals residing
on G can then be analyzed with respect to G. For an arbitrary graph G featuring
communities, we propose to perform graph partitioning (e.g. the normalized graph cut
[41]) and compute the nearest circulant structures to the arising subgraphs {G;};, so
as to ultimately conduct wavelet analysis on the latter with respect to the partitioned
subgraph signals {x;};. Fig. 5 shows the resulting graph approximations and multiscale
representation via the HGSWT (at k = 1, no reconnection) for a data-driven graph with
weights

d(mi,z_')Z
w5 =e T , dzyy)=lx—y|, ,j=0,..,N—1
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with o as 10% of the total range of d(z,y), and random graph signal x, prepared using
[42]. The obtained representation is highly sparse as a consequence of the breadth-first
traversal of the RCM algorithm, whereby x” has reduced total variation ||x”||rv [16],
and simultaneously A” (and by extension A) is of minimum bandwidth.

Graph Signal before Relabelling

Graph Signal after Relabelling

10 20 50 60 7

30 40
Node Label

Figure 5: Original G (N = 64) after thresholding of weights (top left), after RCM relabelling (top
middle), multiscale HGSWT representation (at k = 1) of x (in magnitude) on G for 3 levels (right),
signal x before/after relabelling (bottom).

As part of a more generalized motivation which facilitates the multi-(and lower-)dimensional

processing and representation of signals on graphs, we wish to explore alternative ap-
proximation schemes for circulant graphs, and identify graph product approximations as
a promising venue. In particular, given an arbitrary undirected graph, we consider its
approximation as the graph product of circulant graphs.

Graph products [43] have been studied and applied in a variety of contexts for purposes
of i.a. modelling realistic networks, and/or rendering matrix operations computionally
efficient ([44], [45], [46]). Their relevance for GSP was first discussed in [47] as a means
of modelling and representation of complex data as graph signals defined on product
graphs, with the potential of promoting a more efficient implementation of graph opera-
tions, such as graph filtering. Our motivation for considering graph products is twofold:
(1) we require a scheme which can decompose arbitrary graphs into circulant graphs, so
as to facilitate the processing of graph signals with respect to the circulant approxima-
tions, and (2) we wish to conduct operations in lower dimensional settings to increase
efficiency.

4.1. Graph Products of Circulants

The product ¢ of two graphs G; = (V(G1), E(G1)) and Go = (V(G2), E(G2)), also re-
ferred to as factors, with respective adjacency matrices A; € RV1*Nt and A, € RV2x Nz
is formed by letting the Cartesian product V(G) = V(G1) x V(G2) denote the new vertex
set of the resulting graph G, and defining the new edge relations E(G) according to the
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characteristic adjacency rules of the product operation, resulting in adjacency matrix
A, € RViN2xNiN2 \We identify four main graph products of interest:

e Kronecker product G; ® Ga: Ag = A1 ® Agy

o Cartesian product G; x Ga: Ax = A1 X As=A1@1In, +In ® Ay

e Strong product G1 X Gso: Ag = A1 KA;=A; A+ A X A,

e Lexicographic product G1[Ga]: Aj | = A1[As] = A1 @Iy, +1In, ® Ao

where Jy, = 1p, 1%2. In particular, we note that the lexicographic product can be
regarded as a variation of the Cartesian product, yet contrary to the others, it is not
commutative for unlabelled graphs [43]. In addition, the adjacency matrices A, for
the first three products possess the same eigenbasis V. = V; ® V, for decompositions
A; = VIV and Ay = VoI, VI | and eigenvalues of the form T'y = T'; o Ty ([43]).

Graph products have been employed to model realistic networks, due to their ability
to capture present regularities such as patterns and recursive community growth [45],
and can thus provide suitable approximations to networks with inherent substructures,
such as social networks consisting of similarly structured communities or time-evolving
sensor networks [47]. For our ensuing analysis, we consider a scheme for arbitrary graphs

which imposes the desired constraint of circularity on the individual factors 6.

4.1.1. The Kronecker product approrimation

Given an arbitrary graph G with adjacency matrix A, we resort to a result from
matrix theory [48] which facilitates the approximate Kronecker product decomposition
A ~ A; ® A, into circulant (adjacency) matrices A, of suitably chosen dimension Nj,
by solving the convex optimization problem

min |A— A1 ® Asl|r
CTwvec(A1)=0,CTvec(A2)=0

subject to linear constraints in the form of structured, rectangular matrices C; with en-
tries {0, 1, —1}, which impose circularity on A; via column-stacking operator vec. It can
be shown that closed-form solutions vec(A;),i = 1,2 are obtained by solving a reduced
unconstrained problem, after expressing the above as a rank-1 approximation problem

(see [48] for details). In addition, we may also impose symmetry and bandedness ([48],
[46]).

4.1.2. Ezact graph products

Conversely, the general graph product of circulants gives rise to block-circulant struc-
tures (or sums thereof), and an example can be seen in Fig. 6.
There exists a subset of circulant graphs which can be represented as the graph products

60n a related note, [44] identifies Kronecker product approximation as a means to facilitate efficiency
for large structured least-squares problems in image restoration, which coincidentally marks an area
where circulant approximations are used extensively.
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Figure 6: Graph Cartesian Product of two unweighted circulant graphs

of circulant factors; while these cases are marginal, they similarly motivate decomposi-
tions for lower-dimensional processing.

Circulant graphs are not generally closed under graph products, with the exception of
the lexicographic product [49]. In particular, for two circulant graphs G; = Ch, s, and
Gy = Ch,,s, of respective dimensions N; and N, and with generating sets S; and Sy,

the product G1[G2] is isomorphic to the circulant graph Cn,n,.s with generating set
Z)

No—1
S = UtLZ(? JtN1 +51 ) U Utljl tN1 —S1 | UN1Sy [49]. Here, Cn,n,,s is connected

with 1 € S only if Gy is connected with 1 € S;. The adjacency matrix A[ j is not circu-
lant, but its isomorphism A[ ] = PA| ]PT is, where permutation matrix P performs the
relabelling {0, ...,N1N2 - 1} — {0 : N2 : N1N2 - 17]. : N2 : N1N2 - ]., ...,NQ —1: N2 :
N1N; — 1} such that each product node (g1,;,92,%x) € V(G) is labelled as g1 ; + N1ga,k,
for Gij € V(Gl)

Special cases of other graph products that are circulant with circulant factors are dis-
cussed in [50].

4.2. Multi-dimensional Wavelet Analysis on Product Graphs

In the following, we explore how the theory on circulant graph wavelet analysis can
be extended to product graphs. Here, we operate under the assumption that the decom-
position (and decomposition type) of an arbitrary graph into circulants is either known
(exact or approximate), or unknown, in which case we can always resort to a Kronecker
product approximation. Before we can proceed, we need to define the graph Laplacian
L, of product graphs as a relevant high-pass filter; its interpretation as an extension
of the circulant graph Laplacian high-pass filter to higher dimensions, with associated
property preservations, will be revisited in Sect 4.3. We note that the formation of L,
is not a reflection of the adjacency matrix relations, except in the case of the Cartesian
product ([51], [52]):

o Kronecker product: Lg =D; ® Dy —A; ® Ay =L; ® Dy +D; ® Ly —L; ® Ly
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e Cartesian product: L>< = D1 X D2 — Al X A2 = L1 ® ]:1\/'2 + IN1 X L2
e Strong product: Lg = D1 XDy — A; X Ay = Lg + Ly

e Lexicographic product: L | = Di[Dy] —Aj[As] =1y, @ Lo+ L1 @ Jy, + D1 ®
(NQIN2 - JN2)

For connected, regular graph factors G;, equivalent relations between eigenbases U of
L, = UA, U and U, of L; = UZ-AZ-U{I as for the adjacency matrices hold, with
U =U; ® Uy and A, = D, — ', [51]. These relations are further preserved for the
Cartesian product when the G; are generic, while a nearer characterization for the re-
maining cases is still subject to investigation ([52], [51]). The eigenvectors of L[ j are
given by U | = [{u; ® 1n, M e ® uQ,j}Zi\g’zj;Nﬂ’ when G is connected [52].
Therefore, under the first three products, the special case of two circulant graph factors,
for which U = V can be represented as the 2D DFT matrix, reveals that each graph
Laplacian eigenvector u; of L, is the Kronecker product of the graph Laplacian eigen-
vectors of its factor graphs. This insight motivates the following graph signal definition
for GSP:

Definition 4.1. Any graph signal x € RY, with N = N;N,, can be decomposed as
X = Zle Xs1 @ Xg2 = vecr{Zf::l xs_rlxgjg}, where vec,{} indicates the row-stacking
operation, or, equivalently, Zle XS71X£2 has rank k with x,; € RY:. For x residing
on the vertices of an arbitrary undirected graph G, which admits the graph product
decomposition of type ¢, such that G, = G1 ¢ Gy and |V(G;)| = N;, we can redefine and
process x as the graph signal tensors x;; on G;.

While x does not generally lie in the graph Laplacian eigenspace of the underlying graph,
and alternative decompositions are possible, we adopt the above perspective as a promis-
ing interpretation of component-wise processing of graph signals defined on product
graphs. We inspect the case x = x; ® x2 (for rank k£ = 1) more closely in Sect. 4.3, as
it facilitates concrete claims on the smoothness and sparsity relations between a signal
and its tensor components on a graph.

4.2.1. Separable vs Non-separable Wavelet Analysis

Let a graph signal x reside on the vertices of an arbitrary, undirected graph G with
graph product decomposition G, = G ¢ G5, which can be exact or approximate, such
that the factors G; are circulant with adjacency matrices A; € RVi*Ni j = 1,2 and con-
nected with s =1 € S;, i = 1,2. We propose a non-separable and a separable wavelet
transform on G: the former operates on the product graph directly, while the latter
operates on each factor graph independently, thereby omitting the inter-connections be-
tween the two factors arising through the graph product operation.

We define the non-separable graph wavelet transform on G, with (symmetric) adjacency
matrix A, as

T k T k
1 1 A 1 1 A
H, = 5(1N+K) H o (/8<>mIN + C;) +§(IN—K) H Py (5o,nIN - <>> , kel

n=1



If B, n = 1,Vn, this is verifiably invertible for any downsampling pattern K as long as at
least one low-pass component is retained, as a generalization of the circulant HGSWT
construction in Thm 3.1. Here, the fundamental properties which ensure this extension

are that G, is undirected, regular and connected [53], i.e. the spectrum of &2 is such

d
that |Ye.il < Yo,maz = 1, with %lNlN2 = 1n,n, and Yo maee of multiplicity 1. It is
known that G, is connected under the Cartesian product for connected G; and under
the Kronecker product, if in addition at least one G; is non-bipartite [54].

Wavelet constructions with exponential degree parameters of the type of Thm. 3.2 can
be similarly extended to the first three product graph types under equivalent restrictions
for parameters |Bo.n| # |Vo,i|, 1.6. conditions (¢)-(¢7) of Thm. 3.2 apply to the above.
In particular, when S, is of the form of an eigenvalue 7, ; of %, invertibility of the
transform is similarly conditional on the downsampling pattern and linear independence
of the associated sampled eigenvectors. Here, the multi-dimensional e-degree matrix

D,, ¢Dq (day Iny )o(day Ing)
/Bo,nIN — 1d 2 1-Ny - 2" N3

of the graph filters (transforms) may be tailored
to the analysis of multi-dimensional smooth signals residing on the vertices of the graph
product G, = G7 ¢ Go, whose circulant (e-graph Laplacian) factors are respectively
parameterized by e-degrees (or eigenvalues) Jal and Jaz; the relations between the graph
Laplacian eigenvalues on each factor are specifically derived in the following Sect. 4.3
as measures of signal smoothness on product graphs. As such, the non-separable GWT
on a product graph of circulants constitutes a generalization of the HGESWT to higher
dimensional graphs, which incorporates the parameterization desirable for the analysis
of the signal partitions (tensor factors x; residing on G;) of the multi-dimensional signal
X.

While the graph product G, of circulants is not LSI as such, it is invariant with
respect to shifts on its factors, i.e. matrix Pg = Py, ® Py,, for circulant permutation
matrices Py, commutes with filters on A,. Therefore, we can conduct multiresolution
analysis with respect to product graphs by performing downsampling and graph coars-
ening operations on the individual factors, with one level corresponding to operating
on either ;. For instance, given the product graph G, of Fig. 6, one may choose to
downsample by 2 on factor Gy with respect to s = 1 € Sy and define the associated
downsampling matrix Ko; this creates the downsampling pattern K = Iy, ® Kg on G,
which skips every other node within each block of G5 in G, and one may subsequently
redefine the sampled low-pass output on G oG, where G corresponds to the coarsened
version of G (see Fig. 7).

Furthermore, we propose the separable graph wavelet transform on G, as an alternative
construction, which is applied with respect to the individual graph factors. We denote by
W, the graph (e-)spline wavelet transform constructed in the vertex domain of circulant

graph factor G;
¥ sHp.
w, — | Yie2HLrs
' {‘I’QHHPO:

with downsampling matrices W2, ® |2 and Hy p_ /g p, as defined in Sect. 3. Then (W, ®

‘W) represents the separable transform to process x with respect to G and Gs, which

entails the analysis of N; graph signal partitions {z((0 : Ny — 1) + (t — 1) % No)} Y,

on G, and subsequent Ny partitions {w(t : Ny : Ny Ny — 1)}?;20*1 on G1, with w =

(In, ® Wy)x. For partition %; € R™i on Gy, let w; = Py, W;X; be the graph wavelet

domain representation on the same graph, subject to the (node relabelling) permutation
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Figure 7: Graph Downsampling and Coarsening of G in Fig 6 on G2 w.r.t. s =1 € Sz with coarsened
Ga.

P n,; here, the respective low-and high-pass values of w; can be subsequently assigned to
suitable coarsened versions of GG;. Further, the recombination w = w; ® Wy gives rise to
the graph signal w on GG. For a multiscale representation, the proposed scheme can be
generalized to accommodate iterations on the low-pass branch, by defining the multilevel

transform ,
J
0 _ | Wi 0
W2 _l ¢ I N,i]...wi
i
and iterative permutation matrix
. P’
PY =P | N]
T2

at levels j < J — 1, giving

W = (PS\‘{l—l) ® P%Q_l))(WEJ_l) ® WéJ_l))X _ PS\L/]J\/'IQ) (WEJ_I) ® Wg]_l))x,

where (W, @ W) = (ng ) ® Wéj )) represents the introduced graph product transform
at level j. The transform is invertible with inverse (W' ® W3 '), depending on the
invertibility of its circulant sub-wavelet transforms Wf .

Traditionally, the application of a 2D discrete wavelet transform on an (image) matrix
X can be expressed as wop = Wlxwg, whose row-vectorized form is given by (W1 ®
Wy)x. It becomes evident that this constitutes an analogy to one level of the proposed
transform, where in the traditional domain we have W5 = W, while in the graph domain
the W,’s generally differ, as they are not defined on the same graph. This elucidates
that our derived scheme can be regarded as the equivalent of operating on a graph signal
(or vectorized image) with respect to confined direction (rows and columns), which are
in this case dictated by the factors in the chosen graph decomposition. In contrast to a
graph wavelet analysis of x on G, via a suitable transform, we can therefore regard the
analysis of partitions X; on G; and subsequent reassignment to the vertices of G, as a
two-dimensional extension of the former.
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4.3. Smoothness and Sparsity on Product Graphs

For the remainder of this discussion, following Def. 4.1 we are primarily interested

in the analysis of multi-dimensional graph signals which admit the rank-1 decomposition
X = X1 ® X5 into smooth signal tensors x; for a maximally sparse representation.
We begin by investigating how the smoothness of graph signal x with respect to G, is
related to the smoothness of the subgraph signals x; with respect to G;; here, we resort
to the graph Laplacian quadratic form S3(x) = xTLx as a measure [1]. We denote the
individual smoothness measures with S, = x? Lox for G, and S; = XlTLiXi for factors
G, and assuming degree regularity, simplify D; = d;I,, which gives rise to the following
relations:

o Sg = d2S1|[x2[13 + diSa|[x1][5 — 5152

o Sx = Si|[xa|l5 + Sa|lxul[3

o Sg = (14 d2)S1|[x2l3 + (1 + d1)Sa[[x1|[5 — 5152
o Sp )= IPxil[382 + Sic3 + dulxa|3(N2l[x2[[3 — ¢3),

with constant ¢y = vajo_ " 25(i). The total smoothness S, is composed of the weighted
sub-measures 5;, whose individual contribution is scaled by parameters pertaining to
the corresponding subgraph signal energy and node degree of the opposing factor graph.
One easily deduces that if for a chosen decomposition G, = G ¢ G2 with factors G;, the
measures S; are small, i.e. the sub-signal tensors x; are smooth with respect to factors
G;, then x is also relatively smooth on G, with small S, subject to a scaling. When x is
a properly normalized eigenvector of L, the derived smoothness measures S, constitute
the corresponding eigenvalues, expressed in terms of the eigenvalues S; of factors L;. The
above relations continue to hold for the symmetric normalized graph Laplacian matrices
of non-regular graphs.

Furthermore, we consider the signal L,x and analyze its sparsity ||Lox||o, following the
interpretation of L, as a high-pass filter within the non-separable GWT of Sect. 4.2.1:

o Logx = (L1x1) ® doxa + di1x1 ® (Laxa) — (L1x1) ® (Loxa)

o Lyx = (Lix1) ® x2 + x1 @ (Loxa)

e Lyx = (L1x1)®daoxa+d1x1 @ (Loxs) — (L1x1) ® (Laxz) + (L1x1) %2 +x1 ® (Laxs)
o Ljjx=x; ® (Loxz) + (L1x1) ® coln, + dix1 @ (Naxa — coly,)

It becomes evident that for constant x; (and hence x) such that L;x; = Op,, we have
L.x = 0, preserving the nullspace. When x; are linear polynomials and G; banded cir-
culant graphs, L;x; are sparse, which is not necessarily true for Lox under any product
operation.

Replacing D; by diagonal e-degree matrix ]31-7% for exponential parameter oy, gives
rise to equivalent relations for I:i,ak on the graph factors. Hence, for periodic complex
exponential graph signals x; parameterised by oy = %G—k, k €0 N; — 1] with resulting
multi-dimensional complex exponential x, we obtain Llaklmmx = 0, with exception of
the lexicographic product, for which this holds only if x5 is an all-constant vector, as
previously evidenced by its eigenspace property.
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Overall, this demonstrates that the vanishing moment properties of circulant (e-)graph
Laplacians are to some extent preserved within the graph product, yet sparsity is reduced
as a result of the newly arising interconnections between the factors. Due to the fact
that the above relations cannot be generalized to powers of the graph Laplacian ma-
trix, comparable property preservations are not extended to higher order (exponential)
polynomial graph signals, which have a sparse representation with respect to L¥. This
suggests that by performing a separable signal (wavelet) analysis with respect to inherent
circulant substructures, we generally gain a sparser representation as measured via the
graph Laplacian and its powers; nevertheless, for signals that lie in the eigenspace of
the given graph product, the annihilation property is also preserved at higher operator
powers.

In light of this, we compare the sparsity of representation attained via the proposed graph
wavelet transforms, and discover that the separable approach, apart from preserving
higher-order annihilation properties, can induce more sparsity. Here, it should be noted
that we consider two levels of the 1-D graph wavelet transform (or alternatively, down-
sampling on both factors, with respect to K = Iy, ® K3 followed by K = K; ®1y;,/2), as
comparable to one level of the 2-D transform, yet similarly as in the traditional domain,
there is no direct equivalence between the two.

Example 1: Given graph signal x = x3 ® xo on G = G; ® G5, where G; are circu-
lant and banded of bandwidth M; and x; € RY: are linear polynomial, let W; € RY:xNi
and Wy, € RV N2XNiN2 yepregent first-order graph-spline wavelet transforms on fac-
tors G; and G respectively. Here, we downsample w.r.t. s = 1 € S; on each G; and
reconnect nodes such that generating sets S; are preserved. Hence, separable repre-
sentation w = w; ® wo has K = %NlNg — %(2M1M2 + M;N3 + MsNy) zero entries,
whereas non-separable wg = Wgx has a total of Kg = Kg 1 + Kg 2 zeros, with Kg 1 =
1NNy — (M Na+MoNy —2Mo M) and Kg 5 = 3Ny No— (3 Ny M+ My Ny —6M; M) ze-
ros at levels 1 and 2 respectively. We have K > Kg for 4M; < N;, and K > Kg = Kg 1
with Kg o = 0 for N;/4 < M; < N,;/2, which implies that the separable approach induces
a sparser representation at any bandwidth M; < N;/2. Note that the sparsity of w, is
the same under any of the first three graph products.

Example 2: For circulant lexicographic product graph G = Cn,n,,s and decompo-
sition G = G1[G2], it can be deduced from the above relations, that we can gain sparsity
by conducting the 2-D graph wavelet analysis of x; on GG; as opposed to the 1-D analysis
of x on G, for any choice of compressible x; as long as they do not lie in the eigenspace of
the graph Laplacian. Here, the product-related relabelling Px = x5 ® x1, which renders
a circulant matrix A[ 1 = PA| ]PT, corresponds to a simple stacking of columns instead
of rows, thus preserving the tensor product, and associated smoothness properties with
respect to the subgraphs.

5. Illustrative Examples

In an effort to further exemplify the proposed graph wavelet transforms from Sects. 3
and 4, we study their non-linear approximation (NLA) potential for (piecewise) smooth
graph signals in two concrete cases of respectively an artificial and a data-driven graph
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setting.

For a given graph signal x € RY with graph wavelet representation w € RY_ the corre-
sponding non-linear approximation within the inverse graph wavelet basis with columns
Wy, is defined as x =}, ., w(k)Wy, where I denotes the index-set of the K-largest
magnitude coefficients of w.

Fig. 8 illustrates the non-linear approximation performance for a sinusoidal graph signal
x residing on the vertices of the circulant graph with generating set S = {1, 2} of cardi-
nality N = |V| = 1024, by comparing the HGESWT (of Thm. 3.2) and complementary
construction HCGESWT (of Thm. 3.4), where the reconstruction error is measured as

2
SNR = 10log;, ”)!fl'ﬁg. In particular, the transforms feature the same analysis high-

pass filter, suitably parameterized by {a;}?_, to annihilate x, and associated variable
analysis low-pass filter, where the HCGESWT is presented in two variations with ei-
ther dual (4.4) or unilateral (4.0, on the analysis side) exponential vanishing moments.
Further, the graph wavelet atoms (rows) are normalized to unit length and 5 levels of
decomposition considered, where graph coarsening reconnection is conducted by retain-
ing the same generating set S. It becomes evident that perfect reconstruction can be
attained at a relatively low number of retained wavelet coefficients as a result of the
transform annihilation properties. The resulting basis functions of the analysis low-pass
filters are further depicted in Fig. 8.
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Figure 8: Comparison of analysis graph low-pass filters (left) and NLA performance (right) for a sum of

two sinusoidals with (a3 = %, ag = %) (top).

Moreover, a data-driven graph example is presented to motivate the application of graph
wavelets for sparse image approximation. Given an N x N image I, let each pixel be
represented by a node, such that connectivity between node pairs (i, j) is established as
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the distance between their spatial location p and intensity I

Clpi=pil3 jr—1(5))2

7, 4,5€{0,..,N* -1} (17)

o

w;; =€ P (&
to form the graph G = (V, E) with adjacency matrix W. In addition, let x € R * denote
the vector-stacked image graph signal with intensity value z(¢) = I(i) at node 4.
Following a scheme for the analysis of images featuring distinct discontinuities or pat-
terns, derived in our prior work ([39], [16]), we proceed to firstly conduct a normalized
graph cut on G, which segments the image graph into two (or more) regions of homoge-
neous intensity content by removing edges of minimum total weight [41], and to secondly,
construct suitable graph wavelets on the nearest circulant graph approximations, as dis-
cussed in Sect. 4, of the resulting partitions {G,};. Here, we opt for the first-order graph
spline wavelet transform of Thm. 3.1 (k = 1), with downsampling conducted w.r.t s = 1,
and vary its data-localization, i.e. the underlying graph type, for a refined performance.
In particular, the GWTs are constructed on circulant approximations of the following
graph variations (i) nGWT: the original complete weighted graph, (i7) sparseGW T (bil,
RCM): the graph is sparsified by Euclidean distance by discarding connections outside
of the pixel grid ||p; — pj|l2 < V2 and subsequently relabelled by the RCM-algorithm
(see also Sect. 4), (iii) sparseGWT(I, sort): the graph is re-weighted as intensity-only,
sparsified by a data-dependent intensity threshold I, and relabelled using signal sorting,
and (iv) GWT(S=(1), sort): the graph is reduced to the smoothest simple cycle, i.e.
the sorted sub-graph signal is projected onto the simple cycle graph.

As previously discussed, the purpose of the RCM-algorithm is to provide a relabelling
which minimizes the graph bandwidth prior to the approximation operation, and thus
maintains compact support. The underlying motivation for options (iii) and (iv) is that
when the graph at hand is based solely on the intensity values of (image) signal partitions
{x;}:, one can effectively use a simple sorting operation on the latter as the relabelling
which simultaneously minimizes the bandwidth of corresponding G; and total variation
of x;. In contrast to the spatially localized GWT (i4), the corresponding reordered signal
is thus effectively smooth, as visualized in the example of Fig. 5 in Sect. 4, which results
in a maximally sparse graph wavelet representation. Here, the signal sorting-based re-
labelling can be considered as an optimized form of the RCM-algorithm, which searches
for a level structure (or multidimensional path) to traverse the graph such that the max-
imum value of the distances |i — k| over all edges (¢, k) is minimized [40].

For a multiscale representation, downsampling is conducted with respect to the outmost
cycle (s = 1) and no reconnection applied for graph coarsening; if either subgraph is
of odd dimension, nearest circulant approximation is alternatively employed to preserve
circularity.

Consider the example of a real image patch extracted from the 256 x 256 ‘camera-
man’ in Fig. 9 [16]. We compare the proposed graph wavelet transforms, with nor-
malized rows, to classical 2D wavelet transforms in form of the 2D Haar and linear
spline (CDF 5/3) transforms at 5 levels of decomposition; here, performance is mea-

sured as PSNR = 20log, (ﬁ) in dB, with a post-processing of outliers such that

I(i,§) € [0 1] for reconstructed image I. It becomes evident that the intensity-only based
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Figure 9: (a) Original 64 X 64 image patch, (b)-(c) Graph Cut Regions & (d) Comparison of NLA
performance.

graph wavelet variations outperform the remaining, while all graph-based methods out-
perform the traditional tensor product wavelets. The effect of the former is further
demonstrated through the use of two different intensity thresholds; in particular, the
sparser graph with a smaller bandwidth leads to better results (see sparseGWT(I,sort)-1
in Fig. 9). Best performance is achieved by a margin when the segmented subgraphs are
reduced to their (sparsest) smoothest cycle of bandwidth 1.

6. Conclusion

In this paper, we have introduced novel families of wavelets and associated filter-
banks on circulant graphs with vanishing moment properties, which reveal (e-)spline-like
functions on graphs, and promote sparse multiscale representations. Moreover, we have
discussed generalizations to arbitrary graphs in the form of a multidimensional wavelet
analysis scheme based on graph product decomposition, facilitating a sparsity-promoting
generalization with the advantage of lower-dimensional processing. In our future work,
we wish to further explore the sets of graph signals which can be annihilated with existing
and/or evolved graph wavelets as well as refine its extensions and relevance for arbitrary
graphs.
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Appendix A.

Appendiz A.1.

Proof of Theorem 3.1. Tt is self-evident that since the high-pass filter of Eq. (4) is a
power k of the graph Laplacian matrix, whose associated polynomial representation has
2 vanishing moments, the annihilation property is generalized to higher order of 2k
vanishing moments; thus we proceed to demonstrate invertibility of the filterbank. The
core of the proof follows a similar line of argumentation as the one provided in [21] for
k = 1 with generalizations pertaining to the parameter k. For completeness we present
the entire proof here.

Applying the binomial theorem, we observe that

(v 5) =30 () (3)

and so we need to show that the nullspace of

x (26 () 24 (3)

JEZ

is empty, where K is the diagonal matrix with entries K(i,4) = 1 if node ¢ retains the
low- and K (i,4) = —1 if it retains the high-pass component. Assume the contrary and
define the vector z = Vr to lie in the nullspace, given eigendecomposition % = VIV,
which yields the following simplifications:

HE@E xS @) e w

SIVY (5 )T ||KVZ( T (A2
JEZ
where Eq. (A.2) is the result of a rearrangement of terms in Eq. (A.1) and subsequent ap-
plication of the lo-vector norm on both sides of the equality. After further simplification,
we obtain
N-1 i 2 i 2 N—

N2 2j 2j+1 (@) 2y _
ZT(Z) Z<2j>% - Z(2j+1)7i = Z - B;) =0,
=0 JEZ JEZL =0

(A.3)
where in (a), we let A; and B; represent the sum of even and odd terms in the binomial
series respectively. For the nullspace to be empty, we need to show that r = Ox, which
follows if (A? — B2) # 0 and is strictly positive or negative Vi. By utilizing the fact
that for a general binomial series (x + a)™, with terms A; and B;, the following holds:
(2% — a®)" = A? — B2, we obtain

N-1 N-1
Z r(i)*(A Z r(i)*(1 —yH)* = 0.
=0

’ 3.



The eigenvalues are given by |y;| < 1, via the Gershgorin circle theorem, where v; > —1
unless the graph is bipartite [2]; thus we have that |r(:)| > 0 only if |y;| = 1 and r(i) =0
otherwise. To examine these special cases, let the corresponding eigenvectors for v, = —1

and 2 = 1 be given by V and @11\; respectively, such that z = T(?g 1y +\~71~', and sub-

VN
stitute into Eq. (A.1). Here, the multipicity of v2 = 1 is one, since the graph is connected

[2]. We consider the case of a non-bipartite graph first:

(S )n) o

JEZ

Noting that >, (2’3) =2 ez (23.’11), we need at least one entry K (i,7) = 1, such that
r(0) = 0.
In the bipartite case, due to spectral folding, if v is an eigenvalue of A with eigenvector

[VB ] , so is —v with eigenvector { VB , where B is the set of the node indices in one
Vpe —Vpe
bipartite set [2]. Then 3 = 1 and 2 = —1 each have multiplicity one with respective
eigenvectors 1y and [ 113 ], where |B| = |B®| = N/2, giving

—1 0

AP EHEE KD (5751 1

JEZ
n (A.4)
k k 1p
+r(1) Z( .>INKZ( | >1N [_ }_oN
=’ 27 ‘< 27 +1 1gc
Ts

Here we have used the property %v =v, in (%)j { 11B } = (-1) { 11B }, leading to
—iBt —iBt

an alternating pattern on the RHS when j is odd.

In particular, for any choice of downsampling pattern K, the terms 77 and T3 in the first
and second summands in Eq. (A.4), will respectively have zero entries along the main
diagonal, which lie in complementary index sets. Therefore, as long as at least one node
retains the low-pass component K (i,4) = 1, it follows that r(0) = 0 and r(1) = 0, which
again implies z = 0, completing the proof. O

Appendiz A.2.
Proof of Theorem 3.2. We can rewrite the simplified filters

Tk

or = I (51v + %) (A5)
n=1
Tk

Hup, = H <5nIN - 12) (A.6)
n=1
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noting that the new indices incorporate multiplicities, as follows

Tk i
Hip. = Z 8 (3)

=0

Hyp, — Tkz 1)+ Tk (;‘x)z _ i’i(_l)i& (3)1

=0

where the coefficients s; are the elementary symmetric polynomials e, (f51,..., S7rk) in
Br:
so =erk(B1,...,Br) = P12 .. Bri

S = ...
stk—1=e1(B1,...,0Brk) = P1+ B2+ -+ PBri

sti = eo(B1, ..., Bri) = 1.
We need to prove that the filterbank

ANY A
2o (2) g (3

JEL

2j+1

with diagonal downsampling matrix K is invertible by showing that its nullspace is empty.
Similarly, as in A.1, we assume the contrary and let z = Vr lie in its nullspace, where

VIVVH = (%)j, such that

AN AN 2H1
2323‘ (d) + K252j+1 (d) Vr =0y (A7)

JEZ JEL
SV 5o, Tr|[3 = [[KVY 59511723 (A.8)
JEZ JEL

where Eq. (A.8) results from rearranging Eq. (A.7) and taking norms of both sides, and
gives rise to

2 2
N-1
: 2j 2j+1
T(Z)Q E 32j%] - E 32j+1’}/i]+ =0, and hence
i=0 JEZ JEZ
N-1 N T

Tk
T 211 II ﬁn*‘V@ =
n=1

Given parameters (5, such that |8, < 1, n = 1,...,T, and with eigenvalues satisfying

|vil <1, i =0,...,N — 1 by the Perron-Frobenius Theorem [37], we assume |53,| # |7;|.

Thus, all summands in Eq. (A.9) need to be of the same sign to guarantee r = Oy. As

the function f(vy;) = HL(BEL — 42)k, for spectrum v = {v;}Y !, does not have exclu-

sively positive or negative range for odd k, we require k € 2N. Furthermore, all terms
36
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remain of the same sign at any k as long as parameters 8, and T are suitably chosen.
This is a sufficient condition for guaranteeing invertibility at any downsampling pattern.

If, for some n, we have |8,| = || with ¢ € [0 N — 1], giving |r(¢)] > 0, we can show
that for certain downsampling patterns, the transform continues to be invertible. In
particular, this is the case when parameter « in (5, = %‘* is such that a = %’{,—k for some
ke [0 N —1],ie. Hyp, annihilates the k-th (eigen-)vector in the DFT matrix. For
eigenvalues A\, = Z]A/il 2d; cos (%) of the non-normalized symmetric and circulant
adjacency matrix A with first row [0 dy da...dy di], we thus have do = \j, for some
k€[]0 N —1]. We proceed to show that the filterbank at hand is invertible for such
« as long as downsampling is conducted with respect to s =1 € S, and more generally,
when at least m; suitably chosen low-pass components are retained (for multiplicity m;

of 7;), and by extension, Z;l m; components for P distinct 3, that satisfy |5,] = |7l

Assuming wlog f,, = ~;, for P distinct eigenvalues (1 < P < N), each of multiplicity m;
with corresponding eigenvector(s) {vi,l};g‘o‘l, we consider, for the case of a non-bipartite

graph, the following nullspace representation

n=1 [|=

my,—1

Tn,iVn,l, anmn > 1;
0

where index n signifies distinct eigenvalues (or f,,) and 7, ; are scalar coefficients. With

k L T
(%) v; = 7¥v;, we obtain via substitution into Eq. (A.7)

P m,—1 P m,—1

27 27+1
ZSQj Z Z Tn,lﬁnjvn,l + K232j+1 Z Z rn,lﬁanr Vil = ON-

JEZ  n=1 1=0 JET n=1 [=0

If Ki,i = 1, 1= 0, ,N - 1, then

T
H(ﬂq + 6n)krn,lvn,l =0y

=1

>

P m,—1
n=1 [=0

2

and if Vl,KiZ = —1’ 1=

=

..., N — 1, then

my,—1

=

(Bq - 6n)krn,lvn,l = 0N

M~

I
—

l

Il
<
I
—

n q

where in the case of the latter we observe that HZ:1 (By—Bn)F is always zero since B, = S,
for ¢ = n. Therefore, we need the number of low-pass components to be greater than or
equal to the sum of multiplicities m, for all P distinct eigenvalues and, in addition, their
(node) locations D need to be suitably chosen to facilitate linearly independent partitions
V(D) such that r,; = 0. Note that for 8, = —y; and —v; ¢ ~, the opposite is the
case, i.e. we need at least Zle m,, suitably chosen high-pass components to facilitate
linear independence of partitions {vn’l(DC)}n,l. If both £~; exist, similar reasoning as
for the following bipartite case applies.
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For bipartite graphs, let m; denote the multiplicity of eigenvalue ; and —~; respectively

B m;—1
v
(due to symmetry of the spectrum [2]), and {v;;}7"; " and { l_‘j}%c] } the corre-
& 1=0
sponding eigenvectors, resulting in a nullspace representation of the form:

VBl
BG My > 1a
nl

P m,—1

E g (Tn,lvn,l-i—fn,l

n=1 [l=

whose substitution into Eq. (A.7) yields

P m,—1 P m,—1
2 241
g 52]'5 g Tn,,l67ljvn,,l+K§ 82j+1E g Tt B0l Vi
jez  n=1 1=0 jez n=1 1=0

P mn—1 B P m,—1 VB
+ZS2JZ Z By l né] KZS2J+IZ Z P B2t l néc] =0y.

JjEZ n=1 [=0 n,l JEZ n=1 [=0
Thus, for K;;, =1, i =0,...,N — 1, we obtain

1

m

My, —1

3

I, -

=1

M*u

T
H 6q+ﬁn rnlvnl

=1 n

M~

n,l

B
vn,l _
Tnl —VBG —ON
11

I
—
I
<
Q

n

Il
<
Q

and for K;; = -1, i=0,....,N —1

P T P mu,—1 T vB
3 H o+ D 3 T + )7 [_V] “ox

n=1 =0 g¢=1 n,l
Hence, we require at least m,, low-and at most N — m, high-pass components per
B, at suitably chosen locations D and D such that the corresponding partitions of

E
"\

M’J

B mp—1
v
{vni(D) l"l%_l and { [ "j_éc] (DC)} are linearly independent, leading to r,; = 0
Vil

1=0
and 7,; = 0. In general, we need the number of retained low-pass components to be

Zle m, < N/2 and D such that the above partitions form linearly independent sets
forn=1,...,P.

Consider the relevant case, when we downsample by 2 w.r.t. s = 1 such that D = (0 :
2: N —1) (corresponding to D = B in the bipartite case) and |D| = |Dt| = N/2. When
eigenbasis V is represented as the N x N-DFT matrix, the relation Vpo.n_1 = [VV}
holds, where V denotes the N /2 x N/2 DFT-matrix. Thus, the transform is invertible
for B, = v, if corresponding eigenvalue(s) 7; with multiplicity m; are suitably located
in the DFT-ordered spectrum vppr = {%}f\; 61 such that the associated eigenvectors
{vu}?;iofl remain linearly independent after downsampling, i.e. their pairwise column
positions (j,j') in Vp g.n—1 are not of the form (j, N/2+ j). Equivalently, the above can
be extended for the bipartite case when —v; exists, since we also have V 5o 5.y = [\Nf\}]
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up to a normalization constant per column.

A special case occurs, when § = d = 0; we need to show that K%z = Oy as long as
SN r(i)242 = 0. The latter yields (i) = 0, except when 4; = 0. Since, however, the
eigenvector(s) for ; = 0 lie in the nullspace of %, we have r(0) # 0, thus the filterbank
is not invertible for any downsampling pattern, including the case when downsampling
is conducted with respect to s = 1. When % on the other hand is invertible with ; #£ 0,
so is the filterbank. O

Appendiz A.3.

Proof of Corollary 3.3. Consider the simplest case with k = 1, T = 1 and one parameter
B: we need to show that the nullspace z of low-pass filter Hyp, in

: (mN + f;) 2= 0y (A.10)

is empty by contradiction. In a similar fashion as in previous proofs, we let z = Vr, with
£ = VI'V# and obtain

||BVr 4+ VIr|2 =0

N-1 N-1
& Y r*F+ 287 +97) = Y r(@P(B+7)° =0.
i=0 i=0
Hence, it follows from inspection that the low-pass filter is invertible unless g = —~;. If
—7; € v, similar reasoning as for the bipartite case applies. In the case of a bipartite
graph, where |38| = |y;| and 7;, —v; of respective multiplicity m; exist, with eigenvectors
m;—1 VB
z = r(D)v; +r(l !
> (romsr [ Je]).

we observe after substitution into Eq. (A.10) that

milr(l)(ﬂw +yvi) + mfff(l) (5 [_‘j;c] o [_‘j;]) .

1=0 1=0 l

Due to spectral folding, one eigenvector-set always cancels out for § = ++;, so that we
cannot guarantee zero coefficients, and hence invertibility. By extension, H p, is invert-
ible, while H¥ p, requires invertibility of each individual factor Hyp, —for parameters
., under the above.

O
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