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Abstract—Monitoring inflow measurements of water resource
recovery facilities (WRRFs) is essential to promptly detect
abnormalities and helpful in the decision making of the oper-
ators to better optimize, take corrective actions, and maintain
downstream processes. In this paper, we introduced a flex-
ible and reliable monitoring soft sensor approach to detect
and identify abnormal influent measurements of WRRFs to
enhance their efficiency and safety. The proposed data-driven
soft sensor approach merges the desirable characteristics of
principal component analysis (PCA) with k-nearest neighbor
(KNN) scheme. PCA performed effective dimension reduction
and revealed interrelationships between inflow measurements,
while KNN distances demonstrated superior detection capacity,
robustness to underlying data distribution, and efficiency in
handling high-dimensional dataset. Furthermore, nonparametric
thresholds derived from kernel density estimation further en-
hanced detection results of PCA-KNN approach when compared
with parametric counterparts. Moreover, the radial visualization
plot is innovatively employed for fault analysis and diagnosis in
combination with PCA and delineated interpretable visualization
of anomalies and detector performances. The effectiveness of
these soft sensor schemes is evaluated by using real data from
a coastal municipal WRRF located in Saudi Arabia. Also, we
compared the proposed soft sensor scheme with the conventional
PCA-based approaches, including standard prediction error,
Hotelling’s T 2, and joint univariate methods. Results demonstrate
that this soft sensor-based monitoring approach outperforms
conventional PCA-based methods.

Index Terms—Water resource recovery facility, Influent mea-
surements, Process monitoring, K-nearest neighbor, Radial visu-
alization

I. INTRODUCTION

WATER resource recovery facilities (WRRFs) are sophis-
ticated systems that have to sustain long-term quali-

fied performance, regardless of temporally volatile volumes
or qualities of the incoming wastewater [1], [2]. Munici-
pal WRRFs have to manage rainfall and snowmelt, while
industrial counterparts often treat wastewater with frequent
sudden shifts in unique composition and temperature due to
production processes [3]. Nevertheless, WRRFs have limited
storage for inflow, which cannot be rejected or abandoned.
Dynamic and nonlinear influent measurements (IMs) together
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with tightening discharge regulations and rising operational
costs demand maximized efficiency from practitioners.

For decades, challenges are proposed to operators. Updated
instrumentation, control, and automation are offering over-
whelmingly voluminous data, which are often unexploited,
forming the "data-rich, information-poor" dilemma [4]. Timely
analysis and modeling would extract valuable information
to support process understanding, online prediction, process
monitoring and predictive control.

Water resource recovery has been given vital importance
and seen as a promising solution to the water scarcity in
water-stressed countries, such as the Kingdom of Saudi Arabia
(KSA). As initial conditions provided to WRRFs, IMs influ-
ence treatment systems, ongoing processes and product char-
acteristics, and accordingly are fundamental in operation thus
emphasized, recorded, and monitored in KSA. Anomalies or
faults in IMs need to be detected and diagnosed promptly for
decision making to avoid unexpected system crash, maintain
steady product quality, support efficient downstream processes,
improve reliability and reduce labor costs [5]. Accordingly,
the detection and identification of abnormal events in IMs of
WRRFs are of primary importance to keep WRRFs operating
with the desired performance.

Modern WRRFs need to improve process quality while
guaranteeing efficient and fault-free operations, though they
are continuously subjected to unexpected influent changes.
Conventionally, only parameters from the process are moni-
tored, offline and univariately, which often ignored interaction
between correlated variables and was not providing satisfying
results in practice. Since the process generally takes more
than one day, multivariate data-driven soft sensors targeting
the influent (the upstream compared to the process) would
be promising. Operators can take timely responses to detected
anomalies from the IMs. Moreover, information from multiple
variables is utilized simultaneously, where cross-correlation
among variables are considered in the decision rules, and the
total number of monitoring control charts are minimized. This
may serve as a better "best practice" to the current situation in
WRRFs. In the process industry, data-driven soft sensors are
becoming more and more popular [6]. Applications include
prediction, reconstruction, and sensor monitoring.

All over the years, methods are developed for prediction as
well as fault detection and diagnosis, including mechanistic
model-based or analytical methods, and model-free or data-
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derived methods [7]. Analytical models, utilizing first prin-
cipals, could theoretically explain both linear and nonlinear
behavior, reveal process mechanism, but request prior param-
eters for calibration and would be challenged by costly high-
dimensional computation and ill-conditioned problems [8].
Data-derived methods, nowadays are more common in the
environmental field, even though not as widespread as, for
example, in petrochemical industry where soft-sensors are
extensively utilized for billions of dollars were once wasted
annually due to abnormal events [7], [9]. Environmental data
have been utilized by data-derived methods for prediction of
downstream pollutants concentration in river networks [10],
and sludge bulking monitoring in WRRFs [11].

Time series analysis approaches have widely been applied
to model WRRFs. Berthouex et al. [12] proposed an exponen-
tially weighted moving average model for forecasting WRRF
performance.Huo et al. [13] applied time series techniques to
evaluate and predict IMs. Escalas-Cañellas et al. [14] proposed
a time series model estimating and evaluating influent water
temperatures at WRRFs. Stationarity is usually assumed in
time series models, while the wastewater treatment processes
are often nonstationary. Additionally, these approaches depend
on the accuracy of the model used.

Machine learning algorithms turn out to play a consider-
able role in the literature. Artificial neural network (ANN)
simulation for the monitoring and control of an anaerobic
WRRF is presented by Wilcox et al. [15]. The ANN procedure
has been trained over 80 h with various monitoring data and
exhibited suitable ability in monitoring alkalinity level. Dias
et al. [16] investigated ANN and fuzzy neural models for
monitoring and prediction. The approach showed good detec-
tion performance when applied to data from the IWA/COST
benchmark simulation model. ANN models have also been
used to monitor key parameters (turbidity, temperature, pH,
oxidation-reduction potential, and UV light intensity) in WR-
RFs [17]. Zhu et al. [18] introduced a hybrid approach based
multiple linear regression, artificial neural networks to predict
influent biochemical oxygen demand, which is expensive and
difficult to measure with sensors. Other methods examined
for process monitoring include fuzzy models [19], and support
vector regression [20]. Such machine learning methods depend
on the availability of input data, and their implementation is
no easy task, especially for real-time applications.

Latent variables are employed for monitoring and prediction
via projection latent structures (PLS) and principal component
analysis (PCA). Amaral et al. [21] applied PLS regression
for activated sludge process monitoring. PLS methods have
been utilized to predict deterioration of sludge sedimentation
properties [22]. An approach to predict the influent chemical
oxygen demand (COD) using PLS models has been applied
to a newsprint mill WRRF [23].Wang et al. [24] proposed
a statistical approach based on combined PCA and multiple
regression to model a WRRF. Ebrahimi et al. [25], suggested
a multivariate approach based on PCA to predict quality
parameters such as BOD5 and total phosphorus to analyze
WRRFs performance.

PCA as a popular multivariate statistical dimension reduc-
tion technique applied to the visualizing of dataset variation
and composition, can delineate normal operational conditions
(NOCs) and detect faults with simplicity and interpretability.
However, it is well known that the conventional PCA-based
squared prediction error (SPE), Hotelling’s T 2, and joint
univariate methods, assuming Gaussian distribution among
process observations, does not guarantee a satisfactory per-
formance in anomaly detection, in particular when detecting
incipient changes [26].

Thereby, the overarching goal of this study is introducing
new soft sensor-based monitoring strategy with improved
detectability compared to conventional PCA-based methods.
Here, a data-driven soft sensor approach merging the feature-
extraction capability of PCA and the classification capacity of
k-nearest neighbors (KNN) is proposed to detect and identify
abnormal influent measurements of WRRFs. Our scheme al-
leviates the drawbacks of the conventional PCA-based indices
because it employs KNN-based detection scheme, which de-
mands no prior assumptions on the underlying data structure,
and can cope with nonlinearity and multimodality in data [27].
These properties are favored in practical situations where
collected data are non-Gaussian distributed or linearly non-
separable, which implies KNN as a competitive alternative
to traditional PCA-based fault detection approach. In the
proposed scheme, fault-free residuals obtained from PCA
model is fed to KNN for training. Then KNN classifier
would discriminate between NOCs and faults in testing data
by computing their distances to neighbors. Moreover, thresh-
old selection methods by conventional parametric and kernel
density estimation (KDE) based nonparametric approaches
are also evaluated. Conventional PCA-based SPE and T 2

approaches are used as benchmarks for comparison. The aim
of this research is not only sensing abnormal events in influent
measurements of WRRFs but also identifying the type (source)
of abnormalities, such that operators can respond accordingly
by making any necessary and take corrective actions to protect
the system. To assist fault diagnosis, anomalies are analyzed
via the radial visualization (RadViz) plot, which is intuitive in
high dimensional data interpretation. To evaluate the proposed
soft sensor-based monitoring schemes, data from a coastal
municipal WWRF located in KSA is experimented with.

The PCA and KNN based soft sensors used for multivariate
process monitoring are briefed in the following section. Then
the proposed monitoring scheme is introduced in Section III.
The performance of the developed data-driven soft sensor
approach is assessed via real data application in Section IV,
and conclusions are presented in Section V.

II. METHODS

This section introduces an overview of conventional PCA-
based modeling and monitoring, together with the KNN-based
algorithm.

A. Principal component analysis (PCA)
PCA has become a popular modeling technique to extract

information from multivariate process data by relating process
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variables [28], [29], [30], [31]. Let X =
[
xT1 , . . . , xTn

]T ∈
Rn×m be a centered and scaled measurement matrix with
n measurements and m variables. The data matrix X is
factorized into two orthogonal parts,

X = TWT =
k∑

i=1

tiw
T
i +

m∑
i=k+1

tiw
T
i = X̂+E (1)

where X̂ is the approximation or prediction and E is the
residual. T = [t1 t2 · · · tm] ∈ Rn×m and W ∈ Rm×m

represent a matrix of the transformed uncorrelated variables
(i.e. principal components, PCs) and a corresponding loading
matrix, respectively.

Generally speaking, PCA is a method for decoupling signals
and noises where collinearity often presents. Given certain
correlation (redundancy) in data X, the first k PCs (where
k < m) can capture most of the variability in X. This part
of the variability commonly arises from the true underlying
signals. The remaining m− k PCs capture the variability that
arises from noise. In other words, the information unexplained
by the first k PCs formed the residual data matrix.

When implementing the PCA algorithm, the singular value
decomposition is applied to the observed data to compute the
loading vectors. The loading matrix is calculated from the
covariance matrix S of the input data X as:

S =
1

n− 1
XTX = WΛWT with WWT = WTW = In.

(2)
which can be reformulated as:

S =
[
Ŵ W̃

] [ Λ̂ 0

0 Λ̃

][
ŴT

W̃T

]
(3)

Here, Λ = diag(σ2
1 , . . . , σ

2
m) is a diagonal matrix comprised

of decreasingly ordered eigenvalues of S [32]. The eigenvalues
λi are equal to the variance of the PC ti, namely σ2

i . Besides,
Ŵ ∈ Rm×k is comprised of eigenvectors corresponding
to the first k largest eigenvalues in Λ ∈ Rk×k, while
W̃ ∈ Rm×(m−k) represents the remaining m−k eigenvectors
associated to the rest of eigenvalues. From equation (1),

X = T̂ŴT + T̃W̃T = X̂+E (4)

where T̂ = [t1, . . . , tk] is the principal component score
matrix (n × k), which describes the values of variables in
the transformed n × k basis space spanned by Ŵ. Here
T̃ = [tk+1, . . . , tm] is obtained by choosing the last m − k
PCs in T such that T̃ represents only the variability of random
errors.

In this study, cumulative percent variance (CPV) procedure
is applied here to properly select the number of retained PCs:

CPV =

∑k
i=1 λi∑m
i=1 λi

× 100. (5)

In this CPV procedure, k is determined by counting PCs until
the cumulative variance explains the desired percentage (i.e.,
80%) of the total variance. In this way, the true signal variation

would be decoupled from the noise variation, and the two types
of variation shall be monitored separately.

B. Parametric and nonparametric PCA-based anomaly detec-
tion methods

After a reference PCA model is designed using anomaly-
free data, it can be used for monitoring new datasets via
SPE and Hotelling’s T 2. The SPE statistic monitors residual
subspace, while the T 2 statistic monitors changes in the PCs
subspace. The residuals of a fitted model are defined by:

e = x− x̂, (6)

where x̂ is the predicted value of x by PCA. If the PCA model
describes the observed fault-free data adequately and the pro-
cess is in NOC, then residuals should be approximately around
zero due to noise and uncertainty, in a normal distribution.

The SPE scheme is a widely used criterion for measuring
the goodness-of-fit of a data sample to its PCA model. The
SPE statistic is computed as [26]:

SPE = eT e. (7)

The SPE statistics gives a signal of an anomaly when:

SPE > SPEα, (8)

where SPEα is a threshold or upper control limit (UCL),
defined by:

SPEα = φ1

[
h0cα

√
2φ2

φ1
+ 1 +

φ2h0(h0 − 1)

φ2
1

]
, (9)

where φi =
∑m

j=k+1 λ
i
j , for i = 1, 2, 3, h0 = 1 − 2φ1φ3

3φ2
2

,
and cα is the confidence limits for the 1 − α percentile in a
normal distribution. The T 2 statistic is defined by [33]:

T 2 =

k∑
i=1

t2i
σ2
i

, (10)

where σ2
i is the estimated variance of the corresponding PC ti.

The T 2 quantifies changes in PCs subspace. The T 2 statistics
would give a signal of an anomaly when:

T 2 > T 2
α, (11)

where T 2
α is a threshold or UCL, defined by:

T 2
α = χ2

1−α,k (12)

The parametric UCL of SPE and T 2 requires the as-
sumption that observed values are temporally non-correlated
and normally distributed, which are usually denied in many
cases. One alternative approach is to adopt the kernel density
estimation for nonparametric SPE and T 2 thresholds [34].
After the density of a statistic generated in NOCs (anomaly-
free) is calculated by KDE, the nonparametric UCL or decision
threshold is then set as the corresponding (1− α)-th quantile
of this estimated distribution.

C. K-nearest neighbor (KNN)
The k-nearest neighbor algorithm is a widely used nonpara-

metric classification technique that quantifies the similarity be-
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tween test observations and their corresponding similar train-
ing sets [35]. The technique does not make prior assumptions
about the underlying data structure, which is preferred when
the collected data are non-Gaussian distributed or not linearly
separable [36], [37]. KNN-based approaches have widely used
in the literature [36], [38], [39], [37]. For instance, in [39],
KNN-based forecasting approach is introduced to predict the
IMs of WRRF. In [38], KNN is used for detecting anomalies
in meteorological data. In KNN, each training tuple delineates
a point in a multidimensional feature space. For every test
sample, the detector searches the feature space for k training
points that are closest to the new sample, which consists the
k-nearest neighbors of the tuple. Closeness is represented by
distance measures, such as Euclidean or Manhattan distance.
In this paper, residuals from PCA are employed to compute
distances to their nearest neighbor, namely, k = 1, to minimize
computational cost. Significant distances may imply anomalies
and therefore utilized for fault detection. The flow of KNN
distance based anomaly detection are given below:

Step 1 For every residual of observation xi in the training
dataset, find its Manhattan and Euclidean distances
to its nearest neighbor in the training set Di, based
on which we have sample distributions of distances;

Step 2 From the distribution of Di, parametric UCL of KNN
distance is defined as the mean value plus three times
the sample standard deviation (Dα,p = µD + 3σD,
with α = 2pnorm(−3) ≈ 0.0013), where µD

and σD are the mean and standard deviation of
KNN distances using anomaly-free training data, and
normality is assumed implicitly in this three-sigma
methodology.

Setp 3 For every residual of new observation in the testing
dataset, compute its Manhattan and Euclidean dis-
tance D∗ to its nearest neighbor in the training set.
Anomaly is detected if D∗ exceeds the UCL, Dα,p.

The conventional parametric three-sigma control chart is
appropriate only when the normality assumption is valid.
Otherwise, results would be unreliable or even misleading.
To overcome this drawback, kernel density estimation can be
used to estimate the distribution of KNN distances [34]. The
KNN algorithm with a nonparametric threshold is summarized
next.

Step 1 For every residual of observation xi in the training
dataset, find its Manhattan and Euclidean distances
to its nearest neighbor in the training set Di, based
on which we have sample distributions of distances;

Step 2 From the distribution of Di, non-parametric UCL of
KNN distance, Dα,np is defined as the (1 − α)-th
quantile of the estimated distribution of KNN dis-
tances obtained by KDE, where α = 2pnorm(−3) ≈
0.0013 is the same false alarm rate as in the para-
metric approaches.

Step 3 For every residual of new observation in the testing
dataset, compute its Manhattan and Euclidean dis-
tance D∗ to its nearest neighbor in the training set.
Anomaly is detected if D∗ exceeds the UCL, Dα,np.

III. PROPOSED PCA-KNN ANOMALY DETECTION SCHEME

Firstly, PCA model is built under NOCs using fault-free
training data and applied on testing data (with faults) to
generate residuals, which serve as the input to KNN model
for anomaly detection. Then the KNN-based scheme is used
to quantify distances between actual residuals from testing
observations and residuals from fault-free training samples.
Data from NOCs should have KNN distances closer to zero,
whereas anomalies would display larger KNN distance values.
To set UCL for decisions, both parametric and nonparametric
procedures are adopted. The parametric ones are derived from
the three-sigma rule, while the nonparametric ones involve
quantiles from KDE.

In summary, the proposed soft sensors-based monitoring
approach consists of two main phases: model construction
based on the anomaly-free training dataset, and online anomaly
detection of the testing dataset using the KNN-based mon-
itoring methods. In model identification, the objective is to
find a suitable PCA model for estimating the PCs space or its
complementary part, the residual space (for anomaly detection,
the latter is critical). The main steps of the proposed PCA-
KNN algorithm are summarized next.

I Phase 1: Model building
Step 1 Collect the training dataset (fault-free data),

representative of a normal situation.
Step 2 Scale the data to zero mean and unit variance.
Step 3 Construct PCA model based on the training

data:
◦ Select the number of PCs to be kept in

the PCA model by using CPV proce-
dure.

◦ Decompose the scaled matrix X as
two complementary parts, the predic-
tions and residuals, as given in Equa-
tion (1).

Step 4 Compute the control limits (parametric and
nonparametric)of the PCA-KNN statistic, Dα,p

and Dα,np.
II Phase 2: Anomaly detection

Step 1 Pretreat the testing dataset by scaling with the
mean and standard deviation of the training
data.

Step 2 Compute residuals and KNN distances.
Step 3 Declare a fault when the KNN statistic exceeds

the control limits previously computed using
the training data, Dα,p and Dα,np.

IV. CASE STUDY: MONITORING A WRRF IN SAUDI
ARABIA

A. Data description

To validate the proposed data-driven soft sensor method,
experimental investigations are conducted, using historical
records from the WRRF based in King Abdullah University of
Science and Technology (KAUST) located in Thuwal, Saudi
Arabia (Figure 1). This plant is an advanced facility with a
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Fig. 1. a) Headwork of the WRRF at KAUST, Thuwal, KSA, b) vortex flow grit chamber, c) sampling sites.

daily treatment capacity of 9500 m3. Since water is precious
throughout the region, all wastewater (stormwater, gray water,
and black water), as well as condensate load from KAUST
campus and community, are delivered online to the WRRF
for water resource recovery. Treated wastewater is used for
irrigation, thus greatly reducing potable water demand and
desalination energy consumption of the university. Operators
maintained daily measurements of twenty-one variables as
listed in Table I. The obtained dataset contains seven years
(from Sep. 1st, 2010 to Sep. 1st, 2017) of daily observation
over twenty-one variables with few not available data (within
1%, 132 out of 63950) imputed by R package Amelia [40].

In this study, influent measurements, such as flow, temper-
ature, pH, conductivity, TSS, COD, NH3N, NO3N, BOD5,
and Cl are measured daily by on-line sensors (IQ Sen-
sorNet, https://www.ysi.com/IQSN2020). The IQ SensorNet
is installed inside the headwork and next to the sampling
sites. The whole sensor instrument monitors the water quality
continuously and it is connected to the display panel and
controller for storing and executing all system settings. To
use it, the probe (Figure 2(a)) is dipped into wastewater after
which physicochemical reactions took place, and signals are
passed from the probe through the cable to the display panel
(Figure 2(b)). The sensors have sensitivities of 0.01 L/min for
flow, of 0.01 Celsius for temperature, and of 0.01 mg/L for wa-
ter quality parameters. The installed sensors are reported to be
used twice per day, and the probes within are renewed per two
years. Others IMs including TDS, CaHardness, MgHardness,
TotalAlkalinity, FOG, TKN, PO4P, and Boron are measured
daily by off-line analysis.

IMs can be sketched by descriptive statistics as given in
Table II. The distribution of each parameter is captured by
its mean value or the first order moment, while the spread in
the dataset is delineated by standard deviations, extremes, and
quartiles. Skewness and kurtosis are computed to exhibit sym-
metry and shape of the investigated time series distributions.

The hierarchically-clustered heatmap based on Pearson cor-
relation coefficients reveals linear relationship and hierarchi-
cally closeness among variables [41]. Figure 3 shows that
IM parameters were ranked and segmented into five blocks

Fig. 2. Multiparameter sensor capable of measuring and recording multiple
parameters simultaneously. (a) Multiparameter water quality sensors and (b)
Display panel of IQ SensorNet.

by cutting branches and positive relationships are evident
compared to negative ones. Since pH is a logarithmic value,
it is relatively independent of others and only showed a
weak connection with the second "Flow" block. The inflow
from the whole campus area contributed the majority of the
inflow from the whole university, and both of them showed
a positive relationship with temperature, indicating higher
water consumption during hot seasons. Boron concentration
is generally provided by the flow from a desalination plant,
which is another component of the total inflow.

Central in the matrix lies the third "CNP" block, where
carbon and nutrient contents are included. Interestingly, total
suspended solids is also found within, and displayed a positive
correlation with BOD5 or COD, implying organic composi-
tion. In the fourth "TDS" block encompassing conductivity
and TDS, it can be inferred that the inorganic ionic content
is principally controlled by chloride and magnesium. The fifth
block contains "miscellaneous" characteristics, in which the
recycled inflow is statistically independent, whereas alkalinity,
calcium hardness, and FOG formed a closer cluster. Besides,
alkalinity and FOG also featured positive correlation with the
third "CNP" block, while calcium hardness disclosed positive
correlation with the fourth "TDS" block.
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No. Variable name Measurement scopes limit
1 InFlow-LS1 Wastewater inflow, from the whole campus area, in m3/day -
2 InFlow-LS8 Wastewater inflow, from a desalination plant, in m3/day -
3 InFlow-DP Wastewater inflow, recycled from WRRF itself, in m3/day -
4 InFlow-Total Wastewater inflow, from the whole university, in m3/day 2500-6000
5 Temp Temperature, in Celsius -
6 pH potential of hydrogen, unitless 6-9
7 Conductivity Conductivity, in µS/cm < 2850
8 TDS Total dissolved solid, in mg/L < 2000
9 TSS Total suspended solid, in mg/L < 312
10 CaHardness Calcium hardness, in mg/L -
11 MgHardness Magnesium hardness, in mg/L -
12 TotalAlkalinity Total alkalinity, in mg/L < 200
13 BOD5 5-day Biochemical Oxygen Demand, in mg/L < 264
14 COD chemical oxygen demand, in mg/L < 527
15 FOG Fat, oils and grease, in mg/L -
16 TKN Total Kjeldahl Nitrogen, in mg/L < 40
17 NH3N Ammonia, in mg/L < 25
18 NO3N Nitrate, in mg/L < 10
19 PO4P Phosphate, in mg/L -
20 Cl Chloride, in mg/L -
21 Boron Boron, in mg/L < 2.5

TABLE I
MONITORED INFLUENT MEASUREMENTS IN KAUST WRRF.

mean std min 0.25 0.5 0.75 max skewness kurtosis
InFlow-LS1 3021.61 535.45 2228.00 2660.00 2851.00 3244.00 5249.00 1.33 1.89
InFlow-LS8 279.31 156.08 64.00 156.00 228.00 366.00 867.00 1.13 0.92
InFlow-DP 47.43 95.79 0.00 9.00 10.00 36.00 749.00 3.80 18.67
InFlow-Total 3512.92 611.00 2558.00 3036.00 3389.00 3853.00 5642.00 0.86 0.34
Temp 29.31 1.59 25.99 28.10 29.20 30.60 32.50 0.27 -0.85
pH 7.40 0.25 6.59 7.25 7.36 7.52 8.56 0.91 3.20
Conductivity 669.37 284.69 264.00 537.00 625.00 719.00 2466.00 3.19 15.37
TDS 459.48 209.08 174.00 363.00 429.00 492.00 1809.00 3.37 16.69
TSS 68.66 27.29 12.00 49.00 64.00 82.00 187.00 1.14 2.10
CaHardness 72.75 30.78 20.00 52.00 72.00 94.00 176.00 0.49 0.17
MgHardness 41.91 27.46 6.00 24.00 36.00 48.00 156.00 1.81 3.59
TotalAlkalinity 120.88 24.98 68.00 100.00 120.00 136.00 196.00 0.22 -0.33
BOD5 99.03 36.95 27.00 71.00 92.00 123.00 224.00 0.58 0.10
COD 152.99 61.83 42.00 102.00 157.00 189.00 329.00 0.50 -0.25
FOG 54.36 53.05 2.90 14.30 37.10 77.10 351.40 1.86 5.25
TKN 17.91 6.18 2.10 13.80 17.30 21.90 37.90 0.30 0.45
NH3N 11.84 4.10 0.94 9.30 12.00 14.50 23.60 -0.06 0.47
NO3N 4.17 1.68 0.10 2.90 4.20 5.10 9.80 0.49 0.47
PO4P 8.25 2.86 1.30 6.40 8.10 10.00 23.50 1.41 6.59
Cl 126.09 75.62 45.00 91.00 107.00 137.00 654.00 4.29 23.37
Boron 1.15 0.33 0.50 0.90 1.10 1.30 2.50 1.40 2.63

TABLE II
DESCRIPTIVE STATISTICS OF THE TRAINING DATASET.

B. PCA Modeling

The training data is autoscaled before building the PCA
model. Here, we used CPV to determine the number of PCs
that explains at least 80% of the total variability in the data.
Seven PCs (capturing 80.01% of variance) are selected to build
the PCA model (See Figure 4).

The transformation matrix between variables and PCs is
shown in Figure 4 as a heatmap, with variables ordered
identically to the clustered correlation heatmap (Figure 3).
The highest loading is given by the first PC which accounted
for 32.54% of total dataset variance. As the dominant data
pattern provider, it is related to the "Flow" and "CNP" blocks.
The second PC explaining 17.55% of total variance is found
linked to the "TDS" block and the calcium hardness. The
third component incorporated the "Flow" and "CNP" blocks.
The fourth component involved the "pH" and "miscellaneous"

blocks while the fifth one is majorly comprised of the "mis-
cellaneous" block. The sixth PC is notably influenced by the
recycled flow and pH. The seventh PC, as a fine-tuning part in
PCA modeling, is influenced by all blocks except the "TDS"
block.

Time series of typical variables from each block together
with their predictions produced by PCA modeling are given
in Figure 5. Generally, the PCA reconstruction by seven
components reproduced the trends of 21 variables well and
therefore justified dimension reduction in this case and further
application in anomaly detection. It can be seen that the
influent is weakly alkaline as a whole, whereas its pH may
reach over 9, forming a skewness equal to 0.91 from Table II.
The inflow from the whole university is fluctuating annually,
whose local maximum values are recorded in summer but
extreme values seen in winter or the raining season. Boron
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Fig. 3. Hierarchically-clustered heatmap based on Pearson correlation coef-
ficients of the IM variables.

Fig. 4. HeatMap of IMs and retained PCs.

concentration, as well as conductivity, are both leptokurtic
and positively skewed, and their extreme values may signify
anomalies caused by pollution of seawater origin. Although
the BOD5 content showed a rising trend over the years,
it is usually below 150 mg/L, and the upper limit of 264
mg/L is rarely reached. The nitrate content, however, has
flagged anomalies by crossing 10 mg/L for certain times. Total
alkalinity is also oscillating annually, with a local maximum
located in winter. Moreover, the limit of total alkalinity at 200
mg/L has been exceeded many times since the average sits on
120 mg/L already.

C. Detection results

The testing dataset covers the period from May 15, 2011, to
September 1st, 2017, and contains several real abnormal events
such as seawater intrusion, discharge from construction area
over the limit, and hypochlorite dosage (see Table III). Faults
are identified and reported by operators from the WRRF, based
on the combination of both downstream process performances
and their judgments in practice. Due to several intensive
rainfalls and saline water intrusion into the lift station, several
variables were reported to be strongly skewed, producing
anomalies identified by the operators.

Fault types Counts
Discharge from construction area 3
InFlow-Total (Rainfall) 5
Internal circulation 3
Lift station maintenance/flushing 2
Lime dumping from RO plant 9
NaOCl dosage 26
Others 6
pH over limit 9
Seawater Intrusion 45
TDS over limit 11
Total alkalinity over limit 36
Water supply shutdown 2
Total 157

TABLE III
SUMMARY OF ABNORMAL EVENTS IN KAUST WRRF.

In this section, the proposed PCA-based KNN soft sensor
is compared with the conventional PCA-based SPE, T 2, and
residuals-based univariate soft sensors. For PCA-based KNN
approach, both Euclidean and Manhattan distances, are used to
measure the difference between a new sample and the normal
training data. For each soft sensor-based monitoring scheme,
detection results are provided via both parametric (p) and
nonparametric (np) control limit. Moreover, the performance
of detection procedures is quantitatively compared using the
following metrics: the probability of detection or the true
positive rate (TPR), the probability of false alarm or the false
positive rate (FPR), precision or the positive predictive value,
and the area under curve (AUC).

Algorithm TPR FPR Precision AUC
PCA-KNNManh

np 0.882 0.067 0.931 0.908
PCA-KNNEucl

np 0.873 0.072 0.925 0.901
PCA-SPEnp 0.853 0.057 0.939 0.898
PCA-KNNManh

p 0.971 0.235 0.774 0.868
PCA-KNNEucl

p 0.951 0.237 0.771 0.857
PCA-T 2

p 0.657 0.059 0.928 0.799
PCA-T 2

np 0.402 0.005 0.969 0.699
PCA-Residualsnp 0.765 0.533 0.480 0.616
PCA-SPEp 0.196 0.001 0.964 0.598

TABLE IV
PERFORMANCES OF ANOMALY DETECTION SCHEMES.



1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2875954, IEEE Sensors
Journal

8

Fig. 5. Historical observations and PCA predictions of typical IMs, (a) boron, (b) conductivity, (c) total inflow, (d) BOD5, (e) pH, and (f) total alkalinity.

Firstly, it is shown in this case study that, PCA is competent
in providing acceptable approximations of data in reduced
subspace and in decoupling the signal variability from the
noise variability. Moreover, it is demonstrated that significant
enhancement in the detection of abnormal events in IMs
can be reached by using PCA-based nonparametric UCLs
instead of the parametric counterparts. The control limits of
parametric PCA-based SPE and T 2 charts are determined
with the assumption that residuals are normally distributed,
which is unreliable when applied to IMs (see Table V). From
the Table IV, it can be seen that the conventional PCA-based
SPE, T 2 with high FPRs are unsuitable for monitoring IMs.

It can be noticed that the PCA-Residualsnp scheme fails
in accurately detecting abnormal events in the monitored
IM data (see Table IV). PCA-Residualsnp scheme is based
on a joint detection method comprised of several nonpara-
metric univariate schemes, where each scheme is inspecting
a single process variable, and the joint anomaly detection
scheme provides a signal of potential anomalies when at
least one individual monitoring scheme detects an anomaly.
When looking at multivariate data, this approach ignores the
interaction between correlated variables and therefore results
in a misleading analysis.

From Table IV, nonparametric T 2 exhibits poor anomaly
detection performance with high missed detection rate (i.e.,
TPR=0.402 and FPR=0.005). This result is expected because
T 2 scheme detects changes in the principal components space
which already possess the majority of total variance in contrast
to residuals. In other words, the control limit defined by T 2

is large and moderate anomalies cannot be detected.

As shown in Tables IV, the detection efficiency is greatly
enhanced by using the proposed PCA-KNN approach. This
fact is due to the flexibility of PCA and the sensitivity of
KNN algorithm to small changes in the features. KNN is intu-
itive and straightforward in implementation and computation
complexity and provides a non-parametric approach without
assumptions about data distribution or convexity. Another
advantage is that when KNN is applied for unsupervised
learning, the number of clusters is not required and it is robust
to the sequence of input. Furthermore, KNN can handle large
dataset with high dimensionalities while keeping robustness to
noise. All of the above merits endorse the outperforming of
PCA-KNN methods.

In summary, the conventional parametric PCA-based charts
provide unsuitable detection performance for the assumption
that process variables follow a multivariate normal distribution
is not satisfied. This can be confirmed by both skewness and
kurtosis of data or statistics as shown in Table II and Table V.
Compared to other statistics, KNN distances reserved stronger
capacity to represent the dataset and support efficient detectors
when normality assumption is violated.

D. Anomaly analysis/diagnosis and detector comparison by
radial visualization (RadViz)

To assist fault diagnosis, anomalies are analyzed via RadViz
plot, an intuitive tool in high dimensional data exploration.
Until recently, RadViz plot has not been utilized in fault
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TABLE V
DESCRIPTIVE STATISTICS OF SPE , T 2 , MANHATTAN AND EUCLIDEAN

KNN DISTANCES.

analysis or diagnosis. Radviz was developed to directly explore
and interpret complex high dimensional datasets such as stock
exchange trends or microarray data via 2D projection. Radviz
combines the advantages of projection methods, reducing the
dimensionality, with that of scatterplots, where the value of
each point can be inferred from the distance to the axis.
In Radviz, original attributes on IMs are set as ordered
dimensional anchors around the circumference of a circle, and
observed points are plotted on the interior such that attributes
with higher values obtain higher weights, increased attraction,
and shorter distances from corresponding anchors [42]. In this
study, to enable visualization and interpretation of detected
multidimensional anomalies, R package RadViz with an opti-
mized ordering of anchors is employed [42].

In Figure 6, datasets are shown by RadViz plot with their
scores on principal components set as anchors and categories
marked by shapes and colors. Proximal observations hinted
similar pattern, and exterior records signified potential prob-
lems of their nearby attributes [42]. The simplification derived
from dimension reduction by PCA and the visualization by
radial scatterplot are combined here, which together with prior
knowledge of PC composition from Figure 4, enabled faults
interpretation. Gray points of normal operating conditions are
generally scattered in the central area, while various anomalies
surrounded them from the second to the sixth PCs in a ’V’
shape manner. Anomalies caused by "discharge from construc-
tion area" and "TDS over the limit" were closer to the second
and third anchors, exactly matching their roles as "TDS" and
"Inflow" block-indicators. Rainfall, internal circulation, and lift
station flushing let their records closer to the "Inflow" and the
fifth pillar, one that’s related to FOG and recycled flow. Events
including "lime dumping from RO plant", "pH over limit",
"total alkalinity over limit" and "water supply shutdown" were
accumulated towards the sixth "pH" PC, and affected by the
second "TDS" anchor as well as the fourth "pH, alkalinity and
calcium hardness" anchor. Interestingly, "seawater intrusion"
points were diverged into two locations, either joining ones
with "TDS over the limit" or ones with "total alkalinity
over the limit." The dosage of sodium hypochlorite seems to
raise complex consequences along the "V," or they might be
concurrently happening instead of being the causation.

The RadViz plot can also be adopted for the visualization
of soft-sensor performances and detailed illustration of Ta-
ble IV, as implemented in Figure 7. The nonparametric KNN
soft-sensor achieved the best balance between precision and
sensitivity, perceiving the most anomalies and the least false
alarms, with some miss on the ambiguous "sodium hypochlo-

rite dosage" and "seawater intrusion." The nonparametric
SPE soft-sensor output worse results on events like "sodium
hypochlorite dosage," "alkalinity over the limit," "rainfall" and
"alkalinity over the limit." The parametric T 2 soft-sensor,
though performed better than its nonparametric counterpart
as shown in Table IV, played worst in comparison, showing
unsatisfying outcome on "sodium hypochlorite dosage" and
"alkalinity over the limit" and triggering most false positives.

V. CONCLUSIONS

The monitoring of IMs is essential for WRRFs operations
and is especially valued in KSA. However, IMs following
non-Gaussian distributions with high skewness and kurtosis
are not suitable for conventional parametric PCA based SPE
approach. Hotelling’s T 2 displayed insensitivity to small and
moderate anomalies since retained PCs captured the majority
of variance in NOCs. Joint univariate methods monitor single
process variables and may overlook the interactions among
correlated variables, resulting in insufficient results. In this
study, a multivariate data-driven soft-sensor based on PCA-
KNN is proposed and validated by historical IMs data from a
WRRF in KSA. PCA performed effective dimension reduction
and revealed interrelationships between IMs, while KNN dis-
tances demonstrated superior sensing capacity, robustness to
underlying data distribution, and efficiency in handling high-
dimensional dataset. Nonparametric thresholds derived from
KDE further enhanced detection results when compared with
parametric ones. Moreover, RadViz is applied for fault analysis
and diagnosis in combination with PCA, and delineated in-
novative interpretable visualization of anomalies and detector
performance.

For future work, extensions of kernel PCA and a nonlin-
ear principal component regression would be investigated to
capture nonlinear and dynamic relationships among variables.
Prior knowledge of faults could be introduced to assist sensing
techniques and achieve multi-class fault diagnosis or classifi-
cation. A higher sampling frequency of IMs may reveal diurnal
trends and enable fine-tuned soft-sensing in WRRFs.
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