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Introduction

This is part II of a paper, the first part of which is [4]. In that article we
considered the Iwasawa algebra of the pro–p Iwahori subgroup of GL(2, L)
for an unramified extension L of degree r of Qp and gave a presentation of
it by generators and relations, imitating [3]. A natural base change map
then appears that, however, is well–defined only for the globally analytic
distributions on the groups, seen as rigid–analytic spaces.

In §1.1 of [4], we stated that this should be related to a construction of
base change for representations of these groups, similar to Steinberg’s tensor
product theorem [13] for algebraic groups over finite fields.

In this paper we give such a construction, and we show that it is compat-
ible with the (p–adic) Langlands correspondence in the case of the principal
series for GL(2).

By the previous remark, we have to limit ourselves to globally analytic rep-
resentations. These representations have been considered by Emerton in his
exhaustive introduction (unfortunately unpublished) to p–adic representa-
tion theory [6]. See in particular sections 3.3, 5.1 in his paper; the restriction
of scalars, central to our constructions, is considered in his section 2.3.

The first section of this paper contains preliminaries about rigid–analytic
groups. The group associated to the pro–p Iwahori is (by Lazard’s descrip-
tion) very simple, a product of copies of the rigid–analytic closed unit ball.
In particular the algebras of functions we consider are all Tate algebras. We
must, however, systematically consider restriction of scalars. Even for such
simple spaces, this functor does not behave trivially, as was pointed out to
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me by Gaëtan Chenevier. See [1, 14]. However, this is the case for unramified
extensions (§ 1.1.) It is then an easy matter to describe the natural func-
torial maps between Tate algebras (Proposition 1.4) and, dually, between
(global) distribution algebras (§ 1.2). Nevertheless, the distribution algebra
for a product is not a tensor product (even a completed tensor product.)
This causes problems in the representation theory, which will be mentioned
below; these “pathologies” are reviewed in the Appendix.

In section 2 of this paper, we review the properties of these represen-
tations, adding some complements to Emerton’s results. In particular, we
study tensor products of representations (Theorem 2.3).

In contrast with the category of locally analytic representations, we can
work here with (p–adic) Banach spaces rather than with Fréchet spaces, or
spaces of compact type [12, 6]. Indeed, the spaces A and D of globally an-
alytic functions (resp. distributions) are Banach spaces. The unfortunate
consequence is that they are not reflexive. In particular we cannot system-
atically use duality as in the admissible Banach theory [11] or the locally
analytic theory [12]. A related problem is that the spaces D of distributions
are not Nœtherian. See the remarks in § 2.3, as well as the Appendix.

In section 3, we take up the construction of the base change functor,
i.e., the Steinberg tensor product. Once the requisite property of the tensor
product has been established in section 2, this is totally natural. The main
point is that a globally analytic representation will automatically extend,
from the L–points of a rigid–analytic group G over L (we consider only very
special groups, cf. section 2) to the F–points for any finite extension F of
L. Although this is not explicit in [6], it follows from his definitions. The
construction is given in §3.2.

Of course this is meaningful only if it is compatible with the expected
Langlands correspondence. The end of section 3 is devoted to the proof
of this fact for the principal series. We start with the pro–p Iwahori G of
GL(2,Qp). We must of course consider only the representations which have
globally analytic vectors. This condition is specified in (3.4). In Theorem 3.6,
we show that (under the same assumption as in [12]) the globally analytic
representation of the pro–p Iwahori subgroup of GL(2,Qp) is topologically
irreducible.

In § 3.6, we extend these results to the pro–p Iwahori subgroup of GL(2, L)
where L/Qp is unramified. Here we rely on the results of Orlik and Strauch
[8]. We show that the formation of the Steinberg tensor product is com-
patible with Langlands functoriality (cf. Definition 3.8); the final result is
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Theorem 3.8 which exhibits base change in this context.
These results concern only the pro–p Iwahori subgroups, not the full

groups GL(2,Qp), GL(2, L). In § 3.5 we make some tentative remarks about
the extension of base change to the full groups. Finally, the Appendix re-
views some questions concerning the tensor products of distributions and the
non-Noetherian character of these algebras.

While writing this paper I had the benefit of discussions or correspon-
dence with Berthelot, Breuil, Chenevier, Raynaud and Schneider. I am very
grateful to them, and especially to Peter Schneider who explained to me the
facts reviewed in the Appendix. I also thank Ariane Mézard who read the
manuscript and corrected several mistakes.

1 Restriction of scalars and base change maps

for analytic functions and distributions on

rigid–analytic unit ball groups

1.1

We consider an unramified extension L/L0, of degree r, of p–adic fields (finite
extensions of Qp). Let X = B1/L be the closed unit ball over L, a rigid–
analytic space whose affinoid algebra is

T 1
L = L < x > .

There is a functor of restriction of scalars, which to X = X/L associates
a rigid–analytic space Y = ResL/L0X/L0.

Lemma 1.1. (L/L0 unramified).- Y is isomorphic to the r–th power of
B1/L0.

This is a special case of the more general results of Bertapelle [1]. Let (ei)
be a basis of OL over OL0 , and let B be an affinoid L0–algebra. Consider
f ∈ HomL(L < x >,B

⊗
L0

L), thus

f(x) =
∑

biei (bi ∈ B) .

We want to define canonically

g ∈ HomL0(L0 < x1, . . . xr >,B), with g(xi) = bi .
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(Thus Y ∼= Br/L0 is canonical, given the choice of the basis (ei).) This is
possible if, and only if, ‖bi‖Sup ≤ 1 assuming ‖b‖Sup ≤ 1 where the sup norms
are relative to the affinoid algebras B and B

⊗
L0

L.

Assume first that B is a finite field extension of L0. Then B
⊗
L0

L is a prod-

uct of finite, unramified extensions Bα of L, and the integers O(B
⊗
L0

L) =∏
α

O(Bα) satisfy, the extensions being unramified, O(B
⊗
L0

L) = OB
⊗
OL0

OL =⊕
OBei. To say that ‖b‖Sup ≤ 1 for b ∈ B ⊗ L is to say that bα ∈ O(Bα),

or b ∈ O(B
⊗
L0

L).

This implies that ‖bi‖ ≤ 1.
Now let B be a general affinoid algebra over L0, and B′ = B

⊗
L0

L. If

b =
∑
biei ∈ B′ (bi ∈ B), the computation in [1, p. 444] shows that

‖b‖Sup = Sup
y∈MaxB

Max
x∈MaxB′

x|y

∥∥∥(∑ biei

)
(x)
∥∥∥

Sup
.

However, y corresponds to a finite extension K0 of L0, x to a finite extension
K of L contained in L

⊗
K0

L0 so unramified over L. The previous result implies

that ‖
∑
biei(x)‖Sup = Sup‖bi(x)‖. Thus ‖bi‖Sup ≤ 1 if ‖b‖≤1. We note that

we have in fact:

Lemma 1.2. The isomorphism Y
'−→ (B1/L0)r is canonically defined by the

choice of the basis (ei).

In fact, the function g (for instance if B = K0 is a field extension of L0)
is defined by

(1.1) g(x1, . . . xr) = f(Σeixi) .

(|xi| ≤ 1). The ei being integral, it is easy to check that for f ∈ T 1
L , the

infinite series in the right is convergent.
Since restriction of scalars is compatible with direct products [1, Prop. 1.8]

we have likewise
ResL/L0(B

1/L)d = (B1/L0)dr

the isomorphism being canonical once we have fixed the basis (ei).
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1.2

We now consider a rigid–analytic group GL over L, isomorphic as a rigid–
analytic space to (B1/L)d. (In particular GL(L) is dense in GL for the Zariski
topology.) Let A(GL) ∼= T dL be the space of analytic functions on GL. The
multiplication in GL is defined by a morphism

m∗ : A(GL) −→ A(GL)⊗̂A(GL)

(completed tensor product). In this case, the product is given, in co–ordinates,
by integral functions, [2, Cor. 5.1.3.5] so

m∗ : A0(GL) −→ A0(GL)⊗̂A0(GL) .

Then m∗ defines naturally a map

Res m∗ : A0(Res GL) −→ A0(Res GL)⊗̂A0(Res GL) ,

Res being the restriction of scalars of GL, a group over L0.
Assume now that the group GL is actually defined over L0, i.e., is obtained

by extension of scalars from L0. Then A(GL) = A(GL0) ⊗ L. The map m∗

is obtained by extension of scalars from

m∗0 : A(GL0) −→ A(GL0)⊗̂A(GL0) .

The integrality property for GL and the property for GL0 are equivalent.
Now the previous construction associates to f ∈ A(GL) (with L–coeffi-

cients, i.e. in T n(L)) a function g in A(ResGL) ⊗ L (the function g de-
fined by (1.1) will have coefficients in L). In particular we get a map
A(GL0) → A(Res GL)⊗ L by composition with the previous “tautological”
map A(GL0)→ A(GL).

Definition 1.3. This map b1: A(GL0)→ A(Res GL)⊗L is the holomorphic
base change map.

This map commutes with the comultiplications m∗0 and Res m∗: it is
obvious if we consider m∗0 and m∗, and for m∗ and Res m∗ it follows from the
formal properties of restriction of scalars. Furthermore b1 sends A0(GL0) to
A0(Res GL ⊗ L).

The unramified extension L/L0 is Galois. Thus the Galois group Σ =
Gal(L/L0) acts naturally on GL (by σ–linear automorphisms of the Tate
algebra) and acts on Res GL by L0–automorphisms.
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Definition 1.4. The map b : A(GLo)→ A(Res GL)⊗ L is defined by

b(f) =
∏
σ∈Σ

b1(f)σ .

Since b1 commutes with the comultiplication, the same is true for the
product Π bσ1 . We also note the following: Assume we extend scalars from
L0 to L for the L0–groups. Then

Res GL ⊗L0 L

is naturally isomorphic to
∏
σ

GL. Indeed, if B is an L–algebra (in particular

an affinoid algebra), B ⊗L0 L
∼=
⊕
σ

Bσ where Bσ = {β ∈ B ⊗ L : λ1β = λσ2β

where λ ∈ L and λ1 is the action of λ on B ⊗ L by the first component, λ2

by the second component. Now, A denoting a Tate algebra:

HomL (A(ResGL)⊗L0 L,B) (B/L)
= HomL0(A(Res GL), B0)

(B0 being equal to B/L0)
= HomL(A(GL), B0 ⊗ L)
=
⊕
σ

HomL(A(GL), Bσ) .

In particular, after extension of scalars to L, A(Res GL) ⊗ L ∼=
⊗̂
σ

A(GL).

The map b is then a tensor product: b1 sends A(GL0) to the functions on
GL that are L–holomorphic (given by power series Σamx

m, x = (x1, . . . xd)
being the variable) while the component associated to σ sends a power series
in A(G0) to Σamσ(x)m.

We now agree to consider all Tate algebras as having coefficients in L,
and we denote them by AL.

Summarizing, we now have the following result:

Proposition 1.5. (i) There exists a natural map b1: AL(GL0)→AL(Res GL).
It commutes with the comultiplications.

(ii) There exists a natural map b =
∏
σ∈Σ

bσ1 : AL(GL0) → AL(Res GL). It

commutes with the comultiplication.

(iii) In the isomorphism AL(Res GL) ∼=
⊗̂
σ

A(GL) (A(GL) = AL(GL)),

b =
⊗
σ

bσ1 .
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(iv) The maps b1 and b send the unit balls A0
L(GL0) to A0

L(Res GL). (The
norm being the sup norm of coefficients).

We now consider the spaces of (L–valued) global distributions on GLo and
Res GL). We denote them by DL(GL0), DL(Res GL). These are the Banach
spaces dual to the Banach spaces of analytic functions (for the sup norms).
We obtain, dually, a map

b∗1 : DL(Res GL)→ DL(GL0)

and also
b∗ : DL(Res GL)→ DL(GL0) .

These are homomorphisms, for the convolution of distributions. Using (iii)
in the Proposition, we can write⊗

σ

DL(GL) ⊂ DL(Res GL)

and b∗ is then, on this subspace, given by⊗
σ

Tσ 7→ ∗
σ
Tσ

(where Tσ ∈ DL(GL0) is σ–holomorphic). However,
⊗̂
σ

DL(GL) is not equal to

DL(Res GL). Since, after extension of scalars, our groups become products,
this can be seen as follows.

We may forget for a moment the restriction of scalars, and consider two
groups G, H isomorphic (as rigid–analytic spaces) to (B1)d, (B1)d

′
over L.

The spaces of analytic functions are T d(L), T d′(L), with the sup norm. The
dual DL(G) of the space of functions

f(x) =
∑
n

an x
n , an → 0

(n ∈ Nd, x = (x1, . . . xd), |xi| ≤ 1) is the space of distributions

T =
∑
n

cn δn (|cn| ≤ C)

where δn(f) = an = n ! ∂
nf
∂xn

(0). It is a Banach space, the norm being sup |cn|.
The same description applies to a distribution S on H, and a distribution on
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G×H. However, these Banach spaces are `∞ spaces in the indexes, and for
three (countable) sets X, Y , X × Y , it is not true that

`∞(X) ⊗̂ `∞(Y ) = `∞(X × Y ) .

In order to form tensor products, we must consider the unit balls inDL(G),
DL(H) (with their weak topology) and apply a result of Lazard. This was
explained to me by Peter Schneider; we will return to it at the end.

2 Globally analytic representations

2.1

In this section we review some basic properties of globally analytic representa-
tions of a rigid–analytic group on a Banach space, mostly following Emerton
[6]. We assume given L and G/L as in § 1.2. We denote by A ∼= Td(L) the
space of globally analytic functions on G. We will often write G for G(L) if
this does not lead to confusion ; G(L) is dense in G for the Zariski topology.

2.2

Let V be a Banach space over a field K containing L. We assume again K
finite over Qp. If g 7→ π(g) is a representation of G on V , we say that π (or
V ) is a globally analytic representation if the map

g 7→ g · v = π(g)v

is (globally) analytic on G for all v ∈ V . Thus, in coordinates (x1, . . . xn) :

g · v =
∑
m

xmvm

where vm ∈ V and ‖vm‖ → 0.
Here m = (m1, . . . ,md) and xm = xm1

1 · · ·x
md
d , mi ∈ N. Such a represen-

tation is automatically continuous, and even differentiable. We will simply
use the term “analytic” for “globally analytic”. Note that it is relative to
the L–structure on V .

In this situation V is endowed with two natural norms, the given norm
and

‖v‖ω = Sup
m
‖vm‖ .
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The second norm is the norm of the map g 7→ gv in the Banach space
A(G, V ) = A(G)⊗̂V (for this isomorphism cf. e.g. [6, § 2.1]). The map
(V, ‖ ‖ω) → (V, ‖ ‖) is bijective and obviously continuous. Since V , with
the norm ‖ ‖ω, is complete [6, 3.3.1, 3.3.3] it is bicontinuous by Banach’s
isomorphism theorem [9, Cor. 8.7].

We recall the proof of the completeness of (V, ‖ ‖ω), as we will require
similar arguments. Thus let (vα)α be a Cauchy sequence in V for ‖ ‖ω. For
each α, (vαm)m∈M is an element of C0(M,V ) where M = Nd is the set of
exponents. Since this space is complete, (vαm)m 7→ (vm) in C0(M,V ) for an
element vm ∈ C0(M,V ). In particular vα = vα0 → v0 ∈ V . Now gv = lim

α
gvαo

(g ∈ G), so gv = lim
α

(
∑
m

xmvαm). Since

∥∥∥∑
m

xm(vαm − vm)
∥∥∥ ≤ Sup

m

∥∥∥vαm − vm∥∥∥ −→ 0 (α→∞)

we see that gv =
∑
xmvm, which implies that ‖v − vα‖ω → 0.

Corollary 2.1. There exists a constant CV (depending on V ) such that
‖v‖ω ≤ CV ‖v‖ (v ∈ V ).

In particular ‖gv‖ ≤ CV ‖v‖ (g ∈ G).

In fact the original norm can be replaced by an equivalent norm such that
‖gv‖ = ‖v‖ : see Emerton [6, §6.5].

Lemma 2.2. Let (V, ‖ ‖) be a continuous Banach representation of G, and
let W ⊂ V be a subspace comprised of analytic vectors. Assume that ‖w‖ω ≤
C‖w‖ (C > 0) for w ∈ W . Then any vector of W̄ ⊂ V (the closure for the
topology of V ) is analytic.

Proof.— Consider a sequence (wα)α of vectors in W , such that ‖wα−v‖ → 0
(v ∈ V ). Then wα is a Cauchy sequence for ‖ ‖, so also for ‖ ‖ω. If

g · wα =
∑
m

xmwαm ,

the sequence (wαm)m∈M has a limit (vm) in C0(M,V ). In particular v0 = v.
Again

g wα =
∑
m

xmwαm −→ gv (α→∞
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and ‖
∑
m

xm(wαm − vm)‖ ≤ Sup
m
‖wαm − vm‖ → 0 (α →∞) which implies that

gv =
∑
m

xmvm.

Consider now two rigid analytic groups G, H verifying our assumptions.
Let V , W be analytic representation of G, H on Banach spaces. We assume
the norms invariant, using Emerton’s result. ThenG×H acts on the algebraic
tensor product V ⊗W . By [9, Prop. 2.1.7.5] this action extends to V ⊗̂W ,
with ‖(g, h)u‖ = ‖u‖ (u ∈ V ⊗̂W ).

Now V ⊗W is dense in V ⊗̂W , and is comprised of analytic vectors : if
v ∈ V , w ∈ W and

gv =
∑
m

xmvm , hw =
∑
p

ypwp

(g ∈ G, h ∈ H) then

(g, h)(v ⊗ w) =
∑
m,p

xmypvm ⊗ wp .

Since ‖vm ⊗ wp‖ = ‖vm‖ ‖wp‖ (Schneider [9, Prop.17.4]), this yields an ana-
lytic expansion.

Now endow V ⊗W with its analytic norm ‖ ‖ω, for the action of G×H.
We have

‖v ⊗ w‖ω = Max
m,p
‖vm ⊗ wp‖

= Max‖vm‖Max‖wp‖
= ‖v‖ω ‖w‖ω.

Now consider any vector u ∈ V ⊗W . The tensor product norm is de-
fined by

‖u‖ = inf Max
i
‖vi‖ ‖wi‖

over the decompositions u =
∑
vi ⊗ wi. Choose ε > 0, and a decomposition

such that

‖u‖ ≥ Max‖vi‖ ‖wi‖ − ε.
Then ‖u‖ω ≤ Max

i
‖vi ⊗ wi‖ω

≤ CVCWMax
i
‖vi ⊗ wi‖ ≤ CVCW (‖u‖+ ε).

Thus ‖u‖ω ≤ CVCW‖u‖, and V ⊗W ⊂ V ⊗̂W verifies the assumption of the
Lemma. This implies:
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Theorem 2.3. If V , W are (globally) analytic representations of G, H,
V ⊗̂W is a globally analytic representation of G×H.

(For a similar result, but for locally analytic representations, see Emerton
[6, 3.6.18]).

We also note the following property. Let g be the Lie algebra of G (over
Qp).

Proposition 2.4. If V is a globally analytic representation of G and W ⊂ V
is a closed subspace, W is G–invariant if and only if W is invariant by the
enveloping algebra U(g).

(Recall from [12] that the Lie algebra, or U(g), acts on a space of analytic

vectors). If W is G–invariant, it contains the derivatives Xw = lim
t→0

(
etX−1
t

)
w

of its vectors by elements X ∈ g. Conversely, if

gw =
∑
m

xmvm

then vm = 1
m!

dm

dxm

∣∣∣
0
(gv), the derivative being computed with respect to the

variables x. However the enveloping algebra (acting via uf = (u ∗ f)(0) for
u ∈ U(g), f an analytic function on G) also spans the space of derivatives at
0. If W is invariant by U(g), the coefficient vm belong to W and therefore
gw ∈ W .

By contrast with the case of complex unitary representations, we do not
know if V ⊗̂W is (topologically) irreducible if V , W are topologically irre-
ducible. The only, obvious, property is that V ⊗̂W is topologically cyclic
(i.e., the closed subspace generated by a suitable vector is equal to V ⊗̂W if
V and W are - in particular if they are irreducible.) Indeed, if v spans V
and w spans W , v ⊗ w spans V ⊗̂W .

2.3

Finally, we also recall from Emerton’s paper that there is a duality theory for
globally analytic representations, similar to the duality for locally analytic
(or Banach admissible) representations. If V is a globally analytic represen-
tation, the distribution algebra DK(G) acts on the dual V ′. There is a duality
between closed submodules of (A(G) ⊗ K)n and quotients of DK(G)n. See
[6, Theorem 5.1.15]. We will not be able to use this, however. There are two
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obstacles: the algebra DK(G) is not Nœtherian; furthermore, as noticed at
the end of § 1, it does not behave well with respect to the product of groups.

Let us define an admissible globally analytic representation as a globally
analytic Banach representation that is a closed submodule of (A(G)⊗K)n.
Recall also from [10, 6] that there is a category of admissible (continuous)
Banach representations and of admissible locally analytic Banach represen-
tations on spaces of compact type [11]. In general, an admissible globally
analytic representation is not an admissible locally analytic representation
(an infinite–dimensional Banach space is not of compact type) and is not an
admissible Banach representation. Indeed, if E is such a representation and
E0 is its unit ball (for a given G–invariant norm), and if $ is a uniformising
parameter of K, it is known that E0/$E0 = Ē is a smooth admissible rep-
resentation of G over the finite residue field k of K [10],[6, 6.5.7]. However,
A(G) does not have that property.

For instance, if G is the additive unit ball, so V = A(G) ⊗K = T1(K),
its unit ball is translation–invariant and the subgroup $LOL of G(L) = OL
acts trivially on V̄ = k[x], so this representation is not admissible.

Assume however that E is an admissible Banach representation. Then E
is a closed subspace of C(G,K)n for some n [10],[6, § 6]. Let V = Ean be the
space of globally analytic vectors. Emerton’s results (see the proof recalled
before Cor. 2.1) show that V is complete for the norm ‖ ‖ω. It is an analytic
Banach representation [6, Cor. 3.3.6].

Assume V = Ean is dense in E. Since C(G,K)an is equal to A(G) ⊗K,
V is sent to (A(G) ⊗ K)n. Let j = (ji)i=1,...n be the closed embedding

E → C(G,K)n. By Banach’s theorem ‖v‖ ≥ C Sup
i
‖ji(v)‖ for v ∈ E, C

being a > 0 constant. This implies that ‖v‖ω ≥ C Sup
i
‖ji(v)‖ω for v ∈ V .

The canonical norm ‖ ‖ω on A(G) is the usual norm – the sup norm on
coefficients. (See Proposition 2.7 below.) Thus V is a closed subspace of
(A(G)⊗K)n. Conversely, if V is such a subspace, we can consider its closure
E ⊂ C(G), K)n. It is an admissible Banach representation in which V is
dense. Clearly V ⊂ Ean, but it does not seem to follow that V is equal to
Ean. To summarise:

Proposition 2.5. Any any admissible globally analytic representation is a
dense subspace of an admissible Banach representation. If E is an admissible
Banach representation, Ean is an admissible globally analytic representation.

The admissible analytic representations have further interesting proper-
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ties. Recall that in general, if V is an analytic representation, there is an
action of D(G)⊗K on the continuous dual V ′ [6, 5.1.8]. If V is admissible,
we can say more.

Assume T ∈ D(G) (we forget the extension of scalars for simplicity of
notation.) If f ∈ A(G), we can define a function T ∗ f by

(2.1) T ∗ f(x) =

∫
T (z)f(z−1x)dz

in functional notation, i.e. T applied to the function of z, z 7→ z−1x. Since
f(z−1x) is in the Tate algebra of G×G, this is well–defined and, moreover,
defines a function in A(G). Thus D(G) acts by convolution on A(G), and
this is compatible with the convolution product.

Assume now that V ⊂ A(G) is a closed invariant subspace. Then V is
invariant by the differential operators 1

m!
dm

dxm
. If f ∈ A(G) and

T =
∑
m

cm
1

m!

dm

dxm

∣∣∣
0

∈ D(G) (with cm bounded), T ∗ f is the limit in A(G) of TXf ,

TXf =
∑
|m|≤X

cm
1

m!

dm

dxm
f

as can be seen by expanding the function f(z−1x) in (2.1) in the Tate algebra
of G × G. Therefore V is invariant by D(G). The same extends to an
embedding V → A(G)n. Thus:

Proposition 2.6. If V is an admissible globally analytic representation, the
distribution algebra D(G) acts naturally on V . The action is continuous if
D(G) is equipped with its weak dual topology.

The continuity follows from the precious argument. It implies in particular
that the action is intrinsic.

We recall that for locally analytic representations this construction is due
to Schneider and Teitelbaum [11, § 3]. However their proof relies on an
isomorphism

L(Dloc(G), V ) ∼= Aloc(G, V )
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([11, Thm. 2.2]; here Aloc(G) is the space of locally analytic functions and
Dloc(G) its dual space, and V is a suitable topological space. The analogue
is not true in our context. Indeed

A(G, V ) = A(G)⊗̂V ∼= C0(M,V )

where M is our set of exponents, while D(G) ∼= `∞(M,L). Since `∞(N)′ is
distinct from C0(N), we see a fortiori that these spaces are not isomorphic.

Because the comultiplication is given by integral series, we also have:

Proposition 2.7. Consider the admissible representation V = A(G)⊗K of
G, with its usual norm (sup of the coefficients.) Then

(i) V is a unitary representation.
(ii) On V , ‖ ‖ω = ‖ ‖.
(iii) For T ∈ D0 = (V ′)0 and f ∈ A0, the function g 7→< T, gf > is in

A0(G,K).

These facts easily follow from the property of the coproduct. Since an
admissible analytic representation embeds as a closed subspace of (A(G) ⊗
K)n, it follows that:

Corollary 2.8. Properties (i-iii) of Proposition 2.7 are true for an admissible
analytic representation.

3 Unramified base change : the pro–p Iwa-

hori for GL(2)

3.1

The content of this section is twofold: we first describe a functor producing,
for an unramified extension L/L0 and a globally analytic representation of
G(L0) (the assumptions are those of § 1), a representation ofG(L) of the same
kind. In fact, as in § 1 for distribution algebras, there are two such functors.
The first produces a “holomorphic” extension to G(L). The second (“full
base change”) is the one that should be related to Langlands functionality.
It is the “Steinberg tensor product” described at the end of section 1.1 of [4].

We then show that for GL(2) and principal series representations of the
pro–p Iwahori subgroup, this is compatible with base change for the principal
series described by Schneider–Teitelbaum and Orlik–Strauch [11, 8]. In par-
ticular we show that certain globally analytic tensor products are irreducible.
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3.2

Let L/L0 denote an unramified extension of p–adic groups and G a rigid
analytic group over L0 verifying the conditions of § 1. We fix a p–adic field
K (finite over Qp) and an injection L : L ⊂ K. If σ ∈ Gal(L/L0), we then
have the injection L ◦ σ : L→ K.

Let V denote a (globally) analytic representation of G(L0) on a K–Banach
space.

Proposition 3.1. (i) V extends naturally to an analytic representation of
G(L).

(ii) If V is admissible, the corresponding representation of G(L) is admis-
sible.

The group G(L0) acts on V by

(3.1) g · v =
∑
m

xmvm

with the notations of § 2, and vm → 0. If g ∈ G(L), the same expansion
(with x = (x1, . . . xn) ∈ OnL) is convergent, and we define g · v by (3.1).We
must check that this defines a group representation of G(L). The map

(g, h) 7→ gh.v = F (g, h)
G(L)×G(L) −→ V

is the composition of the map (g, h) 7→ gh, analytic in the two variables, and
of an analytic map G(L)→ V . It is analytic in the two variables.

On the other hand we have for g, h ∈ G(L0):

(3.2) g(hv) = g F (1, h) .

Write x for the co-ordinates of g and y for the co-ordinates of h. Then

F (1, h) = hv =
∑
m

xmvm .

On the other hand, for any vm,

gvm =
∑
p

ypvm,p
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with vm,p → 0 (|p| → ∞).
Since ‖vm‖ ≤ CV ‖v‖ for any m and v ∈ V ,
gF (1, h) =

∑
m,p

xmypvmp,

the double sum being convergent: if |m| + |p| → ∞, either m → ∞ and
‖vm,p‖ ≤ CV ‖vm‖ → 0 or m is bounded and, again, ‖vm,p‖ → 0. Thus the
function gF (1, h) : G(L0)×G(L0)→ V is a Tate series (with coefficients in V )
in the two variables, and extends to an analytic function G(L)×G(L)→ V .
Since F (g, h) = gF (1, h) for g ∈ G(L0), these two analytic functions coincide:
indeed G(L0) is Zariski–dense in G, and the result follows (for instance,
evaluate the two functions against a continuous linear form λ ∈ V ′).

This proves (i). Assume now V is a closed subspace of A(GL0 , K). Note
that the same argument applies to A(GL0 , K), an analytic representation of
G(L0). But A(GL0 , K) = A(GL, K) and now V (as a representation of G(L)
is a closed subspace of A(GL, K).

We will call the extension of Proposition 3.1 the holomorphic base change
of V . Its coefficients are L–analytic (for the given embedding L→ K): it is
L–analytic in the sense of Emerton [6].

If σ ∈ Gal(L/L0) we write V σ for the representation of G(L) associated
to ι ◦ σ. It is L–analytic for ι ◦ σ.

Definition 3.2. The full base change of V is the globally analytic represen-

tation of ResL/L0G(L) on W =
⊗̂
σ

V σ.

It is analytic for ResL/L0G(L) by the results of § 1. (Note that L/L0 being
unramified, ResL/L0G(L) is again a group of the same type.) The fact that
the completed tensor product is globally analytic follows from § 2.

When V is the restriction to G(L) — the L–points of a rigid–analytic
group deduced from a suitable integral structure of a reductive group G/L
— of a representation (still denoted by V ) of G(L), we conjecture that this
will be compatible, in some sense, with Langlands base change (still con-
jectural) for p–adic Banach representation of G(L). Of course the relation
between admissible Banach representations and globally analytic Banach rep-
resentations (for G(L)) is not one–to–one, cf. Proposition 2.5. It would be
interesting to determine which Banach spaces E give rise to a given V , for
instance if V is irreducible. Furthermore, even in the case of irreducible prin-
cipal series V for G(L), the restriction to G(L) is not irreducible. The full
base change of Definition 3.2 then describes only certain of its submodules.
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This will be clear for the principal series.

3.3

We now consider the case of the principal series for GL(2). For simplicity we
assume L0 = Qp. We assume p > 2, so G is a product of 1–dimensional balls.
Thus G(L0) = GL(2,Qp) while G is the rigid–analytic group studied in the
first part of this paper. The principal series is then described by Schneider
and Teitelbaum [11]. (They define the Iwahori subgroup by matrices that are
lower triangular mod p while in [4] we consider upper–triangular matrices.
We will follow their choices.)

Let B =
{
g ∈ GL(2,Zp) : g ≡

(
∗ 0
∗ ∗

)
[p]
}

, so our group G = G(Qp) is a

subgroup of B. Let P0 ⊃ T0 be the set of upper triangular (resp. diagonal)
matrices in B. Let χ : T0 → K× be a locally analytic character, such that

χ

(
t−1

t

)
= exp(c(χ)log(t))

for t ∈ T0 = (Z×p )2 when t is sufficiently close to 1. Thus c(χ) ∈ K.
We consider first, as they do, the locally analytic induced representation

of B
Jloc = indBP0

(χ) = {f ∈ Aloc(B,K) : f(gb) ≡ χ(b−1)f(g)}
(b ∈ P0), where χ is naturally extended to P0. We have

(3.3) B = UP0 , U =
{(1

z 1

)
, z ∈ Zp

}
.

Note that since χ is fixed, the restriction of the functions of Jloc to G ⊂ B is
injective. With

Q0 = P0 ∩G =
{(s x

0 t

)
: s, t ≡ 1 , x ≡ 0 [p]

}
we see that the space of Jloc is

Iloc = {f ∈ Aloc(G,K) : f(gb) ≡ χ(b−1)f(g)}

(b ∈ Q0). With (3.3) replaced by G = UQ0, we see that Iloc ∼= Aloc(Zp, K)
where Zp is seen as the rigid analytic (additive) group B1(Zp). The group
G acts by left translations, thus by f(g) 7→ f(h−1g). We now have [11,
Lemma 5.2]:
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Lemma 3.3. For y ∈ Zp, x ∈ pZp, s, t ≡ 1 [p]:

(i)

(
1

y 1

)
f(z) = f(z − y)

(ii)

(
s

t

)
f(z) = f(st−1z)χ(s, t)

(iii)

(
1 x

1

)
f(z) = f

(
z

1−xz

)
χ((1− xz)−1, 1− xz) .

We now seek conditions such that A(B1, K), where B1 is the unit ball in
the z–variable, is a globally analytic representation. We simply denote this
space by A; we will similarly drop the subscript K in this section.

Lemma 3.4. It suffices to check analyticity separately for the 1–parameter
(rigid–analytic) subgroups of which G is the product.

Changing notation, denote by x, y, u, w the variables in Zp deduced from
the natural variables. (So x is p−1x′ where x′ is the coordinate in (iii)).

Assume for instance yf =
∞∑
o

ymfm, ‖fm‖ → 0 for any f , where ‖ ‖ is the

natural norm on A. Then, with obvious notation:

xyf = x
∞∑
o

ymfm

=
∞∑
m=0

ym
∞∑
p=0

xpfm,p

where, for each m, fm,p → 0 with p.
However, the norm on A is equivalent to the norm ‖ ‖ω,x deduced from the

action of the (rigid–analytic) x–group. Thus we can assume that ‖fm,p‖ ≤
C‖fm‖ (for this new norm). Then ‖fm,p‖ → 0 when |m| + |p| → ∞. The
same argument applies to any number of variables.

For f ∈ A and z ∈ Zp, f 7→ f(z) is a continuous linear form. For s = t,
(ii) yields: (

s
s

)
f(z) = f(z)χ(s, s) .

If the action is analytic, we see that χ(s, s) must be an analytic function
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of s for s ≡ 1 [p]. Now χ(s, t) = χ(t, t)χ(st−1, 1). We may then consider(
s

1

)
f(z) = f(sz)χ(s, 1) .

Taking f = 1, we see that χ(s, 1) must be analytic. Moreover, if

f(z) =
∑
m≥0

amz
m

and s = 1 + w (p|w) then

f(sz) =
∑
n

wn
∑
m≥n

am

(
m
p

)
fn =

∑
n

wnfn(z)

yields an analytic expansion, in A, of f(sz). .
The condition on the analyticity of χ(s, t) is as follows. Write χ = (α, β)

with
α(1 + pu) = ea log(1+pu), β(1 + pu) = eb log(1+pu)

(a, b ∈ K) for u ∈ Zp close to 0. The exponential is analytic (in K) in the
domain vp(z) > e

p−1
where e = e(K); vp is always the normalized valuation,

vp(p) = 1. Now

vp(a log(1 + pu)) = vp(a) + 1 + vp(u)

since p > 2, so we must have vp(a) + 1 > e
p−1

, i.e.:

(3.4)
vp(a), vp(b) >

e

p− 1
− 1

=
−p
p− 1

if K is unramified.

Henceforth we assume that α, β verify these conditions. (“ α, β are ana-

lytic” for short.) Now the action of

(
s

t

)
is a twist of the action associated

to χ = 1 by an analytic character. Thus (i), (ii) yield analytic actions.
Now α(1+v) belongs to the Tate algebra on the ball |v| ≤ p−1, so α(1−xz)

belongs to the Tate algebra of two variables on B1 = B(1) × B(p−1). In
particular it has a convergent expression∑

m≥0

xm αm(z) , αm ∈ A
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on this domain, convergent (for |x| ≤ p−1) as a series in A. Now for |v| < 1

(1− v)−m =
∞∑
q=0

(
m+ q − 1

q

)
vq , so

for f =
∞∑
0

amz
m,

f
( z

1− xz

)
=
∞∑
0

am

∞∑
q=0

(
m+ q − 1

q

)
xqzq

=
∞∑
q=0

xq
∞∑
m=0

(
m+ q − 1

q

)
amz

q .

We have to remember that x ∈ pZp, so the analyticity of the action (iii) must
be seen in the variable ξ = x

p
∈ B1. The expression now becomes

∞∑
q=0

ξq
(
pq

∞∑
m=0

(
m+ q − 1

q

)
amz

q

=
∞∑
q=0

ξqfq(z)

with obviously ‖fq‖A ≤ p−q‖f‖A. Thus the action (iii) is analytic.
Let Aloc ⊃ A be the space of locally analytic functions. The representa-

tion of G on Aloc is studied by Schneider and Teitelbaum in [11]. Let Dloc be

the space of distributions on U =
{(1
∗ 1

)}
in their sense, i.e. the topo-

logical dual of Aloc. We recall that Aloc = lim−→
n

A(n) where A(n) is the space

of functions globally analytic on each ball of radius p−n. Thus A = A(0).
The transition maps are injective and compact, with dense image. Dually
we have Dloc = lim←−D(n). This is a projective limit of Banach spaces, the
projection maps being compact with dense image; D = D(0).

Similarly for the rigid–analytic group G, we have Aloc(G), Dloc(G) with
similar properties. Consider the maps

r : Dloc −→ D = A′ (continuous dual of A)
R : Dloc(G) −→ D(G) .

We have natural actions of Dloc(G) on Dloc and of D(G) on D (see 2.3), which
we denote by the convolution sign.

20



Lemma 3.5. For T ∈ Dloc(G), F ∈ Dloc, r(T ∗ F ) = R(T ) ∗ r(F ).

The maps r and R are continuous. The map (t, f) 7→ t ∗ f (t ∈ D(G), f ∈
D) is continuous in t; similarly (T, F ) 7→ T ∗ F (T ∈ Dloc(G), F ∈ Dloc)
is continuous [11]. Furthermore the finite group algebra K[G] is dense in
Dloc(G). It suffices then to check the formula for a single Dirac measure
T = δg, where it is obvious. We can now deduce from the results of Schneider–
Teitelbaum:

Theorem 3.6. If b− a /∈ N, the globally analytic representation of G on A
is topologically irreducible and admissible.

Consider the G–map r : Dloc → D, and let X ⊂ D be a closed submodule
(for the action of G). Then r−1X ⊂ Dloc is a closed submodule, invariant
by Dloc(G). In [11], Schneider and Teitelbaum consider in fact the action
of Dloc(B). By [11, Theorem 5.4], Dloc is (algebraically) irreducible under
Dloc(B). However a glance at their proof shows that it remains irreducible
under Dloc(G): the proof involves only the action of the Lie algebra, except
for the argument at the bottom of p. 460. Here it must be checked that a
submodule V of Dloc, under the action of B, is generated by distributions T
with Amice transform having only zeroes in the set of elements of the form
ζ − 1 where ζ is a root of unity (in Cp) of pn-order. The argument relies
on the action of T0; however it is easily seen that the action of the group of
elements congruent to 1 mod p (contained in G) is sufficient.

Thus r−1X is null or equal to Dloc. Since X is closed and r : Dloc → D
has dense image, we deduce that X is equal to {0} or D. However D is
the Banach dual of A. If Y ⊂ A is a closed subspace, Y ′ is a quotient of
D = A′ by the Hahn–Banach theorem, thus Y ′ = {0} or D, which implies
that Y = {0} or A.

Finally, the representation on A is admissible: indeed, A is the subspace
of A(G) defined by the conditions f(gb) ≡ χ(b−1)f(g) (f is then analytic on
G since χ is so) and this is a closed subspace.

3.4

Let now L be an unramified extension of Qp, of degree r. All the arguments
of the previous section extend to the group G(L). Here χ = (α, β) must be
a couple of characters of O×L . The conditions on the logarithmic parameters
a, b ∈ K remain the same since L is unramified. Note that the representation
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on A(B1, K) (where now B1 is seen as an L–analytic space) given by the
formulas of Lemma 3.3 is L–analytic. Its restriction to G(Qp) is simply the
previous representation. Indeed, the representation of G(L) is obtained from
the representation of G(Qp) by the procedure described in Proposition 3.1.

Denote by IQp(χ) and IL(χ), respectively, the two globally analytic repre-
sentations. (Since χ is defined by its parameters (a, b) we agree to identify
the characters for the two fields.) Then we have:

Proposition 3.7. If b − a /∈ N, IL(χ) is irreducible; it is the holomorphic
base change of IQp(χ) (for the given embedding L ⊂ K).
(The irreducibility clearly follows from the irreducibility under G(Qp).)

We now compare the base change functor we have constructed with the
natural consequences of a (conjectural) Langlands functoriality for p–adic
representations. We refer the reader to the Introduction to [3] for more mo-
tivation. The principal series representation ofG(Qp) is one of two summands
(under G(Qp)) of an irreducible representation π of G(Qp) = GL(2,Qp) [11,
§ 5], the principal series associated to the representation of the Galois group

σ 7→ α(σ)⊕ β(σ)

(σ ∈ Gal(Q̄p)). Here we have assumed α, β extended to Q×p , thus giving
characters of the Weil group WQp , and α(p)), β(p) units so the representation
of WQp actually extends to the Galois group.

In conformity with the general formalism, the base change πL of π should
be associated to the couple of characters (α ◦ NL/Qp , β ◦ NL/Qp). Thus,
instead of

α(1 + pu) = ea log(1+pu) (u ∈ OL)

we should consider

αL(1 + pu) =
∏
σ

α(1 + pσ(u))

= eaΣ log(1+pσ(u)) .

In other terms, we should induce the character given an 1 + pOL by
∏
σ

ασ,

and similarly for β. Furthermore, the representation should not be realized
on a space of (L–holomorphic) functions on U(L), but on a space of Qp–
holomorphic functions on ResL/QpU(Qp).

Therefore we must consider the full base change of IQp(χ) to ResL/QpG(Qp).
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Definition 3.8. The (Langlands) base change of IQp(χ) is the representation
of ResL/QpG(Qp) on ⊗̂

σ

(IL(χ))σ := I(χ ◦N) .

Note that each factor is irreducible for b − a /∈ N and admits the same
description as in Proposition 3.7; the embedding ι : L→ K must be replaced
by ι ◦ σ. Each factor is holomorphic for this embedding.

Now the space of the representation I(χ ◦ N) is
⊗̂
σ

A(U,K) =

A(ResL/QpU,K). The representation is now a space of globally analytic vec-
tors (by Proposition 3.7) in the locally analytic representation Ila(χ ◦N) of
ResL/QpG. The representation of the full Iwahori subgroup on Ila and its dual,
the “locally analytic” distributions on U(OL), has been studied by Orlik and
Strauch. They prove the analogue of Theorem 5.4 in [10]: assume that we
are given characters (α, β) of L× with values in K. They give us a family of
logarithmic parameters (aσ, bσ) for the embeddings L→ K. Then the space
of distributions, dual to Ila(χ ◦ N), is irreducible under D(ResL/QpG,K) if
the Verma module for U(g ⊗ L) ≡

⊗
σ

U(g) induced from the dual of the

linear form
(a,b) : (X, Y ) ∈ t⊗ L 7→

∑
(aσXσ + bσYσ)

is irreducible. Here t is the Lie algera of the diagonal torus. See [8, Theo-
rem 3.4.12]. Note that their result is again stated for the full Iwahori sub-
group, but that, their argument being differential, it extends to G.

In our case the highest weights are parallel, given by (a, b). The highest
weight to be considered is then (−a,−b). The Verma module will be reducible
if (X,−X) 7→ (b− a)X, where (X,−X) is in the Lie algebra of the diagonal
torus in SL(2), is the highest weight of a finite–dimensional representation:
that is, if b− a ∈ N. Otherwise, all the factors are irreducible, and the cor-
responding algebraic tensor product, under U(g⊗L), is irreducible. Finally,
we then have:

Theorem 3.9. Assume b − a /∈ N. Then the tensor product
⊗̂
σ

IL(χ)σ is

irreducible, and is the representation of G(L) on the space of globally analytic
vectors in the representation of G(L) induced from χ ◦N .
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3.5

It is not our intention here to explore the situation if one considers the full
groups G(Qp), G(L). The Bruhat decomposition yields a decomposition of the
induced representation π of G(Qp) (say, on locally analytic functions), under
the Iwahori subgroup, as a sum of two subspaces, one (the representation we
have considered), πw, associated to the big orbit, and another, say

π = πw ⊕ π1 .

The corresponding irreducibility results for π1, under the Iwahori sub-
group, are proved by Schneider–Teitelbaum, and by Orlik and Strauch in
the general case. We expect that the analogue of Theorem 3.9 remains true
for the other summand (with now the condition a − b /∈ N). Now the full
completed tensor product will be

(3.5)
⊗̂
σ

(I(w)σ ⊕ I(1)σ) ,

where I denotes the globally analytic representation. On the other hand, the
representation of G(L) = (ResL/QpG)(Qp) is

(3.6)
⊗̂
σ

I(w)σ ⊕
⊗̂
σ

I(1)σ .

(The Weyl group of G(L) still has two elements). Thus the mixed terms
in (3.5) should be deleted. Note that this is compatible with the properties
of base change for irreducible admissible representations of G(Qp), G(L) over
C, where the base change is expressed by an identity of traces, vs. twisted
traces. If one considers the trace of a representation of the form (3.5), twisted
by the action of the Galois group < σ >, only the terms in (3.6) contribute.
(We are aware that there is no character theory for p–adic representations. . . )

A Appendix: “Pathologies”

We review some properties of the distribution algebras on our groups, rel-
ative to tensor products or the Nœtherian property. They introduce some
difficulties explained in the main text.
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A.1 D(X × Y ) ≡/ D(X)⊗̂D(Y )

Here X, Y are rigid–analytic spaces isomorphic to products of unit balls, over
a p–adic field L. Then A(X × Y ) is naturally isomorphic to A(X)⊗̂A(Y ).
Moreover, each space of analytic functions is, as a Banach space, isomorphic
to C0(M) where M is the set of exponents: M = Nd, d = dim(X). Here
C0(M) = C0(M,L). We have, for two countable sets M,N .

C0M ×N) ∼= C0(M)⊗̂C0(N)

(Schneider [9, p. 112]) which yields the requisite (well–known) isomorphism
for the Tate algebras. We can assume that our sets M,N are equal to N. We
now have the following result, certainly well–known:

Proposition A.1. The natural map

`∞(N)⊗̂`∞(N) −→ `∞(N× N)

is injective, but is not an isomorphism.

Here `∞(N) = `∞(N, L) is the Banach space of bounded sequences, the
dual of C0(N). We will denote by V ′ the dual of a Banach space V , with its
strong topology (the topology as a Banach space.) We denote by L(V,W )
the space of continuous linear maps V → W , again with the topology of the
norm. Now we have [2, 2.1.7.2]

L(V ⊗̂W,X)
≈−→ L(V,L(W,X))

(isometric isomorphism) for three Banach spaces, the map being the natural
one, so

(C0⊗̂C0)′ = L(C0⊗̂C0, L) ∼= L(C0, `
∞) .

Since (C0⊗̂C0)′ = `∞(N× N), it suffices to check:

Proposition A.2. The natural map

`∞⊗̂`∞ −→ L(C0, `
∞)

obtained by completion from

`∞⊗`∞ −→ L(C0, `
∞)

is injective, but is not an isomorphism.
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Here L(C0, `
∞) is provided with the strong (= Banach) topology. Schnei-

der [9, Proposition 18.2] shows that this map is an isomorphism onto its
image, whence the injectivity in Proposition A1. He also shows that its
image is the space

CC(C0, `
∞)

of completely continuous operators. Thus it suffices to show

(A.1) CC(C0, `
∞) 6= L(C0, `

∞) .

Now F : C0 → `∞ is in CC if, and only if, F (B) is compactoid for any
bounded set B ⊂ C0(X). We can simply consider the unit ball.

Recall also that Ω ⊂ V (a Banach space) is compactoid [9, p. 71] if ∀r > 0
∃(vi)i=1,...N , vi ∈ V , such that

Ω ⊂ BV (r) +
N∑
1

OLvi .

We consider the identity map F : C0 → `∞ and show that it is not
completely continuous. If it were, we would have for f ∈ C0:

‖f‖∞ ≤ 1 =⇒ ∀r ‖f −
N(r)∑

1

zifi‖∞ ≤ r

for some functions fi ∈ `∞, and integers zi, depending on r (but not on f).
For simplicity assume L = Qp. Fix r = p−n, n ≥ 0. The fi take values in

p−MZp, M ≥ 0. The function f defines f̄ : N→ Zp/pnZp, and

(A.2) f̄(x) =

N(r)∑
1

z̄if̄i(x) ,

a linear combination of functions N → p−MZp/pnZp. Since f is arbitrary in
B(1) ⊂ C0, f̄ can be an arbitrary function with finite support N→ Zp/pnZp.
However, when (zi) varies in ZN(r)

p , the set of functions on the right–hand
side of (A2) with values in p−MZp/pnZp is finite, and this is a contradiction.
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A.2 D(G) (as a convolution algebra) is not Nœtherian
for left- or right- ideals.

Here the rigid–analytic group is assumed to verify the assumptions in sec-
tion 1. We start with B(1) (rigid–analytic ball) seen as an additive group.
Then

A(G) =
{ ∞∑

0

anx
n, an → 0

}
,

an =
1

n!

( dn
dxn

f
)

(0) .

The algebra D(G) is isomorphic to `∞ by taking the basis dual to the xn; we
can write a distribution T ∈ D(G) as

T =
∞∑
0

cn
1

n!

( dn
dxn

)
0
, (cn) ∈ `∞

and then D is naturally isomorphic to an algebra of divided power series:

T =
∞∑
0

cn
n!
tn , t =

( d
dx

)
0
, (cn) ∈ `∞ .

As pointed out by Berthelot, this algebra is not Nœtherian1. Since it is
a Banach algebra for convolution (which becomes here the product of the
series), it suffices to check that there is an ideal which is not closed [2, 3.7.2.2].
In fact:

Lemma A.3 (Berthelot). The ideal (t) ∈ D is not closed.

Indeed if T ∈ (t),

T = TS = t
( ∞∑

0

cn
n!
tn
)

=
∞∑
1

tn
dn
n!

with dn = ncn−1, so

T ∈ (t)⇔ d0 = 0 and
∣∣∣dn
n

∣∣∣ ≤ C .

1Berthelot considered the subalgebra given by (cn) ∈ C0, but this makes no difference.
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But this subspace of D is clearly not closed. For instance, if T = (dn) has
support on {n = p2n} (r ≥ 0 even) with

dpr = pr/2 (so T ∈ `∞)∣∣∣dpr
pr

∣∣∣ = |p−r/2| −→ ∞ (so T /∈ (t)) ,

T is the limit in D of the truncated series Tα with dαpr = pr/2 (r ≤ α), dαpr = 0
(r > α) which obviously belong to the ideal.

Consider now a rigid–analytic group G, isomorphic to a product B(1)d

over Qp as a rigid–analytic space, the coproduct being then given by Tate
series with integral coefficients. We further assume (as is the case in this pa-
per) that the factors are (additive) analytic subgroups, and their distribution
algebras are therefore as in the previous proof.

Proposition A.4. Under these assumptions D(G) is not Nœtherian (for
left- or right- ideals).

Indeed we have, as in the commutative case:

Lemma A.5 (Schneider–Teitelbaum). If D(G) is (left) Nœtherian, any (left)
ideal is closed.

See Proposition 2.1 in [12]. For completeness we provide a proof. In the
commutative case this is [2, 3.7.2.2]. A glance at their proof whose that it
suffices to prove Nakayama’s lemma for the ideal A∨ = {a ∈ A : ‖a‖ < 1} in
A0, where we have written A = D(G). We may assume that the (Banach)
norm on A is submultiplicative [2, 1.2.1.2]. Since the argument in [2, 1.2.3.6]
for Nakayama’s lemma uses determinants, we rephrase it (using moreover A∨

rather than the set Ǎ of topologically nilpotent elements):

Lemma A.6. Let M be an A–module, and N a submodule of M such that

there exist x1, . . . xn ∈M with M ⊂ N +
n∑
1

A∨xi. Then N = M .

As in [2], loc. cit., we can write

x = y + Cx

where x is a column vector in Mn with coordinates xi, and y has coordinates
in N , and the matrix C ∈Mn(A) has entries in A∨. Thus y = (1−C)x. The
matrix 1−C is invertible: if Mn(A) is endowed with the operator norm, this
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norm is submultiplicative, and ‖C‖ < 1. This implies that x = (1−C)−1y ∈
Nn. (It is not clear to us that the argument applies for Ǎ.)

We now return to the proof of Proposition A4. Assume that (as a rigid
analytic space)

G = G1 × · · · ×Gd

where each Gi is a rigid–analytic group isomorphic to the additive unit ball
over Qp.

In particular we have a bijection

Zdp = G1(Qp)× · · · ×Gd(Qp) −→ G(Qp)
(g1, g2, . . . , gd) 7−→ g1 · · · gd .

The Tate algebra AG is isomorphic with
⊗̂

i=1,...d

AGi
where each AGi

is the

Tate algebra in one variable. Evaluated on the points of G(Qp), this yields
the map f 7→ f(g1, . . . , gd) (f ∈ AG).

Each injection ji : Gd −→ G is an homomorphism, and the restriction
AG −→ AGi

is therefore compatible with the coproduct. Dually, we get

(ji)∗ : DGi
−→ DG ,

compatible with convolution. If we denote by xi the local variable on Gi, a
function f ∈ AG being then in the Tate algebra in the xi, an element of DG
can be written

(A.3) T =
∑
n

cn
1

n!
∂n1

1 · · · ∂
nd
d :=

∑
n

cnδn

with n = (n1, . . . nd) ∈ Nd, n! = Π(ni)!,

∂if(x1, . . . , xd) =
d

dxi
f(x1, . . . , xd)(0), and (cn) ∈ `∞(Nd).

Let us write D1 for the subalgebra (j1)∗(DG1), given by cn = 0 if ni > 0
for some i ≥ 2. This is clearly a closed subalgebra. The element ∂1 = δ1

- abuse of notation for δ(1,0,...,0) - is equal to (j1)∗((
d
dx

)0). Moreover, for the
convolution product in G, we have

δ1 ∗ δn =
1

n!

d

dx1

( d

dm

)n1

· · ·
( d

dxd

)nd
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(evaluated at (0, . . . , 0)) = n1
1

(n1+1)!n2!···nd
( d
dx1

)n1+1 · · · ( d
dxd

)nd = n1δn′ where

n′ = (n1 + 1, . . . , nd).
We will show that the left ideal δ1D(G) is not closed in D(G). Indeed, if

it were, its intersection with the closed subalgebra D1 would be so. But the
intersection is isomorphic (as an algebra) with the algebra

DG1 =
{∑
m≥0

cmδm

}
=
{∑
m≥0

cm
1

m!

( d
dx

)m}
in one variable, and the previous computation shows that the intersection
is the ideal ( d

dx
) ⊂ DG1 considered in the first part of the proof. Therefore

δ1D(G) is not closed; this completes the proof of Proposition A6.

A.3

Finally, we note that there is a possible substitute for the consideration of
D(G), which could obviate the problems we encountered. (This was pointed
out by Schneider.)2

This algebra was already introduced by Lazard [7, III.3.3.3] who calls
in Ala(G). To use Lazard’s results, we keep the assumptions of § A2 and
assume moreover that the factor Gi(Qp) ∼= Zp form a Lazard basis – a “base
ordonnée” in the sense of [7, III.2.2.4]. The Iwasawa algebra of G (with
integral coefficients) is then given by the series∑

n

anz
n1
1 · · · z

nd
d =

∑
anz

n

with an ∈ Zp and zi = δ1 − δ0 in Gi(Qp). Lazard defines the algebra Sat
Al(G), where Al(G) = ΛG is the Iwasawa algebra, and Sat Al(G) is given by
val(an) ≥ −|n|. (Thus SatAl(G) is contained in the completion of ΛG⊗Qp).

Recall that ΛG ⊂ DG.
Lazard defines Ala(G) ⊂ Sat Al(G) as the compact Zp–module generated

by the
zn

n!
, with the usual notation. If we recall that the basis elements zn

are dual to the Mahler basis

(
x
n

)
of Λ, we see that this is the unit ball in the

Banach dual of the functions
∑
n

cnn!

(
x
n

)
(cn → 0) in C(G), with the weak

2In this section we will skip details, as we only want to outline an alternative approach.
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topology. By Amice’s theorem [5, I.4] this space of functions is A(G). Thus
Ala(G) ⊂ DG, and Ala(G) is the unit ball in DG, with the weak topology.

Note that both the n!

(
x
n

)
and the xn (x = (x1, . . . xd)) are orthonormal

bases of AG : see Colmez [5, I.4.3]. Thus this coincides with the description
of DG as an `∞ space on the set of powers n.

Now if we consider these integral spaces (isomorphic to ZNp , N the set of
indices, with the product topology), we obtain indeed, for a product G×H,

an isomorphism Ala(G × H) ∼= Ala(G)
⊗̂
Zp

Ala(H). This is stated (but not

proven) by Lazard [7, III.3.]. The completed tensor product (over Zp) is
defined in [7, I.3.2.6, I.3.2.9].

Recall that we have assumed that the coproduct for G (and H, a group
of the same type) was given by integral Tate expansions. Then DG(Zp), the
distributions with integral coefficients, is the unit ball in DG, and its weak
topology is as we saw, the product topology. The tensor product DG(Zp)×
DH(Zp)→ DG×H(Zp) is simply given, M being the set of exponents for H, by

(zn, wm) 7−→ (znwm)n,m

where N × M is the set of exponents for G × H. It is easy to see that
it yields, as asserted by Lazard, an isomorphism ZNp ⊗̂ZMp → ZN×Mp . In
particular, under our standing assumptions on the groups (in particular, the
integrality conditions), we have:

Proposition A.7. Let D0
G, D0

H denote the unit balls of DG, DH with their
weak topology. Then

D0
G×H

∼= D0
G

⊗̂
Zp

D0
H .

Now assume V , W are globally analytic Banach representations of G, H.
The algebra DG acts on V ′, by

< Tv′, v >=

∫
< v′, gv > dT (g)

where we have used the integral notation for T .
Now write V ′0 for the unit ball in V ′, and V0 for the unit ball in V . We

may assume, as in § 2.1, that the action of G on V preserves the norm. Then
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if v ∈ V0 and v′ ∈ V ′0 < v′, gv > is a function f on G, given by a Tate series,

and such that Sup
g∈G
|f(g)| ≤ 1.

If moreover V is admissible, the Tate norm ‖f‖ is ≤ 1 by Corollary 2.8.
Thus Tv′ belongs to V ′0 . We obtain an action of D0

G on the unit ball of V ′,
compatible with the weak topologies.

If now we consider another group H, an admissible globally analytic rep-
resentation W of H, and the product G × H, we see that D0

G⊗̂D0
H acts on

V ′0⊗̂W ′
0. Replacing the distribution algebras by their unit balls, we are very

close to the original construction of Schneider–Teitelbaum [10] for Banach
representations.

SinceDG is not Nœtherian, however, it easily follows thatD0
G is not Nœthe-

rian.
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