

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s11227-016-1754-
3

https://link.springer.com/article/10.1007/s11227-016-1754-3

http://hdl.handle.net/10251/83128

Springer Verlag (Germany)

Reaño González, C.; Silla Jiménez, F. (2016). Tuning remote GPU virtualization for
InfiniBand networks. Journal of Supercomputing. 72(12):4520-4545. doi:10.1007/s11227-
016-1754-3.

Noname manuscript No.
(will be inserted by the editor)

Tuning Remote GPU Virtualization for InfiniBand
Networks

Carlos Reaño · Federico Silla

Received: date / Accepted: date

Abstract In the past few years, a tendency towards using InfiniBand net-
works to interconnect high performance computing clusters can be observed.
Thus, most of the supercomputers appearing in the TOP500 list either use
Ethernet or InfiniBand interconnects. Regarding the latter, the complexity of
the InfiniBand programming API (i.e., InfiniBand Verbs) makes it difficult for
applications to get the maximum performance of these networks. In this paper
we expose how we have tuned a remote GPU virtualization framework whose
communications module is implemented using InfiniBand Verbs. The net re-
sult is a noticeable increase in the performance of this framework, significantly
reducing the gap between remote and local GPUs.

Keywords HPC · InfiniBand · CUDA · remote GPU virtualization ·
networks · performance · tuning

1 Introduction

InfiniBand (IB) [1] is an interconnect providing high bandwidth and low la-
tency, being commonly used in high performance computing (HPC). The high
performance attained by InfiniBand makes that its use in supercomputers has
considerably increased during the last years [2], as shown in Figure 1. This
figure presents the amount of supercomputers in the TOP500 list [3] using the
InfiniBand network as well as different versions of the Ethernet one. Although
InfiniBand and Ethernet are far apart both in terms of programming models
as well as performance, we are also showing Ethernet in this figure for the sake

C. Reaño
Universitat Politècnica de València, València, 46022, Spain
Tel.: +34 96 387 70 07 Ext.75738
E-mail: carregon@gap.upv.es

F. Silla
Universitat Politècnica de València, València, 46022, Spain

2 Carlos Reaño, Federico Silla

of completeness. As it can be seen, the presence of the InfiniBand technology
in current supercomputers is even higher than that of Ethernet, having the
former a share of 47.4% whereas the latter presents a share of 36.2%. Fur-
thermore, we can observe that the total sum represented by systems based on
any of these two interconnect technologies accounts for more than 80% of the
systems in this list, what reveals that the InfiniBand technology is the most
widely one used in the HPC domain.

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

0

100

200

300

400

500

Ethernet (Eth) InfiniBand (IB) Eth+IB

Year

#
 o

f T
O

P
5

0
0

 S
u

p
e

rc
o

m
p

u
te

rs

Fig. 1 Presence of Ethernet and InfiniBand in the TOP500 list.

However, a major disadvantage of the InfiniBand network lies in the fact
that its specification [4] does not clearly define an API that can be easily
learned without attending specific courses. Indeed, it only describes a set of
functions, usually referred to as verbs (i.e., the InfiniBand Verbs–IBV), which
must be available in any commercial product adhering the specification. As a
consequence, the lack of such explicit API in conjunction with the complexity
of the IBV semantics make it difficult to develop even a simple program. This
is evidenced by the publication of papers with the sole purpose of clarifying
how to interact with the InfiniBand Verbs, such as [5], [6] or [7], to name only
a few.

The net result is that InfiniBand is the most widely used interconnect in the
supercomputers included in the TOP500 list, but the lack of documentation
makes it difficult to get all the benefits from this network fabric. In this paper
we expose how we have tuned a remote GPU virtualization framework, whose
communications module is implemented using InfiniBand Verbs.

The rest of the paper is organized as follows. In Section 2, we discuss the
work related to our study. Next, in Section 3, we exposed the improvements
presented in this paper. Section 4 analyzes the benefits that these enhance-
ments bring to the remote GPU virtualization framework under study. Finally,
in Section 5, the main conclusions of this work are presented.

Tuning Remote GPU Virtualization for InfiniBand Networks 3

2 Related Work

As commented before, the lack of an easy to understand programming API
for InfiniBand is one of the major concerns when developing applications that
use this network fabric. Actually, this was what motivated G. Kerr to dissect
in [5] a simple pingpong program, in an attempt to make clear how to interact
with the InfiniBand Verbs API.

In view of this, exploring optimizations for InfiniBand applications has typ-
ically remained a big challenge. Several researchers have attempted to present
recommendations for achieving optimal performance. One such example is the
work by Liu et al. in [8], which presents a recent in-depth analysis of the In-
finiBand FDR network, proposing several interesting optimizations. However,
the study is limited to the memory semantics (i.e., Remote Direct Memory
Access–RDMA), not addressing the channel semantics (i.e., send/receive verbs
no using RDMA). Additionally, the tests are done using Sandy Bridge proces-
sors, while results over later generation processors (i.e., Ivy Bridge) could lead
to different results, and maybe to different conclusions.

Other researchers have also presented improvements in recent studies. For
instance, Subramoni et al. in [9] study the benefits of using the new Dynami-
cally Connected (DC) InfiniBand transport protocol, showing great improve-
ments for both synthetic benchmarks and production applications. Another
such example can be found in the work by Wang et al. in [10], where it is
proposed a tuned GPU to GPU communication design for InfiniBand clusters.
Nevertheless, although these proposals improve performance, both of them
are focused on tuning MPI libraries, whose requirements differ from general
applications.

Most recently, it has been introduced UCX [11] (Unified Communication
X), a collaboration between industry, laboratories, and academia to create an
open-source production grade communication framework for data centric and
high-performance applications. When this technology becomes well-establish
and mature, it would be interesting to study if the new UCX API could solve
part of the difficulties to use the InfiniBand low level interface, while main-
taining the performance.

From our point of view, all these previous efforts to tune InfiniBand envi-
ronments will benefit from the work presented in this paper, as the improve-
ments here exposed can be applied to all those fields.

3 Tuning InfiniBand Bandwidth

In this section we introduce and analyze the enhancements proposed in this
work. The setup used for the experiments reported in this paper consists of
two 1027GR-TRF Supermicro servers with the following characteristics:

– Two Intel Xeon hexa-core processors E5-2620 v2 (Ivy Bridge) operating at
2.1 GHz.

– 32 GB of DDR3 SDRAM memory at 1,600 MHz.

4 Carlos Reaño, Federico Silla

Network Card

receive
send

QP

Network Card

receive
send

QP
Connection Po

rt Po
rt

Fig. 2 InfiniBand Queue Pair (QP) scheme.

– 1 Mellanox ConnectX-3 single-port FDR InfiniBand adapter.
– 1 Mellanox ConnectX-4 single-port EDR InfiniBand adapter.
– 1 NVIDIA Tesla K20m GPU.
– 1 NVIDIA Tesla K40m GPU.
– CentOS 6.4 operating system with Mellanox OFED 2.3-2.0.0 (InfiniBand

drivers and administrative tools) and CUDA 6.5 with NVIDIA driver
340.29.

The testbed servers are NUMA machines and therefore NUMA effects mat-
ter for the experiments shown in this paper. For this reason, the InfiniBand
adapter and the NVIDIA GPU used in each experiment are attached to the
same NUMA node and processes and memory buffers are bound to that pro-
cessor.

3.1 Number of Queue Pairs per Port

As depicted in Figure 2, in order for an application in one computer to com-
municate over an InfiniBand network with another application in a different
cluster node, it must first create a connection that consists of a queue pair (QP)
at each end: one queue for sending data and another queue for receiving them.
Interestingly, a QP does not store data but work requests submitted by the ap-
plication. A work request can be seen as a descriptor of the transfer operation
to be performed. A given QP is assigned to one port and a process may create
one or more QPs associated to the same network adapter port for communi-
cating purposes with an application in another computer. Obviously, the use
of several QPs increases the complexity of maintaining all of them coordinated
and synchronized. In this subsection we analyze the impact on performance of
using several QPs per port, trying to determine the optimal number of QPs
per port that a programmer should use. To do so, we base our analysis in
the maximum bandwidth achieved when varying the number of QPs associ-
ated to a network adapter port. We make use of the bandwidth benchmarks
included in the Mellanox OFED software distribution. These tests measure
the bandwidth when copying different data sizes using the channel semantics
(i.e., send/receive verbs no using RDMA, ib send bw benchmark) and the
memory semantics (i.e., RDMA read and write, ib read bw and ib write bw

benchmarks).

Tuning Remote GPU Virtualization for InfiniBand Networks 5

2 QP Gain

1 QP 2 QP 3 QP 4 QP

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(a) InfiniBand FDR send bandwidth (no RDMA).

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(b) InfiniBand FDR RDMA read bandwidth.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(c) InfiniBand FDR RDMA write bandwidth.

Fig. 3 InfiniBand FDR bandwidth tests varying the number of queue pairs (QP) per port.
Primary Y-axis shows attained bandwidth, while secondary Y-axis presents the bandwidth
gain of using 2 QPs over using only 1 QP.

6 Carlos Reaño, Federico Silla

2 QP Gain

1 QP 2 QP 3 QP 4 QP

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(a) InfiniBand EDR send bandwidth (no RDMA).

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(b) InfiniBand EDR RDMA read bandwidth.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(c) InfiniBand EDR RDMA write bandwidth.

Fig. 4 InfiniBand EDR bandwidth tests varying the number of queue pairs (QP) per port.
Primary Y-axis shows attained bandwidth, while secondary Y-axis presents the bandwidth
gain of using 2 QPs over using only 1 QP.

Tuning Remote GPU Virtualization for InfiniBand Networks 7

Figure 3 and Figure 4 show the results of the mentioned benchmarks, which
were run varying the number of QPs per port, when using FDR InfiniBand
and EDR InfiniBand, respectively. Notice that when using more than one
QP, the transferred data are split into the available QPs. For instance, when
transferring 2KB using 2 QPs, 1KB is sent using QP1 and 1KB is sent using
QP2. Notice also that this division of labor between the several QPs is not
automatically performed but the programmer must take care of distributing
the work at the same time that all the QPs remain synchronized and balanced.
The figures show the average bandwidth of 100 repetitions for each test. The
maximum Relative Standard Deviation (RSD) observed was 0.391 for 16B of
transfer size when using 3 QPs in the ib write bw benchmark of Figure 3.

From the results in Figure 3 two main conclusions can be derived. First,
there exists a performance difference between using one or several QPs. How-
ever, when more than one QP are used, performance remains the same inde-
pendently of the amount of QPs. Second, results in Figure 3 can be divided,
from the point of view of performance, into three groups, depending on the
size of the transferred data:

– Less than 2KB: using more than 1 QP translates into an average bandwidth
gain of approximately 2%.

– 2KB: the maximum peak bandwidth is achieved and the benefits of using
more than 1 QP are more evident.

– 4KB or more: the gain of using more than 1 QP stabilizes, resulting in an
average bandwidth improvement of approximately 5%.

However, when using EDR InfiniBand in Figure 4, the gain of using more
than one QP is not as evident as in the case of FDR InfiniBand previously
shown in Figure 3. In this manner, the improvement for the RDMA write test,
Figure 4(c), is negligible. Regarding the send test, Figure 4(a), using more
than 1 QP increases the bandwidth over 12% on average when the size of the
transferred data is between 1KB and 8KB. For other data sizes, the increase
is very low. Finally, in the case of the read test, Figure 4(b), the improvement
depends on the size of the transferred data:

– Less than 2KB: the improvement of using more than 1 QP is negligible.
– 2KB: the maximum peak bandwidth is achieved and the benefits of using

more than 1 QP are more evident.
– 4KB or more: the gain of using more than 1 QP stabilizes, resulting in an

average bandwidth improvement of over 2%.

Therefore, based on these results, we can conclude that, in general, using
more than one queue pair per port improves the performance. Given that using
2 or more QPs per port provides the same performance, we consider that 2
QPs per port is the optimal value, because the more QPs per port we use, the
more the programming complexity increases.

8 Carlos Reaño, Federico Silla

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0
1000
2000
3000
4000
5000
6000
7000

256 512 1KB 2KB 4KB

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

2KB Gain

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

1000

2000

3000

4000

5000

6000

7000

-15

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

1000

2000

3000

4000

5000

6000

7000

-15

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(a) InfiniBand FDR RDMA read bandwidth using 1 QP.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

1000

2000

3000

4000

5000

6000

7000

-15

-10

-5

0

5

10

15

20

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(b) InfiniBand FDR RDMA read bandwidth using 2 QP.

Fig. 5 InfiniBand FDR bandwidth tests varying the MTU. Primary Y-axis shows attained
bandwidth, while secondary Y-axis presents the bandwidth gain of using an MTU of size
2KB over using an MTU of size 4KB.

3.2 Influence of the Maximum Transfer Unit (MTU)

Results in Figure 3 and Figure 4 show that performance values change around
transfer sizes of 2KB and 4KB. Both values are quite similar to the Maximum
Transfer Unit (MTU) often used in InfiniBand devices. In the light of this, we
have checked the MTU used by default in the InfiniBand cards used in our
tests. In this manner, ConnectX-3 (FDR) uses an MTU of size 2KB by default,
while ConnectX-4 (EDR) uses an MTU of size 4KB by default. In this section
we analyze how the MTU is influencing the results of the experiments in the
previous section, and how the results vary with respect to the MTU.

Figure 5 and Figure 6 show the results of the bandwidth benchmarks from
the Mellanox OFED when InfiniBand FDR and InfiniBand EDR are used.
The benchmarks were run using 1 QP and 2 QPs, and also varying the MTU

Tuning Remote GPU Virtualization for InfiniBand Networks 9

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

256 512 1KB 2KB 4KB

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

4KB Gain

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-15

-10

-5

0

5

10

15

20

25

30

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-15

-10

-5

0

5

10

15

20

25

30

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(a) InfiniBand EDR RDMA read bandwidth using 1 QP.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

-15

-10

-5

0

5

10

15

20

25

30

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(b) InfiniBand EDR RDMA read bandwidth using 2 QP.

Fig. 6 InfiniBand EDR bandwidth tests varying the MTU. Primary Y-axis shows attained
bandwidth, while secondary Y-axis presents the bandwidth gain of using an MTU of size
4KB over using an MTU of size 2KB.

with all the possible values: 256 bytes, 512 bytes, 1KB, 2KB and 4KB. As
in the previous section, we use the ib send bw benchmark (no RDMA), the
ib read bw benchmark (RDMA read), and the ib write bw benchmark, al-
though only results for the RDMA read case are shown graphically for brevity
(results for the other benchmarks will be provided in the text). The results
shown are the average bandwidth of 100 repetitions, the maximum RSD being
0.451 for 4B of transfer size when using 1 QP and an MTU of 512 bytes in the
ib read bw benchmark of Figure 5.

Regarding FDR results in Figure 5, we can observe that the best results
are the ones obtained when using MTUs of 2KB or 4KB, being the former
slightly better in general. The figure also shows the gain of using an MTU size
of 2KB (the default value) with respect to using an MTU of 4KB. Thus, when
using 1 QP, the average gain of using an MTU of 2KB with respect to using

10 Carlos Reaño, Federico Silla

an MTU of 4KB for the different tests is: 2.99% for the ib send bw one, 0.39%
for ib read bw, and 1% for ib write bw. When using 2 QP, the average gain
is 0.91%, 0.44%, and 1.35%, respectively.

Regarding EDR results shown in Figure 6, we see that the best results are
again the ones obtained when using MTUs of 2KB or 4KB, being the later
much better, on average, when using 1 QP, and only slightly better when
using 2 QPs. The figure also shows the gain of using an MTU of 4KB (the
default value) with respect to using an MTU of 2KB. Thus, when using 1
QP, the average gain of using an MTU of 4KB with respect to using an MTU
of 2KB for the different tests is: 0.22% for the ib send bw one, 13.02% for
ib read bw, and 15.14% for ib write bw. When using 2 QP, the average gain
is 0.07%, 0.64%, and 0.23%, respectively.

Consequently, using the default MTUs (i.e., 2KB for ConnectX-3 devices,
and 4KB for ConnectX-4 devices) presents the best performance, being the
improvement more noticeable when using 1QP than when using 2 QPs.

3.3 Capacity of Send/Receive Queues

As commented previously, applications communicating over IB must create
queue pairs for sending and receiving data. Choosing the length of these queues
(i.e., number of work requests they can store) is not a trivial task: the queue
should have enough space to allocate all incoming requests from the applica-
tion in order to not lose performance, but larger queue sizes imply also higher
resource consumption. This is especially noticeable in the case of work requests
involving RDMA operations, which have associated page-aligned memory re-
gions that must be allocated before submitting the work request to the QP.
In this subsection we study the influence of the length of these queues in
performance using the attained bandwidth as the metric.

Figure 7 and Figure 8 show the results of the bandwidth benchmarks from
the Mellanox OFED mentioned before. As in the previous section, we use
the ib send bw benchmark (no RDMA), the ib read bw benchmark (RDMA
read), and the ib write bw benchmark (RDMA write). The benchmarks were
run varying the length of the send/receive queues. The results shown are the
average bandwidth of 100 repetitions, the maximum RSD being 0.587 for 8B
of transfer size when using a queue capacity of 128 requests in the ib read bw

benchmark of Figure 7.
As can be observed in Figure 7, when using FDR InfiniBand, the queue

length is particularly important for small transfer sizes (up to 2KB), where
the use of a buffer with space for 128 requests increases the bandwidth an
average of 418.69% in comparison to a buffer with capacity for 2 requests. For
transfer sizes over 2KB, the bandwidth improvement decreases in the range
of 4KB to 512KB, with an average gain of 48.46%. With regard to sizes over
512KB, the gain of increasing the number of queues is almost null (0.22%, on
average). Additionally, from these experiments we also extract than using a
queue length of more than 128 requests results in no gain.

Tuning Remote GPU Virtualization for InfiniBand Networks 11

128 Gain

2 4 8 16

32 64 128 256

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

h
t G

a
in

 (
%

)

(a) InfiniBand FDR send bandwidth (no RDMA).

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

h
t G

a
in

 (
%

)

(b) InfiniBand FDR RDMA read bandwidth.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

h
t G

a
in

 (
%

)

(c) InfiniBand FDR RDMA write bandwidth.

Fig. 7 InfiniBand FDR bandwidth tests varying the capacity of the send/receive queues
(i.e., number of work requests that can be allocated) from 2 requests to 256. Primary Y-axis
shows attained bandwidth, while secondary Y-axis presents the bandwidth gain of using 128
requests over using only 2 requests. Notice the logarithmic scale of the secondary Y-axis.

12 Carlos Reaño, Federico Silla

128 Gain

2 4 8 16

32 64 128 256

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(a) InfiniBand EDR send bandwidth (no RDMA).

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(b) InfiniBand EDR RDMA read bandwidth.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(c) InfiniBand EDR RDMA write bandwidth.

Fig. 8 InfiniBand EDR bandwidth tests varying the capacity of the send/receive queues
(i.e., number of work requests that can be allocated) from 2 requests to 256. Primary Y-axis
shows attained bandwidth, while secondary Y-axis presents the bandwidth gain of using 128
requests over using only 2 requests. Notice the logarithmic scale of the secondary Y-axis.

Tuning Remote GPU Virtualization for InfiniBand Networks 13

Similar conclusions can be made when using EDR InfiniBand, as shown in
Figure 8. Thus, the queue length is particularly important for small transfer
sizes (up to 2KB), where the use of a buffer with space for 128 requests in-
creases the bandwidth an average of 475.62% in comparison to a buffer with
capacity for 2 requests. For transfer sizes over 2KB, the bandwidth improve-
ment decreases in the range of 4KB to 512KB, with an average gain of 78.15%.
With regard to sizes over 512KB, the gain of increasing the number of queues
is almost null (0.66%, on average). Additionally, from these experiments we
also extract than using a queue length of more than 128 requests results in no
gain.

In summary, averaging the results in Figure 7 and Figure 8 for all transfer
sizes, using a send/receive queue capacity of 128 requests provides a bandwidth
gain (compared to a 2-request queue capacity) of 217.14% and 254.77%, when
using FDR and EDR InfiniBand, respectively.

3.4 Combining both Improvements

The improvements presented in the previous subsections complement each
other: the first one boosts performance for medium/large data transfers start-
ing from 2KB, whereas the second one increases performance for small/medium
message transfers up to 2KB, point where the increment in performance starts
diminishing. Therefore, the obvious question arises: which would be the per-
formance when both of them are combined and applied at the same time?

Figure 9 and Figure 10 present results for the combination of both im-
provements. The results shown are the average bandwidth of 100 repetitions,
the maximum RSD being 0.423 for 2B of transfer size when running the
ib send bw benchmark of Figure 9.

Regarding FDR InfiniBand, shown in Figure 9, it can be seen that band-
width for transfer sizes up to 2KB is increased, on average, more than 450%.
From this point, more modest improvements are achieved, although they are
still significant. In this regard, from 4KB up to 512KB, bandwidth is increased,
on average, 37.68%, whereas for larger transfer sizes starting from 512KB
bandwidth only increases 4.73% on average. Considering all the transfer sizes
analyzed, bandwidth is increased 43.29% on average.

With respect to EDR InfiniBand, presented in Figure 10, similar conclu-
sions can be observed. Thus, the bandwidth for transfer sizes up to 2KB is
increased, on average, over 470%. From 4KB up to 512KB, the average incre-
ment is 47.32%, while for larger transfer sizes bandwidth only increases 1.58%
on average. Taking into account all the transfer sizes analyzed, bandwidth is
increased 34.84% on average.

4 Experiments

In this section we analyze how the improvements presented in Section 3 in-
fluence the performance of upper software layers. For doing so we use a two

14 Carlos Reaño, Federico Silla

1 QP 2 requests 2 QP 128 requests

2 QP 128 requests Gain

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

h
t G

a
in

 (
%

)

(a) InfiniBand FDR send bandwidth (no RDMA).

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

h
t G

a
in

 (
%

)

(b) InfiniBand FDR RDMA read bandwidth.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

h
t G

a
in

 (
%

)

(c) InfiniBand FDR RDMA write bandwidth.

Fig. 9 InfiniBand FDR bandwidth tests varying the capacity of the send/receive queues
from 2 requests to 128, and number of queue pairs per port from 1 QP to 2. Primary Y-axis
shows the benchmark bandwidth, while secondary Y-axis presents the bandwidth gain of
using 2 QPs and 128 queues over using only 1 QP and 2 queues. Notice that secondary
Y-axis is in logarithmic scale.

Tuning Remote GPU Virtualization for InfiniBand Networks 15

1 QP 2 requests 2 QP 128 requests

2 QP 128 requests Gain

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(a) InfiniBand EDR send bandwidth (no RDMA).

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(b) InfiniBand EDR RDMA read bandwidth.

2 8

3
2

1
2

8

5
1

2

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

2000

4000

6000

8000

10000

12000

1

10

100

1000

Transfer Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
a

n
d

w
id

th
 G

a
in

 (
%

)

(c) InfiniBand EDR RDMA write bandwidth.

Fig. 10 InfiniBand EDR bandwidth tests varying the capacity of the send/receive queues
from 2 requests to 128, and number of queue pairs per port from 1 QP to 2. Primary Y-axis
shows the benchmark bandwidth, while secondary Y-axis presents the bandwidth gain of
using 2 QPs and 128 queues over using only 1 QP and 2 queues. Notice that secondary
Y-axis is in logarithmic scale.

16 Carlos Reaño, Federico Silla

CUDAk
Runtimeklibrary

rCUDAkserver
engine

commonkcommunicationkAPI

CUDAk
Driverklibrary

CUDAkRuntimekAPI

rCUDAkclient
engine

commonkcommunicationkAPI

Hardware

Software

Client side Server side

GPU

Application

TCP/IP
module

InfiniBand
module

Networkk"X"
module

TCP/IP
module

InfiniBand
module

Networkk"X"
module

Network

Fig. 11 Overview of the rCUDA client-server architecture.

level approach: first we analyze these improvements in the context of a remote
GPU virtualization framework and later we study the benefits provided to
applications that use this framework.

4.1 rCUDA: Remote CUDA

CUDA [12] is a technology created by NVIDIA which provides a parallel com-
puting platform and programming model to be used along with NVIDIA GPUs
or compatible ones. CUDA takes benefit from the great computational power
of GPUs to accelerate certain parts of applications, thus reducing their execu-
tion time. rCUDA [13] (remote CUDA) is a middleware which enables CUDA
applications being executed in a node of a cluster to make use of GPUs located
in remote nodes of the cluster (unlike original CUDA, which is intended for
local GPUs). In this manner, by using rCUDA, all the GPUs of the cluster are
concurrently and transparently shared among all the nodes of the cluster.

rCUDA is organized following a client-server architecture, as shown Fig-
ure 11. The client middleware is used by the application demanding GPU
services and presents to the application the same interface as CUDA. Upon
receiving a GPU request from the application, the client middleware processes
it and forwards the corresponding requests to the rCUDA server middleware,
running on a remote node. The server interprets the requests and performs the
required processing by instructing the real GPU to execute the corresponding
request. Once the GPU has completed the execution of the requested com-
mand, the results are gathered by the rCUDA server, which sends them back
to the client middleware. There, the output is forwarded to the demanding
application.

The communication between rCUDA clients and remote GPU servers is
carried out via a customized application-level protocol tailored for the underly-

Tuning Remote GPU Virtualization for InfiniBand Networks 17

ing network [13]. rCUDA has an specific communication protocol implemented
using InfiniBand Verbs, which has been tuned with the results of the analysis
shown in the previous section.

4.2 Why Using Remote GPU-accelerators in HPC Clusters

In general, the performance offered by remote GPUs is lower than that of local
GPUs because the access to the remote GPU implies moving data through the
network, that introducing some overhead. Thus, an important question is why
to use remote GPUs when local ones give better performance. In this section
we try to motivate the use of remote GPU-accelerators in HPC clusters.

The use of GPUs to accelerate general-purpose scientific and engineering
applications is mainstream today, but their adoption in current HPC clusters
is impaired primarily by acquisition costs and power consumption. Further-
more, GPU utilization is in general low, causing that the investment on GPU
hardware cannot be quickly amortized. Using remote GPU-accelerators is an
appealing strategy to deal with all these drawbacks simultaneously. By lever-
aging remote GPUs, physical accelerators are installed only in some nodes of
the cluster, and they are transparently shared among all the nodes. Hence,
those nodes equipped with GPUs become servers that provide GPU services
to all the nodes in the cluster. Some of the benefits of using remote GPU-
accelerators in HPC clusters are:

– By making use of remote GPU-accelerators, a single application being exe-
cuted in one of the nodes of the cluster can access to all the GPUs installed
in the cluster. This amount of GPUs is usually much larger than the num-
ber of GPUs that can fit in a single box. Consequently, applications can
be further accelerated [14].

– HPC clusters can be easily updated. On the one hand, legacy HPC clusters
can be converted in GPU-accelerated clusters just by connecting a box with
GPUs to the legacy cluster. In this manner, all the nodes of the legacy
cluster can use the remote accelerators of the GPU box. On the other
hand, HPC cluster nodes without space for GPUs or without free PCIe 3.0
slots for installing the latest GPUs, can also benefit from a GPU box with
the latest technology.

– Virtual machines can easily access to remote GPUs for acceleration pur-
poses [15]. GPU manufacturers have already tried to tackle the problem
with virtualization enabled accelerators (i.e., NVIDIA GRID), but this
GPUs are oriented towards graphics acceleration, not compute.

– Busy CPU cores do not block GPUs: free GPU-accelerators can be virtually
attached/detached to/from other remote cluster nodes. Thus, the free GPU
of a node with all its CPU cores being use, can be remotely utilized by other
node of the cluster [16].

– GPU task migration: from the point of view of cluster management and
administration, server consolidation is a desired cluster capability in order
to turn off nodes with low utilization levels, migrating their tasks to other

18 Carlos Reaño, Federico Silla

CUDA

rCUDAzQPsz+zlengthzqueuerCUDAzlengthzqueue

rCUDAzQPs

rCUDAzoriginal

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

TransferzSizez7MB9

B
an

dw
id

th
7M

B
/s

9

0 1 2 3 4 5 6
0

2000

4000

6000

0 10 20 30 40 50 60
5300

5500

5700

5900

CUDA

rCUDAzQPsz+zlengthzqueuerCUDAzlengthzqueue

rCUDAzQPs

rCUDAzoriginal

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

TransferzSizez7MB9

B
an

dw
id

th
7M

B
/s

9

0 1 2 3 4 5 6
0

2000

4000

6000

0 10 20 30 40 50 60
5300

5500

5700

5900

(a) Using a Tesla K20m GPU with both CUDA and the rCUDA over FDR InfiniBand.

0 10 20 30 40 50 60

0

2000

4000

6000

8000

10000

12000

rCUDA original

B
a

n
d

w
id

th
(M

B
/s

)

10

rCUDA QPs + length queuerCUDA length queuerCUDA original

0 10 20 30 40 50 60

9800

10000

10200

10400

rCUDA original

Transfer Size

Ps

0 2 4 6 8 10 12 14

0

4000

8000

12000

Transfer Size (MB)

(b) Using a Tesla K40m GPU with both CUDA and the rCUDA over EDR InfiniBand.

Fig. 12 Bandwidth test for regular CUDA (using the GPU within the host executing the
benchmark) and also for rCUDA (using a remote GPU over an InfiniBand network). Four
different versions of rCUDA are considered: the original rCUDA, rCUDA tuned increas-
ing the capacity of send/receive queues, rCUDA tuned using two QPs, and rCUDA tuned
combining both enhancements.

servers. By using remote GPU-accelerators, GPU task migration becomes
possible, thus making this approach also possible for GPU-accelerated HPC
clusters.

– Sharing GPUs could lead to the installation of less accelerators in HPC
clusters, thus reducing acquisition costs and power consumption, while in-
creasing the accelerator utilization rate. Therefore enabling a more efficient
use of the available hardware [16].

4.3 Impact of the Improvements on rCUDA bandwidth

Figure 12 shows the results of a CUDA bandwidth test, available in the
NVIDIA CUDA Samples [17]. This test measures the bandwidth when copy-
ing data from page-locked system memory to GPU memory. In the experi-

Tuning Remote GPU Virtualization for InfiniBand Networks 19

ments shown in this and following sections, we will compare the performance
of CUDA and rCUDA using two sets of hardware configurations: (1) CUDA
using a local Tesla K20m GPU and rCUDA using a remote Tesla K20m over
an FDR InfiniBand network, and (2) CUDA using a local Tesla K40m GPU
and rCUDA using a remote Tesla K40m over EDR InfiniBand. The reason for
this selection is that the bandwidth of the Tesla K20m is comparable to the
bandwidth obtained by an FDR InfiniBand network, while the bandwidth of
the Tesla K40m is similar to the bandwidth of EDR InfiniBand.

Figure 12 presents results when using CUDA and different versions of
rCUDA:

– rCUDA original: this is the current version of rCUDA, which already im-
plements an efficient communication layer based on the use of pipelined
transfers [13]. We have included these results for reference.

– rCUDA length queue: this is an enhanced version of rCUDA where, in
addition to the already existing pipelined communications, the capacity of
send/receive queues has been increased to 128 requests.

– rCUDA QPs: this version of rCUDA uses two QPs in addition to the initial
pipelined communication data transfer.

– rCUDA QPs + length queue: this version of rCUDA combines all the im-
provements.

Results shown in Figure 12 are the average bandwidth of 100 repetitions,
and the maximum RSD observed was 1.319 for 14KB1 of transfer size when
using the initial rCUDA version in Figure 12(a). However, this high RSD tends
to decrease for larger sizes, reaching a maximum of 0.461 for the biggest ones.

Similar conclusions can be extracted from Figure 12(a) and Figure 12(b).
On the one hand, when increasing the capacity of send/receive queues to 128
requests (line labeled as “rCUDA length queue”), there is a noticeable increase
in bandwidth for small/medium transfer sizes. On the other hand, when using
two QPs (line labeled as “rCUDA QPs”), bandwidth is increased for large
transfer sizes. Finally, when increasing the capacity of send/receive queues
to 128 requests and using two QPs (line labeled as “rCUDA QPs + length
queue”), the bandwidth is increased for all transfer sizes.

Regarding the improvement obtained in Figure 12(b) for large copies when
using two QPs with EDR InfiniBand, note that in Section 3.3 we have shown
that the bandwidth only improved when using the RDMA read benchmark.
rCUDA uses this operation for data transfers in this test, and that is the
reason why the bandwidth also improves for large transfer sizes in this figure.

In Section 3 we have concluded that, in general, using 2 queue pairs per port
and a send/receive queue capacity of 128 requests improves the performance.
However, the improvement seems to have a larger impact on the bandwidth
benchmarks from the OFED distribution than on rCUDA bandwidth. The
reason appears to be that bandwidth tests from the OFED distribution use

1 Although the X-axis is shown in MB/s for clarity, notice that the test has been made
using different transfer sizes from 1KB to 60MB.

20 Carlos Reaño, Federico Silla

0.0

0.5

1.0

1.5

2.0

2.5
CUDA rCUDA rCUDA (tuned)

Rodinia benchmark

N
o

rm
a

liz
e

d
 T

im
e

Fig. 13 Normalized execution time of several Rodinia benchmarks using a Tesla K20m
GPU with both CUDA and the rCUDA over FDR InfiniBand.

the network in a manner that the vast majority of applications do not. Thus,
these tests send the exact same message size over and over again in a loop
(using the same buffer as well), which allows for cache effects that are not
commonly replicated in real code. As such, that is probably the basis behind
why applying the improvements did not see as large an impact as expected
when using rCUDA. Nevertheless, the bandwidth of rCUDA has clearly been
improved thanks to the conclusions extracted from Section 3 which, from our
point of view, validates our study. In addition, next we present results using a
GPU benchmark and also real applications, which also confirm that applying
the optimizations obtained in previous sections turns into better performance.

4.4 Impact of the Improvements on Rodinia benchmark

Rodinia [18] is a popular benchmark suite for heterogeneous computing aimed
to help architects study platforms such as GPUs. It includes applications and
kernels which target multi-core CPU and GPU platforms. The Rodinia bench-
marks cover a wide range of parallel communication patterns and synchro-
nization techniques, which we consider useful for an initial study. For the
experiments shown in this section, we have used the version 3.0 of the Rodinia
benchmark, following the instructions inside each benchmark for running them

Figure 13 and Figure 14 present the normalized execution time of several of
the benchmarks included in this suite when using CUDA, the original version
of rCUDA and the version of rCUDA tuned using the improvements presented
in Section 3.

As expected, the tuned version of rCUDA performs equal or better than the
original version of rCUDA. The differences in performance are more noticeable
for benchmarks in which data transfers are more important. This is the case,
for instance, of the benchmarks bfs, euler3d, euler3d double, heartwall,
and srad v1.

It is remarkable, however, that some benchmarks shown in these figures
runs faster with rCUDA, using a remote GPU, than with CUDA, using a local

Tuning Remote GPU Virtualization for InfiniBand Networks 21

0.0

0.5

1.0

1.5

2.0

2.5
CUDA rCUDA rCUDA (tuned)

Rodinia benchmark

N
o

rm
a

liz
e

d
 T

im
e

Fig. 14 Normalized execution time of several Rodinia benchmarks using a Tesla K40m
GPU with both CUDA and the rCUDA over EDR InfiniBand.

GPU. A deeper profiling reveals that some of these benchmarks have synchro-
nization points (i.e., calls to cudaDeviceSynchronize or cudaStreamWait-

Event), that run faster with rCUDA. For example, a single call to cudaDevice-

Synchronize takes approximately 40 microseconds in rCUDA, and about 530
microseconds in CUDA. The cause of this variance resides in the internal algo-
rithm used in rCUDA to determine the end of the call, which benefits rCUDA
in these short tests [14]. Still, the time saved in these calls does not completely
explain the better performance of rCUDA in these tests. Another aspect which
influences the execution time is the frequency used to poll the network for work
completions, usually referred to as the network polling interval. This period
seems to be lower in rCUDA than the one used by CUDA to poll the PCIe link,
as demonstrated in [14]. In this manner, for short tests where the sum of these
small waits becomes an important part of the total execution time, rCUDA
runs faster than CUDA. In short, there are several elements which contribute
to increase and reduce the overhead of rCUDA with respect to CUDA. Hence,
for each of the benchmarks executed, the exact combination of these factors
results in a better or worse execution time.

4.5 Impact of the Improvements on Applications using rCUDA

Next we evaluate the benefits that the tuned version of rCUDA (using 2
QPs and a queue capacity of 128 requests) provides to applications (the soft-
ware layer immediately on top of it). For that purpose, we use the FDTD3d,
MAGMA, and GROMACS production codes:

– FDTD3d [17]: applies a finite-difference time-domain (FDTD) progression
stencil on a 3D surface. In particular, we have used the version distributed
along with CUDA 6.5, running the default test: a FDTD on 376 x 376 x
376 volume with symmetric filter radius 4 for 5 time-steps.

– MAGMA [19,20]: it is a dense linear algebra library similar to LAPACK
but for heterogeneous architectures. We utilize release 1.6.0 along with
the dpotrf gpu benchmark, which computes the Cholesky factorization

22 Carlos Reaño, Federico Silla

FDTD3d MAGMA GROMACS
0

0,5

1

1,5

2
CUDA rCUDA (tuned) rCUDA

N
o

rm
a

liz
e

d
 T

im
e

(a) Normalized execution time of the applications when
using regular CUDA, rCUDA and rCUDA tuned.

FDTD3d MAGMA GROMACS
0

20

40

60

80

100

0

5

10

15

20

25

Transfers Computations CUDA Calls

T
im

e
 (

%
)

C
U

D
A

 C
a

lls
 (

x1
,0

0
0

)

(b) NVIDIA profiling results: time spent in transfers
(i.e., copies to/from GPU memory), time employed by
computations (i.e., CUDA kernels), and total number of
calls to the CUDA API.

Fig. 15 Performance evaluation of FDTD3d, MAGMA, and GROMACS using a Tesla
K20m GPU and FDR InfiniBand.

for different matrix sizes (from 1K to 10K elements per dimension, in 1K
increments).

– GROMACS [21,22]: it is a versatile package to perform molecular dynam-
ics, i.e., simulate the Newtonian equations of motion for systems with hun-
dreds to millions of particles. We use version 4.6.5 and the ion channel
system benchmark with 1K steps.

Notice that in these experiments the exact test for each application has
been selected trying to cover the different possible behaviors of applications:
(1) transfer-bound application (this is the case of the FDTD3d test), (2) same
level of computations and transfers (for this we have used the MAGMA ex-
periment), and (3) compute-bound application (the GROMACS test). Thus,
this is the reason why we run the FDTD3d test with 376 x 376 x 376 volume
with symmetric filter radius 4 for 5 time-steps: to evaluate the impact of our
improvements in applications which have much more transfers than computa-
tions. To analyze the opposite scenario, we use the GROMACS ion channel
system benchmark with 1K steps, because it performs much more compu-

Tuning Remote GPU Virtualization for InfiniBand Networks 23

FDTD3d MAGMA GROMACS
0

0,5

1

1,5

2
CUDA rCUDA (tuned) rCUDA

N
o

rm
a

liz
e

d
 T

im
e

(a) Normalized execution time of the applications when
using regular CUDA, rCUDA and rCUDA tuned.

FDTD3d MAGMA GROMACS
0

20

40

60

80

100

0

5

10

15

20

25

Transfers Computations CUDA Calls

T
im

e
 (

%
)

C
U

D
A

 C
a

lls
 (

x1
,0

0
0

)

(b) NVIDIA profiling results: time spent in transfers
(i.e., copies to/from GPU memory), time employed by
computations (i.e., CUDA kernels), and total number of
calls to the CUDA API.

Fig. 16 Performance evaluation of FDTD3d, MAGMA, and GROMACS using a Tesla
K40m GPU and EDR InfiniBand.

tations than transfers. Finally, to study the impact on applications with an
intermediate behavior, we run the MAGMA dpotrf gpu benchmark, which
presents a similar level of computations and transfers.

Figure 15 and Figure 16 present the results of the experiments previously
commented. Figure 15(a) and Figure 16(a) show the normalized execution
time when running these applications with regular CUDA, original rCUDA,
and rCUDA tuned. In order to better analyze these results, Figure 15(b) and
Figure 16(b) show some profiling results: time spent in transfers (i.e., copies
to/from GPU memory, also referred to as CUDA memcpy), time employed by
computations (i.e., time employed by CUDA kernels), and total number of calls
to the CUDA API. The results shown are the average of 10 repetitions, and
the maximum RSD observed was 0.562 when running the FDTD3d simulation
with the original version of rCUDA in Figure 15(a).

As we can observe in Figure 15(b) and Figure 16(b), each application
presents a different behavior. Firstly, the FDTD3d test has been selected
because it represents a scenario where there are much more transfers than

24 Carlos Reaño, Federico Silla

CUDA rCUDA rCUDA (tuned)

rCUDA overhead rCUDA (tuned) overhead

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

1
0

K

0

200

400

600

800

1000

1200

0
10
20
30
40
50
60
70
80
90
100

Matrix Dimension (N)

G
flo

p/
s

O
ve

rh
ea

d
(%

)

(a) Using a Tesla K20m GPU with both CUDA and the rCUDA over
FDR InfiniBand.

1
K

2
K

3
K

4
K

5
K

6
K

7
K

8
K

9
K

1
0

K
0

200

400

600

800

1000

1200

0
10
20
30
40
50
60
70
80
90
100

Matrix Dimension (N)

G
flo

p/
s

O
ve

rh
ea

d
(%

)
(b) Using a Tesla K40m GPU with both CUDA and the rCUDA over
EDR InfiniBand.

Fig. 17 Performance comparison when running MAGMA dpotrf gpu test with CUDA and
rCUDA. Primary Y-axis shows Gflop/s and secondary Y-axis rCUDA overhead with respect
to CUDA. Lines refer to values in the primary Y-axis (i.e., Gflop/s), while bars to values in
the secondary Y-axis (i.e., overhead).

computations: over 80% of the test execution time is devoted to transfer data
to/from the GPU memory. This is the worst possible scenario for rCUDA
because the overhead due to the transfers across the network is more evident.
However, it is also a good scenario to show the benefits of the enhancements
under analysis in terms of bandwidth gain. In this manner, the tuned version of
rCUDA presents an improvement of over 10% and 6% with regard to the initial
version of rCUDA, as shown in Figure 15(a) and Figure 16(a), respectively.

Next, GROMACS shows the opposite scenario: over 90% of the execution
time is devoted to computations in the GPU. Performing much more com-
putations than transfers benefits rCUDA in the sense that the time spent in
computations in the GPU is the same for CUDA and rCUDA, thus compen-
sating the overhead of rCUDA due to transfers across the network. Notice also
that this application presents a huge number of calls to the CUDA API. Each
CUDA call is forwarded by rCUDA over the network to the remote node own-
ing the real GPU. From the InfiniBand perspective, CUDA calls can be seen as

Tuning Remote GPU Virtualization for InfiniBand Networks 25

CUDA rCUDA rCUDA (tuned)

rCUDA overhead rCUDA (tuned) overhead

3
2

2
5

6

8
6

4

2
0

4
8

4
0

0
0

0

10

20

30

40

50

1

10

100

1000

10000

Atoms (x1,000)

Lo
op

 T
im

e
(s

)

O
ve

rh
ea

d
(%

)

(a) Using a Tesla K20m GPU with both CUDA and the rCUDA over
FDR InfiniBand.

3
2

2
5

6

8
6

4

2
0

4
8

4
0

0
0

0

10

20

30

40

50

1

10

100

1000

10000

Atoms (x1,000)

Lo
op

 T
im

e
(s

)

O
ve

rh
ea

d
(%

)
(b) Using a Tesla K40m GPU with both CUDA and the rCUDA over
EDR InfiniBand.

Fig. 18 Performance comparison when running LAMMPS in.eam test with CUDA and
rCUDA. Primary Y-axis shows loop time in seconds and secondary Y-axis rCUDA overhead
with respect to CUDA in logarithmic scale. Lines refer to values in the primary Y-axis (i.e.,
loop time), while bars to values in the secondary Y-axis (i.e., overhead).

transfers of small size (a header of 12 bytes + a variable size of data depend-
ing on the arguments of each CUDA call). As previously shown in Figure 12,
the improvement consisting in increasing the send/receive queue capacity im-
proved performance for small/medium transfer sizes. This explains why the
rCUDA tuned version needs 35% and 39% less time to complete this test, as
shown in Figure 15(a) and Figure 16(a), respectively.

Finally, we have used the MAGMA application experiment to show an
scenario where the time spent in transfers and computations is equilibrated
(44% of time spent in transfers, 56% in computations). The number of CUDA
calls is also an intermediate amount with respect to the previous experiments.
In this case, we can attribute the gain of using rCUDA tuned (11% and 14%
when compared to the initial version of rCUDA, as shown in Figure 15(a) and
Figure 16(a), respectively) to both the increment of the maximum bandwidth
because of using two QPs, and the reduction of the time spent in sending
small/medium messages due to the increased send/receive queue capacity.

26 Carlos Reaño, Federico Silla

Figure 17 presents again results of the MAGMA Cholesky factorization for
different matrix sizes. But now we show the results from the usual perspective
they are presented when running this application: in terms of Gflop/s. As it
can be seen, the improvement of using the tuned version of rCUDA, labeled
as “rCUDA (tuned)”, is clear. Thus, the original version of rCUDA, labeled as
“rCUDA”, presents an average overhead of 31% and 37% in Figure 17(a) and
Figure 17(b), respectively, with respect to the tuned version. This evidences
the improvements achieved with the enhancements exposed in this work.

Next we use another application to evaluate the impact of the improve-
ments presented in this work: LAMMPS [23]. It is a classic molecular dynamics
simulator that can be used to model atoms or, more generically, as a paral-
lel particle simulator at the atomic, mesoscopic, or continuum scale. For the
test in this work, we use the release from May 15, 2015, and the benchmark
in.eam installed with the application. We run the benchmark with one proces-
sor and one GPU, scaling by a factor of 1, 2, 3, 4 and 5 in all three dimensions
(i.e., problem sizes of 32,000, 256,000, 864,000, 2,048 and 4,000,000 atoms,
respectively).

Figure 18 presents the loop time of running this benchmark with the dif-
ferent problem sizes. Lines show that loop time increases as the problem size
increases. In contrast, bars show that the overhead of rCUDA with respect to
CUDA decreases as the problem size increases. As we can observe, the ver-
sion of rCUDA tuned with the improvements analyzed in this work, labeled
as “rCUDA (tuned)”, clearly outperforms the original version of rCUDA, re-
ferred to as “rCUDA” in the figures. On average, the tuned version runs 94%
and 119% faster in Figure 18(a) and Figure 18(b), respectively. These results
show, again, the influence the of improvements exposed in this work.

Finally, we use GPU-LIBSVM [24] application to show again the influence
of the tuning exposed in this work. It is an integrated software that supports
vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and
distribution estimation (one-class SVM). In addition, it supports multi-class
classification. For our experiments, we have used version 3.18, and the input
data included in the package. More specifically, we have scaled the available
training data, without the use of the shrinking heuristics and utilizing a N-fold
cross validation mode, varying N from 10 to 50 in increments of 10.

Figure 19 presents the execution time of running the commented tests.
When using rCUDA over EDR InfiniBand, in Figure 19(b), the results are
the expected ones, and the original version of rCUDA presents an average
overhead of 5.7% with respect to the tuned version of rCUDA. In contrast,
when using rCUDA over FDR InfiniBand, in Figure 19(a), this overhead is
only 0.5%. After profiling the application, we have found that the reason for
this seems to lie in the size of data transfers which is between 5MB and 10MB.
Thus, in Figure 12(a) we have seen that both the original version of rCUDA
and the tuned one, achieved similar bandwidth starting from 4MB when us-
ing FDR. However, in Figure 12(b) we have seen that both rCUDA versions
reached similar bandwidth starting from 13MB when using EDR, being the

Tuning Remote GPU Virtualization for InfiniBand Networks 27

CUDA rCUDA rCUDA (tuned)
rCUDA overhead rCUDA (tuned) overhead
CUDA CUDA

1
0

2
0

3
0

4
0

5
0

0

20

40

60

80

100

0
2
4
6
8
10
12
14
16
18

N-fold cross validation mode

E
xe

cu
tio

n
Ti

m
e

(s
)

O
ve

rh
ea

d
(%

)

(a) Using a Tesla K20m GPU with both CUDA and the rCUDA over
FDR InfiniBand.

1
0

2
0

3
0

4
0

5
0

0

20

40

60

80

100

0

2

4

6

8

10

12

14

16

N-fold cross validation mode

E
xe

cu
tio

n
Ti

m
e

(s
)

O
ve

rh
ea

d
(%

)
(b) Using a Tesla K40m GPU with both CUDA and the rCUDA over
EDR InfiniBand.

Fig. 19 Performance comparison when running GPU-LIBSVM test with CUDA and
rCUDA. Primary Y-axis shows execution time in seconds and secondary Y-axis rCUDA
overhead with respect to CUDA. Lines refer to values in the primary Y-axis (i.e., execution
time), while bars to values in the secondary Y-axis (i.e., overhead).

convergence curve much slower, and this is why the improvements are more
noticeable here.

Another factor to consider is that in this experiment the overhead of
rCUDA with respect CUDA is higher with FDR than with EDR. The reason
can be found again in Figure 12, where we can observe that rCUDA bandwidth
is closer to CUDA one when using EDR than when using FDR.

5 Conclusions

The use of InfiniBand networks to interconnect high performance computing
clusters has considerably increased during the last years. However, due to the
programming complexity of the InfiniBand API and the lack of documenta-
tion, there are not enough recent available studies explaining how to tune
applications to get the maximum performance of this fabric.

28 Carlos Reaño, Federico Silla

In this paper we have exposed several improvements which can be applied
when developing applications using InfiniBand Verbs. Based on our exper-
iments we can conclude that (1) using more than one queue pair per port
improves bandwidth for medium/large message sizes, (2) increasing the ca-
pacity of the send/receive queues also turns into a bandwidth increase, being
especially noteworthy for small/medium message sizes, and (3) both improve-
ments complement each other and can be combined. This bandwidth increment
is key for remote GPU virtualization frameworks. Actually, the experiments
presented in this paper show that this noticeable bandwidth gain translates
into a great reduction in execution time of applications using remote GPU
virtualization frameworks, significantly reducing the performance gap between
remote and local GPUs.

Acknowledgements This work was funded by the Spanish MINECO and FEDER funds
under Grant TIN2012-38341-C04-01. Authors are also grateful for the generous support
provided by Mellanox Technologies.

References

1. InfiniBand Trade Association (IBTA), 2015. [Online]. Available:
http://www.infinibandta.org

2. J. DAmbrosia, “Ethernet in the TOP500,” 2014. [Online]. Available:
http://www.scientificcomputing.com/blogs/2014/07/ethernet-top500

3. “TOP500 Supercomputer Sites,” 2014. [Online]. Available: http://www.top500.org/
4. InfiniBand Trade Association (IBTA), The InfiniBand Trade Association Specification,

2007.
5. G. Kerr, “Dissecting a small infiniband application using the verbs API,” CoRR, vol.

abs/1105.1827, 2011. [Online]. Available: http://arxiv.org/abs/1105.1827
6. B. Woodruff, S. Hefty, R. Dreier, and H. Rosenstock, “Introduction to the infiniband

core software,” in Linux Symposium, vol. 2, 2005.
7. T. Bedeir, “Building an rdma-capable application with ib verbs,” Technical re-

port, HPC Advisory Council, 2010. Available from: http://www. hpcadvisorycouncil.
com/pdf/building-an-rdma-capable-application-with-ib-verbs. pdf, Tech. Rep., 2010.

8. Q. Liu and R. D. Russell, “A performance study of infiniband fourteen data rate (fdr),”
in Proceedings of the High Performance Computing Symposium, ser. HPC ’14. San
Diego, CA, USA: Society for Computer Simulation International, 2014, pp. 16:1–16:10.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2663510.2663526

9. N. Hjelm, “Optimizing one-sided operations in open mpi,” in Proceedings
of the 21st European MPI Users’ Group Meeting, ser. EuroMPI/ASIA ’14.
New York, NY, USA: ACM, 2014, pp. 123:123–123:124. [Online]. Available:
http://doi.acm.org/10.1145/2642769.2642792

10. H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty, and D. Panda,
“Designing mpi library with dynamic connected transport (dct) of infiniband: Early
experiences,” in Supercomputing, ser. Lecture Notes in Computer Science, J. Kunkel,
T. Ludwig, and H. Meuer, Eds. Springer International Publishing, 2014, vol. 8488,
pp. 278–295. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-07518-1 18

11. Unified Communication X (UCX), 2015. [Online]. Available: http://www.openucx.org
12. NVIDIA, CUDA C Programming Guide 6.5, 2014.
13. A. J. Peña, C. Reaño, F. Silla, R. Mayo, E. S. Quintana-Ort́ı, and J. Du-

ato, “A complete and efficient cuda-sharing solution for hpc clusters,” Par-
allel Computing, vol. 40, no. 10, pp. 574 – 588, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016781911 4001227

Tuning Remote GPU Virtualization for InfiniBand Networks 29

14. C. Reaño, F. Silla, A. C. Gimeno, A. J. Peña, R. Mayo, E. S. Quintana-Ort́ı, and
J. Duato, “Improving the user experience of the rcuda remote GPU virtualization
framework,” Concurrency and Computation: Practice and Experience, vol. 27, no. 14,
pp. 3746–3770, 2015. [Online]. Available: http://dx.doi.org/10.1002/cpe.3409

15. J. Prades, C. Reaño, and F. Silla, “Flexible Access to CUDA Accelerators from Xen
Virtual Machines in InfiniBand Clusters using rCUDA,” in 21st ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP, 2016.

16. S. Iserte, A. C. Gimeno, R. Mayo, E. S. Quintana-Ort́ı, F. Silla, J. Duato, C. Reaño,
and J. Prades, “SLURM support for remote GPU virtualization: Implementation and
performance study,” in 26th IEEE International Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD, 2014, pp. 318–325. [Online]. Available:
http://dx.doi.org/10.1109/SBAC-PAD.2014.49

17. NVIDIA, NVIDIA CUDA Samples 6.5, 2014.
18. S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:

A benchmark suite for heterogeneous computing,” in Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on, 2009, pp. 44–54.

19. University of Tennessee, “MAGMA: Matrix Algebra on GPU and Mul-
ticore Architectures,” http://icl.cs.utk.edu/magma, 2014. [Online]. Available:
http://icl.cs.utk.edu/magma

20. W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The
user language,” J. Symbolic Comput., vol. 24, no. 3-4, pp. 235–265, 1997,
computational algebra and number theory (London, 1993). [Online]. Available:
http://dx.doi.org/10.1006/jsco.1996.0125

21. “GROMACS web page,” 2014. [Online]. Available: http://www.gromacs.org/
22. S. Pronk, S. Pll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.

Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl,
“Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation
toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–854, 2013. [Online]. Available:
http://bioinformatics.oxfordjournals.org/content/29/7/845.abstract

23. W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, “Implementing
molecular dynamics on hybrid high performance computers: Particle-particle particle-
mesh,” Computer Physics Communications, vol. 183, no. 3, pp. 449–459, 2012.

24. A. Athanasopoulos, A. Dimou, V. Mezaris, and I. Kompatsiaris, “GPU Acceleration
for Support Vector Machines,” in 12th International Workshop on Image Analysis for
Multimedia Interactive Services (WIAMIS), 2011.

