
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies., Please cite the published version when available.

Title Toward a new approach for massive LiDAR data processing

Authors(s) Cao, Van-Hung; Chu, Xuan-Khoi; Le-Khac, Nhien-An; Kechadi, Tahar; Laefer, Debra F.;

Truong-Hong, Linh

Publication date 2015-07-10

Conference details 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical

Knowledge Services (ICSDM 2015), Fuzhou, China, 8 - 10 July 2015

Publisher IEEE

Item record/more information http://hdl.handle.net/10197/7448

Publisher's statement © © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

Publisher's version (DOI) 10.1109/ICSDM.2015.7298040

Downloaded 2019-04-27T20:55:52Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FICSDM.2015.7298040&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F7448

Toward a new approach for massive LiDAR data

processing
H-V. Cao

#1
, K-X. Chu

#2
, N-A. Le-Khac

#3
, M-T. Kechadi

#3
, D. Laefer

*3
, L-H. Truong

*3

#
School of Computer Science & Informatics, University College Dublin

Belfield, Dublin 4, Ireland
1
hvan-hung.cao@ucdconnect.ie

2
chuxuankhoi@gmail.com

*
 School Of Civil, Structural & Environment Engineering, University College Dublin

 Belfield, Dublin 4, Ireland
3
{an.lekhac,tahar.kechadi,debra.laefer,linh.truonghong}@ucd.ie

Abstract— Laser scanning (also known as Light Detection And

Ranging) has been widely applied in various application. As part

of that, aerial laser scanning (ALS) has been used to collect

topographic data points for a large area, which triggers to

million points to be acquired. Furthermore, today, with

integrating full wareform (FWF) technology during ALS data

acquisition, all return information of laser pulse is stored. Thus,

ALS data are to be massive and complexity since the FWF of

each laser pulse can be stored up to 256 samples and density of

ALS data is also increasing significantly. Processing LiDAR data

demands heavy operations and the traditional approaches

require significant hardware and running time. On the other

hand, researchers have recently proposed parallel approaches

for analysing LiDAR data. These approaches are normally based

on parallel architecture of target systems such as multi-core

processors, GPU, etc. However, there is still missing efficient

approaches/tools supporting the analysis of LiDAR data due to

the lack of a deep study on both library tools and algorithms

used in processing this data. In this paper, we present a

comparative study of software libraries and algorithms to

optimise the processing of LiDAR data. We also propose new

method to improve this process with experiments on large

LiDAR data. Finally, we discuss on a parallel solution of our

approach where we integrate parallel computing in processing

LiDAR data.

Keywords— LiDar data, parallel processing, kd-tree, TreeP

I. INTRODUCTION

Air-borne Light Detection And Ranging (LiDAR) has

been used to acquire three dimensional (3D) topographic data

points of object’s surfaces of a large coverage area. LiDAR

data has been widely used in a large range of applications,

such as forestry management [1], 3D city modelling [2], road

detection [3] disaster management [4] and computational

modelling [5]. Recently, an aerial laser scanning (ALS) has a

scan rate of 1MHz and Full Waveform Digitizer (FWD)

collection at up 120 kHz [6], where ALS data consist

hundreds of millions of 3D point clouds associated with

waveform data of laser pulses. For example, with specific

designated scanning plan, ALS data of 1 km
2
 Dublin city

center is of 225 million points with around 5.9 GB in size,

acquired by the Urban Modelling Group at the University

College Dublin [7]. In addition, the national wide LiDAR data

in Netherland has around 640 billion points, where each block

1000x1250m of ASCII xyz data (each LiDAR point stored

with x, y and z coordinates) is approximately 0.5 TB in size [8,

9]. Raw ALS data recorded are needed to process in order to

obtain real 3D point clouds. Unlikely traditional ALS data

acquisition recorded four or more returns per transmitted pulse,

the modern ALS with FWF data contain additional up to 256

samples for each return pulse. In this context, volume and

complexity of input ALS data have been increased

dramatically.

The huge volumes and complexity of ALS data are to be

great challenges for data processing as the limitation of the

computing hardware. With conventional sequence algorithms,

ALS data processing is to be time consuming because the

processing is computationally intensive and iterative. For

example, the total execution time on 2-way-Quad-core

computer was approximate 2 hours to generate Delaunay

triangulation of 0.883 billion LiDAR points occupied 16.4 GB

in size [10]. Moreover, for segmenting 105 millions of mobile

laser scanning points, the shape-based segmentation method

takes about 1 hour, where the experiment was perform on a

machine with 8 GB RAM and an Intel Core i3 with a speed

clock of CPU by 3.07 GHz [11]. Thus, development of

alternative solutions is urgently needed in practical

applications. For example, after natural disaster, digital

elevation model (DEM) is quickly requested for damage

estimation. Various optimization techniques and algorithms

have been proposed to improve performance of LiDAR data

processing [12,13,14]. Ones of which, parallel processing is to

be a potential ALS data processing solution [15,16]. However,

these approaches are normally designed with regard to the

parallel architecture of target systems such as multi-core

processors, GPU, etc. There is still missing efficient

approaches/tools supporting the analysis of LiDAR data due

to the lack of a deep study on both library tools and sequential

algorithms used in processing this data. Thus, this paper

investigated current efficient techniques and proposed a new

strategy in ALS data processing. Eventually, in this paper, we

firstly present a comparative study of software libraries and

algorithms to optimise the processing of LiDAR data. Next,

we propose new method to improve this process with

experiments on large LiDAR data. Finally, we discuss on a

parallel solution of our approach where we integrate

parallel/cloud computing in processing LiDAR data.

The remainder of the paper is arranged as follow. The

background is introduced in following section where we

review different approaches of processing LiDAR data. Next,

we conduct comparative studies of existing libraries and

methods to determine the key issues that affect the

performance of LiDAR processing. Following, the new

strategy for ALS data processing is introduced. We also

discuss on the parallel approach for our strategy. Finally,

conclusions and further work are drawn.

II. BACKGROUND

Our long term goal is to develop efficient algorithm based

on high performance computational (HPC) resources for

classifying ALS data points into separate categories and for

extracting the point cloud of separate objects. In the light of

these aim, this section investigates commonly existing

approaches used to solve these problems. Many algorithms

have been proposed to automatically extract ground points and

non-ground points from ALS data points, which are based on

assumption about a structure of bare-Earth points in a local

neighbourhood [17]. These methods can be divided four

distinct groups: (1) slope-based: when the slope or height

different between two points exceeds the certain threshold, the

highest point is classified to belong to the object [18, 19]; (2)

cluster/segmentation-based: the method is based on an

observation is that the objects always have distinct edges to

the bare-Earth, and any point within the closed boundaries of

the cluster or segment known as the object is assumed as a

part of the bare-Earth and other points of the cluster/segment

are of the object [20]; (3) surface based: the points are within

the buffer zone of the surface are assumed as the ground

points, where the surface is iteratively determined from the

points and the vertical distance of the points to the surface as

the weight function [21-23]; and (4) morphological filter: the

method is based on a series of opening operations to eliminate

non-ground points [24].

Furthermore, the segmentation process, is to partition 3D

ALS point clouds into subsets satisfying certain criteria [25],

can be roughly classified as model fitting-based methods [26,

27], region growing-based methods [20, 28] and clustering

feature based methods [29, 30]. For the last two segmentation

categories, the key parameters of those algorithms involve a

normal vector, a distance between a point to a fitting plane, a

curvature of each point and a slope computed from a given

point and its neighbourhood. Thus, the quality of the

segmentation depends on selecting the neighbouring for

computing these features, whereas the nearest neighbour

search (NNS) is an important aspect in the algorithm. That is

because the NNS is dominant execute time in computing

variables for discriminant function of the classification and

segmentation of ALS data. In summary, irrespective

classification or segmentation process, since these methods

are based on a local neighbourhood, the nearest neighbour

search plays out an important role in controlling the

performance of the algorithm. However, conventional

sequence methods are to be computational overhead with

massive ALS point clouds. Development of an efficient

algorithm is therefore necessarily for improving the

performance. The following section reviews parallel

processing in building a tree structure supporting for NNS

procedure.

III. COMPARATIVE STUDY

A. Comparative state-of-the-art approaches in HPC for

LiDAR processing

In this part, we will take a look at some current approaches

in HPC for LiDAR data processing. It will convey a snapshot

of the state-of-the-art in this field and offer a viewpoint of the

potential as well as rising challenges of applying HPC to

LiDAR processing. In particular, the HPC-based paradigms in

this part comprise cloud computing environments, PC Cluster,

field programmable gate array (FPGAs), hardware systems

such as multi-core CPU architecture, graphic processing units

(GPUs), and general-purpose computing on graphics

processing units (GPGPUs).

Xuefeng Guan and Huayi Wu (2010) [431] leveraged the

power of multi-core platform to deal with massive geospatial

data. They divided raw data into overlapped blocks and

inputted concurrently these blocks on parallel pipelines.

Multi-thread was used to exploit the full power of a multi-core

processor. However, there are several drawbacks of multi-

processor pipeline architecture which are listed by Duoduo

Liao and Simon Y. Berkovich such as the amount of

memories of processors duplicated (due to overlapped data),

bus traffic problem. They proposed a new multi-core

pipelined architecture [442] based on crossbar switching.

Comparison between the new architecture and conventional

multi-core architecture show that the new one gives much

better performance than the old. Moreover, the new

architecture significantly overcomes all the limitations of

multi-processor pipeline.

Parallel processing methods using GPUs & GPGPUs also

have been introduced to speed up computation recently. Hu et

al. proposed a simple scan-line-based algorithm using parallel

computing [345]. Authors propose a scan-line segmentation

(SLS) algorithm to classify ground and unground object based

on the calculation of slop and elevation. Using GPU’s thread

blocks to calculate parallel scan lines, each thread block of

GPU process one scan line.

FPGA-based computing could offer on-board real-time

processing [467]. Multi-level parallelism inherent in

algorithms used for LiDAR processing could be exploited to

speed up the procedure using High-Performance Embedded

Computing (HPEC) systems featuring FPGAs. FPGA-based

computing could be fast and fully reconfigurable now, but the

developing time price are still high. Thus, it will not really

appropriate for regular developer [453].

B. Software study

As mentioned above, software is an important part in

processing LiDAR data. It is not only used to visualise the

experimental results in the way that everyone can understand

but also provide the numeric data (such as processing time,

statistical results or other useful information for users in

analysing LiDAR data) quickly and in convenient forms.

However, software itself contains the problems that impact

strongly to the users feeling. One of example is the duration of

calculation. If the duration is too long and the application is

lack of solutions to notice the progress, users may be confused

to decide to stop the application or continue waiting. Another

example is the performance of painting data on the screen. If

the application is lack of solution to display smoothly when

interacting, the movements may not be as the expected from

users and they may reject the application before it has

opportunity to show the advantages.

We test first of all the loading LiDAR data from file (using

laspy library [32]) and buffering vertices to display (using

glBufferData of OpenGL).

Fig.1. Loading time to data size when using laspy & Buffering time when

using OpenGL

Fig.2. Buffering time to data size when using OpenGL

Looking at Fig.1 and Fig.2, we can seenotice that when

data size is less than 10 million points the loading time is

accepted but when the size of the data is greater than 17

million points, loading time is significantly increased. Note

that in the real-world application, data size in LiDAR

processing is not just 17 million, it is usually from tens to

hundreds million points.

Moreover, when working with huge data (hundreds of MB

to GB), sometimes, RAM (which secures the fastest accessing

speed for processing) cannot provide enough space to store

and calculate; thus, the performance of the system falls down

strictly (users have to wait in minutes to see the results). For

example, when loading about 17 million points with a 4G

RAM computer (running with the tasks of Windows 7 and

Mozilla Firefox), the physical memory is overflowed. Of

course, the problem does not appear with all computers, but in

general it will impact to a part of users.

In this section, some aspects of software development are

discussed to provide useful information for selecting or

improving a performance of the software in processing

LiDAR data.

1) Python language: Python is a very-high-level dynamic

object-oriented programming language. It is chosen as the

language to review and implement in the project because of

the following reasons: (i) Python is dynamic, (ii) Broad

standard library and portable and (iii) Huge community of

users and developers [33].

2) Libraries: as mentioned above, many libraries

developed by Python community are useful in managing and

processing data. NumPy [34] (or its extension SciPy[35]): a

powerful library to make calculations with multi-dimensional

array objects. In fact, NumPy provides surprising

manipulations such as broadcasting functions or memory

management. However, it seems very bad in iterating over the

data in arrays as shown in Fig. 3 where the computational time

is linear with the number of data points.

Fig.23. Comparison between looping with Python list and NumPy array

Beside the specific packages, SciPy provides a very

interesting package named weave, which allows developer to

embed C/C++ code to improve the performance [36].

Although the package needs extensive investigation to prove,

it is considerable because of the proved efficiency and the

flexibility of C/C++.

Formatted: Centered

Formatted: Font color: Red

Formatted: Indent: First line: 0 cm

Formatted: Font color: Red

Formatted: Font color: Red, English
(Ireland), Do not check spelling or
grammar

Formatted: Justified, Space Before: 0
pt, After: 0 pt

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Built-in library: Python itself is updated and improved day

by day, so, in almost time, using built-in functions is the most

convenient and efficient way to develop. One example was

mentioned in section that introduces about NumPy.

IV. TOWARD A NEW APPROACH FOR PROCESSING VERY LARGE

LIDAR DATA

In this section, we propose a new approach to improve ALS

data processing. Eventually, in our approach we look at two

levels of optimisation: loading data and building data structure.

A. Loading data:

In order to reduce the time of processing, there are some

strategies considered and investigate. However, the results are

not as expected. Following is the strategies in specific:

Vectorising: NumPy also provides some functions to

vectorise a sequence. However, NumPy document [37] and

some discussions [38] pointed out that the performance would

not be improved. The strategy requires the actions in deeper

layers by using other languages such as C and Assembler.

Multi-threading: other strategy is often used in modern

software development based on its ease of implementation is

dividing the task to many subtasks and performing them on

many parallel threads.

B. Application of data structure:

Since the dominant calculations in LiDAR processing and

LiDAR visualisation is searching, some data structures of the

dataset (kd-Tree or oct-Tree) and resampling techniques

(Latin hypercube sampling, random sampling or Orthogonal

sampling) should be considered to boost the calculation.

Indeed, based on our comparative study, in order to

improve the performance of the methods used in LiDAR

processing, the following items are investigated and

implemented: (i) Optimize and divide calculations based on

the characteristics of data stored in input files; (ii) Build the

strategies to apply the above structures and techniques to

reduce the number of calculation points but keep the quality of

visualisation; (iii) Investigate the causes of the unexpected

results when using high-performance computing strategies and

resolve them.

The very first step toward a new approach for massive

LiDAR data processing is tothat prepareing perquisite

computing steps including the index of the LiDAR datasets by

building k-d tree, octree, etc. We present hence some

experimental results we got in building kd-tree. In fact, a kd-

tree [39] (Fig.4) is a binary tree structure where each non-leaf

node corresponds an axis-aligned rectangular cuboid and its

children split up the volume to form smaller cuboids through a

splitting hyper-plane [4812]. The constructing procedure of

kd-tree has O(kNlogN) space complexity [31]. Fig.4 will

show an example of a 3d-tree constructed base on a data set of

9 points.

 A kd-tree can be used to accelerate k-nearest neighbour

(kNN) queries [4812], using ball-rectangle intersection tests.

We can easily find k neighbourhood of a point p inside a ball

centred on p and passing through the current kth-nearest

candidate with the average complexity O(log n).

Fig.3. New proposed 3-d tree

Building kd-tree is a time consuming task, especially for

large size of datasets such as LiDAR one. In our experiments,

as the LiDAR datasets contain mainly information about data

points which are stored as a 3-dimensional data cloud as a

series of x (longitude), y (latitude), and z (elevation) points,

we decided to build a 3d-tree to present all points in the

dataset based on [39]. However, the time of building this 3d-

tree was not as expected. . The dataset we use to test our tree

include approximately 18 million points. The testing platform

is Intel Core i7-3517U 1.9 GHz Processor, 2 GB DDR3 RAM,

256 GB Solid State Drive, Windows 8.1. The building tree

process is very slow at 323.33s. This leads to the stagnation of

the whole system and affect to the performance of data

processing. Therefore, before looking at the parallel solution,

we propose a new approach to improve the process of

constructing kd-tree in terms of runtime. In this approach,

instead of building a kd-tree (3d-tree for our LiDAR data) for

all points, we cut short the depth of tree using Leafnode. Each

Leafnode is a bucket which contains a maximum number of

points. Fig.35 shows the 3d-tree built by our new approach.

Fig.4 A sample traditional 3-d tree

Formatted: Indent: First line: 0.38 cm

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Indent: First line: 0.38 cm

Formatted: Indent: First line: 0.38 cm

Formatted: Justified

Fig.5 New proposed 3-d tree

The new algorithm of constructing 3d-tree is described as

below:

Algorithm 1 Optimal kdContruct

1: procedure kdConstruct (trainingSet)

2: if trainingSet.size() <= Leafsize then

3: return kdtree.leafnode // Returns a kdTree

4: else

5: (s, val) ← chooseSplit(trainingSet) // s is splitting

dimension, chooseSplit function based on sliding midpoint

rudes

6: trainLeft ← {x ∈ trainingSet : xs < val }

7: trainRight ← {x ∈ trainingSet : xs ≥ val }

8: kdLeft ← kdConstruct(trainLeft)

9: kdRight ← kdConstruct(trainRight)

10: return kdtree(s, val, kdLeft, kdRight)

11: end procedure

There are several split rule such as Standard Split Rule [31],

Midpoint Split Rule [40]. However, in our algorithm we used

Sliding Midpoint Split Rule [47] to ensure that the cells do not

all become long and thin.

When we use k-nearest neighbourNN queries to search k-

neighbourhood of point p, the searching procedure normally

search close-points in tree and if some points stored in a

Leafnode, it will use brute-force algorithm to find theses. The

algorithm of query k-nearest neighbour k nearest neighbour of

point P can be found in [312]. The algorithm of brute-force

can be shown as follows:

Algorithm 2 Brute-force

1: c ← first(P) // generate a first candidate solution for P

2: while c < > Λ do

3: if valid(P,c) then output(P, c) // check whether

candidate c is a solution for P then return output c

4: c ← next(P,c) // generate the next candidate for P after the

current one c

5: end while

The dataset we use to launch experiments on our tree

include approximately 18 million points. The testing platform

is Intel Core i7-3517U 1.9 GHz Processor, 2 GB DDR3 RAM,

256 GB Solid State Drive, Windows 8.1.

We launch experiments with the same platform as

mentioned above. First, we ran system to build 3d-tree with

Leafnode size = 10 (thousand points) and using kNN query to

search randomly number of 10 nearest points of a randomthe

point 1000
th
 in the dataset. We evaluate the constructing tree

time, searching time and total processing time (constructing +

searching time). Next, we vary the size of Leafnode to 100,

200, 300… up to 1000 (thousand points) and get the average

processing time of 10 tests for each Leafnode size.

Formatted: Font: Italic

Formatted: Font: Italic

Fig.46 The average processing time of difference cases of Leafnode

As shown in Fig.46, the average processing time of system

will decrease dramatically when we increase the quantity of

points in a Leafnode. Obviously, rising Leafnode size will

make the tree shorter so that it will save the erecting time,

save the memory to store tree and boost CPU processing time.

Comparing to the average building kd-tree time, the average

searching time was very fast due to the average complexity

O(log n). Therefore, this is very beneficial to the query

information for the next processing steps. In addition,

although brute-force has complexity O(n.m), nevertheless

when some nearest neighbour points stored in a Leafnode, the

system will search in several nearest Leafnodes and excluding

other unrelated subtree. Thus, the processing time of the

whole system is maintained well.

Indeed, we can also improve our new approach of building

kd-tree from Algorithm 1 by using parallel approach for both

multi-core/multi-processor platforms and distributed platforms.

Recently, we proposed an effective network topology TreeP

[41] for deploying parallel computational tasks on centralised

and distributed platforms.

Eventually, the TreeP structure is similar to a B+Tree [42].

However, unlike B+Tree, its leaves’ nodes (level 0) can also

be part of any other levels. The higher level nodes act as a

fabric of a virtual interconnection network, and are called

virtual nodes. Another main difference between TreeP and

B+Tree is that the nodes within the same level are connected

by a bus topology, hence avoiding unnecessary

communication through other levels. One of the most

interesting features of TreeP is that each virtual node can be

elected among real nodes by its performance based on its

characteristics such as power, network capacity, connection

bandwidth, storage capacity, etc. More details about TreeP

and its performance can be found in [41].

In order to deploy our Optimal kdContruct algorithm on a

high performance computing platforms (centralised or

distributed), we firstly construct the TreeP based on the

Formatted: Font: Italic

Formatted: Font: Italic

availability of resources (processing units) so that each node

of TreeP is a process. These processes are located in one or

different computing nodes across the network. Note that each

node of our TreeP in this case only has two children (left and

right). Next, we construct our kd-tree on TreeP from the root

level i.e. the root node of kd-tree is built at the root node of

TreeP. Now we can apply Algorithm 3 below to build our kd-

tree. In this algorithm, TpNode is a node of TreeP tree.

Algorithm 3 Par-Optimal kdContruct

1: procedure kdConstruct (trainingSet, TpNode)

2: if trainingSet.size() <= Leafsize then

3: return kdtree.leafnode // Returns a kdTree

4: else

5: (s, val) ← chooseSplit(trainingSet) // s is splitting

dimension, chooseSplit function based on sliding midpoint

rudes

6: trainLeft ← {x ∈ trainingSet : xs < val }

7: trainRight ← {x ∈ trainingSet : xs ≥ val }

8: kdLeft ← kdConstruct(trainLeft, TpNode.left)

9: kdRight ← kdConstruct(trainRight, TpNote.right)

10: return kdtree(s, val, kdLeft, kdRight)

11: end procedure

By using the efficient TreeP topology, we can deploy our

new approach on high performance computing platforms. We

can moreover implement the brute-force algorithm (Algorithm

2) on this topology to improve its performance in terms of

running time with the complexity of O(logn).

Besides, we also develop a tool that implements our

algorithms and allows us to process the LiDAR data called

LiDAR Plotter (Fig.57). Our tool has the important functions

such as displaying points loaded from LAS file in 2D and 32D

mode; supporting basic view interactions: moves, rotates,

zooms; supporting cropping by specified polygon to reduce

the displaying area; displaying the information about LAS file,

etc.

Fig.56 LiDAR Plotter

V. CONCLUSION AND FUTURE WORK

LiDAR data represent the basis for some of the fastest

growing datasets from both density and availability

perspectives. Today, aerial imagery and aerial laser scanning

are nearly commonplace for general mapping, three-

dimensional city modelling, and disaster management. Despite

this data explosion, there has yet to be a mechanism to process

such information in an efficient manner, to say nothing of

doing so via the Internet. Processing is critical not simply for

visualisation, but for the merging and querying of multiple

datasets and the subsequent processing for segmentation, as

well as computational modelling. In this paper, we conduct

comparative studies of existing libraries and methods to

determine the key issues that affect the performance of

LiDAR processing. We also propose a new strategy for ALS

data processing. We describe moreover the ability of

improving the performance of our approach by integrating

parallel computing based on an efficient network topology

TreeP.

Experimental results of parallel approach for both kd-tree

construction and brute-force searching with very large size of

LiDAR data are also being produced. These results will allow

us to test and evaluate the robustness of our approach.

REFERENCES

[1] E. Naesset, “Determination of mean tree height of forest stands using

airborne laser scanner data,” ISPRS Journal of Photogrammetry and Remote

Sensing vol. 52, no. 2, pp. 49-56, 1999.

[2] M. Kada, and L. McKinley, “3D building reconstruction from LiDAR

based on a cell decomposition approach,” International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences vol. 38,

no. Part 3/W4, 2009.

[3] A. Boyko, and T. Funkhouser, “Extracting roads from dense point clouds

in large scale urban environment,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 66, no. 6, pp. S2-S12, 2011.

[4] D. F. Laefer, and A. R. Pradhan, “Evacuation route selection based on

tree-based hazards using light detection and ranging and GIS,” Journal of

transportation engineering, vol. 132, no. 4, pp. 312-320, 2006.

[5] Truong-Hong L, Laefer DF, Hinks T et al., “Flying Voxel Method with

Delaunay Triangulation Criterion for Façade/Feature Detection for

Computation,” ASCE Journal of Computing in Civil Engineering, vol. 26, no.

6, pp. 691–707, 2012.

[6] L. geosystems. "Leica ALS80 Airborne Laser Scanner," http://www.leica-

geosystems.com/en/Leica-ALS80-Airborne-Laser-Scanner_105650.htm.

[7] D. L. Laefer, C. O'Sullivan, H. Carr et al., "Aerial laser scanning (ALS)

data collected over an area of around 1 square km in Dublin city in 2007,"

UCD Library, University College Dublin, 2014.

[8] A. H. Nederland. "Actualisatie van het 2," http://www.ahn.nl/index.html.

[9] R. Swart, “How to handle the Up-to-date Height Model of the Netherlands:

detailed, precise, but so huge!,” in Management of massive point cloud data:

wet and dry, Oracle, De Meern, The Netherlands, 2009.

[10] H. Wu, X. Guan, and J. Gong, “ParaStream: A parallel streaming

Delaunay triangulation algorithm for LiDAR points on multicore

architectures,” Computers & Geosciences vol. 37, no. 9, pp. 1355-1363, 2011.

[11] B. Yang, and Z. Dong, “A shape-based segmentation method for mobile

laser scanning point clouds,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 81, pp. 19-30, 2013.

[12] J. Elseberg, D. Borrmann, and A. Nuchter, "Efficient processing of large

3d point clouds." pp. 1-7.

[13] S. H. Han, J. Heo, H. G. Sohn et al., “Parallel processing method for

airborne laser scanning data using a PC cluster and a virtual grid,” Sensors,

vol. 9, no. 4, pp. 2555-2573, 2009.

[14] M. Isenburg, Y. Liu, J. Shewchuk et al., "Streaming computation of

Delaunay triangulations." pp. 1049-1056.

http://www.leica-geosystems.com/en/Leica-ALS80-Airborne-Laser-Scanner_105650.htm
http://www.leica-geosystems.com/en/Leica-ALS80-Airborne-Laser-Scanner_105650.htm
http://www.ahn.nl/index.html

[15] J. Bedkowski, K. Majek, and A. Nüchter, “General purpose computing
on graphics processing units for robotic applications,” Journal of Software

Engineering for Robotics, vol. 4, no. 1, pp. 23-33, 2013.

[16] M. Liu, F. Pomerleau, F. Colas et al., "Normal estimation for pointcloud

using gpu based sparse tensor voting." pp. 91-96.

[17] G. Sithole, and G. Vosselman, “Experimental comparison of filter

algorithms for bare-Earth extraction from airborne laser scanning point

clouds,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 59, no.

1, pp. 85-101, 2004.

[18] S. Filin, and N. Pfeifer, “Segmentation of airborne laser scanning data

using a slope adaptive neighborhood,” ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 60, no. 2, pp. 71-80, 2006.

[19] C.-K. Wang, and Y.-H. Tseng, Dem generation from airborne lidar data

by an adaptive dual-directional slope filter: na, 2010.

[20] D. Tóvári, and N. Pfeifer, “Segmentation based robust interpolation-a

new approach to laser data filtering,” IAPRS, vol. 36, no. 3, pp. W19, 2005.

[21] P. Axelsson, “DEM generation from laser scanner data using adaptive

TIN models,” International Archives of Photogrammetry and Remote Sensing,

vol. 33, no. B4/1; PART 4, pp. 111-118, 2000.

[22] K. Kraus, and N. Pfeifer, “Determination of terrain models in wooded

areas with airborne laser scanner data,” ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 53, no. 4, pp. 193-203, 1998.

[23] G. Sohn, and I. Dowman, “Terrain surface reconstruction by the use of

tetrahedron model with the MDL criterion,” International Archives of

Photogrammetry Remote Sensing and Spatial Information Sciences, vol. 34,

no. 3/A, pp. 336-344, 2002.

[24] K. Zhang, S.-C. Chen, D. Whitman et al., “A progressive morphological

filter for removing nonground measurements from airborne LIDAR data,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 41, no. 4, pp.

872-882, 2003.

[25] G. V. Vosselman, and H.-G. Maas, Airborne and terrestrial laser

scanning: Whittles, 2010.

[26] R. Schnabel, R. Wahl, and R. Klein, "Efficient RANSAC for PointCloud

Shape Detection." pp. 214-226.

[27] G. Vosselman, and S. Dijkman, “3D building model reconstruction from

point clouds and ground plans,” International Archives of Photogrammetry

Remote Sensing and Spatial Information Sciences, vol. 34, no. 3/W4, pp. 37-

44, 2001.

[28] B. Gorte, “Segmentation of TIN-structured surface models,”

International Archives of Photogrammetry Remote Sensing and Spatial

Information Sciences, vol. 34, no. 4, pp. 465-469, 2002.

[29] S. Filin, “Surface clustering from airborne laser scanning data,”

International Archives of Photogrammetry Remote Sensing and Spatial

Information Sciences, vol. 34, no. 3/A, pp. 119-124, 2002.

[30] A. D. Hofmann, H.-G. Maas, and A. Streilein, “Derivation of roof types

by cluster analysis in parameter spaces of airborne laserscanner point clouds,”

IAPRS International Archives of Photogrammetry and Remote Sensing and

Spatial Information Sciences, vol. 34, no. Part 3, pp. W13, 2003.

[31] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for

finding best matches in logarithmic expected time,” ACM Transactions on

Mathematical Software (TOMS), vol. 3, no. 3, pp. 209-226, 1977.

[32] https://github.com/grantbrown/laspy

[33] http://www.pyzo.org/whypython.html
[34] NumPy, http://www.numpy.org/

[35] SciPy, http://docs.scipy.org/doc/scipy/reference/tutorial/general.html

[36] C. Bauckhage, NumPy / SciPy Recipes for Data Science: Squared
Euclidean Distance Matrices, ResearchGate, 2014

[37]http://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.

html

[38]http://stackoverflow.com/questions/22581763/python-numpy-apply-a-

function-to-each-row-of-a-ndarray

[39] J. L. Bentley, Multidimensional binary search trees used for associative

searching, Communications of the ACM , 1975

[40] S. Maneewongvatana and D. M. Mount, It’s okay to b e skinny, if your

friends are fat, 4th Annual CGC Workshop on Computational Geometry,

1999

[41] E. EDI, M-T. Kechadi, and R. McNulty. TreeP: A Self- Reconfigurable

Topology for Unstructured P2P Systems. LNCS on State-of-the-Art in

Scientific & Parallel Computing, Vol. 4699 p.1136-1146, 2007

[42] Comer D. Ubiquitous B-tree ACM Computing Survey, Vol.11, No.2:

121-137

[43] X. Guan and H. Wu, “Leveraging the power of multi-core platforms for

large-scale geospatial data processing: Exemplified by generating DEM from

massive LiDAR point clouds,” Computers & Geosciences, no. 36, pp. 1276-

1282, 2010.

[44] D. Liao and S. Y. Berkovich, “A Multi-Core Pipelined Architecture for

Parallel Computing,” Parallel & Cloud Computing, vol. Vol. 2, no. Iss. 2, pp.

49-57, 2013.

[45] X. L. a. Y. Z. Xiangyun Hu, “Fast Filtering of LiDAR Point Cloud in

Urban Areas Based on Scan Line Segmentation and GPU Acceleration,”
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 10, no. 2,

pp. 308-312, 2013.

[46] K. Shih, A. Balachandran, K. Nagarajan, B. Holland, C. Slatton and A.

George, “Fast Real-Time LIDAR Processing on FPGAs,” in THE 2008

INTERNATIONAL CONFERENCE ON ENGINEERING OF

RECONFIGURABLE SYSTEMS & ALGORITHMS, Las Vegas, 2008.

[47] S. Maneewongvatana and D. M. Mount, Analysis of Approximate

Nearest Neighbor Searching with Clustered Point Sets, Data Structures, Near

Neighbor Searches, and Methodology, 2002.

[48] J. Elseberg, S. Magnenat, R. Siegwart and A. Nuchter, Comparison of

nearest-neighbor-search strategies and implementations for efficient shape

registration, Journal of Software Engineering for Robotics, 2012.

Formatted: Indent: First line: 0 cm

Formatted: Font: 8 pt, English (U.S.),
Do not check spelling or grammar

Formatted: Indent: First line: 0 cm

