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Abstract— Laser scanning (also known as Light Detection And 

Ranging) has been widely applied in various application. As part 

of that, aerial laser scanning (ALS) has been used to collect 

topographic data points for a large area, which triggers to 

million points to be acquired. Furthermore, today, with 

integrating full wareform (FWF) technology during ALS data 

acquisition, all return information of laser pulse is stored. Thus, 

ALS data are to be massive and complexity since the FWF of 

each laser pulse can be stored up to 256 samples and density of 

ALS data is also increasing significantly. Processing LiDAR data 

demands heavy operations and the traditional approaches 

require significant hardware and running time. On the other 

hand, researchers have recently proposed parallel approaches 

for analysing LiDAR data. These approaches are normally based 

on parallel architecture of target systems such as multi-core 

processors, GPU, etc. However, there is still missing efficient 

approaches/tools supporting the analysis of LiDAR data due to 

the lack of a deep study on both library tools and algorithms 

used in processing this data. In this paper, we present a 

comparative study of software libraries and algorithms to 

optimise the processing of LiDAR data. We also propose new 

method to improve this process with experiments on large 

LiDAR data. Finally, we discuss on a parallel solution of our 

approach where we integrate parallel computing in processing 

LiDAR data. 
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I. INTRODUCTION 

Air-borne Light Detection And Ranging (LiDAR) has 

been used to acquire three dimensional (3D) topographic data 

points of object’s surfaces of a large coverage area. LiDAR 

data has been widely used in a large range of applications, 

such as forestry management [1], 3D city modelling [2], road 

detection [3] disaster management [4] and computational 

modelling [5].  Recently, an aerial laser scanning (ALS) has a 

scan rate of 1MHz and Full Waveform Digitizer (FWD) 

collection at up 120 kHz [6], where ALS data consist 

hundreds of millions of 3D point clouds associated with 

waveform data of laser pulses. For example, with specific 

designated scanning plan, ALS data of 1 km
2
 Dublin city 

center is of 225 million points with around 5.9 GB in size, 

acquired by the Urban Modelling Group at the University 

College Dublin [7]. In addition, the national wide LiDAR data 

in Netherland has around 640 billion points, where each block 

1000x1250m of ASCII xyz data (each LiDAR point stored 

with x, y and z coordinates) is approximately 0.5 TB in size [8, 

9]. Raw ALS data recorded are needed to process in order to 

obtain real 3D point clouds. Unlikely traditional ALS data 

acquisition recorded four or more returns per transmitted pulse, 

the modern ALS with FWF data contain additional up to 256 

samples for each return pulse. In this context, volume and 

complexity of input ALS data have been increased 

dramatically.  

The huge volumes and complexity of ALS data are to be 

great challenges for data processing as the limitation of the 

computing hardware. With conventional sequence algorithms, 

ALS data processing is to be time consuming because the 

processing is computationally intensive and iterative. For 

example, the total execution time on 2-way-Quad-core 

computer was approximate 2 hours to generate Delaunay 

triangulation of 0.883 billion LiDAR points occupied 16.4 GB 

in size [10]. Moreover, for segmenting 105 millions of mobile 

laser scanning points, the shape-based segmentation method 

takes about 1 hour, where the experiment was perform on a 

machine with 8 GB RAM and an Intel Core i3 with a speed 

clock of CPU by 3.07 GHz [11]. Thus, development of 

alternative solutions is urgently needed in practical 

applications. For example, after natural disaster, digital 

elevation model (DEM) is quickly requested for damage 

estimation. Various optimization techniques and algorithms 

have been proposed to improve performance of LiDAR data 

processing [12,13,14]. Ones of which, parallel processing is to 

be a potential ALS data processing solution [15,16]. However, 

these approaches are normally designed with regard to the 

parallel architecture of target systems such as multi-core 

processors, GPU, etc. There is still missing efficient 

approaches/tools supporting the analysis of LiDAR data due 

to the lack of a deep study on both library tools and sequential 

algorithms used in processing this data. Thus, this paper 

investigated current efficient techniques and proposed a new 

strategy in ALS data processing. Eventually, in this paper, we 

firstly present a comparative study of software libraries and 

algorithms to optimise the processing of LiDAR data. Next, 



we propose new method to improve this process with 

experiments on large LiDAR data. Finally, we discuss on a 

parallel solution of our approach where we integrate 

parallel/cloud computing in processing LiDAR data. 

The remainder of the paper is arranged as follow. The 

background is introduced in following section where we 

review different approaches of processing LiDAR data. Next, 

we conduct comparative studies of existing libraries and 

methods to determine the key issues that affect the 

performance of LiDAR processing. Following, the new 

strategy for ALS data processing is introduced. We also 

discuss on the parallel approach for our strategy. Finally, 

conclusions and further work are drawn.   

II. BACKGROUND 

Our long term goal is to develop efficient algorithm based 

on high performance computational (HPC) resources for 

classifying ALS data points into separate categories and for 

extracting the point cloud of separate objects. In the light of 

these aim, this section investigates commonly existing 

approaches used to solve these problems. Many algorithms 

have been proposed to automatically extract ground points and 

non-ground points from ALS data points, which are based on 

assumption about a structure of bare-Earth points in a local 

neighbourhood [17]. These methods can be divided four 

distinct groups: (1) slope-based: when the slope or height 

different between two points exceeds the certain threshold, the 

highest point is classified to belong to the object [18, 19]; (2) 

cluster/segmentation-based: the method is based on an 

observation is that the objects always have distinct edges to 

the bare-Earth, and any point within the closed boundaries of 

the cluster or segment known as the object is assumed as a 

part of the bare-Earth and other points of the cluster/segment 

are of the object [20]; (3) surface based: the points are within 

the buffer zone of the surface are assumed as the ground 

points, where the surface is iteratively determined from the 

points and the vertical distance of the points to the surface as 

the weight function  [21-23]; and (4) morphological filter:  the 

method is based on a series of opening operations to eliminate 

non-ground points [24]. 

Furthermore, the segmentation process, is to partition 3D 

ALS point clouds into subsets satisfying certain criteria [25], 

can be roughly classified as model fitting-based methods [26, 

27], region growing-based methods [20, 28] and clustering 

feature based methods [29, 30].  For the last two segmentation 

categories, the key parameters of those algorithms involve a 

normal vector, a distance between a point to a fitting plane, a 

curvature of each point and a slope computed from a given 

point and its neighbourhood. Thus, the quality of the 

segmentation depends on selecting the neighbouring for 

computing these features, whereas the nearest neighbour 

search (NNS) is an important aspect in the algorithm. That is 

because the NNS is dominant execute time in computing 

variables for discriminant function of the classification and 

segmentation of ALS data. In summary, irrespective 

classification or segmentation process, since these methods 

are based on a local neighbourhood, the nearest neighbour 

search plays out an important role in controlling the 

performance of the algorithm. However, conventional 

sequence methods are to be computational overhead with 

massive ALS point clouds. Development of an efficient 

algorithm is therefore necessarily for improving the 

performance. The following section reviews parallel 

processing in building a tree structure supporting for NNS 

procedure.  

III. COMPARATIVE STUDY 

A. Comparative state-of-the-art approaches in HPC for 

LiDAR processing 

In this part, we will take a look at some current approaches 

in HPC for LiDAR data processing. It will convey a snapshot 

of the state-of-the-art in this field and offer a viewpoint of the 

potential as well as rising challenges of applying HPC to 

LiDAR processing. In particular, the HPC-based paradigms in 

this part comprise cloud computing environments, PC Cluster, 

field programmable gate array (FPGAs), hardware systems 

such as multi-core CPU architecture, graphic processing units 

(GPUs), and general-purpose computing on graphics 

processing units (GPGPUs). 

Xuefeng Guan and Huayi Wu (2010) [431] leveraged the 

power of multi-core platform to deal with massive geospatial 

data. They divided raw data into overlapped blocks and 

inputted concurrently these blocks on parallel pipelines. 

Multi-thread was used to exploit the full power of a multi-core 

processor. However, there are several drawbacks of multi-

processor pipeline architecture which are listed by  Duoduo 

Liao and Simon Y. Berkovich such as the amount of 

memories of processors duplicated (due to overlapped data), 

bus traffic problem. They proposed a new multi-core 

pipelined architecture [442] based on crossbar switching. 

Comparison between the new architecture and conventional 

multi-core architecture show that the new one gives much 

better performance than the old. Moreover, the new 

architecture significantly overcomes all the limitations of 

multi-processor pipeline.  

Parallel processing methods using GPUs & GPGPUs also 

have been introduced to speed up computation recently. Hu et 

al. proposed a simple scan-line-based algorithm using parallel 

computing [345]. Authors propose a scan-line segmentation 

(SLS) algorithm to classify ground and unground object based 

on the calculation of slop and elevation. Using GPU’s thread 

blocks to calculate parallel scan lines, each thread block of 

GPU process one scan line. 

FPGA-based computing could offer on-board real-time 

processing [467]. Multi-level parallelism inherent in 

algorithms used for LiDAR processing could be exploited to 

speed up the procedure using High-Performance Embedded 

Computing (HPEC) systems featuring FPGAs. FPGA-based 

computing could be fast and fully reconfigurable now, but the 

developing time price are still high. Thus, it will not really 

appropriate for regular developer [453]. 

B. Software study 



As mentioned above, software is an important part in 

processing LiDAR data. It is not only used to visualise the 

experimental results in the way that everyone can understand 

but also provide the numeric data (such as processing time, 

statistical results or other useful information for users in 

analysing LiDAR data) quickly and in convenient forms. 

However, software itself contains the problems that impact 

strongly to the users feeling. One of example is the duration of 

calculation. If the duration is too long and the application is 

lack of solutions to notice the progress, users may be confused 

to decide to stop the application or continue waiting. Another 

example is the performance of painting data on the screen. If 

the application is lack of solution to display smoothly when 

interacting, the movements may not be as the expected from 

users and they may reject the application before it has 

opportunity to show the advantages.  

We test first of all the loading LiDAR data from file (using 

laspy library [32]) and buffering vertices to display (using 

glBufferData of OpenGL). 

 

 
 

Fig.1. Loading time to data size when using laspy & Buffering time when 

using OpenGL 

 

 

Fig.2. Buffering time to data size when using OpenGL 

 

Looking at Fig.1 and Fig.2, we can seenotice that when 

data size is less than 10 million points the loading time is 

accepted but when the size of the data is greater than 17 

million points, loading time is significantly increased. Note 

that in the real-world application, data size in LiDAR 

processing is not just 17 million, it is usually from tens to 

hundreds million points. 

Moreover, when working with huge data (hundreds of MB 

to GB), sometimes, RAM (which secures the fastest accessing 

speed for processing) cannot provide enough space to store 

and calculate; thus, the performance of the system falls down 

strictly (users have to wait in minutes to see the results). For 

example, when loading about 17 million points with a 4G 

RAM computer (running with the tasks of Windows 7 and 

Mozilla Firefox), the physical memory is overflowed. Of 

course, the problem does not appear with all computers, but in 

general it will impact to a part of users. 

In this section, some aspects of software development are 

discussed to provide useful information for selecting or 

improving a performance of the software in processing 

LiDAR data. 

1)  Python language: Python is a very-high-level dynamic 

object-oriented programming language. It is chosen as the 

language to review and implement in the project because of 

the following reasons: (i) Python is dynamic, (ii) Broad 

standard library and portable and (iii) Huge community of 

users and developers [33]. 

2)  Libraries: as mentioned above, many libraries 

developed by Python community are useful in managing and 

processing data. NumPy [34] (or its extension SciPy[35]): a 

powerful library to make calculations with multi-dimensional 

array objects. In fact, NumPy provides surprising 

manipulations such as broadcasting functions or memory 

management. However, it seems very bad in iterating over the 

data in arrays as shown in Fig. 3 where the computational time 

is linear with the number of data points.  

 

 

Fig.23. Comparison between looping with Python list and NumPy array 

 

Beside the specific packages, SciPy provides a very 

interesting package named weave, which allows developer to 

embed C/C++ code to improve the performance [36]. 

Although the package needs extensive investigation to prove, 

it is considerable because of the proved efficiency and the 

flexibility of C/C++. 
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Built-in library: Python itself is updated and improved day 

by day, so, in almost time, using built-in functions is the most 

convenient and efficient way to develop. One example was 

mentioned in section that introduces about NumPy. 

IV. TOWARD A NEW APPROACH FOR PROCESSING VERY LARGE 

LIDAR DATA 

In this section, we propose a new approach to improve ALS 

data processing. Eventually, in our approach we look at two 

levels of optimisation: loading data and building data structure.  

A. Loading data:  

In order to reduce the time of processing, there are some 

strategies considered and investigate. However, the results are 

not as expected. Following is the strategies in specific: 

Vectorising: NumPy also provides some functions to 

vectorise a sequence. However, NumPy document [37] and 

some discussions [38] pointed out that the performance would 

not be improved. The strategy requires the actions in deeper 

layers by using other languages such as C and Assembler. 

Multi-threading: other strategy is often used in modern 

software development based on its ease of implementation is 

dividing the task to many subtasks and performing them on 

many parallel threads.  

B. Application of data structure:  

Since the dominant calculations in LiDAR processing and 

LiDAR visualisation is searching, some data structures of the 

dataset (kd-Tree or oct-Tree) and resampling techniques 

(Latin hypercube sampling, random sampling or Orthogonal 

sampling) should be considered to boost the calculation. 

Indeed, based on our comparative study, in order to 

improve the performance of the methods used in LiDAR 

processing, the following items are investigated and 

implemented: (i) Optimize and divide calculations based on 

the characteristics of data stored in input files; (ii) Build the 

strategies to apply the above structures and techniques to 

reduce the number of calculation points but keep the quality of 

visualisation; (iii) Investigate the causes of the unexpected 

results when using high-performance computing strategies and 

resolve them. 

The very first step toward a new approach for massive 

LiDAR data processing is tothat prepareing perquisite 

computing steps including the index of the LiDAR datasets by 

building k-d tree, octree, etc. We present hence some 

experimental results we got in building kd-tree. In fact, a kd-

tree [39] (Fig.4) is a binary tree structure where each non-leaf 

node corresponds an axis-aligned rectangular cuboid and its 

children split up the volume to form smaller cuboids through a 

splitting hyper-plane [4812]. The constructing procedure of 

kd-tree has O(kNlogN) space complexity [31].  Fig.4 will 

show an example of a 3d-tree constructed base on a data set of 

9 points. 

 A kd-tree can be used to accelerate k-nearest neighbour 

(kNN) queries [4812], using ball-rectangle intersection tests. 

We can easily find k neighbourhood of a point p inside a ball 

centred on p and passing through the current kth-nearest 

candidate with the average complexity O(log n). 

 

 

Fig.3. New proposed 3-d tree 

 

Building kd-tree is a time consuming task, especially for 

large size of datasets such as LiDAR one. In our experiments, 

as the LiDAR datasets contain mainly information about data 

points which are stored as a 3-dimensional data cloud as a 

series of x (longitude), y (latitude), and z (elevation) points, 

we decided to build a 3d-tree to present all points in the 

dataset based on [39]. However, the time of building this 3d-

tree was not as expected. . The dataset we use to test our tree 

include approximately 18 million points. The testing platform 

is Intel Core i7-3517U 1.9 GHz Processor, 2 GB DDR3 RAM, 

256 GB Solid State Drive, Windows 8.1. The building tree 

process is very slow at 323.33s. This leads to the stagnation of 

the whole system and affect to the performance of data 

processing. Therefore, before looking at the parallel solution, 

we propose a new approach to improve the process of 

constructing kd-tree in terms of runtime. In this approach, 

instead of building a kd-tree (3d-tree for our LiDAR data) for 

all points, we cut short the depth of tree using Leafnode. Each 

Leafnode is a bucket which contains a maximum number of 

points. Fig.35 shows the 3d-tree built by our new approach. 

 

Fig.4 A sample traditional 3-d tree 
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Fig.5 New proposed 3-d tree 

The new algorithm of constructing 3d-tree is described as 

below:  

 

Algorithm 1 Optimal kdContruct 

1: procedure kdConstruct (trainingSet) 

2: if trainingSet.size() <= Leafsize  then 

3: return kdtree.leafnode  // Returns a kdTree 

4: else 

5: (s, val) ← chooseSplit(trainingSet) // s is splitting 

dimension, chooseSplit function based on sliding midpoint 

rudes 

6: trainLeft ← {x ∈ trainingSet : xs < val } 

7: trainRight ← {x ∈ trainingSet : xs ≥ val } 

8: kdLeft ← kdConstruct(trainLeft) 

9: kdRight ← kdConstruct(trainRight) 

10: return kdtree(s, val, kdLeft, kdRight) 

11: end procedure 

  

There are several split rule such as Standard Split Rule [31], 

Midpoint Split Rule [40]. However, in our algorithm we used 

Sliding Midpoint Split Rule [47] to ensure that the cells do not 

all become long and thin. 

When we use k-nearest neighbourNN  queries to search k-

neighbourhood of point p, the searching procedure normally 

search close-points in tree and if some points stored in a 

Leafnode, it will use brute-force algorithm to find theses. The 

algorithm of query k-nearest neighbour k nearest neighbour of 

point P can be found in [312]. The algorithm of brute-force 

can be shown as follows: 
 

Algorithm 2 Brute-force 

1: c ← first(P) // generate a first candidate solution for P 

2: while c < > Λ do 

3: if valid(P,c) then output(P, c) // check whether 

candidate c is a solution for P then return output c 

4: c ← next(P,c) // generate the next candidate for P after the 

current one c 

5: end while 

 

The dataset we use to launch experiments on our tree 

include approximately 18 million points. The testing platform 

is Intel Core i7-3517U 1.9 GHz Processor, 2 GB DDR3 RAM, 

256 GB Solid State Drive, Windows 8.1.  

We launch experiments with the same platform as 

mentioned above. First, we ran system to build 3d-tree with 

Leafnode size = 10 (thousand points) and using kNN query to 

search randomly number of 10 nearest points of a randomthe 

point 1000
th
 in the dataset. We evaluate the constructing tree 

time, searching time and total processing time (constructing + 

searching time). Next, we vary the size of Leafnode to 100, 

200, 300… up to 1000 (thousand points) and get the average 

processing time of 10 tests for each Leafnode size.  
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Fig.46 The average processing time of difference cases of Leafnode  

As shown in Fig.46, the average processing time of system 

will decrease dramatically when we increase the quantity of 

points in a Leafnode. Obviously, rising Leafnode size will 

make the tree shorter so that it will save the erecting time, 

save the memory to store tree and boost CPU processing time. 

Comparing to the average building kd-tree time, the average 

searching time was very fast due to the average complexity 

O(log n). Therefore, this is very beneficial to the query 

information for the next processing steps. In addition, 

although brute-force has complexity O(n.m), nevertheless 

when some nearest neighbour points stored in a Leafnode, the 

system will search in several nearest Leafnodes and excluding 

other unrelated subtree. Thus, the processing time of the 

whole system is maintained well. 

Indeed, we can also improve our new approach of building 

kd-tree from Algorithm 1 by using parallel approach for both 

multi-core/multi-processor platforms and distributed platforms. 

Recently, we proposed an effective network topology TreeP 

[41] for deploying parallel computational tasks on centralised 

and distributed platforms. 

Eventually, the TreeP structure is similar to a B+Tree [42]. 

However, unlike B+Tree, its leaves’ nodes (level 0) can also 

be part of any other levels. The higher level nodes act as a 

fabric of a virtual interconnection network, and are called 

virtual nodes. Another main difference between TreeP and 

B+Tree is that the nodes within the same level are connected 

by a bus topology, hence avoiding unnecessary 

communication through other levels. One of the most 

interesting features of TreeP is that each virtual node can be 

elected among real nodes by its performance based on its 

characteristics such as power, network capacity, connection 

bandwidth, storage capacity, etc. More details about TreeP 

and its performance can be found in [41]. 

In order to deploy our Optimal kdContruct algorithm on a 

high performance computing platforms (centralised or 

distributed), we firstly construct the TreeP based on the 
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availability of resources (processing units) so that each node 

of TreeP is a process. These processes are located in one or 

different computing nodes across the network. Note that each 

node of our TreeP in this case only has two children (left and 

right). Next, we construct our kd-tree on TreeP from the root 

level i.e. the root node of kd-tree is built at the root node of 

TreeP. Now we can apply Algorithm 3 below to build our kd-

tree. In this algorithm, TpNode is a node of TreeP tree.  

 

Algorithm 3 Par-Optimal kdContruct 

1: procedure kdConstruct (trainingSet, TpNode) 

2: if trainingSet.size() <= Leafsize  then 

3: return kdtree.leafnode  // Returns a kdTree 

4: else 

5: (s, val) ← chooseSplit(trainingSet) // s is splitting 

dimension, chooseSplit function based on sliding midpoint 

rudes 

6: trainLeft ← {x ∈ trainingSet : xs < val } 

7: trainRight ← {x ∈ trainingSet : xs ≥ val } 

8: kdLeft ← kdConstruct(trainLeft, TpNode.left) 

9: kdRight ← kdConstruct(trainRight, TpNote.right) 

10: return kdtree(s, val, kdLeft, kdRight) 

11: end procedure 
 

By using the efficient TreeP topology, we can deploy our 

new approach on high performance computing platforms. We 

can moreover implement the brute-force algorithm (Algorithm 

2) on this topology to improve its performance in terms of 

running time with the complexity of O(logn). 

Besides, we also develop a tool that implements our 

algorithms and allows us to process the LiDAR data called 

LiDAR Plotter (Fig.57). Our tool has the important functions 

such as displaying points loaded from LAS file in 2D and 32D 

mode; supporting basic view interactions: moves, rotates, 

zooms; supporting cropping by specified polygon to reduce 

the displaying area; displaying the information about LAS file, 

etc.  

 

 

Fig.56 LiDAR Plotter 

V. CONCLUSION AND FUTURE WORK 

LiDAR data represent the basis for some of the fastest 

growing datasets from both density and availability 

perspectives. Today, aerial imagery and aerial laser scanning 

are nearly commonplace for general mapping, three-

dimensional city modelling, and disaster management. Despite 

this data explosion, there has yet to be a mechanism to process 

such information in an efficient manner, to say nothing of 

doing so via the Internet. Processing is critical not simply for 

visualisation, but for the merging and querying of multiple 

datasets and the subsequent processing for segmentation, as 

well as computational modelling. In this paper, we conduct 

comparative studies of existing libraries and methods to 

determine the key issues that affect the performance of 

LiDAR processing. We also propose a new strategy for ALS 

data processing. We describe moreover the ability of 

improving the performance of our approach by integrating 

parallel computing based on an efficient network topology 

TreeP. 

Experimental results of parallel approach for both kd-tree 

construction and brute-force searching with very large size of 

LiDAR data are also being produced. These results will allow 

us to test and evaluate the robustness of our approach. 
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