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Abstract

Within the context of threshold regressions, we show that asymptotically-valid
likelihood-ratio-based confidence intervals for threshold parameters perform poorly in
finite samples when the threshold effect is large. A large threshold effect leads to a poor
approximation of the profile likelihood in finite samples such that the conventional ap-
proach to constructing confidence intervals excludes the true threshold parameter value
too often, resulting in low coverage rates. We propose a conservative modification to
the standard likelihood-ratio-based confidence interval that has coverage rates at least
as high as the nominal level, while still being informative in the sense of including rela-
tively few observations of the threshold variable. An application to thresholds for U.S.
industrial production growth at a disaggregated level shows the empirical relevance of
applying the proposed approach.
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1 Introduction

Threshold regression models specify that regression functions can be divided into several

regimes based on the value of an observed variable, called a threshold variable, related to

threshold parameters. Threshold regression models and their various extensions have become

standard for the specification of nonlinear relationships between economic variables (see

Potter, 1995; Balke, 2000; Koop and Potter, 2004; Gonzalo and Pitarakis, 2013, among many

others.)1. There have been important developments in the asymptotic theory for inference in

threshold regression models (see Chan, 1993; Hansen, 1996; Chan and Tsay, 1998; Hansen,

2000). However, Enders, Falk and Siklos (2007) show that when the threshold parameter

is unknown, asymptotic and bootstrap approximations of finite sample distributions do not

result in satisfactory confidence intervals (CIs) for slope or threshold parameters in stationary

threshold autoregressive models.

In this paper, we are particularly interested in the finite sample performance of asymptotically-

valid likelihood-ratio-based CIs for the threshold parameter proposed by Hansen (1997,

2000). Using Monte Carlo experiments, we show that the performance of the CIs becomes

particularly problematic in finite samples when the threshold effect is relatively large. This

finding is puzzling because the coverage rates of CIs are expected to converge to a nominal

level when the threshold effect increases (i.e. there is more precise information about the

true threshold value).

We conjecture that when the threshold effect is large, the approximation of the profile

likelihood becomes poor and leads to lower coverage rates of the CIs. As noted above, we

would expect large threshold effects to help the CIs achieve accurate coverage rates relative

to a nominal level given the benefits in terms of econometric identification. However, the

large threshold effects could also lead to the discrete approximation of the profile likelihood

for the threshold parameter becoming highly imprecise. Thus, a large threshold effect has

two conflicting impacts and the performance of the CIs depends on which impact is bigger.

When the magnitude of the threshold effect is particularly large, the poor approximation

dominates the benefit from the more precise information and the standard CIs perform

1For a comprehensive review of threshold applications in economics, see Hansen (2011), Tong (2011), and
Gonzalo and Pitarakis (2013).
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poorly.

Why does the large threshold effect make the approximation so poor? To construct the

CIs, Hansen (2000) inverts the likelihood-ratio test for the threshold parameter by evaluat-

ing the profile likelihood at observed threshold values and includes the threshold values for

which the likelihood-ratio test cannot be rejected. The asymptotic theory for the likelihood-

ratio test is developed under the assumption that the threshold variable is distributed with

a continuous distribution. However, in finite samples, the threshold variables are observed

discretely and the profile likelihood for the test is constructed using a step function approx-

imation for the threshold values that are not observed in the sample. When the threshold

effect is small (i.e. there is less information about the true threshold value), the likelihood-

ratio tests for the threshold parameter are rarely rejected and the CIs includes many thresh-

old values. Thus, the step function would approximate the likelihood function effectively

when constructing the CIs. However, when the threshold effect is large, the likelihood-ratio

tests for the threshold parameters are rejected too often and the CIs include few threshold

observations. With few observations, the step function then becomes a poor approximation

of the likelihood and the CIs may exclude the true threshold parameter, resulting in low

coverage rates, even in large samples.

We consider two possible modifications to Hansen’s inverted likelihood-ratio (ILR) ap-

proach in order to address the step function approximation: (i) an equally-spaced grid-search

approach; and, (ii) a conservative approach that extends the CIs to the closest observations

excluded by the standard ILR approach. We then conduct Monte Carlo simulations to evalu-

ate the performance of the original ILR approach and the proposed modifications, using two

different data-generating processes (DGPs). For each approach, we evaluate the coverage

rate, average length and average number of threshold values included in the CIs.

Our results suggest that the standard ILR approach massively undercovers the true

threshold parameter when the threshold effect is large, even for sample sizes as large as

n = 1, 000. This poor performance is explained by the ‘sharp’ profile likelihood associated

with a large threshold effect, which results in too few possible threshold values being in-

cluded in the CIs. Thus, the large threshold effect leads to a poor approximation of the

profile likelihood in finite samples. The refined grid-search improves the performance by
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including some of the non-observed, but possible threshold values, but the coverage rates

are still far below the nominal level in most cases. Meanwhile, the conservative approach

has coverage rates at least as high as the nominal level, while still being informative in the

sense of including relatively few observations of the threshold variable.

Based on these Monte Carlo results, we recommend researchers use the conservative

approach when constructing CIs for threshold parameters in practice. We also confirm the

empirical relevance of using the conservative approach relative to the benchmark approach

with an application to thresholds for U.S. industrial production growth at a disaggregated

level. Notably, we find that the conservative approach includes the commonly hypothesized

threshold value of zero (e.g., Potter, 1995) in more cases than the benchmark approach.

2 Threshold Regressions

We consider a general class of threshold regressions. Following Hansen (2000), regression

parameters switch between two regimes according to

yi = θ′1xi + ei, if qi ≤ γ (1)

yi = θ′2xi + ei, if qi > γ (2)

for i = 1, . . . , n, where xi ∈ Rk is a vector of regressors; the threshold variable qi splits the

sample into two regimes; γ is the unknown threshold parameter; yi is generated by either (1)

or (2) depending on the value of qi relative to γ; and ei is a regression error.2 For expositional

purposes, the threshold regression model (1) - (2) can be rewritten in a single-equation form:

yi = θ′xi + δ′nxi(γ) + ei (3)

2Although we only consider two regimes, we note that Hansen (1999) argues that results in Hansen (2000)
will hold for multiple thresholds. Also, Eo and Morley (2015) consider a related approach in the context
of structural breaks and find that multiple breaks do not make a difference in comparison to a single break
case.
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where θ = θ2, δn = (θ1 − θ2), xi(γ) = xidi(γ), di(γ) = 1{qi ≤ γ}, and 1{·} is the indicator

function.3

An estimate of γ can be obtained through concentration. Conditional on γ, (3) is linear in

θ and δ. The conditional estimators θ(γ) and δ(γ) can be found by regressing y = (y1, . . . , yn)′

on X∗γ = [X Xγ], where X and Xγ are stacking matrices of the vectors x′i and xi(γ)′ in

equation (3), respectively. As is standard in the literature, γ is restricted to be in a bounded

set Γ = [γ, γ] to avoid small-sample distortions. In practice, γ and γ correspond to the first

and last (100× ε)% of the vector of ordered threshold observations, respectively, which are

trimmed. Then, the grid-search procedure occurs over Γn = Γ∩{qi}ni=1, so that all elements

in Γn are simply all observed values of qi between γ and γ.

The sum of squared errors function for γ is given by

Sn(γ) = Sn(θ(γ), δ(γ), γ) = y′y − y′X∗γ(X∗
′

γ Xγ)
−1X∗

′

γ y. (4)

and the estimate of γ is given by the value that minimizes (4):

γ̂ = arg min
γ∈Γn

Sn(γ). (5)

3 Confidence Intervals for Threshold Parameters

3.1 Benchmark ILR Approach

Following Hansen (2000), we construct a (1 − α) confidence interval for γ by inverting an

α-level likelihood ratio (LR) test of the hypothesis H0 : γ = γ0. Hansen (2000) shows that

the LR statistic under the auxiliary assumption that ei ∼ iidN(0, σ2) is given by

LRn(γ) = n
Sn(γ)− Sn(γ̂)

Sn(γ̂)
(6)

with Sn(γ) defined as in equation (4). It is well known that the distribution of the LR

statistic in (6) is non-standard.

3Assumptions made in this paper are equivalent to those in Hansen (2000) and we omit these for brevity.
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The 1 − α ILR confidence set for the threshold parameter consists of all the possible

values of γ ∈ Γn for which the null hypothesis would not be rejected at the α level:

Cd = {γ : LRn(γ) ≤ CV1−α, γ ∈ Γn} (7)

where CV1−α is the critical value derived by Hansen (2000). Note that the confidence set

in (7) may be disjoint. However, we can construct a convexified confidence interval by

connecting all disjoint segments, which we set as the benchmark confidence interval in this

paper.

To illustrate the benchmark approach to constructing confidence intervals, we display

a hypothetical LR profile in Figure 1. Let q(j) denote the j -th ordered possible threshold

value among all qi ∈ Γn. Suppose the l -th possible threshold value q(l) and the u-th pos-

sible threshold value q(u) are the boundaries of the ILR confidence interval, defined as the

minimum and maximum values in the ILR confidence set (7), respectively:

q(l) = min {qi : LRn(qi) ≤ CV1−α, qi ∈ Γn} (8)

q(u) = max {qi : LRn(qi) ≤ CV1−α, qi ∈ Γn} (9)

Then, the 1− α benchmark ILR confidence interval is given by

Cb = {γ : q(l) ≤ γ ≤ q(u)} (10)

where q(l) and q(u) are defined in (8) and (9), respectively. See Figure 1.

Theoretically, because the confidence interval is constructed by completing the disjoint

segments in (7), the coverage rate of the benchmark interval (10) is expected to be greater

than 1 − α, at least asymptotically in the case of iid Gaussian errors (see Hansen (2000)).

However, the empirical coverage rate can be far lower when the threshold effect is particulary

large. We will show this in our Monte Carlo experiments in Section 4. This discrepancy mo-

tivates us to propose a conservative version of the likelihood-ratio-based confidence interval

in (10).
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3.2 Conservative ILR Approach

The motivation for the conservative modification to the standard ILR approach stems from

the fact that we use a step function approximation of the likelihood function for possible

values of the threshold that we do not observe (i.e., any points γ /∈ {qi}ni=1) because Γn is a

collection of discrete observations in the parameter space of Γ in finite samples. Specifically,

the threshold values between q(u) and q(u + 1) and between q(l − 1) and q(l) are excluded

in the benchmark confidence interval. However, it is likely that there are some threshold

parameter values γ́ ∈
(
q(u), q(u + 1)

)
such that LRn(γ́) ≤ CR1−α.4 If these values are not

included in the confidence interval, it may exclude the true threshold value and its coverage

rate could be far lower than 1− α.

Indeed, the benchmark ILR approach attains unsatisfactory coverage rates when the

threshold effect is large. This large threshold effect leads to the ‘sharp’ empirical LR profile.

This implies that a sequence of LR tests for the possible threshold values are rejected too

often, leading to the inclusion of too few sample observations of the threshold variable being

included in the benchmark ILR confidence intervals. Then, LR evaluations based on {qi}ni=1

are poor approximations to the profile likelihood for threshold parameter γ so that the

threshold parameter spaces between q(u) and q(u+ 1) and between q(l− 1) and q(l) become

relatively large. The large spaces between q(u) and q(u + 1) and between q(l − 1) and q(l)

would lead to low coverage rates.5 To overcome this issue, we modify the ILR approach by

means of a conservative approach.

Intuitively, the conservative approach accounts for non-observed, but possible threshold

values whose LR values are lower than the critical value by extending the benchmark ILR

confidence interval to include the possible threshold value smaller than, but closest to q(l)

in (8) and the possible threshold value larger than, but closest to q(u) in (9) in a conservative

4Similarly, it is possible that there are some threshold parameter values γ̀ ∈
(
q(l − 1), q(l)

)
such that

LRn(γ̀) ≤ CR1−α where q(l − 1) = max {qi : LRn(qi) > CV1−α, qi < q(l), qi ∈ Γn}.
5Too few observations in the confidence intervals mean that there is not enough information to approxi-

mate the LR profile and to correctly make inferences about the true threshold parameter. We confirm this
conjecture in our Monte Carlo simulations.
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way. Formally,

q(l − 1) = max {qi : qi ∈ Γn, qi < q(l)} (11)

q(u+ 1) = min {qi : qi ∈ Γn, qi > q(u)} (12)

for q(l) and q(u) defined in (8) and (9), respectively. Based on Figure 1, thus, we can define

the conservative confidence interval as follows:

Cc = {γ : q(l − 1) < γ < q(u+ 1)} (13)

where q(l− 1) and q(u+ 1) are defined in (11) and (12), respectively. Therefore, the conser-

vative confidence interval (13) includes all non-observable threshold values between q(l− 1)

and q(l) and between q(u) and q(u + 1). Notice that, by construction, the conservative

confidence interval Cc in (13) is always longer than the benchmark ILR confidence interval.

3.3 Refined Grid-Search

In addition to the benchmark and conservative approaches, we consider the refined grid-

search over the equally-spaced grid Γr = Γ ∩ qr where the elements in qr are given by

qr = {γ, γ+ζ, γ+2ζ, . . . , γ} and the size of the grid step is given by ζ =
(
γ − γ

)
/((1−2ε)n).6

In this way, the number of the elements, the upper bound γ, and the lower bound γ in Γr

for the refined grid-search are the same as those in Γn. Also, the refined grid-search can

capture non-observed, but possible threshold values from the threshold variable qi. For the

refined grid-search, we use the same benchmark and conservative approaches but conduct

the likelihood-ratio tests over the equally-spaced gridpoints in Γr rather than Γn.

6As is standard in the literature, we trim the first and last 15% (i.e. ε = 0.15) of the threshold observations
for both grid-search procedures in our Monte Carlo simulations, counterfactual experiment, and application.
We have confirmed that the results are robust to alternative trimming values of 5% or 20%. Results are
available from the authors upon request.
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4 Monte Carlo Experiments

To evaluate and contrast the finite sample performance of the different CIs, we examine

the empirical coverage rates, the average lengths, and the average number of threshold

observations contained in the CIs by means of Monte Carlo simulations. The coverage rate

is computed as the frequency of Monte Carlo simulations for which the constructed intervals

contain the true threshold parameter. Its accuracy is determined by comparing it to the

nominal confidence level 1− α. In all experiments, we construct 95% confidence intervals.7

The average length of the confidence interval is defined as the difference between the upper

and the lower boundaries of the confidence interval averaged across Monte Carlo simulations.

Similarly, the average number of threshold observations is defined as the number of threshold

observations that the confidence interval contains averaged across Monte Carlo simulations.

For ease of comparison, the average lengths for all approaches are normalized by the length

of the bounded parameter space Γ = [γ, γ] for each sample, γ− γ, while the average number

of threshold observations is expressed as a percentage of the sample size.

We consider two different DGPs to evaluate the performance of the proposed approaches

in different settings and 1,000 Monte Carlo replications for each experiment.

4.1 Monte Carlo Experiment 1

In the first experiment, we generate data according to

yi =

 α0 + α1xi + ei, if qi ≤ γ

β0 + β1xi + ei, if qi > γ
(14)

where α0 = 1, α1 = 1, β0 = 1, ei ∼ i.i.d.N(0, 1) for i = 1, . . . , n. The threshold variable

follows qi ∼ N(2, 1) and xi = qi. The true threshold parameter is given by γ0 = 2. To

see whether the magnitude of the threshold effect affects the performance of the CIs, the

slope coefficient β1 is set to 1.25, 1.50, and 2.00. The threshold effect can be calculated as

7We have confirmed that the Monte Carlo results are robust to alternative confidence levels of 90% and
80% in the sense that the methods that undercover relative to the nominal level continue to do so, while
the conservative approach, consistent with being conservative, always overcovers, but not by as much as the
other methods undercover. Results are available from the authors upon request.
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δ = β1 − α1. The sample sizes are set to n = 50, 100, 250, 500 and 1, 000.

The results are reported in Table 1. The benchmark and conservative approaches us-

ing the standard grid-search are ILRb and ILRc, respectively. Those using the refined

grid-search are ILRr
b and ILRr

c , respectively. In all cases, the refined grid-search approach

generates confidence intervals with slightly higher coverage rates relative to the standard

grid-search approach, but the increase is only marginal. Therefore, our discussion below

focuses on the distinction between the benchmark, ILRb and conservative ILRc approaches,

since the performances of ILRr
b and ILRr

c are similar to those, respectively.

When the threshold effect is small (β1 = 1.25), all approaches slightly overcover for most

sample sizes, with the exception of the ILRb approach which slightly undercovers for n = 50.

As the threshold effect becomes larger, the ILRb approach produces coverage rates far below

the nominal level. For example, when β1 = 2.00 the coverage rates of the ILRb approach

range from 0.37 to 0.41 while, consistent with being conservative, the ILRc approach always

produces coverage rates greater than the nominal level, e.g. 0.99 to 1.00. Intuitively, the

identification of the threshold parameter is very precise as the threshold effect increases.

Hence, the confidence intervals become very narrow and include very few points. This

relatively small number of average threshold points results in a poor approximation to the

profile likelihood for the threshold parameter γ. Our interpretation of this undercoverage

for the ILRb approach is supported by the average threshold points across Monte Carlo

simulations included in the CIs: ranging from 7.2 to 15.2 for β1 = 1.5 and from 1.97 to

2.56 for β1 = 2.0 depending on the sample size. Note that the average number of threshold

points ranges from 27.6 to 50.7 when the threshold effect is small (β1 = 1.25) so that this

large number of the threshold points help approximate the profile likelihood. Meanwhile,

the conservative approach can achieve significantly more accurate coverage rates at the cost

of a trivial increase in the normalized average length of the CIs. This increase ranges from

0.3 to 6.1 percentage points.

Overall, the results of this Monte Carlo experiment suggest that the conservative ap-

proach can achieve more accurate coverage rates with a relatively marginal increase in the

average length in comparison to the benchmark approach.

9



4.2 Monte Carlo Experiment 2

In the second experiment, we generate data according to the following self-exciting TAR

(SETAR) model:

yi =

 α0 +
∑p

j=1 αjyi−j + ei, if yi−d ≤ γ

β0 +
∑p

j=1 βjyi−j + ei, if yi−d > γ
(15)

To reduce the computational burden, we focus on the simplest case where p = d = 1 and

set α0 = 0, α1 = 0.3, β0 = 0.9, β1 = 0.6 and γ0 = 0. Because the DGP follows a SETAR

model, it is not easy to measure the magnitude of the threshold effect. Thus, we vary the

error variance according to ei ∼ i.i.d.N(0, σ2) for i = 1, . . . , n and set σ = 0.3, 0.5, 1.0. A

small error variance implies a high signal-to-noise ratio and this specification generates a big

threshold effect. The DGP with a unit error variance was studied by Enders, Falk and Siklos

(2007), but we consider the various variance sizes to examine the impact of the magnitude

of the threshold effect on the performance of the CIs. The sample size is n = 236, which is

the same as in Enders, Falk and Siklos (2007).

Table 2 presents empirical coverage rates, average lengths and average number of thresh-

old observations across different variance sizes. The results show that the benchmark ap-

proach, ILRb, performs poorly when the threshold effect is large (i.e. σ = 0.3, 0.5) in the

sense that the coverage rates are 0.41 and 0.84, which are far below the nominal level. The re-

fined grid-search procedure helps by accounting for non-observable threshold values, but the

improvement is only marginal, resulting in the coverage rates of 0.55 and 0.84, respectively.

Meanwhile, the conservative approach, ILRc, again consistent with being conservative, pro-

duces coverage rates that are higher than the nominal level, overcovering the true threshold

parameter, from 0.97 to 0.99 at the trivial cost of marginally longer confidence intervals.

Note that the normalized lengths of the CIs based on the ILRc approach are about 1.2 to

1.5 percentage points longer than those for the ILRb approach.

We find the poor performance of the benchmark approach occurs because the few thresh-

old variable observations included in the CIs produce a poor approximation to the profile

likelihood, as argued in the previous section. The average number of the threshold obser-

vations in the CIs is 36 when the threshold effect is small (σ = 1). However, that num-
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ber falls significantly (about 2 to 6 observations) when the threshold effect becomes large

(σ = 0.3, 0.5).

5 A Counterfactual Experiment

The coverage rates are determined by the frequency of Monte Carlo simulations for which

the likelihood-ratio test is not rejected at the true threshold parameter value. In the previous

sections, we argue that the true threshold value is likely to exist either in
(
q(l−1), q(l)

)
or in(

q(u), q(u+1)

)
when the threshold effect is large, given the poor approximation to the profile

likelihood. Any threshold value either in
(
q(l−1), q(l)

)
or in

(
q(u), q(u+1)

)
leads to rejecting the

test and this results in the poor performance of the CIs. Based on this argument, we have

proposed the use of a conservative approach by extending the benchmark confidence interval

to include all threshold values in
[
q(l−1), q(u+1)

]
.

To examine whether our argument is valid, we conduct a counterfactual experiment.

We repeat the first Monte Carlo experiment with n = 250 and β1 = 1.10, 1.15, ..., 2.00, but

consider two different cases: (i) the true threshold parameter γ0 ∈ {qi}ni=1 or (ii) γ0 /∈ {qi}ni=1.

Thus, in case (i), we force the true threshold value to become observable when generating

the threshold variable in the simulation. This setting is a counterfactual experiment because

the true threshold value would be included in the data set of the threshold variable with

probability 0 if the threshold variable were assumed to follow a continuous distribution as

studied in the literature. In this case, the true threshold value must be equal to one of

threshold variable observations.8 Therefore, we can conduct the likelihood-ratio test at the

true threshold value against the threshold estimate in each simulation without using the step

function approximation:

LRn(γ0) = n
Sn(γ0)− Sn(γ̂)

Sn(γ̂)
(16)

where γ0 ∈ {qi}ni=1. Note that the threshold estimate is not necessarily equal to the true

8In the context of structural breaks, the true structural break date, which is equivalent to the true
threshold value in threshold models, is always one of the observed dates in the sample, if it exists and is
within the trimmed set. This can explain why Eo and Morley (2015) find that the likelihood-ratio-based
approach to constructing confidence intervals for structural breaks always performs well, regardless of the
magnitude of structural break effects.
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threshold value because the threshold estimate is determined by the threshold value which

minimizes the SSR.

If our argument is correct, the simulation setting in case (i) would result in a rejection

frequency of 5% or less at the true threshold value. Hence, the coverage rates would be equal

to or greater than 95%.9 Case (ii) is the same as the Monte Carlo experiment setting in

Section 4.1. We construct confidence intervals using the benchmark approach.

Figure 2 plots the coverage rates for the two different cases against the magnitude of

the threshold effect. The results show that the coverage rates are equal to or greater than

95% when the true threshold value is included (case (i) so that γ0 ∈ {qi}ni=1). However,

in case (ii), the coverage rates are close to 95% when threshold effect is relatively small,

but they decrease when the magnitude is significantly large, as shown in Section 4.1. Thus,

undercoverage for the benchmark approach is not due to any finite-sample size distortions

of the LR test, but clearly reflects the fact that the true threshold value is not observable in

practice.

6 Application: Thresholds for U.S. industrial produc-

tion growth at a disaggregated level

In this section, we compare the benchmark and conservative approaches to constructing

confidence intervals for the threshold parameter for U.S. industrial production growth at a

disaggregated level. We use a SETAR model to examine asymmetric dynamics related to the

business cycle. Our data set consists of 74 manufacturing industries that are closely related to

the four-digit level of disaggregation in the North American Industry Classification System

(NAICS). The data are for the sample period of 1972:Q1 to 2011:Q4 and were obtained

from the Board of Governors of the Federal Reserve System.10 Quarterly growth rates are

calculated as 100 times the first differences of the natural logarithm of the level data.

9Note that the likelihood-ratio test is conservative when the threshold effect is large (see Theorem 3 in
Hansen 2000).

10Chang and Hwang (2015) use the same data set to identify cyclical turning points and their comovement
and asymmetry. For comparability, we consider the same sample period as in their paper. See Chang and
Hwang (2015) for more details on the data.
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Potter (1995) estimates a threshold model of U.S. real GNP under the assumption that

the threshold is known and equal to zero. Instead of using the assumed threshold value of

zero, we estimate the threshold parameter and construct its confidence interval. In doing so,

we examine if (i) the threshold confidence intervals include zero across different industries

and (ii) the two approaches (ILRb and ILRc) make the same inference about the threshold

parameter based on the confidence intervals.

We first test for linearity for each industry and, if linearity is rejected, we then estimate

the SETAR model and construct confidence intervals for the threshold parameter using the

following model for each industry i

yi,t =

 αi,0 +
∑p

j=1 αi,jyi,t−j + ei,t, if yi,t−d ≤ γi

βi,0 +
∑p

j=1 βi,jyi,t−j + ei,t, if yi,t−d > γi
(17)

where yi,t is the quarterly growth for the industry i.

We employ Hansen’s (1996) heteroskedasticity-consistent Lagrange multiplier test for a

threshold effect in linear regression and calculate p-values using 1,000 bootstrap replica-

tions. Hansen (1996) shows that this bootstrap procedure produces asymptotically correct

p-values. Constructing the confidence intervals takes into account the heteroskedasticity

using a quadratic regression to estimate a nuisance parameter on which the asymptotic

distribution of LRn(γ) is dependent. See Hansen (2000) for more details.

We estimate the SETAR model with p = d = 1 in (17) and find that the null hypothesis

of linearity is rejected for 12 industries at the 10% level, with two of these industries –

Pharmaceutical and Medicine (NAICS 3254) and Office and Other Furniture (NAICS 3372,9)

– having a discrepancy in terms of the coverage of zero across the two different approaches

using 90% confidence intervals.11

Table 3 presents the summary of the linearity test results with p-values and the con-

fidence intervals for the 12 industries.12 The conservative approach includes zero in the

threshold confidence intervals for 9 industries among 12 industries for which the linearity

test is rejected, while the benchmark approach does so for 7 industries only. Regarding the

11We confirm that setting p = d = 1 is the preferred specification based on the Schwarz information
criterion for these two industries when allowing p = 1, ..., 5 and d = 1, ..., 5.

12We report the results for the industries for which the linearity test is rejected to save space.
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two industries in which the discrepancy in the coverage of zero in the confidence intervals

is observed, the two approaches ILRb and ILRc produce the confidence intervals of ( 0.064,

0.964 ) and ( -0.016, 0.975 ), respectively for Pharmaceutical and Medicine industry and (

-2.512, -0.002 ) and ( -2.570, 0.136 ), respectively for Office and Other Furniture industry.

We note that this discrepancy is not direct evidence of superiority of the conservative

approach (ILRc) we propose the use of in this paper. It could be that the true threshold

is not actually zero for any industry, as it appears not to be for at least three industries.

However, our results show that the two different approaches can make empirically meaningful

differences in an actual application. Moreover, because the Monte Carlo analysis suggests the

conservative approach is more reliable in finite samples, the exclusion of zero in three cases

is more credible than the exclusion of zero in the two additional cases for the benchmark

approach.

7 Concluding Remarks

Using Monte Carlo simulations, we have shown that asymptotically-valid likelihood-ratio-

based confidence intervals may perform poorly, even for large samples, when the threshold

effect is particularly large. The coverage rates of the benchmark confidence interval derived

in Hansen (2000) are substantially below nominal levels. We have proposed a conservative

modification to Hansen’s benchmark approach and this modification yields coverage rates

that are equal to or higher than a nominal level, while still being informative in the sense

of marginally longer confidence intervals. An application to thresholds for U.S. industrial

production growth at a disaggregated level shows the empirical relevance of applying the

conservative approach in practice by including zero in more cases than for the benchmark

approach.
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Appendix: Tables

Table 1: Monte Carlo Experiment 1

Coverage Rate Average Length Av. # of thresholds
n = 50 100 250 500 1,000 50 100 250 500 1,000 50 100 250 500 1,000

β1 = 1.25
ILRb 0.94 0.96 0.96 0.96 0.96 0.825 0.706 0.364 0.137 0.044 27.62 44.51 50.72 37.90 29.35
ILRc 0.95 0.97 0.97 0.97 0.97 0.843 0.720 0.373 0.142 0.047 28.18 45.46 52.39 39.85 31.35
ILRr

b 0.94 0.96 0.96 0.96 0.96 0.847 0.722 0.370 0.140 0.044 29.66 46.63 50.76 35.93 26.74
ILRr

c 0.96 0.98 0.97 0.97 0.97 0.860 0.734 0.379 0.146 0.047 30.15 47.51 52.41 37.88 28.74
β1 = 1.50

ILRb 0.86 0.88 0.91 0.90 0.92 0.475 0.206 0.045 0.020 0.009 15.22 12.34 8.02 7.41 7.20
ILRc 0.97 0.98 0.99 0.98 0.98 0.516 0.231 0.055 0.025 0.012 16.62 14.21 10.02 9.41 9.20
ILRr

b 0.88 0.88 0.88 0.89 0.87 0.503 0.218 0.047 0.021 0.010 16.96 13.36 8.14 7.59 7.35
ILRr

c 0.98 0.98 0.99 0.99 0.99 0.541 0.245 0.059 0.026 0.013 18.30 15.22 10.13 9.59 9.35
β1 = 2.00

ILRb 0.41 0.39 0.41 0.37 0.39 0.053 0.018 0.008 0.003 0.002 2.56 2.12 2.07 1.97 2.00
ILRc 0.99 0.99 1.00 0.99 1.00 0.114 0.050 0.020 0.010 0.005 4.54 4.12 4.07 3.97 4.00
ILRr

b 0.57 0.54 0.55 0.53 0.52 0.075 0.027 0.011 0.005 0.003 3.47 2.88 2.90 2.77 2.79
ILRr

c 1.00 1.00 1.00 1.00 1.00 0.130 0.056 0.022 0.011 0.005 5.46 4.88 4.90 4.76 4.79

Note: For the first experiment, we consider a threshold model with the following DGP:

yi =

{
1 + xi + ei, if qi ≤ 2

1 + β1xi + ei, if qi > 2

where xi = qi ∼ N(2, 1) and ei ∼ i.i.d.N(0, 1) for i = 1, . . . , n. The average lengths are normalized
by the length of the bounded parameter space Γ = [γ, γ] for each sample size, while the average
number of threshold observations is expressed as a percentage of the sample size.
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Table 2: Monte Carlo Experiment 2

Coverage Rate Average Length Av. # of thresholds
σ = 1.0 0.5 0.3 1.0 0.5 0.3 1.0 0.5 0.3
ILRb 0.95 0.84 0.41 0.284 0.038 0.008 36.00 5.71 2.04
ILRc 0.97 0.99 0.99 0.294 0.050 0.023 37.78 7.71 4.04
ILRr

b 0.95 0.84 0.55 0.288 0.040 0.012 37.13 6.93 2.99
ILRr

c 0.98 0.99 1.00 0.299 0.052 0.024 38.90 8.93 4.99

Note: We consider a SETAR model and set σ = 1.0, 0.5, 0.3 for the error variance. The DGP is
given by

yi =

{
0.9 + 0.6yi−1 + ei, if yi−1 ≤ 0
0.0 + 0.3yi−1 + ei, if yi−1 > 0

where ei ∼ i.i.d.N(0, σ2) for i = 1, . . . , n and n = 236. The average lengths are normalized by the
length of the bounded parameter space Γ = [γ, γ] for each sample size, while the average number
of threshold observations is expressed as a percentage of the sample size.
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Table 3: Industrial Production Growth at Disaggregate Level

NAICS Industry Description Linearity Test Threshold 90% Confidence Interval
(p-value) Benchmark Conservative

3114 Fruit and vegetable preserving and specialty food 0.066 ( -2.455, 2.979 ) ( -2.491, 3.114 )
3254 Pharmaceutical and medicine 0.030 ( 0.064, 0.964 ) ( -0.016, 0.975 )
3256 Soap, cleaning compound, and toilet preparation 0.070 ( 0.787, 3.299 ) ( 0.750, 3.304 )
3314 Nonferrous metal (except aluminum) production and processing 0.084 ( -5.070, 3.936 ) ( -5.070, 3.936 )
3329 Other fabricated metal product 0.005 ( -0.329, -0.329 ) ( -0.349, -0.306 )
3331 Agriculture, construction, and mining machinery 0.029 ( -4.468, 4.832 ) ( -4.491, 4.897 )
3332 Industrial machinery 0.044 ( -3.457, 4.179 ) ( -3.877, 4.279 )
3336 Engine, turbine, and power transmission equipment 0.067 ( -3.851, 4.369 ) ( -3.851, 4.369 )
3342 Communications equipment 0.032 ( -1.547, -0.489 ) ( -1.620, -0.456 )
3364 Aerospace product and parts 0.001 ( -2.425, 1.536 ) ( -2.507, 1.560 )
3369 Other transportation equipment 0.000 ( -4.058, 6.698 ) ( -4.058, 6.698 )
3372,9 Office and other furniture 0.039 ( -2.512, -0.002 ) ( -2.570, 0.136 )

Note: We consider a SETAR model:

yi,t =

{
αi,0 + αi,1yi,t−1 + ei,t, if yi,t−1 ≤ γi
βi,0 + βi,1yi,t−1 + ei,t, if yi,t−1 > γi

where yi,t is the quarterly growth for the industry i. The 90% confidence intervals for the threshold
parameter γi that do not include zero are in bold.
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Appendix: Figures

Figure 1: Illustrated Example of Log-Likelihood Ratio Profile for the Threshold Parameter

CV1−α

LRn(γ)

γ
q(m)

= γ̂

q(m+1)q(l+1)q(l)q(l−1) q(u) q(u+1) q(u+2)

Note: A hypothetical LR profile is depicted. Given a finite number of observations of the threshold
variable, the likelihood ratio is evaluated discretely. Thus, for all qi ∈

[
q(j), q(j + 1)

)
, there is the

same likelihood ratio value LRn(qi) = LRn
(
q(j)

)
, denoted by a dashed line. The left endpoint of

the interval q(j) is denoted by a solid point and the right endpoint q(j + 1) is denoted by a hollow
point. The critical value CV1−α is indicated by a blue dashed line.
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Figure 2: Counterfactual Experiment
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Note: The true threshold parameter is γ0 and the magnitude of the threshold effect is measured by
δ = β1 − α1.
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