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Abstract. We present the design and implementation of UPMLIB , a runtime
system that provides transparent facilities fordynamically tuning the memory
performance of OpenMP programs on scalable shared-memory multiprocessors
with hardware cache-coherence. UPMLIB integrates information from the com-
piler and the operating system, to implement algorithms that perform accurate
and timely page migrations. The algorithms and the associated mechanisms cor-
relate memory reference information with the semantics of parallel programs and
scheduling events that break the association between threads and data for which
threads have memory affinity at runtime. Our experimental evidence shows that
UPMLIB makes OpenMP programs immune to the page placement strategy of
the operating system, thus obviating the need for introducing data placement
directives in OpenMP. Furthermore, UPMlib provides solid improvements of
throughput in multiprogrammed execution environments.
Keywords: OpenMP, scalable shared-memory multiprocessors, memory man-
agement, runtime systems, operating systems.

1 Introduction

Scalable shared-memory multiprocessor architectures converge remarkably to a com-
mon model, in which nodes with commodity microprocessors and memory are con-
nected via a fast network and equipped with additional hardware support to provide
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the communication abstraction of a shared address space to the programmer [2]. High-
level programming models for scalable parallel computers converge also to a small
set of standards that represent essentially two programming methodologies with differ-
ent communication abstractions, namely message-passing and shared-memory. MPI [3]
and OpenMP [13] are the most popular representatives of these programming method-
ologies.

There is a considerable debate going on recently with respect to the programming
model of choice for scalable shared-memory multiprocessors. Interestingly, contempo-
rary systems such as the SGI Origin2000 [8] support programming models based on
both message-passing and shared-memory, via customized runtime systems provided
by the vendors. Performance experiences on these systems indicate that implementa-
tions of parallel programs with MPI perform often better than implementations of the
same programs with OpenMP. This is true especially for large industrial codes [14].

The most prominent problem that OpenMP are faced with on scalable shared-
memory multiprocessors is the non-uniformity of memoryaccess latencies (NUMA).
Although the shared-memory communication abstraction hides data distribution details
from the programmer, the programs are very sensitive to the page placement strategy
of the operating system. A poor page placement scheme may exacerbate the number
of remote memory accesses, which cost two to ten times as much as local memory ac-
cesses on state-of-the-art systems. It is therefore critical to ensure that threads and data
are aligned in the nodes of the system, so thateach thread is collocated with the data
that the thread accesses more frequently.

Unfortunately, in order to achieve the aforementioned goal with a plain shared-
memory programming model, the programmer must be aware of the page placement
strategy of the operating system and either modify the program to adapt its memory ref-
erence pattern to the enforced system policy, or bypass the operating system and hand-
code a customized page placement scheme [6]. Both approaches compromise the sim-
plicity of shared-memory programming models and jeopardize their portability across
different platforms. Nevertheless, vendors of shared-memory multiprocessors are al-
ready facing the dilemma of whether data distribution directives should be introduced
in OpenMP or not [9].

The question that motivates the work presented in this paper is whether OpenMP
can be enhanced with runtime capabilities for the transparent improvement of data lo-
cality at the page level, without exporting data distribution details to the programmer.
We present the design and implementation of UPMLIB (User-Level Page Migration li-
brary), a runtime system with mechanisms and algorithms that transparently optimize at
runtime the page placement of OpenMP programs, using feedback from the compiler,
the operating system and dynamic monitoring of the memory reference pattern of the
programs. UPMLIB leverages dynamic page migration [16] at user-level [10] to correct
suboptimal page placement decisions made by the operating system.

The notable difference between UPMLIB and previously proposed kernel-level
page migration engines, is that the employed dynamic page migration algorithms cor-
relate the memory reference information obtained from hardware counters with the se-
mantics of the parallel computation and scheduling information provided by the op-
erating system. This is accomplished by integrating the compiler, the runtime system
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and the operating system in the page migration engine. The compiler drives the page
migration mechanism, by identifying memory regions which are likely to contain pages
candidate for migration and instrumenting the programs to invoke the page migration
engine of UPMLIB. The operating system provides scheduling notifications to the run-
time system in order to trigger aggressive page migration schemes upon thread migra-
tions. Thread migrations incur bursts of remote memory accesses due to cache reloads
and the misalignment between migrated threads and the set of pages for which these
threads exhibit memory affinity. The overall approach improves the accuracy and time-
liness of page migrations, amortizes well the cost of page migrations over time, and
makes the page migration engine responsive to unpredictable runtime events that may
harm data locality. Furthermore, implementing the page migration engine entirely at
user-level provides us with a great deal of flexibility in testing and customizing memory
management schemes without requiring kernel source code and without compromising
the well-tuned resource management policies of the operating system.

We have implemented UPMLIB on the SGI Origin2000, using the IRIX 6.5.5 mem-
ory management control interface. As a case study, we have used UPMLIB with un-
modified OpenMP implementations of the NAS benchmarks [7]. Our results show that
UPMLIB embeds the desirable immunity of OpenMP codes to the page placement
strategies of the operating system. In addition, UPMLIB provides solid and in some
cases significant performance improvements compared to the native IRIX page place-
ment and migration schemes for standalone parallel programs and multiprogrammed
workloads, scheduled with space- or time-sharing by the IRIX kernel.

The rest of this paper is organized as follows. Section 2 outlines the design of UPM-
LIB . Section 3 provides implementation details. Section 4 presents results with OpenMP
codes that utilize UPMLIB to improve their data locality in dedicated and multipro-
grammed execution environments. Section 5 concludes the paper.

2 UPMLIB Design and Algorithms

The key design issue of UPMLIB is the integration of the compiler, the runtime sys-
tem and the operating system in a unified framework that enhances the effectiveness
of dynamic page migration. The page migration engine of UPMLIB correlates the dy-
namic reference pattern of a parallel program with the semantics of the program and the
scheduling status of its threads at runtime. UPMLIB implements feedback-guided op-
timization of page placement in a local scope, in order to arm OpenMP programs with
invulnerability to the global memory management strategy of the operating system and
interventions of the kernel scheduler, when parallel programs are executed in multipro-
grammed environments. Figure 1 shows the main modules and interfaces of UPMLIB.
These are explained in detail in the following paragraphs.

2.1 Compiler Support

The OpenMP compiler identifies areas of the virtual address space which are likely
to contain pages candidate for migration and instruments the programs to call the page
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Fig. 1. UPMLIB modules and interfaces.

migration services of UPMLIB at specific points during their execution. In our first pro-
totype, the compiler locates shared arrays which are both read and written in possibly
disjoint sets of OpenMP parallel/work sharing constructs, thus incurring interprocessor
communication of shared data. The compiler identifies these arrays ashotmemory areas
and inserts calls to UPMLIB for activating dynamic monitoring of page reference activ-
ity and page migration on these areas. The implementation is flexible enough to exploit
advanced compiler knowledge, in case the compiler can provide accurateboundaries
for parts of the hot areas which are likely to concentrate the most significant fraction of
remote memory accesses, and the exact points of the program at which page migration
could improve locality by emulating data distribution and redistribution schemes.

The compiler exploits the semantics of the parallel program in order to migrate
pages accurately and ahead in time. The associated mechanisms distinguish between
iterative and non-iterative parallel programs. The former represent the vast majority of
parallel codes. For iterative programs, the compiler applies page migration at a coarse-
grain scale, namely at the ends of the outer iterations of the parallel program. At these
points of execution the runtime system can obtain an accurate view of the complete
page reference pattern of the parallel computation by reading the hardware counters.
Therefore, the runtime system is in a position to take successful decisions for migrating
pages and achieve anoptimalpage placement, whereoptimal is defined with respect
to the observed repetitive memory reference pattern of the program. The optimal page
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placement is achieved when each page is placed in anode so that the maximum latency
due to remote memory accesses by anynode in the system to this page is minimized.

For strictly iterative parallel computations and in the absence of page-level false-
sharing or thread migrations, the runtime system attains the best page placement with
respect to the observed reference pattern after executing a single iteration of the parallel
computation. Besides to the advantage of timeliness, this strategy amortizes well the
cost of page migrations over time. Cost amortization is of particular importance, since
page migrations are overly expensive operations on state-of-the-art systems. Since page
migration is performed based on the reference trace of the complete parallel computa-
tion, the page migration engine is not biased by temporary effects such as cold-start or
phase changes1 in the reference pattern [10].

UPMLIB handles non-iterative codes, as well as iterative codes with non-repetitive
access patterns, using a sampling-based mechanism for migrating pages. The runtime
system wakes up periodically a thread, which scans a fraction of the pages in the hot
memory areas and migrates some of these pages if needed. The sampling frequency and
the amount of pages scanned uponeach invocation of UPMLIB can be adjusted by the
user to fit the characteristics of the application. Programs with frequent changes in the
communication pattern between processors benefit from short sampling intervals, while
programs with infrequent changes in the communication pattern can utilize longer sam-
pling intervals. The amount of pages scanned uponeach invocation is selected to limit
the cost of checking and migrating pages to at most a small fraction of the sampling
interval. The algorithm for scanning pages can vary from sequential to stride to ran-
domized scanning, in order to enable the runtime system to adapt the page migration
engine to the distribution of hot pages in the virtual address space.

Practically, the duration of the sampling interval must be at least a few hundred
milliseconds. This holds due to the high cost of page migrations. The sampling interval
must be selected to give the runtime system enough time to migrate a reasonable amount
of pages ahead in time, so that a good fraction of the cost of remote memoryaccesses to
these pages is moved off the critical path of the program. The sampling mechanism is
beneficial for programs in which phases in the memory reference pattern last for at least
a few seconds. Programs that exhibit fine-grain phase changes do not provide usually
enough time to the runtime system for migrating pages.

The compiler is in a position to apply more aggressive data locality optimizations
using page migration as its vehicle. As an example, the compiler can apply phase-
driven optimization of page placement. The compiler can analyze the communication
patterns of each phase, detect phase changes due to changes in the communication pat-
tern across phases, and invoke the page migration mechanism between phases [5]. The
effectiveness of such optimizations depends on the granularity of the phases in terms
of execution time. The compiler analysis should be quite conservative when optimizing
page placement across phase changes, because page migrations have to be performed
on the critical path of the parallel program, thus making the amortization of the cost of
the runtime system a critical performance parameter. Optimization of page placement
across phase changes is a subject of investigation in our current version of UPMLIB.

1 In OpenMP, we define a phase as a sequence of parallel or worksharing constructs that have
the same communication pattern among processors.
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2.2 Page Migration Algorithms

UPMLIB uses by default a competitive algorithm for migrating pages. The criterion
of competitiveness in the algorithm is the estimated latency seen byeachnode in the
system due to remote memory accesses. This criterion incorporates the number of ref-
erences, the estimated cost of each remote reference according to the distance inhops
between the referencing node and the referenced page, and contention at the nodes to
which references are issued. The competitive thresholds used in the algorithm are tun-
able and may change at runtime, according to the observed effectiveness of page migra-
tions on reducing the rate of remote memory accesses. In addition, the page migration
algorithms include a self-deactivation mechanism, which disables the page migration
mechanisms when it detects that the memory reference pattern is stabilized so that no
further page migrations are needed by the runtime system. More details can be found in
[10].

UPMLIB circumvents page-level false-sharing with a ping-pong prevention mech-
anism. The idea is to avoid migrating a page if it is likely to bounce between the same
nodes more than once. The ping-pong prevention mechanism ensures that unless the
threads of a parallel program migrate between nodes,each page will be placed at the
appropriate node within the first two iterations of the program, assuming a strictly it-
erative program with a repetitive reference pattern. For the more general case in which
pages can ping-pong between more than two nodes due to wide false-sharing, UPM-
LIB uses a bouncing threshold to limit the maximum number of times a page can move
before the runtime system pins the page to a node. The bouncing threshold of UPMLIB

is also a tunable parameter of the runtime system, to handle cases in which ping-pong
of a page can actually be beneficial, for improving data locality across distinct phases.

2.3 Operating System Support

On scalable shared-memory multiprocessors, the page placement strategy establishes
an implicit association between threads and data in a parallel program. In principle,
a thread is associated with itsmemory affinity set, that is, the set of pages that the
thread accesses more frequently than any other thread of the same program. On a mul-
tiprogrammed system in which multiple parallel and sequential programs execute si-
multaneously, the operating system arbitrarily preempts and migrates threads between
nodes, thus breaking the association between these threads and their memory affinity
sets. Thread migrations incur the cost of reloading the working sets of migrated threads
from remote memory modules, as well as satisfying mostcache misses incurred from
migrated threads remotely. A page migration mechanism can alleviate this problem by
forwarding the pages that belong to the memory affinity set of a migrated thread to the
new node that hosts the thread. Unfortunately, a competitive page migration algorithm
may fail to perform timely page migrations in this case. The reason is that the page ref-
erence counters may haveaccumulated obsolete reference history that prevents a page
from migrating, unless the new home node of the migrated thread issues a sufficiently
large amount of remote references to meet the competitive criterion.

UPMLIB uses a lightweight communication interface with the operating system to
obtain scheduling information, which is used as a trigger for activating aggressive page
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Table 1. UPMLIB interface.

Call Functionality
upmlib init() , upmlib end() UPMLIB initialization and termination.
upmlib memrefcnt(va, size) Initializes reference counting and activates

dynamic page migration for the range [va,va+size-1].
upmlib migrate pages(pol) Runs the specified page migration policy

for all hot memory areas.
upmlib check pset() Polls the effective processor set on which

the program executes from shared memory
and records thread migrations.

upmlib switch() Switches the page migration policy from
competitive to predictive and vice-versa
using OS information.

upmlib record counters() Records per-page/per-node reference counters
for statistics collection.

forwarding algorithms upon migrations of threads from the operating system. The run-
time system polls a vector in shared-memory which stores the instantaneous mapping
of threads to processors and switches on the fly the default competitive algorithm, if it
detects that some threads have migrated. In that case, UPMLIB activates a predictive al-
gorithm which forwards pages in the memory affinity sets of migrated threads. The idea
is to have the pages of a memory affinity set of a thread follow the thread in case this
thread migrates. In the actual implementation, the runtime system detectspermanent
thread migrations, that is, thread migrations that move a thread to a node for an amount
of time sufficiently long to justify the activation of the page forwarding mechanism.
The associated algorithms and implementation issues are available in [11].

Table 2. UPMLIB environment variables.

Variable Functionality
UMIGRPOLICY Page migration criterion
UMIGRTHRESHOLD Competitive criterion threshold
UMIGRPING PONGLIMIT Bouncing threshold for ping-pong
UMIGRSAMPLINGPERIOD Period for the sampling-based mechanism
UMIGRPAGESPERSAMPLENumber of pages sampled per invocation of

the sampling-based mechanism
UMIGRTHREAD Thread that executes UPMLIB code

Table 1 summarizes the UPMLIB user-level interface. This interface is meant to be
used by the compiler, in the process of instrumenting OpenMP programs to use the page
migration engine. Table 2 shows the runtime environment variables used to set the tun-
able parameters of UPMLIB. Figure 2 gives an example of the use of UPMLIB in the
NAS BT benchmark. In this example, the compiler identifies three arrays of the appli-
cation (u,rhs,forcing ) as hot memory areas and activates the monitoring of page
reference rates on these areas using theupmlib memrefcnt() call to the runtime
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call upmlib_init()
call upmlib_memrefcnt(u, size_of_u)
call upmlib_memrefcnt(rhs,size_of_rhs)
call upmlib_memrefcnt(forcing,size_of_forcing)

...
do step=1,niter

call compute_rhs
call x_solve
call y_solve
call z_solve
call addi
stat=upmlib_check_pset()
if (stat .gt. 0) then

call upmlib_switch(PREDICTIVE)
else

call upmlib_switch(COMPETITIVE)
endif
call upmlib_migrate_pages()

enddo

Fig. 2. Usage of UPMLIB in the NAS BT benchmark.

system. The functionupmlib check pset() polls the scheduling information pro-
vided by the operating system and returns a positive value in case the operating system
has performed at least one thread migration and the migrated thread has stayed on the
same node for a sufficiently long amount of time. If no such thread migration has oc-
curred, the default competitive page migration algorithm is invoked at the end of every
iteration of the outerdo loop, by calling the functionupmlib migrate pages() .
The page migration engine scans the hot memory areas, identifies pages candidate for
migration and migrates pages according to the competitive criterion. In the event of a
thread migration, the compiler switches the page migration algorithm to use the ag-
gressive predictive criterion for page forwarding, by callingupmlib switch() . The
same function is called to switch back to the competitive algorithm in the absence of
thread migrations by the operating system.

3 Implementation

UPMLIB is implemented on the SGI Origin2000,using the user-level memory manage-
ment services of the Cellular IRIX operating system. The runtime system is integrated
with the NANOS OpenMP compiler [1], which implements the instrumentation pass
for using UPMLIB.

3.1 Interfaces

The page migration facilities of UPMLIB use the memory management control inter-
face (mmci) of IRIX (see Figure 1). The IRIXmmci provides significant flexibility
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in managing physical memory at user-level, by virtualizing the topology of the sys-
tem. The user can create high-level abstractions of the physical memory space, called
Memory Locality Domains(MLDs). MLDs can be statically or dynamically mapped to
physical nodes of the system. After establishing a mapping between MLDs and nodes,
the user can associate ranges of the virtual address space with MLDs in order to im-
plement application-specific page placement schemes. The runtime system requests the
coherent migration of a range of the virtual address space of the program with the
migr range migrate(addr,size,node) system call. The requested memory
migration is subject to the global resource management policies of IRIX. This practi-
cally means that IRIX may reject a request for migrating pages if it detects that there is
not enough available memory in the target node. In general, IRIX follows a best-effort
scheme for migrating pages. If the target node has insufficient free physical memory,
IRIX tries to migrate the pages to a node as physically close as possible to the target
node [15].

UPMLIB uses the/proc interface for accessing hardware reference counters. The
Origin2000 memory modules are equipped with 11-bit hardware counters. There is one
counter per node foreach page in memory, for system configurations of up to 64nodes.
The hardware counters are memory-mapped to 32-bit software-extended counters by
the operating system. When a hardware counter overflows, the system adds the con-
tents of the counter as well as the contents of all the counters of the same page to the
corresponding software-extended counters and resets the hardware counters. This im-
plementation introduces a hysteresis of the values of the software-extended counters,
compared to the actual number of references to the corresponding pages. The runtime
system polls both the hardware and the software-extended counters, to cope with this
asynchrony that might affect page migration decisions.

The asynchrony between hardware and software-extended counters is circumvented
in the following way. Letnh,t, ns,t be the contents of a hardware and the corresponding
software-extended counter at timet. If ns,t < nh,t, the system usesnh,t in the page
migration criteria, since the value of the hardware counter is up-to-date with the actual
number of references in this case. Suppose thatns,t ≥ nh,t. Also, let ns,t−1, nh,t−1

be the values of the counters the last time the runtime system retrieved a snapshot of
them. Ifns,t−1 = ns,t, the runtime system uses the formulans,t−1 + nh,t − nh,t−1, to
compute the actual number of references to the page. Note that in the same scenario, it
is impossible to havenh,t < nh,t−1. This would mean that the hardware counter has
overflowed at least once, and thereforens,t > ns,t−1, which is impossible according
to the original hypothesis. If the two consecutive snapshots of the counters indicate that
ns,t > ns,t−1, the runtime system uses the formulans,t + nh,t to compute the actual
number of references, sincenh,t is the amount of references after the counter overflow
in this case.

The size of the hardware page in the Origin2000 memory modules is 4 Kbytes. The
page size used by the operating system to manage virtual memory is 16 Kbytes. Each
virtual memory page is stored in four consecutive physical memory pages. UPMLIB

combines the values of the counters of the physical memory pages thatcache a virtual
memory page, to compute reference rates. Furthermore, UPMLIB tries to batch mul-
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tiple page migrations for consecutive pages in the virtual address space into a single
invocation of the IRIX memory migration facility to reduce the runtime overhead.

The communication between UPMLIB and the IRIX kernel is realized via polling
shared variables in the private data areas (prda ) of IRIX threads, using thesched-
ctl() interface. The operating systemupdates a flag in theprda of each thread,
which stores the physical CPU on which the thread was scheduled during the last time
quantum. UPMLIB uses this information in conjunction with hints provided by the
IRIX kernel for defining the number of threads that execute OpenMP parallel/work shar-
ing constructs. The latter can be obtained using themp suggested numthreads()
call to the IRIX parallelization runtime library. In this way, UPMLIB detects thread
preemptions and migrations at the boundaries of parallel constructs to trigger the page
forwarding algorithms.

3.2 Mechanisms for Executing Page Migrations

UPMLIB uses two mechanisms for executing page migration algorithms. By default,
the runtime system overlaps the execution of page migrations with the execution of the
threads of a parallel program. We measured with microbenchmarks the average cost of
a user-level page migration on the SGI Origin2000 to be equal to approximately 1–1.3
milliseconds, including the cost for reading reference counters and executing the page
migration algorithm. This makes evident that UPMLIB can not execute a large number
of page migrations on the critical path of the program. Therefore, the runtime system
uses a separate thread, called thememory manager, for executing page migrations. This
thread is created in sleep mode when UPMLIB is initialized and wakes up upon every
invocation of UPMLIB by the OpenMP program. The memory manager executes in
parallel with the application threads. This strategy works well for standalone parallel
programs running on moderate to large processor scales, at which the program can
gracefully sacrifice one processor for executing operating system code [6].

In loaded multiprogrammed systems in which the total number of active threads
may be higher than the number of processors , the memory managers created by UPM-
LIB may undesirably interfere with the threads of parallel programs. To cope with this
problem, UPMLIB supports also the execution of page migration algorithms from the
master thread of the OpenMP program. According to the OpenMP specification, the
master thread participates in the execution of parallel constructs. It is therefore impor-
tant to minimize the interference between the master thread and UPMLIB code. To
achieve this, the runtime system uses stripmining of the buffers that store the reference
counters, in order to reduce the size of the working set size of UPMLIB and avoid eras-
ing completely the cache footprint of the master thread. The same technique is used
when the compiler uses UPMLIB for phase-driven optimization of page placement ,
since in this case page migrations must be performed before phase changes to ensure
proper data distribution [12].

4 Experimental Results

In this section we provide a small set of experimental results, as case studies that demon-
strate the potentials of UPMLIB.
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Fig. 3. Performance of the NAS BT and SP benchmarks, with different page placement
and migration strategies on 16 and 32 processors of the Origin2000.

Figure 3 illustrates the performance of two application benchmarks from the NAS
suite, BT and SP, both parallelized with OpenMP [7]. BT is a simulated CFD applica-
tion which solves Navier-Stokes equations using the Beam-Warming method. SP solves
the same equations using approximate API factorization. The applications are strictly
iterative, in the sense that they perform the same parallel computation for a number of
time steps. Both programs are optimized by their providers, to exploit the first-touch
page placement strategy, which is used by default in the Origin2000. This is done by
executing a cold-start iteration of the parallel computation before the beginning of the
time-stepping loop, in order to warm up thecaches and place pages appropriately. The
experiments were conducted on a 64-processor SGI Origin2000 with MIPS R10000
processors. Each processor had a clock frequency of 250 MHz, 32 Kbytes of primary
and 4 Mbytes of secondarycache. The system had 8 Gbytes of main memory, uniformly
distributed among the nodes.
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Fig. 4. Performance of the sampling mechanism with different page placement schemes
in the NAS BT and SP benchmarks.

The charts plot the execution time of the benchmarks on 16 and 32 idle proces-
sors with four different initial page placement schemes, namely first-touch (labeled
ft ), round-robin (labeledrr ), random (labeledrand ) and the hypothetical worst-case
placement in which all resident pages of the benchmarks are placed on a singlenode
(labeledsn ), thus exacerbating contention and latency due to remote accesses. The ran-
dom and worst-case page placement were hand-coded in the benchmarks. For each of
the three page placement schemes, we executed the benchmarks without page migration
(labeledIRIX ), with the IRIX page migration engine enabled (labeledIRIXmig ), and
with the IRIX page migration engine disabled and user-level dynamic page migration
enabled by linking the codes with UPMLIB (labeledupmlib ).

The primary outcome of the results is that the benchmarks exhibit sensitivity to the
page placement strategy of the operating system and in the cases in which the page
placement scheme is harmful, the IRIX page migration engine is unable to close the
performance gap. For example, worst-case page placement incurs slowdowns of 1.24 to
2.10 even if dynamic page migration is enabled in the IRIX kernel. With round-robin
page placement, the slowdown compared to first-touch ranges between 1.08 and 1.38,
while with random page placement the slowdown ranges between 1.02 and 1.14.

The iterative page migration engine of UPMLIB brings the slowdown factor in the
case of worst-case page placement down to at most 1.06. With round-robin and random
page placement schemes, slowdown is less than 1.01 when the user-level page migra-
tion engine is employed. The results show that user-level page migration makes the
OpenMP implementations of the benchmarks immune to the page placement strategy
of the operating system and the associated problems with data locality. Furthermore,
UPMLIB provides sizeable performance improvements (28% in the case of BT) over
the best-performing page placement and migration scheme of IRIX.

Figure 4 illustrates the performance of the sampling mechanism of UPMLIB,
against the performance of the iterative mechanism. The duration of the sampling in-
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Fig. 5. Average execution time of the NAS BT and SP benchmarks, in multipro-
grammed workloads executed with the native IRIX scheduler.

terval used in these experiments was 1 second and the mechanism scanned 100 pages
in the hot memory areas per invocation by the runtime system. The hot memory areas
were scanned by the page migration engine in a round-robin fashion. The performance
of the sampling-based mechanism inferior to the performance of the iterative mecha-
nism by at most 17%. Considering the fact that the iterative mechanism is well tuned
for applications like the ones evaluated in these experiments, we can conclude that the
sampling-based mechanism constitutes an effective alternative in cases in which the
iterative mechanism is not applicable.

Figure 5 illustrates the results from executions of multiprogrammed workloads with
the NAS BT and SP benchmarks. Each workload includes four identical copies of the
same benchmark, plus a sequential background load consisting of an I/O-intensive C
program. The workloads were executed on 64 processors. All instances of the paral-
lel benchmarks requested 32 processors for execution, however the benchmarks en-
abled the dynamic adjustment of the number of threads that execute parallel code, via
theOMPSET DYNAMICcall [13]. In these experiments, IRIX initially started all 128
threads of the parallel benchmarks, relying on time-sharing for the distribution of pro-
cessor time among the programs. In the course of execution, IRIX detected that the
parallel benchmarks underutilized some processors and reducedaccordingly the num-
ber of threads, reverting to space-sharing for executing the workload. However, some
processors were still time-shared due to the interference of the background load.

The results show the average execution time of the parallel benchmarks in the work-
loads with plain first-touch page placement (ft-IRIX ), first-touch and the IRIX page
migration engine enabled (ft-IRIXmig ) and first-touch with the page forwarding
heuristic, enabled with the iterative and the sampling-based mechanisms used in the
page migration engine (labeledft-upmlib/it and ft-upmlib/s respectively).
The theoretical optimal execution time of the benchmarks is also illustrated in the
charts. The optimal time is computed as the standalone execution time of each bench-
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mark on 32 processors with the best page placement strategy (ft-upmlib , see Fig-
ure 3), divided by the degree of multiprogramming in the workload.

The results illustrate the performance implications of multiprogramming on the
memory performance of parallel programs when their threads are arbitrarily preempted
and migrated between nodes by the operating system. The average execution time of
the programs is slowed down by 2.1 to 3.3 compared to the theoretically optimal execu-
tion time, when the native IRIX page management schemes are used. Instrumentation
of UPMLIB has shown that the IRIX kernel performed on average about 2500 thread
migrations during the execution of each workload. UPMLIB with the iterative page for-
warding mechanism is very effective in dealing with this problem. The performance
of the programs linked with UPMLIB is within 5% off the theoretical optimal perfor-
mance. The performance of the sampling-based mechanism is inferior, although close
to the performance of the iterative mechanism.

5 Conclusion

This paper outlined the design and implementation of UPMLIB, a runtime system for
tuning the page placement of OpenMP programs on scalable shared-memory multipro-
cessors, in which shared-memory programming models are sensitive to the alignment
of threads and data in the system. UPMLIB takes a new approach by integrating the
compiler and the operating system with the page migration engine, to improve the ac-
curacy, timeliness, and effectiveness of dynamic page migration. The experiments have
shown that a smart page migration engine can obviate the need for introducing data
distribution directives in OpenMP, thus preserving the simplicity of the shared-memory
programming model. Moreover, dynamic page migration has demonstrated its potential
as a means to provide robust performance of parallel programs in multiprogrammed
environments, in which the programs can not make any safe assumptions on resource
availability.

Our current efforts are oriented towards three directions: utilizing the functionality
of UPMLIB in codes with fine-grain phase changes in the memory access pattern; cus-
tomizing UPMLIB to the characteristics of specific kernel-level scheduling strategies;
and integrating a unified utility for page and thread migration in UPMLIB, with the pur-
pose of biasing thread scheduling decisions by page reference information to achieve
better memory locality.
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