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Abstract

Effective cancer treatment is crucially dependent on the identification of the biological pro-

cesses that drive a tumor. However, multiple processes may be active simultaneously in a

tumor. Clustering is inherently unsuitable to this task as it assigns a tumor to a single cluster.

In addition, the wide availability of multiple data types per tumor provides the opportunity to

profile the processes driving a tumor more comprehensively. Here we introduce Functional

Sparse-Factor Analysis (funcSFA) to address these challenges. FuncSFA integrates multi-

ple data types to define a lower dimensional space capturing the relevant variation. A tailor-

made module associates biological processes with these factors. FuncSFA is inspired by

iCluster, which we improve in several key aspects. First, we increase the convergence effi-

ciency significantly, allowing the analysis of multiple molecular datasets that have not been

pre-matched to contain only concordant features. Second, FuncSFA does not assign

tumors to discrete clusters, but identifies the dominant driver processes active in each

tumor. This is achieved by a regression of the factors on the RNA expression data followed

by a functional enrichment analysis and manual curation step. We apply FuncSFA to the

TCGA breast and lung datasets. We identify EMT and Immune processes common to both

cancer types. In the breast cancer dataset we recover the known intrinsic subtypes and

identify additional processes. These include immune infiltration and EMT, and processes

driven by copy number gains on the 8q chromosome arm. In lung cancer we recover the

major types (adenocarcinoma and squamous cell carcinoma) and processes active in both

of these types. These include EMT, two immune processes, and the activity of the NFE2L2

transcription factor. We validate the breast cancer findings on the METABRIC set and dem-

onstrate the translatability of the TCGA breast cancer factors to METABRIC. In summary,

FuncSFA is a robust method to perform discovery of key driver processes in a collection of

tumors through unsupervised integration of multiple molecular data types and functional

annotation.
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Author summary

In order to select effective cancer treatment, we need to determine which biological pro-

cesses are active in a tumor. To this end, tumors have been quantified by high dimensional

molecular measurements such as RNA sequencing and DNA copy number profiling. In

order to support decision making, these measurements need to be condensed into inter-

pretable summaries. Such summaries can be made interpretable by connecting them to

biological processes. Biological process activity is continuous and multiple biological pro-

cesses are taking place in a single tumor. Therefore, the biological processes associated

with a tumor are misrepresented by clustering, which tries to put every tumor in a single

cluster. In the method introduced in this paper (funcSFA), molecular measurements are

summarized into a small number factors. A factor is a continuous value per tumor that

aims to represent the activity of a biological process. When applied to breast and lung can-

cer, funcSFA identifies factors covering well known biology of these tumor types.

FuncSFA also finds novel factors covering biology whose importance is not yet widely rec-

ognized in these tumor types. Some of the factors suggest treatment opportunities that

can be further investigated in cell lines and mice.

Introduction

Cancer is a heterogeneous disease, both at the molecular level and in response to treatment. If

we can better understand the variation between tumors, we may get a better understanding of

why tumors respond differently to treatment. This could, in turn, lead to better treatment

selection for patients.

To chart the variation across tumors, projects such as The Cancer Genome Atlas (TCGA)

have collected a variety of molecular data from thousands of tumors [1–3]. Analyses of these

data provide a better understanding of the underlying biological processes associated with the

cancer. For example, recurrent copy number aberrations or recurrent point mutations may

reveal the drivers of carcinogenesis. Complementary to this, RNA expression or protein phos-

phorylation can reveal downstream changes involving many genes, even if the upstream driver

of those changes is unknown. Hence, the different data types are reflections of the same biolog-

ical state, yet each of them encodes information not present or only partially present in the oth-

ers. Therefore, a comprehensive characterization of the molecular variation across tumors

requires the integration of multiple data types.

A popular approach to characterizing tumors is clustering of RNA expression data. Exam-

ples include the PAM50 subtypes [4] in breast cancer and the consensus subtypes in colorectal

cancer [5]. Since these subtypes are only based on the RNA expression of tumors, they will fail

to capture differences in tumors that are more clearly, or even exclusively observed on other

molecular levels, such as protein expression, or DNA copy number.

Integrative clustering approaches such as Bayesian consensus clustering [6], patient specific

data fusion [7] and iCluster [8] do take multiple data types into account. However, clusters are

unsuitable models of biological processes for at least two reasons. First, a biological process

can be activated in multiple contexts and multiple independent biological processes can be

active simultaneously. However, as clusters cannot overlap, it becomes a challenge to represent

this variation in a discrete clustering. For example, immune infiltration occurs in both ER

+ and ER- negative breast tumors, but once a tumor is assigned to the ER+ cluster it cannot be

assigned to an immune cluster that spans all breast cancer tumors. Second, the variation in

activity of a biological process is often more complex than can be captured by a simple
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distinction between absent or present. Instead, it is more naturally expressed along a continu-

ous scale of activity levels. This cannot be captured by discrete clusters.

Paradigm [9] improves upon the abovementioned approaches by integrating multiple data

types to infer activity levels of biological processes. Activity levels of biological processes in

tumors are assigned independently of each other, avoiding the limitation of cluster analysis.

To estimate these activity levels, Paradigm leverages existing knowledge available from path-

way databases. A limitation of this approach is that using existing knowledge a priori limits

discovery of new biological processes. More importantly, it also limits the discovery of biologi-

cal processes in new contexts (e.g. tumor types) because activity of a process in a new context

might involve a set of genes that is only partially overlapping with the genes currently anno-

tated to that process.

Here we introduce FuncSFA, a sparse-factor analysis with a tailored gene-set enrichment

analysis (GSEA) [10] that integrates multiple data types to provide both a continuous charac-

terization and a functional interpretation of the variation across tumors at the molecular level

(Fig 1). The sparse-factor analysis identifies factors explaining variation in multiple data types

such as RNA expression, protein expression, and DNA copy number data. Subsequently, the

factors are interpreted and linked to known biology using a gene-set enrichment analysis of

the factors on the RNA expression data. The interpretation obtained from the gene-set enrich-

ment analysis is validated by comparison of the genes, epitopes and copy number aberrations

in the factor to external resources. Together this not only provides insight into variation across

tumors but also into the biology underlying the molecular data.

The sparse-factor analysis is based on a reinterpretation of the mathematical framework

behind the iCluster method [8, 11]. Our reinterpretation improves upon the iCluster method

in several key aspects. First, through proper factor rescaling and more efficient optimization

approaches, we ensure convergence of FuncSFA on multiple molecular datasets that have not

been pre-matched. An example of pre-matching is in the iC10 subtypes [12], where the authors

only selected genes where RNA expression correlates with DNA copy number. Second, in con-

trast to iCluster, FuncSFA does not assign tumors to discrete clusters, but identifies the domi-

nant driver processes across multiple molecular data types and across all tumors, and then

represents, for each tumor, the spectrum of processes active in that tumor. Taken together,

FuncSFA represents, for the first time, a robust method to perform discovery of the key biolog-

ical processes driving the most important phenotypic differences across a set of tumors

through unsupervised integration of multiple molecular data types.

We applied FuncSFA to the TCGA breast and lung cohorts and identified 10 factors in each

tumor type. As breast cancer is very well characterized, it served as a positive control in the

sense that we could fully identify the known intrinsic subtypes in breast cancer. Uniquely, this

characterization integrates the intrinsic subtypes and the activity of Epithelial to Mesenchymal

Transition (EMT) and Immune processes, each represented by an independent factor. We val-

idated the factors obtained on the TCGA breast cancer set on the METABRIC set and also

show that the TCGA-derived factors can be successfully transferred to the METABRIC set. In

lung cancer, which has remained largely uncharacterized, we also identified an EMT and

Immune factor, as well as a factor associated with the main lung subtypes—Adenocarcinoma

and Squamous Cell Carcinoma. We also identified a factor which captures the activation of the

transcription factor NFE2L2. Here the power of integration of multiple data types is

highlighted by the fact that the activity of this factor is associated with mutations in NFE2L2 as

well as its inhibitor KEAP. We expect that the identified factors not only provide a more com-

plete characterization of the biological processes active in the different tumors, but will also

provide a starting point for the development of better treatment strategies.

Functional sparse-factor analysis
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Fig 1. Overview of FuncSFA. A: Graphical representation of Functional Sparse-Factor Analysis (FuncSFA). The green

circles represent the factors, and the red, blue and yellow circles at the bottom represent the observed variables, with

the colors representing the data types and each circle representing an individual variable (i.e. the expression of a gene

or protein, or the copy number of a gene). The black lines connecting the individual variables to the factors represent

the regression coefficients. B: Graphical representation of the mathematical concepts of SFA with X representing the

N × n data matrix, Z the N × k obtained factor matrix and B the k × n factor coefficients. C: Graphical representation

of the computations of the factor expression coefficients. The coefficients represented by the k × nm matrix C are

obtained by regressing the N × nm RNA expression matrix, Xm, on the N × k factor matrix Z. D: The gene-set

enrichment analysis designed to assign biological processes or pathways to the obtained factors. E: Application of the

Functional sparse-factor analysis
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Results

FuncSFA

FuncSFA consists of three components. The first component performs the sparse-factor analy-

sis to obtain the factors. In the second component, Gene Set Enrichment Analysis is employed

to interpret the obtained factors in terms of the possible biological processes they represent.

The last component allows the application of the obtained factorization to a new sample in

order to reveal the biological processes likely giving rise to the molecular profiles observed for

that sample. In this section we discuss each of these components.

Sparse-factor analysis. In our sparse-factor analysis, we assume that each tumor type is

characterized by a set of key driving factors, or biological processes, that give rise to molecular

phenotypes. These driving factors cannot be measured directly, but are observed indirectly

through noisy measurements of multiple molecular data types such as mRNA expression, copy

number aberrations and protein expression and modification. The challenge is to employ all

these measured data types simultaneously to identify this unobserved structure in the data.

Sparse-factor analysis addresses this challenge by modeling the unobserved structure by a

relatively small number of continuous factors— the green circles in Fig 1A. These factors, in

turn, explain the observed molecular data in a linear regression that links each molecular data

type to the factors. The red, blue and yellow circles at the bottom of Fig 1A represent the

observed variables, with the colors representing the data types and each circle representing an

individual variable. For example, in ERBB2 (also known as HER2) positive breast cancer, the

ERBB2 factor would represent the activation of the ERBB2 pathway while the measured copy

number, protein and mRNA expression changes will be modeled as appropriately chosen

regression functions of the ERBB2 factor.

The factors are identified by maximizing the joint likelihood of the the measured data and

the factors, selecting factors and regression coefficients explaining the measured data. This is

accomplished in a methodology that is akin to probabilistic principal component analysis

(PCA) [13]. We employ elastic net regularization [14] to create parsimonious models by

enforcing sparsity on the regression coefficients associated with the factors, as introduced by

iCluster [8]. In Fig 1A the regression coefficients are represented by the black lines connecting

the individual variables to the factors, while Fig 1B depicts the mathematical operations associ-

ated with the sparse-factor analysis. Consequently, a factor is defined by the subset of molecu-

lar variables that contribute to that factor as well as the regression coefficients that model the

degree to which each molecular variable contributes to the factor.

Sparsity of regression coefficients induced by the elastic net penalty improves data integra-

tion by preventing one data type (especially mRNA expression) from dominating the analysis.

A larger penalty can be applied to mRNA expression to the other data types, keeping mRNA

expression under control. Sparse weights are also biologically plausible as a biological process

might involve the altered expression of thousands of genes but is unlikely to be driven by all

genes.

The joint likelihood is maximized using an expectation maximization algorithm. This

algorithm improves over the iCluster2 algorithm [11] by rescaling the factors to unit variance

and by estimating coefficients with coordinate descent [15]. On the TCGA breast cancer

factors to determine the activity of the factors (or associated biological processes) in a new tumor. (N: number of

tumors; n: number of features; k: number of factors; nm: number of mRNA features; Z: factor matrix; X: data matrix

(concatenation of mRNA, copy number and Reverse Phase Protein Array (RPPA) data); B: Sparse factor coefficients;

C: Factor regression coefficients; GSEA: Gene-set enrichment analysis).

https://doi.org/10.1371/journal.pcbi.1006520.g001
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dataset our algorithm converged faster and to better solutions than the iCluster2 algorithm

(S1 Fig).

A very important feature of FuncSFA is that, unlike iCluster, we do not force a tumor

assignment to discrete clusters, but represent the level of activity of each of the driving factors

in a given tumor. Consequently, each tumor can be a ‘member’ of multiple factors, and this

‘membership’ can also vary in strength.

Gene-set enrichment analysis. While sparse-factor analysis efficiently identifies the hid-

den driving factors, it remains challenging to directly attach a biological interpretation to the

identified factors. In some cases, such as ERBB2 pathway activation, this may be straightfor-

ward, but in many other cases this remains very challenging. One of our important contribu-

tions is the development of a gene-set enrichment analysis tailored to the results of sparse-

factor analysis.

The first step of the gene-set enrichment analysis is to regress the factors on the gene

expression matrix (Fig 1C). This may sound counter-intuitive, as the purpose of the SFA is to

pinpoint the genes contributing to the factor, hence revealing the underlying drivers. However,

the motivation for this is two-fold. First, the sparsity constraints on the coefficients introduce

zeros in the coefficients. Although this is beneficial for human interpretation and driver identi-

fication, genes with zero coefficients can not be ranked in terms of their contribution to the

factors. This is a major complicating factor as such a gene ranking is an essential part of the

gene-set enrichment analysis. Second, RNA expression remains a data type that captures most

of the variation in the cell, and can, as such be quite informative regarding the activity of bio-

logical processes and hence for the interpretation of the factors. So, having gone through the

process of identifying driving factors that are robust, in the sense that they are common to all

data types, we employ the regression of the factors to the complete RNA expression data set to

identify all genes with expression patterns that show association with the factors. This associa-

tion is captured in the regression coefficients (Matrix C in Fig 1C). We then normalize each

coefficient by the gene standard deviation to obtain the ‘factor expression coefficients’.

The second step of the gene-set enrichment analysis is to rank the genes based on the factor

expression coefficients and compute the enrichment statistic for every gene-set factor pair

(Fig 1D) [10]. We determined statistical significance of the enrichments by a sample permuta-

tion test [10]. The enrichment results provide input for a manual curation and verification

process to identify the most likely biological process that gives rise to the identified factors.

Single-sample analysis. Finally, in order to determine the activity of the identified factors

in a new unseen tumor, one simply solves the same equation with the new tumor(s) while

keeping the sparse factor coefficients fixed, as depicted in Fig 1E. Importantly, this can be

done with the gene expression data only, allowing easy translation of the factors to other

datasets.

Application to breast and lung cancer. We have applied FuncSFA to the breast cancer

[1] and lung cancer [2, 3] data sets from TCGA. Breast cancer is arguably the most exhaustively

subtyped type of cancer, and hence serves as a very good positive control for FuncSFA [1, 12,

16, 17]. Lung cancer has not been studied so extensively, even though at the moment it is the

cancer type resulting in the highest number of deaths per year. For this reason, there is a large

unmet need for the discovery of new biomarkers which could open up new treatment modali-

ties. From a technical perspective, TCGA includes large numbers of tumors for both cancer

types, which ensures that the parameter estimates produced by FuncSFA are reliable.

For both datasets, we used three data types: DNA copy number, protein expression mea-

sured by RPPA, and RNA expression. First, we included DNA copy number at 162 (breast) or

213 (lung) frequently aberrated loci from SNP6 arrays as identified by RUBIC [18]. This DNA

copy number data set is clearly important as it captures many copy number events that may

Functional sparse-factor analysis
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have a functional role in oncogenesis. Second, we included protein expression and modifica-

tion recorded by RPPA with 195 (breast) or 216 (lung) protein epitopes. These measurements

capture the activity of key signaling events in pathways which play a central role in many can-

cer types, including those under study here. Third, we included RNA expression of the 1000

most variable genes as measured by RNAseq. We selected the 1000 most variable genes to

reduce noise in the data and to reduce the complexity of the model, while retaining most of the

variance present in the full data (S13 Fig). We included RNA expression as it is arguably the

most comprehensive data type, capturing the downstream effects of many upstream events

such as signaling pathway activity or activation of cancer genes by, for example, genetic events.

Although FuncSFA allows the inclusion of many data types, we have not included mutation

data. The binary nature of this data does not directly fit the factor analysis model we employed

(see Discussion and Methods).

For both breast and lung cancer, we employed the abovementioned data types and

applied FuncSFA. We specifically set out to find the ten strongest factors. We chose this

number of factors based on the following argumentation. First, when increasing the number

of factors up to at least twenty, one can discover more detailed processes showing activity, pro-

vided that a sufficiently large sample size is employed. However, when a new factor is added to

an already existing set of factors, the the newly added factor captures less variance than the

existing factors, the existing (strongest) factors remain the same (S2 Fig) and also retain the

same order (S16 Fig). Second, most subtyping approaches that have been applied to date

revealed ten or fewer subtypes: five intrinsic subtypes in breast cancer [19, 20] ten IC10

subtypes in breast cancer [12], four consensus subtypes in colorectal cancer [5], four in squa-

mous cell carcinoma [21] and three in lung adenocarcinoma [22]). Therefore, our assumption

was that ten factors would be sufficient to capture the strongest (known) factors, while

leaving room for the discovery of new biological processes without running the risk of

compromising the robustness of the factors being discovered by having a too large factor-to-

sample-size ratio.

Breast cancer

We applied FuncSFA to the breast cancer data employing 10 factors based on the arguments

given above. We performed functional annotation of the factors, as outlined above and in the

methods section, employing, amongst others, the coefficients obtained from the sparse-factor

analysis, as well as the gene-set enrichment for pathways and biological processes depicted in

the supplement (S4 Fig and S3 Table). This resulted in the following 10 factors: ER (Estrogen

Receptor), Normal-like, Basal, HER2, Luminal-Proliferative, 8q-gained, Technical-RNA,

Technical-RPPA, EMT (Epithelial to Mesenchymal Transition) and Immune. The strongest

sparse-factor analysis coefficients (from the B matrix in Fig 1B) for the three data types are rep-

resented in Fig 2. We will first provide some general observations of the results and then pro-

vide a detailed description and analysis of each factor.

From the coefficients depicted in Fig 2, we make the following global observations. First,

the ER factor is strongly associated with both mRNA and protein expression of ESR1, GATA3,

PGR and AR, as expected. Second, the EMT factor shows strong association with THBS2 and

COL11A1 expression—the genes identified by Anastassiou and colleagues [23] (see also the

more detailed description of the EMT factor below). In addition, the EMT factor shows associ-

ation with many collagens. Third, the HER2 factor shows the expected strong association with

ERBB2 copy number gain and protein upregulation, GRB7 copy number gain as well as EGFR

protein upregulation. Fourth, the Basal factor shows strong association with the RNA expres-

sion of basal keratins and finally, 8q-gained shows concordant copy number and expression

Functional sparse-factor analysis
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Fig 2. The strongest sparse-factor analysis coefficients for the breast cancer data set for each of the three data types and all ten

factors. The height of the bars shows the values of the coefficients. Non-significant coefficients (p> 0.05, signifance test of

coefficient in an ordinary least-squares model) are marked with N.S. If a gene is strongly associated with a factor, we show all

coefficients of that gene in the model. RNA expression coefficients are shown in blue. Protein expression coefficients are shown in

orange. Any modifications of an epitope are noted in a short text description: pX = phosphorylated at residue X; clX = cleaved at

residue X. DNA copy number coefficients are shown in red. Numbers refer to the recurrently aberrated loci in S5 Table. Recurrent

gains are prefixed with a g, losses with an l. Also see S1 Table.

https://doi.org/10.1371/journal.pcbi.1006520.g002
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changes for a number of genes located on Chromosome 8q, including SGK3, MYC and

TP52INP1.

Fig 3A depicts, per factor, for all ten factors, the amount of explained variation for the three

data types: gene expression, copy number and RPPA. Most factors explain variation in each of

the data types, with the largest proportion of the variation explained by a given factor mostly

being the variation in gene expression. There are a few exceptions. The HER2, Luminal-Prolif-

erative and 8q-gained factors, explain more variation in copy number data than in RNA

expression data. For HER2 and 8q-gained tumors this is not surprising as they are clearly copy

number driven (Figs 2 and 4). Most strikingly, the Techical-RPPA factor explains a very large

proportion of the variation in the RPPA data. However, as the name indicates this factor most

likely captures technical variation in the RPPA data, as this variation is not reflected in the

other data types, and as the gene-set enrichment analysis does not reveal a clear functional

enrichment associated with this factor. Similarly, the Technical-RNA factor explains technical

Fig 3. Sparse-factor analysis on the TCGA breast cancer data set. A: Explained variation per data type and factor. B: The top-left

panel shows a t-SNE map of the tumors with the different colors showing PAM50 subtypes. The remaining panels show the tumors

in the same positions as the PAM50 map, but colored according to the value of the represented factor in each tumor.

https://doi.org/10.1371/journal.pcbi.1006520.g003
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variation in the RNAseq data. The ER factor is unique in the sense that it is the single factor

that explains most variation in RNA expression and RPPA data (apart from the Technical-

RPPA factor). This is not unexpected as ER signaling arguably drives the most important sub-

type distinction in breast cancer: the one between ER-positive and ER-negative tumors. In the

remainder of this section, we will discuss each of the identified factors in greater detail.

Intrinsic subtypes are covered by factors. The intrinsic subtypes proposed by Perou and

Sørlie represent one of the earliest and most widely used subtypings of breast cancer [17, 19,

20]. This discrete classification of breast cancer in five subtypes (Her2-enriched, Basal-like,

Luminal A, Luminal B and Normal-like) is typically performed by applying a nearest centroid

classifier to the RNA expression profile of the tumor to be subtyped. To perform this classifica-

tion based on mRNA expression, Parker and colleagues developed a a 50 gene signature, the

so-called PAM50 [4]. As the PAM50 subtyping is widely acknowledged as a gold standard in

breast cancer subtyping, we set out to check whether the variation captured by the PAM50

subtyping is also recapitulated by the FuncSFA factors. To this end we applied the PAM50 sub-

typing to the breast cancer cohort and compared the PAM50 subtyping to the variation cap-

tured by the FuncSFA factors. Fig 3B.1 depicts a t-SNE map of the breast cancer tumors with

the PAM50 subtype assignment indicated by the colors. Four FuncSFA factors capture the var-

iation in the PAM50 subtypes.

First, the ER factor is associated with both mRNA and protein expression of ESR1, AR and

PR (Fig 2), and is enriched for gene signatures of ESR1 expression and the luminal subtype of

breast cancer, which, in turn, is characterized by ESR1 overexpression (S4 Fig and S3 Table).

This suggests that this factor represents the continuous variation in ESR1 expression in breast

cancer, which is typically dichotomized to define ER+ and ER- tumors. This is confirmed by

comparing the PAM50 subtypes with the ER factor. Indeed, the ER factor is strongly associated

with the ER+ (Luminal A, Luminal B and Normal-like) and ER- (Basal-like, HER2-enriched)

subtypes. Specifically, classification into the ER+ and ER- classes based on the ER factor results

in an AUC of 0.98. The strong association between the ER factor and the ER+/ER- PAM50

subtyping is also strikingly visible in Fig 3B.2, where the same tumor positions as in Fig 3B.1

are maintained whilst the tumors are colored according to the value of the ER factor. The ER

Fig 4. Copy number and factors in the TCGA breast cancer dataset. Normalized coefficients representing the contribution of

DNA copy number aberrations to the factors. Specifically, the coefficients represent the contribution of recurrently gained (left) or

lost (right) copy number regions identified by RUBIC to the factors represented in the rows. Recurrently aberrated copy number

regions are annotated with chromosomal bands or putative driver genes in the region.

https://doi.org/10.1371/journal.pcbi.1006520.g004
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+/ER- subtyping is known to be associated with breast cancer survival [4]. Therefore an addi-

tional validation of the relevance of our ER factor could be found in its association with sur-

vival. Since clinical annotation on the TCGA data is limited, we employed the METABRIC

dataset to validate the associations of the factors with outcome. To this end, we transferred the

TCGA factors to the METABRIC data set through single sample analyses. Consistent with the

known prognostic value of ER status, a high value of the ER factor is associated with better sur-

vival in the METABRIC dataset (S12 Fig).

Second, the HER2 factor shows large SFA coefficients for ERBB2 protein expression and

copy number gain (Fig 2). The gene-set enrichment analysis shows enrichment for signatures

of ERBB2 amplification and the HER2-enriched PAM50 subtype. Importantly, this factor is

strongly associated with the amplicon on Chromosome 17 harboring ERBB2 and GRB7, as evi-

denced by the large coefficients identified for this amplicon in the factor analysis (Figs 2 and

4). Taken together, this suggest that the HER2-factor indeed identifies the HER2+ tumors.

This is confirmed by the strong association of this factor with the HER2-enriched PAM50 sub-

type (Fig 3B.3, AUC = 0.96) and by the large weights of the HER2/GRB7 locus on DNA copy

number (Fig 4). HER2-positive breast cancers that do not receive anti-HER2 treatment (such

as trastuzumab) are known to have a poor survival [4]. Indeed, on the METABRIC data set,

we find that samples characterized by a high value of the HER2 factor show worse survival

(S12 Fig).

Third, the Luminal-Proliferative factor shows enrichment for signatures representing the

cell cycle, proliferation and high-grade tumors in the gene-set enrichment analysis. This factor

shows strong association with the PAM50 Luminal A and Luminal B subtypes (AUC of 0.78),

with the factor being predominantly low in Luminal A and high in Luminal B (Fig 3B.4).

Notice that, in contrast to the ER and HER2 factors, which are continuous but show bimodal-

ity, this factor is more unimodal (S3 Fig). In addition, the copy number weights associated

with this factor shown in Fig 4, show the 8q and 17q gains and 8p losses characteristic of some

Luminal B tumors [12]. The Luminal B subtype is known to have a poor prognosis, and

accordingly, a high value of the Luminal-Proliferative factor is associated with worse surival

(S12 Fig).

Fourth, gene-set enrichment analysis and ROC-curves show that the Normal-like factor is

associated with PAM50 normal-like tumors (AUC = 0.92) and tumors with a lobular pathol-

ogy (AUC = 0.84). Finally, the Basal factor is associated with expression of the basal keratins

KRT5, KRT6B, KRT14 and KRT17 (Fig 2) and appears only within the triple-negative tumors

(S6 Fig). The Basal factor is very different from the Basal-like intrinsic subtype. The latter

encompasses almost all triple negative tumors and it is not directly related to basal cells, a rela-

tionship we have shown for the Basal factor based on the expression of basal keratins. Taken

together, we can conclude that the ER, HER2, Luminal-Proliferative and Normal-like factors

collectively capture most of the variation in the well-known breast cancer intrinsic subtypes.

EMT factor. EMT is a process frequently associated with cancer [24] and it involves mul-

tiple regulators, including SNAI1, SNAI2, TWIST1 and ZEB1 as well as their targets [25]. The

gene-set enrichment analysis revealed an association of one of the factors with EMT and the

extracellular matrix (S3 Table and S4 Fig). Of the known regulators of EMT, only SNAI1 is on

the RPPA array, and its protein expression is not associated with this factor. Gene expression

of the EMT regulators is correlated to the factor (Spearman correlation, SNAI1: ρ = 0.22,

SNAI2: ρ = 0.63, TWIST1: ρ = 0.42, ZEB1: ρ = 0.69). More generally, quite a number of gene

expression signatures have been developed to detect various forms of EMT (For example, see

[26]). Based on the gene-set enrichment analysis, the strongest association of the EMT factor is

with a consensus EMT signature proposed by Anastassiou and colleagues [23]. They compiled

a pan-cancer EMT signature from multiple public data sets by comparing metastatic with
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non-metastatic tumors [27]. As an EMT-like expression profile can be associated with stromal

contamination in a tumor sample, Anastassiou and colleagues profiled human tumors from a

PDX model on a microarray with species-specific probes. This enabled the removal of the

mouse stromal signal and revealed that the signature is tumor specific. A strong correlation

between the EMT factor and the sum of the two most important genes in this signature

(Fig 5A, ρ = 0.89) confirms the interpretation of this factor as capturing the specific type of

EMT modeled by the Anastassiou signature.

While the claudin-low and metaplastic subtypes of breast cancer have been associated with

EMT [28], larger studies failed to confirm the presence of the claudin-low subtype [1]. The t-

SNE map of Fig 3B.5 and the boxplots in the supplement (S9 Fig) reveal that this factor is

equally strongly represented in all intrinsic subtypes. It is therefore impossible to have an

EMT-high subtype that includes all EMT high tumors in a clustering that also captures the

intrinsic subtypes, which possibly explains the lack of reproducibility of the claudin-low and

metaplastic subtypes. Possibly, the EMT factor captures part of the biology captured by the

claudin-low and metaplastic subtypes, while taking the context of other subtypes into account.

Immune factor. The Immune factor shows enrichment for Interferon-Alpha Response

and other immune related signatures (S4 Fig and S3 Table). In order to shed further light on

this factor we employed publicly available Cibersort scores [29] to estimate the immune cell

fractions in all the breast tumors, based on their RNA expression profiles [30]. Briefly, Ciber-

sort employs RNA expression profiles of 22 pure immune cell types to perform an in silico

decomposition of the RNA expression profile of a tumor. The resulting output provides an

estimate of the relative abundance of the different immune cell types in the tumor being

decomposed. In other words, for every immune cell type, we obtain a profile across all the

breast cancer tumors representing the estimated fraction of that cell type in each tumor. We

then computed the Pearson correlation (ρ) of these immune cell type profiles with each of the

factors. Fig 5B depicts the significant correlations, i.e. only factor and immune cell profile cor-

relations where p< 0.05 and |ρ|> 0.2. The Technical RPPA, ER, Normal-Like and Immune

Fig 5. Additional factors add detail over well-known subtypes of breast cancer. A: Scatterplot of the EMT factor versus the sum of

the RNA expression of COL11A1 and THBS2 (CPM: count per million). B: Pearson correlation (ρ) between the factors and cell type

fractions. Only significant correlations (p< 0.05, |ρ|> 0.2) are shown.

https://doi.org/10.1371/journal.pcbi.1006520.g005
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factor all show more than one significant correlation with an immune cell type. Whereas the

ER factor (resting memory DC4 T cells, resting mast cells) and the normal-like factor (γδ T-

cells, resting mast cells, naive B cells) both display a more indolent immune profile, the

Immune factor clearly shows high positive correlation with active immune cell types and nega-

tive correlation with resting immune cells. While the immune factor is quite uniformly present

in all breast cancer tumors, there is an enrichment for very large values in the Basal-like tumors

which corresponds with previous reports of CD274 (PD-L1) expression patterns [31], and

Cibersort inferred immune infiltration patters [32].

Taken together, we have identified 10 factors in breast cancer. A number of these factors

(ER, Normal-like, HER2, Basal and Luminal-Proliferative) capture the subtype variation previ-

ously described in the Intrinsic subtypes. This serves as a positive control of FuncSFA as it

illustrates that it can capture known biological variation. More importantly, FuncSFA also cap-

tured additional variation not represented in the Intrinsic subtypes. Specifically, we identified

the 8q-gained factor which is associated with gains of the q-arm of Chromosome 8 and loss of

the Chromosome 16q23-24 region, as is clear from the DNA copy number weights in Fig 4. In

addition, we identified EMT and Immune factors that may lead to a better understanding of

the processes playing an important role in breast cancer, while also serving as a starting point

for the development of new treatment approaches.

Factorization of independent breast cancer data recovers mostly the same factors. To

show the generalizability of the funcSFA method, we applied it to the gene expression and

copy number data from METABRIC. The METABRIC data differ from the TCGA data in two

important aspects. First, no protein expression data is available from METABRIC to match

TCGA’s RPPA data. Second, whereas TCGA’s gene expression data were obtained using RNA

sequencing, METABRIC used the older microarray technology. Despite these differences, we

would expect a factorization of the independent METABRIC data to recover most of the

important factors found on TCGA. Given the differences between TCGA and METABRIC

noted earlier, however, we would not expect to recover the two technical factors, one capturing

the technical variation associated with RNA sequencing (Technical-RNA) and one associated

with technical variation in the RPPA data (Technical-RPPA). We therefore set out to identify 8

factors.

The correlations between the new factors and the factors from TCGA (translated to

METABRIC by single sample analysis as described in the Methods section) are shown in S11

Fig. The factorizations show a large degree of resemblance, with one exception. Seven of the 8

non-technical factors identified in TCGA are also identified in METABRIC. Only the 8q-

gained factor cannot be identified in METABRIC. One potential complication in identifying

the 8q-gained factor is that it is strongly related to the Luminal-Proliferative factor (which is

clearly identified in both sets): 8q-gains are associated with both factors and are often observed

in Luminal tumors where they can increase proliferation through activation of MYC. The

identification of both the Luminal-Proliferative and the 8q-gained factors in TCGA but only

the Luminal-Proliferative in METABRIC may be due to the specific platform and data process-

ing used by METABRIC, or alternatively the composition of the patient population.

In a more general overview, S14 Fig shows the t-SNE plots of the new factors and their over-

lap with the PAM50 subtypes. These plots indicate that the newly derived factors capture the

most important known breast cancer biology: 1) the clinically relevant ER+/ER- split as repre-

sented by Factor 1 (correlating with the TCGA ER factor); 2) the normal-like subtype as identi-

fied by Factor 2 (correlating with the TCGA Normal-like factor); 3) the Luminal B subtype as

represented by Factor 7 (correlating with the TCGA Luminal-Proliferative factor) and finally

4) the HER2 subtype as captured by Factor 8 (correlating with the TCGA HER2 factor).
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Overall, running funcSFA from scratch on an independent data set profiled partially on differ-

ent platforms has validated 87% (7/8) of the factors.

Lung cancer

Having established the utility of FuncSFA on the breast cancer data, we moved on to assess

FuncSFA on a less well-characterized tumor type. To this end we applied FuncSFA to the lung

tumor data from the TCGA in order to further assess its usefulness in uncovering new and

clinically relevant biology. We merged the TCGA lung adenocarcinoma and lung squamous

cell carcinoma datasets to obtain a data set that is comparable in size to the breast cancer set.

We employed the same data types (gene expression, RPPA and copy number) as we employed

in the breast cancer analysis. As the dataset is of comparable size to the breast cancer dataset,

and as Wilkerson and colleagues defined a total of 7 lung cancer subtypes [21, 22] we set out to

identify 10 factors. This allows the capturing of known variation with some room for the dis-

covery of novel subtypes.

FuncSFA identified 10 lung cancer factors: Adenocarcinoma, Mitochondria, DNA replica-

tion, Immune, Infiltrating B-cells, NFE2L2, EMT, Translation, BSCC (Basal Squamous Cell

Carcinoma) and 8p11-gained. S5 Fig and S4 Table list the factors and the processes and path-

ways that were significantly enriched in each of the factors based on the gene-set enrichment

analysis. The strongest SFA coefficients (the B matrix in Fig 1) for the three data types are rep-

resented in Fig 6. As before we will first provide some general observations of the results and

then provide a detailed description and analysis of each factor.

The coefficients depicted in Fig 6 reveal the following. First, as before, the EMT factor

shows strong association with the Anastassiou signature genes (THBS2 and COL11A1) as well

as a number of collagens. Second, the Mitochondrial factor has large SFA coefficients for genes

encoded on the mitochondrial DNA while the Translation factor shows strong association

with genes encoding ribosomal proteins. Third, the BSCC and 8p11-gained factors show large

RPPA coefficients, with a concentration of lowly expressed proteins in the PI3K pathway.

However, they do differ in terms of their RNA expression coefficients, and we will provide

more elaborate descriptions of these factors below. Fourth, the Immune factor is characterized

by large RNA expression coefficients of immunoglobulins. Finally, the Adenocarcinoma factor

shows association with the RNA expression of a number of keratins, negative coefficients for

both copy number and RNA expression of SOX2 and positive association with both RNA

expression and copy number of NKX2-1 (also known as TTF1).

Fig 7A depicts, per factor, for all ten factors, the amount of explained variation for the three

data types: gene expression, copy number and RPPA. As in breast cancer, most factors explain

variation in each of the data types, with the largest proportion of the variation explained by a

given factor mostly being the variation in RNA expression with the exceptions being the

8p11-gained and BSCC factors where the largest portion of the variance explained by these fac-

tors is the variation in the RPPA data. It is also noteworthy that these two factors explain a sig-

nificantly larger portion (0.32) of the variation in the RPPA data, compared to the factors that

explain the largest portion of the RNA expression variation (0.19). The 8p11-gained and BSCC

factor activity levels are negatively correlated and have RPPA coefficients of similar magnitude

and equal sign (S8 Fig). This means that the RPPA values predicted by these two factors

together are much smaller than the RPPA values predicted by one of these factors on its own.

In the remainder of this section, we will first discuss the Wilkerson subtypes that have been

proposed for lung cancer. Then we will discuss each of the identified factors in greater detail.

The Wilkerson molecular subtypes of lung cancer. The molecular subtypes of lung ade-

nocarcinoma and lung squamous carcinoma were defined by Wilkerson and colleagues [21,
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22], and also found to be present on the larger TCGA datasets [2, 3]. Fig 7B.2 depicts the Wilk-

erson subtypes on top of the t-SNE plot derived from the SFA factors. Here every tumor is col-

ored according to its subtype membership. Globally, all SFA factors are associated with these

subtypes (p< 10-6 for every factor, Kruskal-Wallis test). However, in contrast to breast cancer,

Fig 6. The strongest SFA coefficients for the lung cancer data set for each of the three data types and all ten factors. Height of

the bars shows the values of the coefficients. Non-significant coefficients (p> 0.05, signifance test of coefficient in an ordinary least-

squares model) are marked with N.S. If a gene is shown we show all coefficients of that gene in the model. RNA expression

coefficients are shown in blue. Protein expression coefficients are shown in orange. Any modifications of an epitope are noted in a

short text description. pX = phosphorylated at residue X. DNA copy number coefficients are shown in red. Numbers refer to the

recurrently aberrated loci in S5 Table. Recurrent gains are prefixed with a g, losses with an l. Also see S2 Table.

https://doi.org/10.1371/journal.pcbi.1006520.g006
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it was not possible to perform a one-to-one mapping from the SFA factors to the Wilkerson

subtypes. This can most likely be explained by the fact that none of the Wilkerson subtypes

have (yet) been associated with a driver event, unlike breast cancer where ESR1 and ERBB2

have been identified as strong drivers giving rise to specific subtypes of breast cancer. Rather,

it seems that the Wilkerson subtypes are driven by a complex interplay of multiple, heteroge-

neous biological processes. Under these circumstances, we would not expect to find factors

that represent the subtypes directly, but that the factors should capture the underlying biologi-

cal processes.

Adenocarinoma and squamous cell carcinoma were subtyped separately, so we have a set of

subtypes for each. The adenocarcinoma subtypes are termed ‘terminal respiratory unit’ (TRU),

‘proximal-inflammatory’ (PI) and ‘proximal-proliferative’ (PP). The TRU subtype is character-

ized by highly expressed asthma, excretion and surfactant genes, the PP subtype with the over-

expression of defense response genes (chemokines) and the PI subtype with high expression of

DNA-repair genes [22]. The Wilkerson squamous cell carcinoma subtypes are termed ‘Basal’,

‘Classical’, ‘Secretory’ and ‘Primitive’. The Basal subtype has been associated with cell adhesion

and epidermal development. Wilkerson and colleagues reported that the classical subtype is

Fig 7. Sparse-factor analysis on the TCGA lung cancer dataset. A: Explained variance per data type and factor. B: B.1 shows the t-

SNE map of all lung tumors with red denoting the Adenocarcinomas and blue the Squamous Cell Carcinomas. With the tumors in

the same positions as in B.1, B.2 depicts the subtyping as proposed by Wilkerson and colleagues [21, 22]. The remaining panels show

the tumors in the same positions as the first two maps, but colored according to the value of the represented factor in each tumor.

https://doi.org/10.1371/journal.pcbi.1006520.g007
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related to xenobiotic detoxification, that the Secretory subtype shows association with the

expression of immune related genes, NKX2-1 (TTF1), MUC1 and surfactant genes. It is inter-

esting to note that although the secretory subtype is a squamous cell carcinoma subtype, it

shows intermediate scores in the Adenocarcinoma factor (Fig 7B.2 and 7B.3, and S10 Fig),

which is consistent with the fact that NKX2-1 is expressed in both the Secretory subtype and in

adenocarcinomas. Finally, the Primitive subtype has previously been associated with prolifera-

tion and DNA processing and repair.

Adenocarcinoma and squamous cell carcinoma. The differences between adenocarci-

noma and squamous cell carcinoma are captured by the Adenocarcinoma factor, which is high

in adenocarcinomas and low in squamous cell carcinomas. Interestingly, in the primitive sub-

type of squamous cell carcinoma, tumors with high and low values for this factor exist (Fig

7B.2 and 7B.3, and S10 Fig). In addition, copy number is dominated by a particularly strong

negative association with the gain of Chromosome 3q26-29, implying that the adenocarcino-

mas show absence of gains while squamous cell carcinomas carry this gain (Fig 8). We also

observe the expected associations between this factor and mutations in NFE2L2, STK11,

KEAP1. KRAS, EGFR, PTEN, TP53, PIK3CA, BRAF and ARID1A (Fig 9A). As expected, the

Adenocarcinoma factor is high in all the Wilkerson adenocarcinoma subtypes, as compared to

the squamous cell carcinoma subtypes. More specifically, the Adenocarcinoma factor is very

low in the Basal and Classical subtypes but higher in the Secretory and Primitive subtypes.

Two factors strongly associated with RPPA: BSCC and 8p11 gained. The largest frac-

tion of the variance explained by the BSCC and 8p11-gained factors is associated with the

RPPA data (Fig 7A). In fact, the amount of variation explained in the RPPA data by these two

factors is the highest across all factors and all data types. The 8p11-gained factor is associated

with increased gain of recurrent aberrations containing the genes NDS3, LETM2 and, FGFR1,

which are located on the 8p11 chromosomal band (Fig 8), and shows high scores in the PI sub-

type. As expected, the BSCC factor shows, in general, higher scores within the Basal subtype as

compared to other squamous cell carcinoma subtypes (S7 and S10 Figs). Specifically, the

BSCC factor shows intermediately strong association with the basal subtype of squamous cell

carcinoma (AUC = 0.59).

Fig 8. Copy number and factors in the TCGA lung cancer dataset. Normalized coefficients representing the contribution of DNA

copy number abberations to the factors. Specifically, the coefficients represent the contribution of recurrently gained (left) or lost

(right) copy number regions identified by RUBIC to the factors represented in the rows. Recurrently aberrated copy number regions

are annotated with chromosomal bands or putative driver genes in the region.

https://doi.org/10.1371/journal.pcbi.1006520.g008
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DNA replication factor. The DNA replication factor captures two biological processes.

Pathway analysis reveals a positive association of this factor with pathways involved in DNA

replication, implying that genes annotated to these pathways are enriched in tumors with high

levels of this factor. According to the Cibersort analysis, this factor is positively correlated with

signatures representing activated memory CD4 T-cells and negatively correlation with signa-

tures representing resting mast and resting dendritic cells (Fig 9B). Conversely, this factor

shows negative association with the protein expression of the transcription factor NKX2-1. As

expected, NKX2-1 targets (SCGB3A2 and AQP4) are amongst the top-ranking genes in terms

of the magnitude of their negative RNA expression coefficients. Other genes with very large

negative RNA expression coefficients for this factor include the surfactant proteins (SFTPA1,

SFTPA2, SFTPB, SFTPC, SFTPD) which are co-expressed with NKX2-1 in the alveolar cells of

the lung [33].

Fig 9. Mutations and immune infiltration in lung cancer. A: Mann-Whithney U statistic of the factor values between tumors with and without a

mutation in a gene divided by the product of the number of tumors in each group. Only significant (p< 0.05) values are shown. B: Pearson correlation

(ρ) between the factors and cell type fractions. Only significant correlations (p < 0.05, |ρ|> 0.2) are shown. C: Mutations in genes of the NFE2L2

pathway and STK11 (black: tumor is mutated in this gene).

https://doi.org/10.1371/journal.pcbi.1006520.g009
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The DNA replication factor has low scores in tumors of the TRU subtype (S7 and S10 Figs),

which is consistent with the association of this subtype with high expression of surfactant pro-

teins. Compared to the TRU subtype, the DNA-replication factor shows high scores in the PI

subtype, but not at the same level as in the Primitive and Classical squamous cell carcinoma

subtypes. Since the Secretory subtype shows association with surfactant proteins, the DNA-

replication factor shows, as expected, low scores for the tumors of this subtype (S7 and S10

Figs).

Immune factors: Immune and Infiltrating B-cells. FuncSFA identifies two immune

related factors: Immune and Infiltrating B-cells (IB-cells). Pathway analysis of the Immune fac-

tor shows enrichment for interferon associated signatures and T-cell pathways. This associa-

tion is confirmed by high RNA expression coefficients of immunoglobulins, members of the

histocompatibility complex (HLA) and members of the complement system (Fig 6). According

to the Cibersort analysis, the Immune factor correlates negatively with the signatures repre-

senting T-follicular helper cells and activated dendritic cells while it positively correlates with

signatures of γδ T-cells and M1 macrophages (Fig 9B). In addition, this factor is associated

with an increased loss of 9p23-21. The Infiltrating B-cells factor shows strong association with

interferon associated signatures and T-cell pathways in the gene-set enrichment analysis.

However, this association is weaker than for the Immune factor. When considering the RNA

expression coefficients of this factor we see large coefficients for immunoglobulins, but in con-

trast to the Immune factor, neither the HLA nor the complement system is represented. This

factor has a strong positive correlation with plasma B-cells (Fig 9B) and is associated with a

higher mutation rate of STK11 (Fig 9A).

As the PP subtype shows overexpression of defense response genes (chemokines), we

observe, consistent with this finding, that the infiltrating B-cell and Immune factors score

highly in this subtype (Fig 7B.5 and 7B.7). In contrast, the Infiltrating B-cell factor scores lowly

in the TRU and PI subtypes. The Immune factor shows high scores in in the TRU, Classical

and Secretory subtypes. Interestingly, the Basal subtype shows high levels of the Infiltrating B-

cell factor, but no distinctive pattern for the Immune factor (S10 Fig).

Mitochrondial, translation and EMT factors. We identified a number of factors with a

clear functional profile, but where additional research is required to understand their role and

relevance in lung cancer. First, the Mitochondrial factor associated with genes encoded on the

mitochondrial DNA and GAPDH protein expression (Fig 6). Second, the Translation factor

which shows enrichment for translation pathways and signatures of the cell cycle (S4 Fig).

This association is also strongly supported by the large coefficients of genes encoding ribo-

somal proteins (Fig 6). Finally, as in breast cancer, we also identified an EMT factor in lung.

As in breast, the EMT lung factor is strongly correlated with the Anastassiou signature across

the tumors (ρ = 0.73). Regarding the Wilkerson subtypes, the TRU subtype shows low scores

for the EMT and Translation factors while the Translation factor is high in the Primitive

subtype.

NFE2L2. The NFE2L2 factor shows association with NFE2L2 targets in the gene-set

enrichment analysis, suggesting this factor captures the activation of NFE2L2. This conclusion

is confirmed by a strong association of this factor with mutations in NFE2L2 and in its inhibi-

tor KEAP1 (Fig 9A). Interestingly, the factor is depleted for EGFR mutations, although EGFR

activates the NFE2L2 pathway by inhibiting KEAP1 [34]. Still, these three genes in the NFE2L2

pathway show a mutually exclusive mutation pattern (Fig 9C, p< 0.05, DISCOVER groupwise

test [35]), suggesting that they independently activate the NFE2L2 pathway effecting the com-

mon downstream gene expression changes captured by this factor. So, this factor could be a

readout of NFE2L2 pathway activation, which in some conditions has been suggested to

increase resistance to EGFR inhibitors.
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In addition to the clear NFE2L2 association, this factor also shows large values for the coef-

ficients for genes related to xenobiotic detoxification, such as CES1, CYP4F3 and CYP4F11.

Hence, it is not surprising that the NFE2L2 factor shows high scores in the Classical subtype,

which is also associated with this process.

In summary, we have identified factors that do show overall association, but not very clear

one-to-one correspondence with the previously defined Wilkerson subtypes. Our factors do

capture the major lung cancer subtypes (Adenocarcinoma and Squamous cell carcinoma), and

identified processes that occur in both of these types. These include epithelial to mesenchymal

transition, two immune processes, and, most interestingly, a factor that reports the activity of

the NFE2L2 pathway. The latter may have interesting therapeutic consequences.

Discussion

In both breast and lung cancer the sparse-factor analysis was able to recover known biology.

Additionally, we find factors that capture biology that traditional clustering methods have not

been able to find, such as the Immune, EMT, and infiltrating B-cells factors. Our results illus-

trate the need for continuous factors as opposed to discrete clusters. For example, the Lumi-

nal-Proliferative factor shows that the distinction between Luminal A and B is not discrete.

Also the need for multiple factors per tumor is illustrated by our results. For example, the

Immune and EMT factors in breast cancer are active across all subtypes. Finally, our results

show that a complete molecular characterization requires multiple data types. Although all

non-technical factors are represented in the RNA expression, the 8q-gained and Luminal-Pro-

liferative factors in breast cancer are mostly copy number driven. Also, the protein expression

contributes to key factors such as the ER and HER2 factors.

Interestingly we have found the same cancer cell specific EMT factor in both lung and

breast cancer. This does not necessarily mean that tumors with high levels of this factor have a

large proportion of mesenchymal tumor cells. More likely, this factor represents the activation

of a transcriptional program that may eventually lead to a transition to the mesenchymal phe-

notype. Therefore, the tumors with high levels of this factor can have a higher propensity to

undergo EMT. This can potentially be resolved by applying the method pan-cancer including

both epithelial and mesenchymal cancers. As the mesenchymal tumors should get a maximum

EMT score, this analysis could give an indication how far along the EMT transition the cells in

these tumors really are.

Several factors may potentially have an application in predicting a tumors’ response to

treatment. The NFE2L2 factor might be indicative of response to dimethyl fumarate (DMF)

treatment, which targets the NFE2L2 pathway and can inhibit carcinogenesis [36]. Because the

factor measures activation of the transcription factor through its downstream targets, it could

be more predictive than only looking at mutations in the transcription factor itself. This

hypothesis could be tested on patient derived xenograft models or cell lines. The Immune fac-

tor in breast cancer and the Immune, DNA replication and B-cell infiltration factors in lung

cancer are possibly predictive for response to immune checkpoint inhibitors. If the immune

system is already highly active, a clinically relevant response might be easier to achieve. These

hypotheses can be tested by obtaining RNA expression data from pre-treatment biopsies of

patients treated with immune checkpoint inhibitors, scoring these factors based on these data

and correlating that with their response to checkpoint inhibitors.

In the lung cancer data set we found two highly correlated factors. Without the sparsity

penalties, the algorithm should find orthogonal factors. Orthogonal factors explain the most

variance, but the sparsity penalties prevent full orthogonality. An explanation of the highly
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correlating factors can be that the optimal sparsity penalty is different per factor, where one

biological process involves thousands of genes, and another only a few.

In this study we used only the tumors which have all data types available. With increasing

tumors sizes and an increasing number of data types this results in a situation where ever

growing parts of the data can not be incorporated in an integrative analysis. The EM frame-

work quite naturally allows for missing data, so this might be an interesting future extension.

In addition to the data types we used here, other molecular data types that could be

included are DNA methylation and miRNA expression data. As the mutation data includes

driver events it would be desirable to include it as well. This would require transforming the

mutation data such that it has approximately Gaussian error. One way to do this is by smooth-

ing mutations over an interaction network [37]. The inclusion of higher level tumor pheno-

types, such as features obtained from MR imaging or pathology slides, could guide the method

towards finding biological processes that lead to clinically relevant differences.

We have shown FuncSFA is able to find biological processes that are active across otherwise

very different tumors, such as the ER+ and ER- subtypes in breast cancer. Applying this

method to a pan-cancer cohort might find biological processes that are activated in a large

number of tumor types and provide insight into how tumors of different origin relate to each

other.

We have shown that the factors derived from TCGA breast cancer set can be translated to

METABRIC, another large, publicly available breast cancer data set. Importantly, these trans-

lated factors captured the same known breast cancer biology on the METABRIC samples.

Moreover, in spite of the fact that the METABRIC set has no protein expression data available,

we could identify 7 of the 8 TCGA breast cancer factors when performing a de novo factoriza-

tion on the gene expression and copy number data of METABRIC. As expected, these newly

derived factors also captured the expected biology in the METABRIC set. This demonstrates

the robustness of the factors with regard to platform differences (METABRIC RNA profiling

was performed with microarrays and not RNA sequencing as in TCGA) and with respect to

the available data types (METABRIC lacks protein expression data).

In summary, we have shown that FuncSFA is able to integrate at least three data types. It

identifies continuous-valued factors that could be simultaneously active in the same tumor

removing the necessity to assign tumors to clusters. Our results illustrate the advantage of fac-

tors over clusters with several biologically or clinically relevant examples. The identified factors

represent the heterogeneity both within and between cancer types, and represent the activation

of biological processes in a patient specific manner. Considering the more complete and fine-

grained characterization they allow, these factors could benefit the personalized treatment of

cancer.

Methods

The FuncSFA method consists of two steps. In the first step, a sparse-factor analysis integrates

multiple data types into a small number of factors. In the second step, the factors are linked to

existing knowledge of biology by doing a gene-set enrichment analysis.

Sparse-factor analysis model

The data of a single data type i with N tumors and ni features is represented in a N × ni data

matrix Xi. The data matrices of t data types are stacked together into a N × n data matrix

X = [X1, . . ., Xt]. This data matrix is factorized into a N × k factor matrix Z and a k × n coeffi-

cient matrix B, where the number of factors k is much smaller than the total number of

features n.
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The probabilistic model has been described previously by Shen and colleagues [8]. We

briefly summarize this probabilistic model here. A tumor sample vector x with n features is

explained by factors z and coefficients B with Gaussian error

x ¼ BTzþ e; e � N ð0;CÞ i:i:d

where the residual variance C is zero off the diagonal and equal for features of the same data

type. When the factors are taken to be normally distributed

z � N ð0; IÞ i:i:d

the complete data log-likelihood is:

‘ðB;C;X;ZÞ ¼ �
1

2
trace ððX � ZBÞC� 1

ðX � ZBÞTÞ �
n
2
log ð det ðCÞÞ �

1

2
trace ðZTZÞ

where X ¼ ½xT
1
; :::; xTN �

T
and Z ¼ ½zT

1
; :::; zTN �

T
. The coefficients are made sparse by a elastic net

penalty:

‘pðB;C;X;ZÞ ¼ ‘ðB;C;X;ZÞ �
Xn

i¼1

li;1jðbiÞj1 �
Xn

i¼1

li;2jðbiÞj
2

2

where B ¼ ½bT
1
; :::; bT

n �. The penalties λ1,i and λ2,i are kept the same for all features in a data

type.

Sparse-factor analysis algorithm

To optimize the penalized complete data log-likelihood we use an iterative algorithm, improv-

ing over the iCluster2 algorithm [11] at several key points. It consists of the following steps.

1. Initialize the estimated coefficients B̂ and residual variance Ĉ by the loadings of a principal

component analysis (PCA).

2. Calculate the expectation E[Z|X] and covariance E[ZT Z|X] of the factors given the current

B̂ and Ĉ. In contrast to iCluster2 E[Z|X] and E[ZT Z|X] are then scaled to have unit vari-

ance per factor. This prevents the regularization penalty from forcing large factor values to

compensate for small coefficients.

3. Estimation of coefficients is done differently from iCluster2. We use the coordinate descent

scheme for solving elastic net as used in glmnet [15]. A coefficient of a single factor i and a

single feature j is updated given the current E[Z|X], B̂ and Ĉ:

B̂ ½i;j�  
S B̂ ½i;j� þ

1

N
ðE½ZjX�T

½�;i�X
T
½j;�� � B̂T

½i;��E½Z
TZjX�

½�;i�Þ; lj;1

� �

1þ lj;2

where S is the soft-thresholding operator S(b, l1) = sign(b)(|b| − l1)+. In a single iteration of

the main algorithm the coefficients are updated once in sequential order.

4. Residual variance is estimated per data type:

Ĉ i  
1

niN
ðtraceðE½ZjX�B̂iX

T
i Þ � traceðXiX

T
i Þ

for data type i.
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5. Repeat from step 2 until convergence, with a maximum of 5.000 iterations. We consider the

algorithm converged when the average absolute change in reconstruction error over the last

10 iterations is smaller than 10-6.

Parameter selection. To find the optimal penalty weight parameters λi,1, λi,2 for the L1

and L2 penalties respectively, we reparameterize.

li;1 ¼ aldatatypeðiÞ

li;2 ¼ 10� 6 þ ð1 � aÞldatatypeðiÞ

where datatype(i) gives the data type of feature i. We then do a grid search for the l penalties

giving the highest Bayesian information criterion (BIC), keeping α fixed at 0.9. The effective

number of parameters of the penalized coefficients, used for calculating the BIC, is calculated

using the method of Tibshirani and Taylor [38].

Pathway analysis

We employ a gene-set enrichment analysis tailored to the results of sparse-factor analysis. For

this we use gene-set enrichment analysis [10] with a modified gene ranking method. Gene

ranking is done as follows. First the factors Z are regressed on the RNA expression data con-

taining all genes. Second we get correlation-like coefficients by dividing the regression coeffi-

cients of a gene by the standard deviation of that gene. The genes are then ranked per factor

based on their correlation-like coefficient.

Preprocessing

RNA expression data from RNA sequencing was preprocessed using limma-voom [39]. We

selected the 1000 genes with the highest median absolute deviation. The mean variance-trend

in RNA sequencing data was taken into account by multiplying the RNA expression with the

precision weights obtained from voom. DNA copy number was sampled at regions with recur-

rent copy number aberrations. Recurrently aberrated copy number regions were taken from

the RUBIC paper [18] for breast cancer or obtained by running RUBIC for lung cancer. To

obtain the copy number of region in a tumor, we took the median copy number of all segments

in the tumor sample overlapping that region. This results in a sample by region matrix with

copy number data. Protein expression data from RPPA was used directly as processed by

TCGA. To remove differences in variance between data types we divided every data type by its

standard deviation.

Translatation to METABRIC

The factors discovered on the TCGA breast cancer data were translated to METABRIC based

on the gene expression data. Since unlike TCGA’s expression data, the METABRIC gene

expression data were obtained using microarrays, some additional preprocessing was neces-

sary. Genes were mapped to the most variable probe targeting that gene. The METABRIC

gene expression was centered and scaled to have the same variance per gene as the TCGA data.

To remove the effect of the voom precision weights used for the TCGA data, coefficients were

divided per gene by the average weight over all samples. Then the translated factor values for

METABRIC were calculated using:

Z ¼ XmRNAðBT
mRNAðBmRNABT

mRNA þ IÞ� 1
Þ

where BmRNA are the adjusted coefficients and XmRNA the scaled gene expression data.
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Factorization of METABRIC

To discover new factors on METABRIC from scratch, we ran funcSFA on the CBS segmented

copy number abberation (CNA) data and the fully processed microarray data. Copy numbers

for recurrently aberrated regions were extracted from the segmented copy number data using

the same approach and same selection of recurrently aberrated regions as was used for the

TCGA analysis. Since METABRIC’s expression data were obtained using microarrays as

opposed to RNAseq, we did not need to use voom precision weights. Otherwise funcSFA was

applied to METABRIC following the same procedure as for TCGA.

Additional methods

t-SNE [40] was used to summarize the factors in two non-linear dimensions, yielding a high-

level map the factors and other tumor variables can be projected on. These t-SNE maps were

calculated using scikit-learn [41].

The explained variance of a factor is calculated by subtracting the summed square error of

the model with all factors from the model excluding the factor dividing by the total sum of

squares of the data:

explained variancei;j ¼
jjXi � Z½� j;��Bi½�;� j�jj

2

F � jjX
T
i � ZBiÞjj

2

F

jjXijj
2

F

for data type i and factor j where Bi[�, − j] and Z[−j,�] are the coefficients and factors excluding the

factor i. The squared Frobenius norm jj � jj
2

F is the sum of squares of the elements of a matrix.
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S1 Table. Coefficients of all 10 factors in breast cancer.

(XLSX)

S2 Table. Coefficients of all 10 factors in lung cancer.

(XLSX)

S3 Table. Gene set enrichment of all 10 factors in breast cancer. For gene sets with false dis-

covery rate (FDR) smaller than 0.25 and a leading edge proportion smaller than 0.5, normal-

ized enrichment statistic (NES), rank at which the maximum enrichment is achieved

(Maximum ES at), leading edge proportion and a link to the MSigDB are shown. A worksheet

contains the results of GSEA on one factor using gene sets from the canonical pathways (cp) or

chemical and genetic pertubations (cgp) gene set collections from MSigDB.

(XLSX)

S4 Table. Gene set enrichment of all 10 factors in lung cancer. Using the same filtering and

columns as in S3 Table.

(XLSX)

S5 Table. Recurrently aberrated loci by RUBIC. All RUBIC events with their chromosomal

locations for lung and breast cancer.

(XLSX)

S1 Fig. Convergence of iCluster, iCluster2 and sparse-factor analysis. Showing the

explained variance of a model over the first 50 iterations for funcSFA, iCluster and iCluster2.

Best possible explained variance as determined by principal component analysis (PCA) is

shown as a benchmark.

(TIF)

Functional sparse-factor analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006520 October 31, 2018 24 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006520.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006520.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006520.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006520.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006520.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006520.s006
https://doi.org/10.1371/journal.pcbi.1006520


S2 Fig. Correlation between the factors of the best solution with a number of factors and

the best solution with one factor more.

(TIF)

S3 Fig. Histograms of factor values.

(TIF)

S4 Fig. Heatmap of GSEA normalized enrichment statistic (breast).

(TIF)

S5 Fig. Heatmap of GSEA normalized enrichment statistic (lung).

(TIF)

S6 Fig. t-SNE maps of breast cancer. A selection of these is also shown in Fig 3B.

(TIF)

S7 Fig. t-SNE maps of lung cancer. A selection of these is also shown in Fig 7B.

(TIF)

S8 Fig. Scatterplot of coefficients and values of RPPA technical factors in lung.

(TIF)

S9 Fig. Boxplots of factors values per factor in breast cancer over the PAM50 subtypes.

P-values are from a Kruskal-Wallis test.

(TIF)

S10 Fig. Boxplots of factor values per factor in lung cancer over the Wilkerson subtypes.

P-values are from a Kruskal-Wallis test.

(TIF)

S11 Fig. Heatmap of Pearson correlation between factors that were found on the METAB-

RIC dataset (new factor) and factors that were found on TCGA and translated to METAB-

RIC (translated factor).

(TIF)

S12 Fig. Kaplan-Meier plots of overall survival for every factor with patients split into two

groups by factor value around 0. Signifance survival difference is assesed with the log-rank

test.

(TIF)

S13 Fig. Variance of a gene over the number of genes.

(TIF)

S14 Fig. t-SNE maps of new factors found on METABRIC.

(TIF)

S15 Fig. t-SNE maps of TCGA factors translated to METABRIC.

(TIF)

S16 Fig. Explained variance per factor, for models with an increasing number of factors.

The models are the same as those shown in S2 Fig.

(TIF)
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