Psychological Review
1993, Vol. 100, No. 3. 432-459

Decision Field Theory:

Copyright 1993 by the American Psychological Association. Inc.
0033-295X/93/$3.00

A Dynamic-Cognitive Approach to Decision

Making in an Uncertain Environment

Jerome R. Busemeyer and James T. Townsend

Decision field theory provides for a mathematical foundation leading to a dynamic, stochastic
theory of decision behavior in an uncertain environment. This theory is used to explain (a) viola-
tions of stochastic dominance, (b) violations of strong stochastic transitivity, {¢) violations of inde-
pendence between alternatives, (d) serial position effects on preference, (¢) speed—accuracy trade-
off effects in decision making, (f) the inverse relation between choice probability and decision
time, (g) changes in the direction of preference under time pressure, (h) slower decision times for
avoidance as compared with approach conflicts, and (i) preference reversals between choice and
selling price measures of preference. The proposed theory is compared with 4 other theories of

decision making under uncertainty.

Beginning with von Neumann and Morgensterns (1947)
classic expected utility theory, steady progress has been made
in the development of formal theories of decision making
under risk and uncertainty. For rational theorists, the goal has
been to formulate a logical foundation for representing the pref-
erences of an ideal decision maker (¢.g., Machina, 1982; Savage,
1954; Wakker, 1989a). For behavioral scientists, the goal has
been to identify the behavioral principles that human prefer-
ences actually obey (e.g., Edwards, 1962; Kahneman & Tversky,
1979; Luce & Fishburn, 1991).

The goal of the present theoretical endeavor differs from
both of these goals. Our purpose is to understand the motiva-
tional and cognitive mechanisms that guide the deliberation
process involved in decisions under uncertainty. Deliberation is
a time-consuming and effortful cognitive process that involves
an extensive amount of information seeking, weighing of con-
sequences, and conflict resolution (cf. James, 1950, pp. 528-
529). This deliberation process is manifested by indecisiveness,
vacillation, inconsistency, lengthy deliberation, and distress
(Janis & Mann, 1977; Svenson, 1992). Notably absent in pre-
vious theoretical accounts is any mention about this delibera-
tion process. Earlier theories do not provide an explanation for
why preferences waver over time nor do they provide a mecha-
nism for determining how long deliberation lasts. This omis-
sion applies to previous theories of decision making cast from
the mold of expected utility theory.
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The new contributions of the proposed theory are character-
ized in Table 1, which provides a classification of theories ac-
cording to two attributes: deterministic versus probabilistic
and static versus dynamic. Deferministic theories postulate a
binary preference relation that is either true or false for any pair
of actions. Probabilistic theories postulate a probability func-
tion that maps each pair of actions into the closed interval [0, 1].
Static theories assume that the preference relation (for deter-
ministic models) or the probability function (for probabilistic
models) is independent of the length of deliberation time. Dy-
namic theories specify how the preference relation or probabil-
ity function changes as a function of deliberation time.' For the
last 45 years, the deterministic-static view has dominated re-
search on decision making under uncertainty. The purpose of
this article is to build on this previous work by extending these
theories into the stochastic-dynamic category.

The remainder of this article is organized as follows. In the
following section, we establish why it is necessary to build a
theory of decision making on a theoretical foundation that is
stochastic rather than deterministic and dynamic rather than
static. In the section on the basic assumptions of decision field
theory, the theory is presented in a series of seven stages, begin-
ning with the familiar deterministic—static approach and end-
ing with the new stochastic—dynamic approach. The fourth sec-
tion provides a crucible for testing decision field theory against
other major contemporary theories of decision making under
uncertainty. The concluding section summarizes the advan-

't is useful to distinguish dynamic decision models from dynamic
decision tasks. The latter refers to tasks that involve a sequence of
decisions in which choices and outcomes available at later stages de-
pend on choices and outcomes that occur at earlier stages. Static deci-
sion tasks involve only a single stage—one decision followed by one
outcome. Dynamic decision models can be applied to both types of
tasks. However, most of the psychological research has been con-
cerned with static decision tasks. Consequently, this article is limited
to static decision tasks. In future work, we plan to extend the theory to
dynamic decision tasks as more research on this important topic be-
comes available.
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tages of decision field theory vis-3-vis the deterministic-static
approach.

Two Fundamental Properties of Human Decision-
Making Behavior

Before presenting the new stochastic-dynamic approach to
decision making, we review the main empirical reasons for
shifting away from the currently dominant deterministic-static
approach. This is done by reviewing empirical evidence that
contradicts theories based on deterministic or static assump-
tions.

Variability of Preferences: Determinism Versus
Probabilism

Current deterministic theories of decision making begin
with the foundational assumption that the choice between two
actions, A and B, is determined by a binary preference relation,
denoted =, which is either true or false for any pair of actions
(cf. Fishburn, 1988). According to deterministic theories, ac-
tion A will be chosen overaction Bif A= Bistrueand B> A
is false. All of the remaining axioms of deterministic theories
are defined in terms of this binary relation.

This all-or-none assumption was refuted over 40 years ago in
one of the earliest investigations of risky decision making per-
formed by Mosteller and Nogee (1951). In this classic experi-
ment, subjects were given a choice between rejecting or accept-
ing a poker hand that had a 5 chance of winning moneyanda %
chance of losing money. The amount to win was manipulated
and the amount to lose was fixed at 5¢ Mosteller and Nogee
pointed out that if choice is determined by an all-or-none prefer-
ence relation as posited by deterministic theories, then the rela-
tive frequency of accepting the poker hand should be zero for
amounts to win below some critical value and then it should
jump to 1.0 for amounts to win above that same critical value
(ie., the curve in Figure | should look like a step function rather
than an S-shaped function).

On the contrary, Mosteller and Nogee (1951) found that the
probability of choosing a monetary gamble was a gradually
increasing S-shaped function of the amount to win, which was
strikingly similar to the psychometric functions found in psy-
chophysics. The S-shaped curve shown in Figure 1 is an exam-
ple for a typical subject from the Mosteller and Nogee experi-

Table 1 .
Categorization of Decision Theories

Category Static Dynamic
Deterministic Expected utility Dynamics of action

Probabilistic Random utility Decision field theory

Note. Prospect theory and rank-dependent utility theory are also in-
cluded in the deterministic—static category. Thurstone’s (1959) prefer-
ential choice model is an example of a random utility model. Random
utility theories are summarized in Colonius (1984). Dynamics of ac-
tion is a theory of motivation developed by Atkinson and Birch (1970).
Affective balance theory (Grossberg & Gutowski, 1987) is also a
member of the deterministic-dynamic category.
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Figure 1. The probability of accepting a gamble plotted as a function
of the amount to win by playing the gamble. (The gamble produced
either the win indicated on the abscissa with probability [¥53] ora loss of
5¢ with probability [%5]. The data are from a single subject in the Mos-
teller and Nogee [1951] experiment.)

ment, and similar results were later reported by Edwards
(1955). On the basis of these results, Mosteller and Nogee (1951)
concluded that “subjects are not so consistent about preference
and indifference as postulated by von Neumann and Morgen-
stern but have a graded response, gradually increasing the fre-
quency of risks taken as the value of the risk increases” (p. 404).

In view of this fact, some deterministic theorists define what
may be called the direction of preference in terms of choice prob-
ability. Let Pr(A, B) symbolize the probability that action A is
chosen over action B in a binary choice. It is assumed that Pr(A,
B) = .5 if and only if A =, B (see Luce & Suppes, 1565, p. 333).
According to this definition, choice probability is primary, and
the binary relation >, is a secondary measure derived from an
arbitrary categorization of the continuous probability measure.
However, observe that this derived measure of preference direc-
tion throws out all information about preference strength, that
is, the magnitude of the choice probability.? As Goldstein and
Busemeyer (1992) pointed out, it is difficult to conceive of any
application in which an enormous change in probability from
.5+107'%t01.0 is ignored, whereas a minuscule change from .5
— 107'% 6 .5 + 1071® s crucial. Obviously, a theory that can
account for both the direction and strength of preference is
superior to one that can only account for the direction of prefer-
ence.

2 Preference strength can be defined in several ways. Here we define
it as choice probability. Alternatively, it can be defined as the rated
difference in preference between two gambiles (e.g., see Mellers, Chang,
Birnbaum, & Ordonez, 1992). These two definitions involve distinct
psychological processes. For example, the probability of choosing $10
over $9.99 is 1.00, even though the rated difference in value is small.
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Recognizing the importance of accounting for preference
strength, determinists extended their theories by proposing the
simple scalability hypothesis (e.g., Becker, DeGroot, & Mars-
chak, 1963b): Pr(A, B) = Flu(A), u(B)], where « is a utility func-
tion defined on a set of actions by a deterministic theory, and F
1s an increasing function of the first argument and a decreasing
function of the second argument. However, all simple scalabil-
ity models imply a property called independence between alter-
natives (Tversky & Russo, 1969): If Pr(A, C) > Pr(B, C), then
Pr(A, D)> Pr(B, D). Systematic violations of this property have
been observed for over 30 years. The most robust example is an
interesting phenomenon named by Lee (1971) as the Myers
effect, which is illustrated below (see also Busemeyer, 1979,
1985; Myers & Katz, 1962; Myers & Sadler, 1960; Myers, Suy-
dam, & Gambino, 1965; Suydam & Myers, 1962). Figure 2
shows an example taken from Busemeyer (1979) in which sub-
Jects chose between a gamble and a certain value.? In this fig-
ure, A represents the gamble “win or lose 5¢ with equal probabil-
ity,” B represents the gamble “win or lose 50¢ with equal proba-
bility” C represents a certain loss of I¢, and D represents a
certain gain of I¢: The probabilities of choosing A over C, B over
C, A over D, and B over D are indicated by the height of each of
the four bars from left to right, respectively, in Figure 2. Accord-
ing to the simple scalability hypothesis, that the first bar ex-
ceeds the second bar implies #(A) > u(B). But this is contra-
dicted by the fact that the fourth bar exceeds the third bar,
which implies the opposite order 1(A) < u(B). Consequently, it is
impossible to use the simple scalability hypothesis to explain
actual choice probability behavior. This breakdown of simple
scalability demonstrates the importance of considering the ef-
fect of the context produced by the pairing of two actions on
choice probability. The section on the basic assumptions of de-
cision field theory provides a detailed explanation.

In sum, the first unavoidable fact about human decision
making is that preferences are inconsistent. We propose that
this inconsistency arises from changes in preference over time
and that this process of change must be rigorously specified so
that it can be evaluated as a viable scientific explanation. Any
psychological theory of decision making must be capable of
predicting how choice probability changes as a function of the
events and payoffs that define each pair of actions. This first
fact rules out the deterministic derivatives of expected utility
theory and points to the need for probabilistic accounts.*

Preference Strength and Deliberation Time: Statics Versus
Dynamics

Over 50 years ago, Dashiell (1937) discovered that mean
choice time 1s a decreasing function of magnitude of preference
strength, which is strikingly similar to the chronometric func-
tions found in psychophysics. Several years later, Mosteller and
Nogee (1951) found that the mean time to choose a gamble
systematically decreased as the probability of choosing that
gamble increased. More recently, this inverse relation between
choice probability and decision time was replicated by Petrusic
and Jamieson (1978; see Figure 3), and on the basis of this
systematic relationship, Jamieson and Petrusic (1977) con-
cluded that decision time may be an efficient way to estimate
preference strength.

Probability of Choosing the Gamble
!

AvsD B vs D

Figure 2. Violation of independence between alternatives. (Action A
stands for win or lose 5¢ with equal probability; Action B stands for
win or lose 50¢ with equal probability; Action C stands for lose I¢ for
sure; Action D stands for win 1¢ for sure. The probability of choosing A
over C, Bover C, A over D, and B over D are shown by the height of the
four bars from left to right, respectively. The data are from Busemeyer
[1979])

Static theories are silent concerning these lawful relation-
ships. Although static theorists might argue that deliberation
time is a separate issue and that preference can be studied inde-
pendent of deliberation time, these assumptions turn out to be
empirically false.

Recently, researchers investigating decision making under
time pressure have shown that choice probabilities systemati-
cally change as a function of the time limit set by the experi-
menter (Ben Zur & Breznitz, [981; Busemeyer, 1985; Harrison,
Holtgrave, & Rivero, 1990; Wallsten & Barton, 1982; Wright,
1974). In fact, the probability of choosing an action can be
moved from below .50 to above .50 (or vice versa) simply by
manipulating time pressure (Ben Zur & Breznitz, 1981; Buse-
meyer, 1985, Experiment 2; Svenson & Edland, 1987). Figure 4
shows an example taken from Goldstein and Busemeyer (1992).

3In two recent unpublished experiments, we replicated the Myers
effect when both alternatives were uncertain. Thus, the effect does not
depend on the condition of certainty for one of the alternatives.

* Experimental evidence for inconsistency of preferences between
simple gambles has been replicated many times since the classic exper-
iments by Mosteller and Nogee (1951) and Edwards (1955). For exam-
ple, recently Camerer (1989) reports that 32% of the subjects in his
experiment reversed their preferences when the same pair of gambles
was displayed on two different occasions; this occurred when the same
pair of gambles was repeated within the same experimental session,
with real monetary stakes, and without any outcome feedback. One
might try to argue that this type of inconsistency results from some
deterministic change in preference during the time period between
repetitions of the same gamble. However, this argument is without
scientific merit unless one can specify precisely how preferences
change between presentations of the same pair of gambles. A stochas-
tic account recognizes the fact that we can never know all of the factors
that influence an individual’s decision from one moment to the next.
The best we can hope to do is to determine the probability distribution
as a function of the few known factors that we can identify or observe.
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In this case, the subject chose between (@) a certain loss of 3¢ or
(b) a gamble in which the payoffs produced by the gamble were
normally distributed with a mean equal to zero and a standard
deviation equal to 50¢. The probability of choosing the gamble
decreases from above .50 to below .50 simply by increasing the
length of the time limit.

Apparently most decisions do involve time pressure. Collect-
ing and analyzing information for a decision is a time-consum-
ing process, and time is a valuable resource. Consequently, deci-
sion makers must frequently, if not always, limit the amount of
time that they can spend on any given decision. As a matter of
fact, it is commonly believed that the occasional irrational be-
havior exhibited by subjects in the laboratory is simply due to
the use of heuristics that require little effort. Under the appro-
priate incentive conditions, it is argued, subjects could be in-
duced to use more effortful decision procedures, and much of
the paradoxical behavior would disappear. So even when there
is no explicit time limit, there is implicit time pressure because
of the cost of processing time. The overall picture that emerges
from a large number of decision-making experiments (see
Payne, Bettman, & Johnson, 1992) indicates that decision
makers do in fact trade off accuracy {e.g., average payoff) for
effort (e.g., decision time).

In sum, the second unavoidable fact about human decision
making is that decisions take time, and the amount of time
spent making a decision influences the final choice. A psycho-
Jogical theory of decision making must be capable of explain-
ing that decision time is inversely related to choice probability
as well as that deliberation time influences choice probability.
These basic facts rule out static models of decision making,
including random utility models, and point to the need for
dynamic accounts of how preferences change over time.’
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Figure 3. The mean time to choose an action plotted as a function of
the probability that the action is chosen. (The response times are ex-
pressed in terms of a standardized (z-score) scale. The data are from
Petrusic and Jamieson [1978])
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Figure 4. FEffect of deadlines on choice probability. (The probability
of choosing a gamble over a certain value is plotted as a function of the
deadline time limit. The gamble produced a normal distribution of
payoffs with a mean equal to zero and a standard deviation equal to
50¢. The certain value was equal to —3¢. Each point is based on 250
observations. These data are the same as those reported in Goldstein
and Busemeyer [1992])

Basic Assumptions of Decision Field Theory

Decision field theory® is built on psychological principles
drawn from three different areas of psychology: (a) early moti-
vational theories of approach-avoidance conflict (Anderson,
1962; Bower, 1959; Estes, 1960; Hull, 1938; Lewin, 1935; Miller,
1944), (b) later extensions of approach-avoidance ideas to deci-
sion making (Atkinson & Birch, 1970; Coombs & Avrunin,
1977, 1988), and (c) recent information-processing theories of
choice response time (Edwards, 1965; Laming, 1968; Link &
Heath, 1975; Ratcliff, 1978; Smith, 1992; Stone, 1960; Vickers,
1979). Although this presentation is focused on the application
of decision field theory to decision making under uncertainty,
it is a general theory with a much broader base of application.
Decision field theory provides a common foundation for pre-
dicting (a) choice probability and the distribution of choice re-
sponse times (Busemeyer & Townsend, 1992), (b) buying
prices, selling prices, and cash equivalents (Busemeyer & Gold-
stein, 1992), and (¢) approach-avoidance movement behavior
(Townsend & Busemeyer, 1989). The theory was developed to
encompass a number of fundamental properties of human de-

$ Marley (1989) has recently developed a dynamic version of random
utility theory. However, this theory has difficulty explaining the basic
results of Petrusic and Jamieson (1978).

§ The field part of this theory’s name derives primarily from Lewin’s
(1935) use of the term, which placed great emphasis on qualitative field
topological relations that objects bore to each other and to the decision
maker.
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cision behavior, including the probabilistic and dynamic prop-
erties reviewed earlier.

Before presenting the new theory, it is helpful to first intro-
duce the experimental paradigm used to investigate decision
making under risk or uncertainty. Although it is possible to
apply decision field theory to complex real-life decisions, these
decisions do not allow the necessary experimental control to
discriminate among competing theories. The scientific support
for all decision-making theories is based primarily on simple,
but highly controlled, experimental tasks that are designed to
investigate important properties of the decision process. Figure
5 illustrates a typical example of a laboratory decision problem.
On each trial, the decision maker must choose between two
hypothetical medical treatments. A; symbolizes the action
shown on the left, and Ay symbolizes the action shown on the
right. Furthermore, on each trial one of two uncertain events
may occur; S; denotes the presence of one disease state, and S,
denotes the presence of another disease state. The payoff pro-
duced by taking action A, = L or R) when event S(j=1lor2)
occurs is denoted y,. In Figure 5, for example, if the treatment
on the left is taken (A, ) and the second disease is present (S,),
then y;, = —200 is the payoff. Typically, monetary payoffs are
used in laboratory experiments. The deliberation time period
lasts from the start of the decision problem until the final ac-
tion is taken, after which the payoff is delivered and the trial
ends.

Information about the probabilities of the events S, can be
given in two different ways (cf. Luce & Raiffa, 1957, p. 13). For
decisions under risk, the event probabilities are directly stated
in the problem (e.g., the subject is told that disease S, occurs
with probability .25 under the current pattern of symptoms).
For decisions under uncertainty, the decision maker must learn
and infer the event probabilities from past experience. For ex-
ample, the probability of a disease given a particular symptom
pattern may be estimated from past experience with previous
trials in which the same symptom pattern was displayed. In real
life, we rarely receive direct information about event probabili-
ties, and it is more common to have this information conveyed
through experience with past outcomes from similar decisions.
Decision field theory was developed for this more natural type
of uncertain decision problem.

Only two uncertain events are shown in Figure 5, S, and S,.
This simple example is important because a large number of
experiments have used this two-event case. Initially, the theory
is presented by using this simple example, but in the Appendix

+200 S, —500

(%]

AL
Q__, CHOOSE
/2
—200

Figure 5. Prototypic choice problem for decisions in an uncertain
environment. (The arrows exiting the box indicate the two actions [A;
vs. Ag ]. The branches exiting each circle indicate the uncertain events
IS, vs. S, ]. The payoffs are shown at the endpoints of each branch. The
probabilities of the events are learned from experience)

b

+500

we provide the general formulas for computing model predic-
tions for the general case with more than two uncertain events.
Also, in the section Test of Competing Theories, we present an
application of the theory to normally distributed payoffs.

Only two courses of action are available in Figure 5, Ag and
AL. It 1s straightforward to develop decision field theory for
decisions with more than two alternatives (see Busemeyer &
Townsend, 1989). However, most of the past research has fo-
cused on the two-alternative case, and, furthermore, most the-
ories of decision making under uncertainty are limited to the
paired comparison case. Therefore, only the two-alternative de-
cision problem is considered in this article.

Rather than presenting the full theory all at once, it is easier
to grasp the basic ideas by presenting them in a sequence of
seven incremental stages. Note, however, that this is not the way
the theory was originally conceived (cf. Busemeyer & Town-
send, 1989). Decision field theory is a synthesis of two prior and
independent lines of psychological theory (i.e., approach-avoid-
ance theories of motivation and information-processing the-
ories of choice response time). The sequence of stages presented
below was mathematically derived from this synthesis. The
main purpose of this organization is to present a clear under-
standing of the basic assumptions underlying this synthesis.

The first stage begins with the traditional type of theory that
should be familiar to any researcher in the field of decision
making. With each subsequent stage, a new and more general
theory is formed by including a new processing assumption
into the previous theory. Each new processing assumption is
needed to represent a fundamental property of the deliberation
process involved in decision making. The last stage completes
the entire description of this application of decision field
theory (see Table 2 for a schematic outline).

Stage 1: Deterministic Subjective Expected Utility (SEU)
Theory

According to SEU theory, each distinct payoff produced by
an action is assigned a subjective probability weight. The mag-
nitude of this weight is a function of the event that determines
whether this payoff will occur if the action is taken. For exam-
ple, in Figure 5, the payoff +500 produced by action Ay (shown
on the right) is assigned a weight that depends on the event S,,
denoted w(S,). From a cognitive view, this weight reflects the
amount of attention given to event S, on each presentation of the
choice problem.

The SEU of an action is a weighted average of the utilities of
the payoffs produced by an action using the subjective probabil-
ities as the weights. For the example shown in Figure 5, the
SEU’ for actions Ag and A, are defined as follows:

vr = w(S,) - u(—500) + w(S,) - u(+500), (la)
v = w(S)- 1(+200) + w(S,) - u(—200). (1b)

where u( y) is the utility of payoff y with «(0)= 0, and w(S;) is the
subjective probability weight assigned to event S; with 0 < w(S;)
< 1.

The choice between actions Ay and A, in Figure 5 is deter-
mined by the sign of the difference in SEUs for each action:
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Construction of Decision Field Theory in Seven Stages

Stage and theory New parameter

New phenomenon

: Deterministic SEU d = Mean difference
: Sequential SEU
Random walk

: Linear system

: Approach-avoidance
: Decision field

s = growth—decay rate
¢ = goal gradient
h = time unit

: Random SEU o? = variance of difference
# = inhibitory threshold
z = initial anchor point

Preference direction

Preference strength

Speed—accuracy trade-offs

Preference reversals with time pressure
Serial position effects

Time to approach is less than time to avoid
Real time processing

Note. Lower stage theories are special cases of higher stage theories. SEU = subjective expected utility.

(1c)

Action Ay is chosen when d > 0, and action A, is chosen when d
< 0.

Savage (1954) originally proposed a prescriptive version of
SEU theory in which the subjective probabilities obeyed the
laws of mathematical probability theory. Later, Edwards (1962)
proposed a descriptive version of SEU theory with subjective
probability weights that do not obey the laws of mathematical
probability theory. Numerous other variations of descriptive
SEU theory have followed that retain many of the same basic
characteristics (e.g., Kahneman & Tversky’s, 1979, prospect
theory).

The descriptive versions of SEU theory have been used to
explain important empirical violations of Savage’s prescriptive
theory, including those found by Allais (1953) and Ellsberg
(1961). Decision field theory can account for these results using
the same type of explanation as used by these descriptive SEU
theories. Because these results fail to distinguish the present
theory from earlier accounts, they are not analyzed in detail in
this article.

A major problem with descriptive SEU theories (e.g., pros-
pect theory) is their inability to account for the fundamental
variability of human preference (e.g., see Figure 1). These the-
ories can only be used to predict the direction of preference (ic.,
whether the choice probability exceeds .50), and, consequently,
they fail to provide any means for predicting preference
strength (i.e., the magnitude of choice probability). Previous
attempts to address this problem have been based on the simple
scalability hypothesis. For example, Becker et al. (1963b) pro-
posed that

d=vg —vL.

Pr(Ag, Ap) = F(d) = Fluig — vp), (1d)

where F is a cumulative distribution function. However, as we
pointed out earlier (see Figure 2), violations of the indepen-
dence property rule out the scalability hypothesis (Busemeyer,
1979, 1985; Myers & Katz, 1962; Myers & Sadler, 1960; Myers et
al., 1965; Suydam & Myers, 1962). To overcome this major limi-
tation, we turn to the second stage of Table 2.

Stage 2: Random SEU Theory

According to deterministic SEU theory, the decision maker
uses exactly the same subjective probability weights on every
repetition of a choice problem. Random SEU theory general-

izes deterministic SEU theory by allowing the decision maker’s
attention to switch from one event to another across choice
trials. For example, on one trial the decision maker may focus
primarily on event S, in Figure 5, producing a preference favor-
ing action A;. On another trial with the same choice problem
the decision maker may focus primarily on event S,, producing
a preference for action Ag. This variability in subjective proba-
bility weights causes the difference in subjective expected utili-
ties to vary across choice trials, and this random difference i$
called a valence difference.

According to random SEU theory (Busemeyer, 1985), the
attention weight for event S; is a continuous random variable,
denoted W(S)), which can change from trial to trial because of
attentional fluctuations. Consequently, the SEU for each action
is also a random variable, which is called the valence of an
action. The valences for actions Ag and A, shown in Figure 5 are
defined as follows:

Ve = W(S)) - u(—500) + W(S,) - u(+500),
Vi = W(S,)- (+200) + W(S,)- u(—200).

(2a)
(2b)

The difference between these two valences determines the pref-
erence state (P) on any trial:

P="Ve— V. (2¢)

Action Ag is chosen whenever P> 0; action A; is chosen when-
ever P < 0.

The primary difference between SEU theory and random
SEU theory can be seen by comparing Equations 1a and 2a. The
attention weights w(S;) in SEU theory are fixed across trials,
whereas the attention weights #(S;) in random SEU theory
vary across trials. These changes in attention weights cause
change in the valences, Vg and V7, which cause change in the
preference state, P, which finally causes choice to vary from
trial to trial.

Given that the amount of attention allocated to each event
fluctuates across trials, the previous subjective probability
weight w(S,) appearing in Equation la is now interpreted as the
average weight given to event S, that is, w(S;) = E[W(S;)] (aver-
aged across trials). On the basis of this process interpretation, it
follows that the mean valence difference equals the average of
the valence difference: d= E[Vy — V1= E[Vx]— E[V 1= v —
v., which is mathematically equal to the difference in SEUs for
the deterministic model (ic., Equation i¢). According to ran-
dom SEU theory, however, the decision maker is never directly
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aware of the mean difference d. Only a sample estimate, the
ephemeral preference state, P is available on any trial. The resid-
ual, e = P — d, represents the trial-by-trial fluctuation around
the mean. By using these definitions, the preference state on
any trial can be expressed as

P=Ve—V, =d+e (2d)

Thus, probability of choosing action Ag over A; is Pr(Ag, Ay) =
PriP> 0] = Prfe > —d]. The above choice model is mathemati-
cally related to a class of choice models known as random wtility
models (see Colonius, 1984).

At this first stage of the theory, the distribution of the prefer-
ence state, B is derived from the distribution of the residual, e,
and the latter is derived from the joint distribution of the atten-
tion weights, W(S,) and W(S,), which is unknown. In the last
stage of the theory, we are able to mathematically derive the
distribution of the preference state, £, from the dynamic pro-
cess. However, at this first stage, we are forced to make an ad
hoc assumption regarding the distribution of the residual, e. In
accordance with previous random utility theories (e.g., Thur-
stone, 1959), we postulate that ¢ is normally distributed with
zero mean and variance: Varl] = Var{Vy — V; 1= ¢* The parame-
ter o” is called the variance of the valence difference. In this case,
the probability of choosing action Ay over A, is

Pr(Ag, Ap) = Prle > —d] = F[(d/s)], (2e)

where F is the standard normal cumulative distribution func-
tion. In other words, choice probability is an increasing S-
shaped function of the discriminability index, (d/o).

Deterministic SEU theory is a special case of random SEU
theory, which is obtained by setting the residual ¢ to zero (ie.,
letting o approach zero in Equation 2¢). If the variance of the
valence difference is nonzero but constant across all choice
pairs (i€, Thurstone’s Case 5), then random SEU theory is
within the simple scalability class of models (i.e, it is a special
case of Equation 1d). To explain violations of the independence
property (see Figure 2), it is necessary to allow the variance of
the valence difference to change across choice pairs.

The reason that the variance of the valence difference
changes across choice pairs is as follows. According to basic
statistical theory, the variance of a difference between two ran-
dom variables is

o2 = Var[Vg — Vi] = oRZF o2 —2- ORL» (2f)

where og” is the variance of the valence for action Ag, ¢, 2 is the
variance of the valence for action A, , and a3, is the covariance
between these two valences. Each of these three quantities are
influenced by the payoffs and events associated with each pair
of actions in the following manner. First, consider the variance
ox?, which represents the uncertainty of the valence produced
by action Ag. Suppose that taking action Ay always produces
exactly the same payoff for all events (i.e., Ag is a sure thing). In
this extreme case, the same payoff is always anticipated for
action Ag (ie., there is no uncertainty produced by action Ag),
and, consequently, sx* = 0. Now suppose that action Ay pro-
duces a wide range of possible payoffs with equal probability as
in Figure 5. In this case, attention will switch from one possible
payoff to another, producing variability in the valence for ac-

tion Ag, and the magnitude of ox? will be determined by the
range of payoffs produced by action Ag. In Figure 3, for exam-
ple, the variance for action Ay is

[S)

ox° = E[(Vg — vg)]
= w(Sy) - [(—500) — v}’ + w(S,) - [u(+500) — ve]% (2g)
The variance for action A is
o’ = E[(VL — )]
= w(S)- [u(+200) — v P + w(S,) - [u(—200) — v, . (2h)

il

In this example, if the events are equally likely, then the vari-
ance of the valence for action Ay is larger than that for action
A,.. Now we are prepared to show how changes in the variance
of the valence difference accounts for the Myers effect (see Fig-
ure 2).

The violation of independence shown in Figure 2 can be
explained by the fact that the variance of gamble B (50%) is
much larger than that for gamble A (5%). Table 3 shows the
discriminability ratios (dfs) produced by the four choice pairs
illustrated in Figure 2. The two cells in the first row correspond
to the first two bars in Figure 2. In this case, the mean differ-
ence favors the gamble over the certain value (d = +1), but the
discriminability ratio decreases from +.2 to +.02 because of
the increase in variance. The two cells in the second row corre-
spond to the second two bars in Figure 2. In this case, the mean
difference favors the certain value (d = —1), but the discrimina-
bility ratio now increases from —.2 to —.02 because of the in-
crease in variance.

The covariance, oz, , between the two valences represents the
similarity or dissimilarity of the payoffs produced by each ac-
tion. Consider, for example, Figure 5. Note that the conse-
quences produced by each action are mediated by a common
setof events {S,, S,}. If event S; occurs, then action Ay produces
a large negative payoff (~500), whereas action A; produces a
large positive payoff (+-200). The opposite pattern occurs when
event S, occurs: Ay produces a large positive payoff (+500),
whereas A; produces a large negative payoff (—200). This pro-
duces a strong negative correlation between the payoffs pro-
duced by actions Ag and A, . The covariance for this example is

Table 3
Discriminability Ratios (d/s) Corresponding to Figure 2
Action
Action A B
C (+1/5) = +.20 > (+1/50) = +.02
D {(—1/5) = =20 < (—1/50) = —.02

Note. A = win or lose 5¢ with equal probability; B = win or lose 50¢
with equal probability; C = lose 1¢ for sure; D = win I¢ for sure. d =
mean valence difference favoring choice of the column action over the
row action. The expected value of the column action is zero, so d =
—(value of row action). ¢ = standard deviation of valence difference.
The variance of the row action is zero and, consequently, so is the
covariance term. The standard deviation of column action equals the
magnitude of the gain or loss. Independence is violated because the
rank order of the two columns changes across rows.
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oge = E[(Vr — 0r)- (VL — 1]
= w(S;)- [u(—500) — vg]- [1(200) — ]
+ w(S,) - [1(500) — vg] - [w(—200) — v, ]. (21)

Recall that the variance of the valence difference is negatively
related to the covariance (see Equation 2f). Thus, increasing the
similarity of the payoffs produced by two actions will increase
the discriminability ratio magnitude. According to random
SEU theory, this is another major reason why the independence
property is violated (see Becker, DeGroot, & Marschak, 1963a).

As a final check on the psychological reasonableness of the
variance parameter, consider the following extreme case. Sup-
pose one was given a choice between a $1,000 prize and a $999
prize. Although the utility difference is relatively minute, any
reasonable decision maker would always choose the dominant
prize. This deterministic behavior is entirely consistent with
random SEU theory. For in this simple case, there is no uncer-
tainty, and according to Equations 2f through 2i, ¢* = 0, so that
the probability of choosing the $1,000 prize computed from
Equation 2¢ is 1.0.

In sum, by incorporating a probabilistic valence process into
the deterministic SEU theory, random SEU theory provides an
explanation for both the direction and strength of preference.
This same process is also used to explain violations of the inde-
pendence between alternatives property. The explanatory
power gained by incorporating this process requires the addi-
tion of only a single new parameter, o° = the variance of the
valence difference. However, as noted earlier, the basic limita-
tion of this theory is that it fails to provide any mechanism for
explaining the systematic relation between choice probability
and decision time (e.g., see Figure 3). This limitation is sur-
mounted in the next stage of Table 2.

Stage 3: Sequential SEU Theory

According to random SEU theory, choice is based on just a
single sample of a valence difference on any trial. Sequential
SEU theory generalizes this by allowing a sequence of one or
more samples to be accumulated during the deliberation period
of a trial. The basic idea is that attention may switch from one
event to another within a single choice trial. At the beginning of
the choice problem, the decision maker anticipates the payoff
that would be produced by taking each action and compares
these two anticipated payoffs. This initial comparison deter-
mines the preference state for the first sample, P(1) = [Vg(1) —
Vih)], but it does not necessarily lead to a decision. A few
moments later, attention may shift to a new pair of anticipated
payoffs, producing another sample valence difference, which is
added to the previous preference state to produce a new prefer-
ence state, P(2) = P(1) + [Vr(2) — V1 (2)]. As this deliberation
process continues, the new preference state after n > 2 samples
is

P(n) = P(n — 1) + [Vr(n) — Vi(n)]
= ZdVrt) — VL k=1,...,n, (3a)

where P(n — 1) is the previous preference state after n — | sam-
ples, and [Vx(n) — Vi (m] is the new valence difference. This
deliberation process continues until the preference state ex-

ceeds an inhibitory threshold criterion, f. Positive preference
states represent a momentary preference favoring action Ag,
and this action is taken as soon as P(n) exceeds . Negative
preference states represent a momentary preference favoring
action A;, and this action is taken as soon as —P(r) exceeds 6.
The total number of samples needed to reach the threshold isa
random variable, N, and decision time is an increasing function
of N.

Figure 6 illustrates a sample path generated by a simulation
of this sequential sampling process. The preference state is plot-
ted as a function of the number of samples that have been pro-
cessed within a single choice trial. The up-and-down vacilla-
tion in preference state reflects the fluctuations in valence dif-
ference across samples. For example, consider the fictitious
medical decision illustrated in Figure 5. The decision maker
may initially focus attention on the possibility that disease S, is
present, which would produce payoffs that favor treatment A;,
but moments later the decision maker’s attention may switch to
the possibility that disease S, is present, which would produce
payoffs favoring treatment Ag. The two horizontal lines above
and below zero represent the inhibitory thresholds for each
action. The vertical line at N = 17 samples indicates that the
preference state for action Ay exceeded the threshold at that
point, and a choice favoring action Ag was executed immedi-
ately after that sample.

The mean valence difference now represents the mean
change in preference produced by each new sample: d= E[V;(n)
~ Vi) = E[P(n)— P(n—1)] = vg — vy. This mean difference is
defined in exactly the same way as it was for random SEU
theory, except that sampling occurs within a trial rather than
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Figure 6. Sample path of a simulated sequential decision process.
(The preference state for action Ag over A, is plotted as a function of
the number of samples. The sample path vacillates up and down be-
cause of fluctuations in the sign of the valence difference across sam-
ples. The horizontal lines above and below the neutral point represent
the inhibitory threshold for choosing an action. The vertical line lo-
cated at N = 17 samples indicates the point at which the sample path
crosses the inhibitory bound, which satisfies the requirement for
choosing the action on the right)
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across trials. The residual represents the change in preference
state produced by the moment-to-moment fluctuations in at-
tention during deliberation: e(n) = [Fg(m) — Vo ()] — g — v.) =
[P(m)— P(n—1)]— d. The variance of this residual, Varfen) ] = o2,
is determined in the same way as in random SEU theory (see
Equations 2f through 2i). By using these definitions, the se-
quential sampling process (see Equation 3a) can be expressed in
an equivalent form as

P(ny=Pn— 1)+ [d+ «n)]. (3b)

The probability of choosing action Ay over A, equals the proba-
bility that {P(r) > 6} occurs before {-P(n) > 6. Busemeyer (1985)
developed a sequential sampling model for decision making
under uncertainty by using normally distributed residuals. In
this case, the probability of choosing action Ag over A, (see Cox
& Miller, 1965, for the derivation) is

Pr(Ag, Ay) = Fi2-(d/o)-(6/0)), (39

where F is the standard logistic cumulative distribution func-
tion; that is, F(x)=1/[1 + exp(x)]. In other words, choice proba-
bility is an increasing S-shaped function of the product of the
discriminability index and the threshold criterion (measured in
standard deviation units).

The primary difference between random SEU theory and
sequential sampling theory can be seen by comparing Equation
2d with Equation 3b. Note that Equation 2d is just a special case
of Equation 3b, with the number of samples restricted to just
one sample. Sequential sampling theory allows the number of
samples to increase as the threshold criterion § increases. A
large sample size provides a better estimate of the unknown
mean difference within a single choice trial than a single sam-
ple. According to this idea, choosing between two uncertain
courses of action is conducted in much the same way as a test of
two hypotheses on the basis of a sequence of experimental ob-
servations (cf. DeGroot, 1970).

The practical consequence of this theoretical difference can
be seen by comparing Equations 2e and 3c. According to both
equations, choice probability is an increasing S-shaped func-
tion of the discriminability index (d/s). The main difference is
that sequential sampling theory also allows choice probability
to depend on the threshold criterion 6. Holding discriminabil-
ity constant, choice probability becomes more extreme as the
threshold criterion increases. For example, consider a decision
that i1s very difficult but very important. In this case, the dis-
criminability index may be very low, but the threshold criterion
may be very high, thereby producing a high probability of
choosing the correct action (1.¢., the action producing the larger
SEU).

There is a cost produced by increasing the threshold: The
mean number of samples required to reach the threshold, and
consequently the decision time, increases as the threshold in-
creases. The mean number of samples to reach the threshold
(see Cox & Miller, 1965, for the derivation) is

E[N} = (8/d)-12- Pr(Ag, Ay — 1]. | (Bd)

To interpret this equation, suppose that the mean difference is
positive (@ > 0). As the threshold 6 increases, Pr(Ag, A, ) rapidly
approaches 1.0, and the mean number of samples approaches

(6/d). The latter ratio is analogous to the familiar formula, time
= (distance traveled)/(rate of travel), with N corresponding to
time, 8 corresponding to distance traveled, and d correspond-
ing to rate of travel. Thus, increasing the threshold increases the
probability of choosing the correct action (ie., the larger SEU),
but it also increases the time required to reach the criterion.

Consequently, the threshold criterion 8 controls speed-accu-
racy or cost-benefit trade-offs in decision making. On the one
hand, if the cost of prolonging the decision is low or the cost of
making an incorrect decision is high, then a high threshold is
selected. On the other hand, if the cost of prolonging the deci-
sion is high or the cost of making an incorrect decision is low,
then a low threshold is selected.”

In sum, by including a sequential sampling process into ran-
dom SEU theory, sequential SEU theory provides a mechanism
for explaining the fundamental speed-accuracy or cost-benefit
trade-off relations frequently observed in decision making.
This additional explanatory power requires only one new pa-
rameter, § = inhibitory threshold. But there is a problem with
sequential SEU theory. If the mean difference is positive (@> 0),
then the probability of choosing Ag over A, is always predicted
to be greater than .50 for all values of the threshold criterion 6
(see Equation 3c). Therefore, sequential SEU theory fails to ex-
plain that choice probability can change from below .50 to
above .50 (or vice versa) under time pressure (see Figure 4). The
next stage in Table 2 overcomes this problem.

Stage 4: Random Walk SEU Theory

Sequential SEU theory was based on the assumption that the
deliberation process always begins from a neutral point (ie.,
P(0) = 0). However, prior knowledge or past experience with
the same or a simifar decision problem will bias the initial state.
In particular, the decision maker may be able to recall a pre-
vious preference state from memory, and these recalled states
will be influenced in the direction of the mean difference.
Random walk SEU theory generalizes sequential SEU theory
by allowing the initial preference state, P(0), to start at some
anchor point, z, biased by prior knowledge or past experience.?

7 The inhibitory threshold bound is also called the stopping crite-
rion in sequential sampling theory. Previous applications of sequential
sampling decision models in memory (Ratcliff, 1978) and perception
(Link, 1992) have successfully used a constant stopping criterion for
relatively fast decisions (i.e., in seconds). However, Busemeyer and Ra-
poport (1988) provided evidence indicating that the stopping criterion
decreased over time for longer decisions (i.€., in minutes). This suggests
that a constant inhibitory strength may provide an adequate approxi-
mation for short deliberation times, but the inhibitory strength may
gradually decay toward zero for long deliberation times. Another possi-
bility is that the inhibitory threshold varies randomly around some
mean value rather than remaining fixed. However, this extension
would not change the predictions of the theory, because the random
deviations of the threshold around its mean would simply be added on
to the residual, e(n), in Equation 3b.

8 The random walk SEU theory uses the following rule: Stop and
choose Ag ifand only if z + £, [Vr(n) — V(") ] = 6; stop and choose A if
andonlyifz+ Z,[Vr(n) — V' (n) ] = —¥. This isequivalent to the following
rule: Stop and choose Ag if and only if 2, [Vr{n) — V. (m)] = § — z: stop
and choose A, if and only if Z,[Vi(n) — V ()] < —@ + z). A reviewer
argued that we should have added another parameter by using the
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According to the random walk SEU theory (Busemeyer,
1985), the preference state after n samples equals an anchor
point plus the adjustments produced by the sequence of 7 sam-
ples (n > 0):

P0) =z,
P(n) = P(n — 1) + [Vg(n) — Vi(n)],
= P(n— 1) + [d + €«n)],
z+ Z[Vrtk)y = ViRL k=1,...,n, 4

I

where the mean difference, 4, and the variance, o7, of the va-
lence difference are defined in exactly the same way as they
were for sequential SEU theory (see Equation 3b).

Figure 7 illustrates the theoretical choice probabilities for a
hypothetical example in which a consumer is trying to decide
whether to buy a standard brand versus a new brand of some
consumer product. (See Equation Al in the Appendix for the
formula used to generate these predictions) Suppose A is a
highly familiar status quo brand (i.e., one that has been used for
many years), and Ay is a new brand that, after careful investiga-
tion, is determined to be superior in quality. In this example,
the initial state of preference is negative (z < 0, favoring the
status quo), but the mean valence difference is positive (d > 0,
favoring the new brand). The increasing curve in Figure 7 shows
the probability that the new brand is chosen as a function of the
duration of the time limit. The status quo tends to be chosen
more frequently under a short time limit (ie., low threshold),
but the probability grows as a function of time so that the new
brand tends to be preferred under longer time limits (i.e., high
threshold). The decreasing curve shows how the probabilities
change in the opposite direction when z > 0 and d < 0. This
example illustrates how random walk SEU theory accounts for
the fact that choice probability can change from below .50 to
above .50 (or vice versa) simply by changing the length of delib-
eration time with a biased initial anchor point.

The assumption that the initial state is biased by past experi-
ence also provides one explanation for the inverse relation be-
tween choice probability and decision time (see Figure 3). The
basic idea is simple: The further the initial state is from a thresh-
old, the longer it takes to reach that threshold. If the mean
difference is large and positive (i., d > 0), then the probability
of choosing action Ag will be high, and the probability of
choosing action A; will be low. In addition, if the initial state is
strongly biased in the same direction, then the mean time to
choose Ag will be very short, and the mean time to choose A
will be very long. This results in an inverse relation between
choice probability and decision time. (See Equation A2 in the

following rule: Stop and choose Ag ifand only if k + Z, [V () — V(0 ] =
6,; stop and choose A; ifand only if k + Z,[Vr() — Vo (0] < —¥,. The
latter is equivalent to the rule: Stop and choose Ay if and only if
2. Ve — VoW1 = 6, — k;stop and choose A, ifand only if Z_[Vg(n) —
Vo] < —6, + k). However, the stopping rule that we used can be
equated with the stopping rule proposed by the reviewer by setting § =
[0, — k) + @, + k)1/2 and z= [@, + k) — @, — k)1/2. Thus, the two rules
make exactly the same predictions, and no advantage in terms of pre-
dictive power is gained by adding the redundant parameter.
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Figure7. Predictions from random walk Subjective Expected Utility
theory. (Probability of choosing the action on the right is plotted as a
function of the inhibitory threshold magnitude. The increasing curve
shows the probability when the mean difference is positive and the
initial preference state is negative. The decreasing curve shows the
probability when the mean difference is negative and the initial prefer-
ence state is positive)

Appendix for the formula used to compute decision time for
the random walk model)

In sum, the random walk SEU theory entails a total of four
parameters: {d, g, §, 2. (See the outline in Table 2) First, the
mean valence difference, d, is used to explain the direction of
preference (as in SEU theory). Second, the variance of the va-
lence difference, ¢, is used to explain strength of preference (as
in random SEU theory). Third, the threshoid criterion, 4, is
used to explain speed-accuracy trade-off effects (as in sequen-
tial SEU theory). Finally, the initial anchor point, z, is used to
explain reversals in the direction of preference as a function of
time pressure, and it also provides one explanation for the in-
verse relation between choice probability and decision time.

Nonetheless, there is a serious problem with the random
walk SEU theory. The updating rule (see Equation 4) fails to
provide any mechanism for explaining serial position effects on
the final preference state.® According to the updating rule, the
preference state is simply the initial state plus the sum of all the
valence differences. Thus, the effect of a valence difference
does not depend on whether it occurred early or late within the
sequence. This assumption is contrary to the well established
fact that primacy and recency effects are observed in both evalu-
ative judgments (Hogarth & Einhorn, 1992) and decision mak-
ing (Wallsten, in press; Wallsten & Barton, 1982). The next
stage in Table 2 provides a simple solution to this problem.

9 Serial position effects obtained in evaluative judgments are unre-
lated to serial position effects obtained in free recall. See Anderson and
Hubert (1963) for more details.



442 JEROME R. BUSEMEYER AND JAMES T. TOWNSEND

Stage 5: Linear System SEU Theory

Linear system SEU theory relaxes the assumption that the
effect of a valence difference is independent of its serial posi-
tion. Instead, the impact of a valence difference may vary de-
pending on whether it occurred early (ie., a primacy effect) or
late (i.e., a recency effect) within a sequence.

The simplest way to modify random walk SEU theory to
incorporate serial position effects is the following linear updat-
ing rule:

P(n) = (1 — s}- P(n — 1) + [Vg(n) — Vi(n)]
=(l =$)-Pln—1)+[d+ ¢n))]
= (1= 8)"z+ Z (1 — sy [V(k) — Vi(k)],
k=1,2,....n, (5)

where the mean difference, 4, and the variance of (), ¢°, are
defined in exactly the same way as they were for random walk
SEU theory. According to this rule, the new preference stateisa
weighted compromise of the previous preference state and the
new valence difference.

The new parameter, s, is called the growth-decay rate param-
eter. Note that random walk SEU theory is a special case, which
1s obtained by setting the growth—decay rate parameter, s, equal
to zero. If the growth-decay rate is strictly between zero and
one {0 < s < 1), then the linear updating rule (see Equation 5)
produces recency effects so that the recent samples have greater
impact. If the growth—decay rate is less than zero, then the
linear updating rule (see Equation 5) produces primacy effects
so that earlier samples have greater impact. Thus, primacy, re-
cency, or no serial position effects can occur, depending on the
value of the growth—-decay rate parameter, s.

In sum, linear system SEU theory {see Equation 5) adds only
one new parameter to random walk SEU theory, and it is the
simplest possible way to incorporate serial position effects. Al-
though more complex forms of serial position effects can be
obtained by allowing the growth-decay rate to change as a
function of time (Myung & Busemeyer, {992) or by using non-
linear updating rules (Hogarth & Einhorn, 1992), the linear
updating rule is more parsimonious, and at the present time it is
adequate for explaining the main findings from research on
decision making under uncertainty.

A significant problem with the linear system SEU theory is
its failure to account for the fact that the time required to make
a decision depends on the approach-avoidance nature of the
conflict. According to the linear updating rule (see Equation 5),
the preference state is only affected by the difference in va-
lence, and it does not matter whether that difference came from
two rewards or two punishments. Thus, approach-approach
decisions are predicted to take just as long as avoidance-avoid-
ance decisions, holding other factors constant. This basic prop-
erty of the theory is contrary to the long-standing finding that
avoidance-avoidance decisions produce longer mean delibera-
tion times than do approach-approach decisions when the
mean differences are held constant (Barker, 1942; Bockenholt,
Albert, Aschenbrenner, & Schmalhofer, 1991; Busemeyer,
1985; Houston, Sherman, & Baker, 1991). This failure is recti-
fied by the next stage.

Stage 6. Approach-Avoidance Theory

Up to this point, we have assumed that the average amount of
attention given to a payoff depends solely on the event that
determines whether the payoff will occur if an action is taken.
For example, in Figure 5, the average weight given to the payoff
(+500) of action Ay only depends on event S,. Approach-avoid-
ance theory generalizes this idea by allowing the average weight
to be influenced by another dynamic variable called the goa/
gradient (Townsend & Busemeyer, 1989).

The goal gradient hypothesis originated in the early work on
approach-avoidance conflicts by Lewin (1935), Hull (1938),
and Miller (1944). The basic idea is that the attractiveness of a
reward or the aversiveness of a punishment is a decreasing func-
tion of the distance from the point of commitment to an action.
Experimental support for this hypothesis on the basis of animal
research was reviewed by Miller (1959}, and empirical support
from human research is described in Epstein and Fenz (1965).

According to approach-avoidance theory, the consequences
ofan action become more salient as the preference state for that
action approaches its threshold. If there is little or no possibility
of taking an action, then its consequences are ignored; however,
as the possibility of taking an action increases, then attention to
its consequences increases. More specifically, the salience of a
consequence produced by taking action Ay increases as the
distance between +P(n) and ¢ decreases. Similarly, the salience
of'a consequence produced by taking action A, increases as the
distance between —P(n) and 6 decreases.

Figure § illustrates two goal gradients, one for gains or re-
wards (1.e, the flatter gradient with a slope represented by the
coefficient @) and another for losses or punishments (ie., the
steeper gradient represented by a coefficient 4). Previous re-
search indicates that the gradient for rewards tends to be flatter
than that for punishments (see Miller, 1959), but this is not a
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necessary requirement of the theory. The horizontal axis repre-
sents distance from the threshold, and the vertical axis indi-
cates the attention weight corresponding to this distance. As
the distance increases, the goal gradient weight decreases. Al-
though past research suggests that the gradients are exponen-
tial (cf. Shepard, 1987), linear approximations are used to
maintain a simple and mathematically tractable theory.'’
According to approach-avoidance theory, the average weight
given to-each payoff is a product of a goal gradient weight and
an event weight. Consider the decision problem shown in Fig-
ure 5 again. The mean valence of each action is now a function
of the current preference state because of the goal gradient:

v(n) = E[Va(n)| P(n)]
= {1 —b-[0 — P(m)]}-w(S,) u(—500)
+ {1 — a-[6 — P(M)]}-w(S,)- u(+500), (6a)
v (n) = E[V .(m)| P(n)]
= {1 —a-[0 + P(m]} - w(S,)- u(+200)
+{1 = b-[0+ P(m)]} - w(S,y)- u(—200), (6b)

where a and b are the slopes of the goal gradients for the gains
and losses, respectively. It is helpful to compare Equations 1a
and 6a. For example, the average attention weight assigned to
the gain (-500) produced by choosing action Ag is now a prod-
uct of two components: As in Equation la, one component is
the average attention weight for event S,, w(S,); the second new
component is the goal gradient weight for a gain produced by
action Ag, {l — aff — P01}

Recall that the mean valence difference is obtained by sub-
tracting Equation 6b from Equation 6a. This results in a mean
valence difference, d(#), that is now a function of the current
state of preference, P(n). After some algebraic rearrangement,
the mean valence difference can be expressed as follows:

d(n) = [vr(n) — v(M)]} = —c- P(n) + 5, (6¢)
where

c=b-(vg + V) — a- (Vg + V1);

§ = (er - er)'(l ——a'ﬁ) +(va_vpL)'(l - b-ﬁ);

i

w(8S,) - u(+500) (the average gain for Ag);

er

vpr = W(S;) - u(—500) (the average loss for Ag);

vy = w(S,) - u(4+200) (the average gain for A.);
and

v = W(S,) - u(—200) (the average loss for Ap ).

In the above equations, v,z is the average gain and v,z is the
average loss for taking action Ag; v, is the average gain and vy
is the average loss for taking action A; .

Inserting this new derivation for the mean valence difference
into the linear updating rule (see Equation 5) produces the fol-
lowing approach-avoidance updating rule for the preference
state:

P(n) = (1 = 5)- P(n = 1) + [Va(n) = Vi(n)]
= (1 = 5)-P(n — 1) + [d(n) + e(n)]
=[l-(+0]-Pn—- D +[p+en)].  (6d)

According to Equation 6d, the new preference state P() is now
a weighted compromise of the previous preference state P(n — 1)
and the new valence input [6 + «#) ]. The mean valence input, 9,
in Equation 6d is closely related to the mean difference, 4, from
the linear updating rule (see Equation 5). When the mean va-
lence input is positive, 8 > 0, the preference state is driven in the
positive direction on the average. When the mean valence input
is negative, 8 < 0, then the preference state is driven in the
negative direction on the average. The residual «(7) has a mean
of zero, and its variance, Varle(n) ] = ¢, is defined in exactly the
same way as it was for linear system SEU theory (see Equa-
tion 5).

Note that one of the original features of approach-avoidance
theory was the distinction between approachable versus avoid-
able consequences, that is, rewards versus punishments (cf.
Miller, 1944). This closely corresponds to the distinction be-
tween positively versus negatively framed outcomes that is
made by more recent decision theorists (cf. Tversky & Kahne-
man, 1981). This analogy was recognized by Coombs and
Avrunin (1988), and they have provided a detailed analysis of
framing effects according to an approach-avoidance concep-
tual framework.

One criticism of earlier deterministic approach-avoidance
models by Lewin (1935) and Miller (1944, 1959) was that the
models were unclear about how avoidance-avoidance conflicts
were resolved. It seemed that individuals would be compelled
to vacillate back and forth forever and never reach a decision
without some external force to help push them into action. The
present approach-avoidance theory solves this problem by us-
ing a stochastic vacillation process. Although the present
theory predicts that individuals will vacillate back and forth
during deliberation, the preference state will always drift far
enough to exceed the inhibitory threshold, 8, required to make a
decision.

Technically, the process described by the approach~avoid-
ance updating rule (see Equation 6d) is a Markov chain process.
The preference states within the inhibitory threshold form a set
of transient states. It is a well-known theorem of Markov chains
(see Bhattacharya & Waymire, 1990) that the probability of
leaving a set of transient states approaches 1.0 as the number of
transitions increases to infinity.

The main new parameter in approach-avoidance theory, ¢, is
called the goal gradient parameter. First, note that when ¢ = 0
(ie., the goal gradients are both flat), then the approach-avoid-
ance theory reduces to the linear system SEU theory. Given

19 For the relatively small amount of variation in preference state that
is likely to occur in a laboratory decision task, a linear goal gradient
can approximate an exponential gradient reasonably well, and the dif-
ferences in the predictions produced by linear versus exponential gra-
dients are small and unimportant. In particular, the basic prediction
that avoidance-avoidance decisions take longer than approach-ap-
proach decisions remains unchanged by the use of linear versus expo-
nential gradients.
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that ¢ # 0, the sign of the goal gradient depends on the ap-
proach-avoidance nature of the conflict. For avoidance-avoid-
ance conflicts, ¢ is positive, which causes the preference state to
vacillate back and forth, and this in turn slows down the deci-
sion process. For approach-approach conflicts, ¢ is negative,
which causes the preference state to race toward the criterion,
and this in turn speeds up the decision process. In sum, ap-
proach-avoidance theory accounts for the fact that avoidance-
avoidance decisions take longer than approach-approach deci-
sions (Barker, 1942; Bockenholt et al., 1991; Busemeyer, 1985;
Houston et al., 1991) by including the goal gradient parameter,
¢. To establish this last conclusion in a more rigorous manner,
we develop a real-time, rather than a discrete-time, decision
process in the final stage of Table 2.

Stage 7. Decision Field Theory

The last four theories are all discrete-time dynamic pro-
cesses, and, consequently, they cannot be used to make quanti-
tative predictions for decision time. A real- or continuous-time
process is needed for this purpose, which can be constructed in
asimple way by introducing a time unit, 4, into the theory. This
time unit represents the amount of time used to process each
sample valence difference. In other words, / represents the
amount of time that it takes to retrieve and process one pair of
anticipated consequences before shifting attention to another
pair of consequences. The deliberation time, ¢, is then defined
in terms of this time unit as 1 = »h, where n equals the number
of samples that have been processed. Including the time unit
into the approach-avoidance updating rule (see Equation 6d)
produces the following linear stochastic difference equation
{see Busemeyer & Townsend, 1992, for a more detailed explana-
tion):

P@) = (1 = s-h)-P(t = h) + [Va(t) = Vi(D)]
= —(s+0)-h-Pl—h +[6-h+en)], (7)

where €(?) is the residual input with zero mean and Vie(t) | = 462,
and ¢? is defined exactly as before by Equations 2f through 2i.

Note that the approach-avoidance theory is a special case in
which the time unit is set equal to 4 = 1. However, it seems
unrealistic to assume that each processing step requires exactly
the same amount of time. To overcome this limitation, a more
realistic continuous-time version of the model can be obtained
by letting the time unit, 4, approach zero in the limit (see Buse-
meyer & Townsend, 1992). In the latter case, the amount of
attention allocated to each uncertain event is assumed to drift
up and down in a continuous manner during deliberation like a
continuously moving wave.

As the time unit, A, approaches zero, the preference state
evolves in an approximately continuous manner over time. Fur-
thermore, the distribution of the preference state at each time
point, P(f), can be mathematically derived from Equation 7
without making any assumptions regarding the distribution of
the residual, «(f), other than its mean and variance.!' In this
case, it has been proven that the distribution of P(f) converges
to the normal distribution as 4 approaches zero (see Bhatta-
charya & Waymire, 1990, chapter 3).

The left panel of Figure 9 shows the effect of the goal gradient

parameter, ¢, on the probability of choosing Ag over A; as a
function of the mean valence input (fors= 0, z=0,and § > 0, so
that Ay tends to be favored over A, ). The three curves illustrate
how this choice probability changes depending on the sign of
the goal gradient parameter. For the top curve, ¢ is positive,
corresponding to an avoidance-avoidance situation. For the
bottom curve, ¢ is negative, corresponding to an approach-ap-
proach situation. The middle was obtained by setting ¢ to zero.
Increasing the goal gradient parameter tends to magnify the
effect of the mean valence input on choice probability. (See
Equation A3 in the Appendix for the formula used to calculate
these predictions)

The effect of the goal gradient parameter, ¢, on decision time
is shown in the right panel of Figure 9. (See Equation A4 in the
Appendix for the formula used to calculate these predictions)
The right-panel figure shows the mean decision time as a func-
tion of the mean valence input (using the same parameters as in
the left-panel figure). The three curves illustrate how the mean
choice time changes as a function of the sign of the goal gra-
dient parameter. The important point is that holding the mean
input constant, the avoidance-avoidance conflict (ie., the top
curve) is predicted to take longer on the average than the ap-
proach-approach conflict (ie., the bottom curve). The effects
shown in the right-panel figure hold for a wide range of parame-
ter values and are not specific to the values used to generate this
figure. This basic prediction of the model is supported in four
different human decision-making experiments (Barker, 1942:
Bockenholt et al., 1991; Busemeyer, 1985; Houston et al.. 1991).

Summary of Decision Field Theory

Intuitively, the deliberation process can be summarized as
follows. When confronted with a difficult personal decision,
the decision maker tries to anticipate and evaluate all of the
possible consequences produced by each course of action. For
real decisions, a vast number of consequences may be consid-
ered, and these anticipated consequences are retrieved from a
rich and complex associative memory process. Obviously, all of
these consequences cannot be retrieved and evaluated all at
once. Therefore, the decision maker must undergo a slow and
time-consuming process of retrieving, comparing, and inte-
grating the comparisons over time. No action is taken until the
preference for one action becomes strong enough to goad the
decision maker into action.

Decision field theory is an attempt to formalize this delibera-
tion process. Of course, we do not wish to imply that decision
makers consciously carry out the computations indicated by
the linear stochastic difference equation (see Equation 7). In-
stead, these computations are assumed to be realized by an
underlying neural system, and decision field theory is an ab-

! For the continuous-time model, it is not necessary to assume that
the valence difference [V (f) — V. (1)] is independently sampled during
deliberation to derive the prediction equations for decision field
theory. The valence differences may be retrieved from an associative
memory system with one association leading to another in a statisti-
cally dependent manner. See Busemeyer and Townsend (1992) for the
details concerning the mathematical derivations of the predictions for
the continuous-time model.
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Figure 9. Predictions computed from decision field theory. (The left panel shows the probability of
choosing action Ag plotted as a function of the mean input with a separate curve for each of three goal
gradient parameters. The top curve was obtained with ¢ > 0, the middle curve with ¢ = 0, and the bottom
curve with ¢ < 0. The right panel shows the mean choice time plotted asa function of the mean input witha
separate curve for each of three goal gradient parameters. The top curve was obtained with ¢ > 0, the
middle curve with ¢ = 0, and the bottom curve with ¢ <. The same parameters were used in both panels)

stract representation of its essential dynamic properties (cf. the potential gains and losses involved in the example decision
Tuckwell, 1988). problem shown in Figure 5. The gains form the affective inputs
A schematic overview of all of the main components of deci- to the approach subsystem, and the losses form the affective

sion field theory is shown in Figure 10. Starting at the far leftare inputs to the avoidance subsystem. Each input is connected to

VALENCE SYSTEM

AVOIDANCE SUBSYSTEM
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DECISION P MOTOR
APPROACH SUBSYSTEM SYSTEM SYSTEM

W = ATTENTION WEIGHT

V = VALENCE
P = PREFERENCE STATE
A = ACTION

Figure 10. Outline of decision field theory. (The left panel indicates how the connection strengths [W;,
connecting act i to consequence j] filter the input values to produce a valence for each act [V,] as output.
The right panel indicates how the valence [V] is input into a dynamic decision system that produces
preference [P] as output, and this preference is then input into a dynamic motor system that produces
actions [A] as output. S = uncertain event; R = right action; L = left action.)
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an action by an attention weight (the Ws in the figure), which
represents the retrieval of an association between an action and
a consequence. These weights change over time as a result of
shifts in the decision maker’ attention to the various conse-
quences during deliberation. The valence of an action at any
moment (the V5 in the figure) represents the anticipated value of
an action at that moment, and it is produced by the weighted
sum of the input values connected to that action. The valence of
each action is fed into a decision system that compares the
valences and integrates these comparisons over time to pro-
duce a momentary preference state, P Finally, this momentary
preference state drives a motor system that inhibits responding
until a threshold is exceeded, at which point the overt action (the
A 1n the figure) is expressed.

Altogether, decision field theory entails a total of seven pa-
rameters: §§, g, §, z, s, ¢, A (See the outline in Table 2) First, the
mean valence input, 4, is used to explain the direction of prefer-
ence (as in SEU theory). Second, the variance of the valence
input, 0%, is used to explain strength of preference (as in random
SEU theory). Third, the inhibitory threshold, 6, is used to ex-
plain speed-accuracy trade-off effects {as in sequential SEU
theory). Fourth, the initial anchor point, z, is used to explain
reversals in the direction of preference as a function of time
pressure (as in random walk SEU theory). Fifth, the growth-
decay rate, s, is used to account for serial position effects (as in
linear system SEU theory). Sixth, the goal gradient parameter,
¢, is used to explain the effects of the approach-avoidance na-
ture of a conflict on deliberation time. Finally, the time unit, 4,
is chosen to be as close to zero as needed to approximate a
continuous-time process. Note that the first six stages in Table
2 are all special cases of decision field theory, because each of
the earlier stages can be obtained from the last stage by putting
the appropriate constraints on the parameters of decision field
theory.

Table 4 summarizes the rules for mapping the basic experi-
mental factors for decision making under uncertainty (i.e., un-
certain events, payoffs, deadline time limits) on to the theoreti-
cal parameters of decision field theory for the prototypical
problem shown in Figure 5. (The Appendix provides the gen-
eral formulas for an arbitrary number of payoffs} For example,
the mean valence input, 4, and the goal gradient, ¢, are both
determined by Equation 6c; the variance of the valence input,
0%, is determined by Equations 2f through 2i; the inhibitory
threshold is an increasing function of the deadline time limit;
and the initial starting point, z, is biased in the direction of the
mean input valence. In the next section, we compare decision
field theory with other competing theories of decision making
under uncertainty, using the mapping rules shown in Table 4
for all of these tests.

Tests of Competing Theories

In the previous sections, some general deficiencies with ear-
lier theories were identified, and a number of qualitative areas
of support for the assumptions of decision field theory were
presented. This section provides a more detailed comparison of
decision field theory with five different major theories of deci-
sion making. The primary method for empirically testing the
theories is based on a cross-validation type of methodology.

That is, parameters are estimated from one part of an experi-
ment, and then these same parameters are applied to a separate
part of the experiment and the predictions are evaluated. The
structure of the valid theory should permit relatively accurate
prediction without changing the parameters, whereas the inva-
lid theories should tend to fail in these tests.

For each application described later, the predictions from
decision field theory were computed from Equations A3 and
A4 in the Appendix. Each data set was divided into two parts:
The first part was used for parameter estimation, and the sec-
ond part was used for cross-validation. The parameters were
then estimated from the first part by finding values that mini-
mized the sum of squared prediction errors. These same param-
eters were used to generate new predictions for the second part
of the data set.'?

For successful cross-validation, it is important to construct
the most parsimonious model possible. With this objective in
mind, we began with the lowest possible stage in Table 2 (Stage
3 is the simplest dynamic model) and moved to more complex
stages only if it was necessary to obtain a satisfactory fit to the
first part of the data set.

The experiments presented in this section were specifically
designed to test basic properties of decision field theory, and
they satisfy several stringent criteria. First, these experiments
were designed to investigate an important aspect of either the
probabilistic nature of preference (e.g., violations of indepen-
dence between alternatives) or the dynamic nature of the delib-
eration process {e.g., the relation between choice probability
and decision time). Second, the design of each experiment was
sufficiently complex to permit theory testing on the basis of the
cross-validation methodology mentioned earlier. Third, all of
the results discussed in this section are highly reliable (being
based on large sample sizes), and the findings of the original
experiment have been replicated in one or more independent
experiments. The results of these experiments should provide
useful benchmarks for evaluating and comparing future the-
ories concerned with the deliberation process of decision mak-
ing.

Violations of Stochastic Dominance

Stochastic dominance is one of the main properties satisfied
by current deterministic theories of decision making under un-
certainty (¢.g., see the review of rank dependent utility theories
described in Wakker, 1989b). Technically, gamble A stochasti-
cally dominates gamble B if and only if the cumulative distribu-
tion of the payoffs produced by gamble A is always less than or
equal to that for gamble B and the inequality is strict for at least
one value.

For example, suppose one is given a choice between two ac-

'? Decision field theory describes the probability that an individual
will choose one action over another as a function of deliberation time.
The parameters of the model may vary across individuals, and if they
do, then ideally the model should be fit to individual data. However,
the pattern of results reported in Tables 7-11 were consistent across
individuals so that the average data were representative of the individ-
ual data, and fitting the prototypical subject was reasonable. Ouly
group data were available for Tables 5 and 6.



DECISION FIELD THEORY 447

Table 4

Rules for Mapping Experimental Factors Into Model Parameters by Using the Problem in Figure

5 as an Example

v = WS,) - 4(+500), average gain for action on the right
vor = W(S;) - u(—500), average loss for action on the right
v = W(S,;)- u(+200), average gain for action on the left
vy = M(S,) - 1(—200), average loss for action on the left
or> = WMSHu(500) + w(Su(—500)* — (v,g + va)2

o1” = w(S(200) + w(S)u(—200)* — (v + vpr)’

akli
a

0

or? + 0,2 — 2- agy, input variance

[

W(S,) - u(—500) - #(200) + W(S,) - 1u(300) - 2(—200) — (D, + VoR)Vyp + 1)

AL)- o, inhibitory threshold, where fL) is an increasing function of the time limit, L

¢ = [b-{vgp + vy,) — a-(vg, + vy,)], goal gradient parameter
& = (vg, — 0 )1 — a-8) + (vgp, — VX1 — b-6), mean input
z = g(8)- 8, initial starting point, where g(8) is an increasing function of the mean input, &

Note. For simplicity, the mapping rules are presented for the two-event case. The general formulas for

more than two events are given in the Appendix.

tions as in Figure 5. Also suppose the action on the right pro-
vides an even chance of winning $4 and losing $1; the action on
the left provides an even chance of winning $1 or losing $1. In
this case, the action on the right stochastically dominates the
action on the left because (a) both actions have the same proba-
bility of losing $1 and (b) both actions also have exactly the same
probability of winning, but (¢) one can win more with the action
on the right. Thus, rank-dependent utility theory asserts that
the action on the right should always be chosen to satisfy sto-
chastic dominance.

The predictions from decision field theory for this situation
depend on the correlational structure of the payoff matrix {see
Equation 2f), and two different cases are shown in Table S. In
the positively correlated case, the valence difference never fa-
vors action A, over Ag, independent of whether the decision
maker attends to the event seads or tails. Therefore, according
to decision field theory, the stochastically dominant action on
the right should always be chosen. In the negatively correlated
case, the sign of the valence difference changes depending on
whether the decision maker attends to heads or to tails. On the
average, the decision maker will attend to each event equally
often, but moment-to-moment fluctuations in attention will
produce variation in the sign of the valence difference, and
there is some probability, albeit small, that the decision maker
attends to the event tails frequently enough to drive his or her
preference toward the threshold for taking the action on the
left. Therefore, according to decision field theory, the stochasti-
cally dominated action on the left will be chosen occasionally.

Table 6 shows the results of two experiments, one by Katz
(1964) and the other by Myers and Suydam (1964), that used
payoft structures corresponding to the negatively correlated
case in Table 5. In both experiments, subjects were first given
300 trials of training with uncertain decision problems similar
to the prototypical problem shown in Figure 5. The columns
labeled yy, and yg, indicate the monetary payoffs produced by
choosing action Ag when either event S, or S, occurred, respec-
tively. The columns labeled y;; and y;, indicate the monetary
payoffs produced by choosing action A; when either event S, or
S, occurred, respectively. The columns labeled Pr(S,) and Pr(S,)
indicate the probabilities of the two uncertain events for each
condition, which were learned through 300 trials of training

with outcome feedback. The column labeled observed shows
the probability of choosing action Ag estimated after training,
with each proportion based on over 2,000 observations pooled
across subjects.

First, consider the symmetric payoff Conditions 1, 5, and 9 in
Table 6. When the payoffs are symmetric, the probability of
choosing each action is approximately .50. According to rank
dependent utility theories, this implies that the weights for each
event are equal in magnitude. Next consider Conditions 4 and
7. To satisfy stochastic dominance, the probability of choosing
action A should equal 1.0, but instead the observed probability
falls significantly below this extreme value. Similarly, for Con-
ditions 2 and 3, stochastic dominance requires that the proba-
bility of choosing action Ay should equal zero, but on the con-
trary, the observed probability lies significantly above this ex-
treme. Violations of stochastic dominance are found also for
Conditions 12 and 16 in Table 6. Moreover, these results were
replicated by Busemeyer (1982) with the choice probabilities
estimated separately for each recently experienced event se-
quence. In sum, stochastic dominance is frequently violated, at
least for uncertain decision problems in which the event proba-
bilities are learned from experience.

These results are contrary to deterministic rank-dependent
utility theories that are based on stochastic dominance.'* Sim-
ple scalability theories are unable to explain the effect that
changes in the correlational structure (see Table 5) have on
choice probability.

According to decision field theory, these violations are due to
fluctuations in attention to each event under the negative corre-
lational payoff structure in Table 5, producing variation in the
sign of the valence difference. The predictions shown in the last
column of Table 6 were computed from decision field theory.
Only two parameters were estimated from the [ 7 data points by
using the mapping rules shown in Table 4. (Only Stage 3 of

3 The following conclusion is derived from the rank-dependent util-
ity model presented in Luce (1990). Define (), S, x) as an action that
yields y if event S occurs and yields x otherwise. Assume that y >, x. If
(x, S, =) =, £, S, x) is observed, then the following preference order
should be observed: (1S, =) >, (6, S, %) =, (x, S, %).
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Table 5
Two Cases for Testing Stochastic Dominance

Negatively
correlated case

Positively
correlated case

Action Heads Tails Heads Tails
Right 4 -1 4 -1
Left I -1 -1 I

Note.  Each cell entry indicates the payoff produced by a row and
column selection. Heads and tails are the two events from a flip of a
fair coin.

Table 2 was needed for this data set. See the Appendix for the
parameter values) As can be seen in Table 6, decision field
theory provides an accurate account of these results; the model
accounts for 98% of the variance. However, a much stronger
cross-validation test of decision field theory is described in the
next application.

Violations of Independence Between Alternatives

Becker et al. (1963b) proposed the simple scalability hypothe-
sis {e.g., Equation 1d) as a general method for extending deter-
ministic models of risky decision making to account for the
magnitude of choice probability. Since that time, the simple
scalability hypothesis has been used implicitly by many current
theorists as a rationale for generating choice probability predic-
tions from deterministic models (e.g., Hogarth & Einhorn,
1990; Lopes, 1987). Recall that the main axiom of simple scala-
bility theory is the independence property:

If PHA, C) > Pr(B, C), then Pr(A, D) > Pn(B, D).

Decision field theory predicts that the independence prop-
erty will be violated whenever the variance of the valence dif-
ference, o2, varies across choice pairs. This is expected to occur
whenever the variance of each gamble is manipulated (see Table
3) or whenever the correlation between gambles is manipulated
(see Table 5).

Table 7 shows the results of an experiment that systematically
manipulated the variance of each gamble. This table contains
the choice probabilities for 12 conditions taken from an experi-
ment by Myers et al. (1965), which used experimental proce-
dures similar to the experiments associated with Table 6. Table
7 is read in exactly the same way as Table 6, and each choice
proportion in Table 7 was based on 750 observations.

The Myers effect can be seen by considering the choice proba-
bilities obtained from Conditions 22--25. First, compare Con-
ditions 22 and 23 in which A, yields +1 for certain. In Condi-
tion 22, Ay yields +4 or —4 with equal probability, and in Con-
dition 23, Ay yields —16 or +16 with equal probability. Note
that increasing the payoff range increased the probability of
choosing Ag. According to simple scalability theory, this im-
plies that the utility of Ay increased when the payoff range
increased.

Next, compare Conditions 24 and 23, and note that the only
difference between these two conditions and Conditions 22
and 23 is the change in the certain value of A from +1 to —1.

However, now the same increase in payoff range for Az de-
creased the probability of choosing Ag. According to simple
scalability theory, this implies that the utility of Ay decreased
when the payoff range increased. But this contradicts the ear-
lier conclusion and violates the independence between alterna-
tives property implied by simple scalability theory'*

The violation of independence in Table 7 is not restricted to
equal event probabilities. As can be seen by comparing Condi-
tions 18-21 and Conditions 26-29 in Table 7, violations also
occur with unequal event probabilities. Furthermore, this vio-
lation of independence (ie., the Myers effect) has been repli-
cated in numerous other experiments (Busemeyer, 1979, 1985;
Katz, 1962; Myers & Katz, 1962; Myers & Sadler, 1960; see also
Footnote 3).

The last column of Table 7 shows the predictions for all 12
conditions calculated from decision field theory by using ex-
actly the same two parameters that were used to fit the results of
Table 6 (ie., a cross-validation test). As can be seen, decision
field theory correctly predicted the independence violations for
all three event probabilities in Table 7 without estimating any
parameters from this table of the data. According to decision
field theory, these violations of the independence property are
caused by changes in the variance of the valence difference, o2,
across choice pairs (see Table 3). However, this is not the only
possible explanation, and the next two applications compare
decision field theory with two other possible explanations.

Comparison With Probabilistic Regret Models

Myers et al. (1965) originally explained the violation of inde-
pendence in terms of a regret ratio model. According to this
model,

[Pr(Ag, AL)/Pr(AL, AR)]l = [ER(ALV/ER(AR)),  (8a)

where ER(A ) and ER(Ag) are the expected regrets correspond-
ing to actions A, and Ag, respectively. For decision problems
involving only two uncertain events (similar to Figure 5), the
expected regrets are defined as follows:

ER(AL) = w(Sy) - u(yr> — V1) and
ER(AR) = w(S)) - u(yu;1 — Vri)s

where it is assumed that yg, > ¥, and y;; > yg; and u(x) is an
increasing function of x. If we take the logarithms of both sides
of Equation 8a, then we obtain the following subtractive model
for the logit score, L:

L = in[Pr(Ag, A/Pr(AL, Ag)]
= a-In[ER(AL)] — a-In[ER(AR)]. (8b)

Thus, if the choice probabilities are transformed into logit
scores, L, then the logit score can be written as a subtractive
combination of the regret produced by each action.

!4 The test of independence can be performed by setting A = action
Ag under Conditions 22 and 24, B = action Ag under Conditions 23
and 25, C = action A, under Conditions 22 and 23, and D = action A,
under Conditions 24 and 25. Then we have Pr{A, C) < Pr(B, C) and
Pr(A, D)> Pr(B, D) in Table 7, violating the independence property. In
other words, there 1s a crossover interaction effect of payoff range of Ag
and the certain value of A on choice probability. This crossover inter-
action is the Myers effect.
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Table 6
Choice Probabilities From Katz (1964) and Myers and Suydam (1964)
Event Prichoose
Payoff matrix probabilities Ag over Al
Condition Vri Yr2 Yu Vi Pr(S)) Pr(S,) Observed Predicted
1 1 —1 -1 1 5 5 49 .50
2 1 -2 -1 1 5 .5 31 34
3 1 —~4 -1 1 5 S .25 .26
4 2 -1 -1 1 .5 .5 .65 .66
5 2 -2 -1 1 .5 5 .50 .50
6 2 -4 -1 1 S .5 .37 40
7 4 -1 —1 1 5 5 71 74
8 4 -2 -1 1 5 S5 .58 .60
9 4 -4 -1 1 5 S St .50
10 1 -1 -1 1 .6 4 .62 .67
11 1 -4 -1 1 6 4 .36 41
12 4 -1 -1 1 .6 4 .81 .85
13 4 —4 -1 1 .6 4 70 67
14 1 -1 —1 1 8 2 93 93
15 1 -4 -1 1 .8 2 .82 .78
16 4 -1 -1 1 R 2 .94 98
17 4 —4 -1 1 .8 2 94 93

Note. Each proportion was based on at least 2,000 observations. Two parameters were used to fit the 17
data points, and 98% of the variance was predicted by the model.

Decision field theory predicts that the effects of the regrets
for each action do not decompose into subtractive components
in the logit transformation. On the contrary, nonadditive effects
of the regret factors are expected to result from dividing the
mean difference by the standard deviation of the valence dif-
ference. For example, when there are only two equally likely
events, then the logit transformation applied to Equation 3¢ can
be expressed in terms of expected regrets as

L = [ER(AL) — ER(AR))/IER(Ay) + ER(Ag)].

Busemeyer (1982) conducted two experiments to test the sub-
tractive property of the regret ratio model, and statistically sig-

nificant interactions were obtained from a majority of subjects
in both experiments. The results from Busemeyer (1982, Exper-
iment 1) are shown in Table 8. In this experiment, subjects were
given 1,400 trials of training with uncertain decision problems
similar to the prototypical problem shown in Figure 5, with two
equally likely events, P(S,) = P(S,) = .5. The first two columns
in Table 8 indicate the monetary payoffs, either yg; or yg,,
produced by choosing action Ag when either event S; or S,
occurred, respectively. The monetary payoffs for choosing ac-
tion A; are not shown because they were fixed at y; = —1 and
v, = +1 forall conditions. Thus, the regret for A, is determined
by yr, in the first column, and the regret for Ay is determined

Table 7
Choice Probabilities From Myers, Suydam, and Gambino (1965)
Event Pr{choose
Payoff matrix probabilities Ag over A, ]

Condition Vai Vr2 Yu Vi PrS,)) PrS,) Observed Predicted
18 4 —4 1 1 .8 2 .83 73
19 16 -16 { 1 8 2 93 91
20 4 —4 -1 -1 8 2 98 98
21 16 —16 -1 -1 8 2 .88 .94
22 4 -4 1 1 .5 .5 .35 22
23 16 -16 l 1 .5 5 43 A5
24 4 -4 -1 -1 ) .5 75 .78
25 16 —16 -1 -1 .5 5 .60 .55
26 4 —4 1 1 2 8 .08 02
27 16 ~16 1 1 2 .8 .10 .06
28 4 -4 —1 -1 2 8 .30 27
29 16 —16 -1 —1 2 .8 15 09

Note.

Each proportion was based on 750 observations. The 12 predictions were based on exactly the same

parameters estimated from the data shown in Table 6 (i.e., the predictions in this table are parameter free).
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Table 8
Probability of Choosing Ag Over Ay From Experiment I of
Busemeyer (1982)

Payoff
matrix Context cue value

VR Vra Source -3 -2 -1 +1 +2 +3
1 -1 O 235 37 46 .58 64 80
P 26 37 44 .56 63 74

1 -2 (0] 07 3 15 21 35 49
P 08 14 19 28 34 43

{ -4 O 05 05 .07 08 16 26
P 03 06 .09 14 17 23

2 -1 (¢] 52 63 .76 80 85 91
P S3 63 .69 79 84 91

2 -2 (¢] 25 41 48 .56 67 78
P 26 37 44 .56 63 74

2 -4 (¢] 07 13 17 21 34 49
p 09 15 .20 .30 36 45

4 -1 (¢] 71 83 90 90 91 94
p 73 80 .84 .90 93 96

4 -2 O 45 62 72 75 80 87
p 48 58 .65 .75 81 89

4 ~-4 O 26 41 47 .55 69 73
P 24 34 41 33 61 71

Note.  y;=—1and y, =1 forall conditions. O = observed proportion;

P = predicted probability. Each proportion is based on 403, 945, and
2,025 observations for cues +1, 2, and £3, respectively. A total of
five parameters were used to fit 54 data points, and the percentage of
variance predicted by the model equals 98%.

by Vg; in the second column of Table 8. The next eight columns
contain the observed and predicted choice probabilities ob-
tained in each of six different context cue conditions. Each
context cue was an event sequence that preceded the current
trial. Cues labeled +1, +2, or +3 indicate that a run of one, two,
or three S, events preceded the current trial. Cues labeled —1,
-2, or —3 indicate that a run of one, two, or three S, events
preceded the current trial.

For example, consider the pair of rows corresponding to the
payoff (1, —1) and the column corresponding to the context cue
labeled +3. In this case, event S, occurred on all of the three
immediately preceding trials, and the probability of choosing
Ay equals .80.-Apparently, subjects expected this run of three S,
events to terminate with an S; event on the next trial. Now
consider payoff condition (2, —1) and the context cue condition
+3. Under this condition, action Ay stochastically dominates
A.. However, the probability of choosing action Ag was only
.91, well below 1.0 required by deterministic rank-dependent
utility theories. Violations of stochastic dominance are also
obtained in payoff condition @, — 1) and context cue condition
+3 and in payoff conditions (1, —2) and (1, —4) and context cue
condition —3.

The predicted values in Table 8 were calculated from deci-
sion field theory. Only five parameters were estimated from the
54 choice probabilities by using the mapping rules shown in
Table 4. (Only Stage 4 was needed. See the Appendix for the
parameter values) The model accounted for 98% of the vari-
ance in the choice proportions.

The critical interaction effects on the logit scores are shown

in Table 9. Each row shows the observed and predicted interac-
tion effect corresponding to the interaction contrast indicated
by the far left column. The symbol L; indicates the mean logit
score (averaged across context cues) obtained in the payoff con-
dition with yg, = i and ), = j. For example, the positive inter-
action contrast in the first row indicates that the increase in
mean logit scores produced by changing yg, from 1 to 2 when
Vr2 was fixed at —1 was larger than the increase produced by
the same change in yg, when g, was fixed at —2. As can be seen
in Table 9, decision field theory accounts for the direction of
the statistically significant interaction effects that violate the
subtractive property implied by the regret ratio model. A cross-
validation test for this experiment is described next.

Relation Between Choice Probability and Decision Time

Tversky (1972) developed a probabilistic choice theory called
the elimination by aspects (EBA) theory to explain violations of
the independence property. Although the EBA theory is consid-
ered a process theory of choice, Tversky (1972) did not develop
any choice response time predictions. Subsequently, Marley
(1981) overcame this limitation by extending EBA theory to
account for both choice probability and choice response time.
More recently, Busemeyer, Forsyth, and Nozawa (1988) derived
the following critical property from the extended EBA theory:
The mean time to make a decision is independent of the action
that is eventually chosen. In other words, the extended EBA
theory fails to account for the basic fact that the mean decision
time for the more frequently chosen alternative is faster than
that for the less frequently chosen alternative (see Figure 3).

In contrast, decision field theory generally does predict dif-
ferences between conditional mean response times. According
to this theory, the initial preference state, z, will be biased in the
direction of mean input, §, because of recall of preference states
from previous choice trials. This initial bias causes the more
favorable alternative in a pair to be chosen more quickly. A
strong cross-validation test of the theory can be conducted by
using the same parameters estimated from the choice probabili-
ties in Table 8 to make predictions for the mean choice re-
sponse time.

The choice speed data reported in Busemeyer (1982) provide
a direct test of these two models, as is shown in Table 10. Speed
= (1/latency), rather than latency, was analyzed to satisfy the

Table 9
Interaction Effects of Rewards and Punishments on Log Odds
Scale From Busemeyer (1982)

Interaction Observed Predicted
(Lyy = La) — (Lyp — L) .36 14
(Lip = L) = (Lys — Loy —-.56 -.25
(Lay = Lap) = (L — La) .03 03
Ly — Lay) — (Lys — Laa) .60 14

Note. L;= mean logit score (averaged across cues) for the payoff con-
dition with the reward set equal to yg, = { and the punishment set equal
to —vg, = J. Each contrast is based on 7,020 observations. The interac-
tion effect was also significant in a second experiment reported in
Busemeyer (1982).
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Table 10
Differences in Choice Probabilities and Mean Choice Speeds

From Experiment 1 of Busemeyer (1982)

(A) (B)
P’(AR, AL) - P’(AR’ AL) -
Pr(AL» AR) P’(AL’ AR)
Gain for Ag (o) P Loss for Ag (¢} P
P —42 -4 Yo = —1 +.42 +.39
Ve = +4 +39 435 Va2 = —4 -4 —43
(9] D)
Speed(Ag) — Speed(Ag) —
speed(A.) speed(Ar)
Gain for Ag O P Loss for Ax (6] P
Y = +1 -33 -28 Ve = —1 +06  +.24
Yr; = +4 +.16 +.21 Vr2 = —4 -.30 -.29

Note. O = observed; P = predicted. Each contrast is based on 14,040
observations. The pattern of observed results shown in this table were
replicated in a second independent experiment. No new parameters
were used to generate the choice speed predictions.

assumptions of the statistical tests. (Latencies produce nonho-
mogenous variances, and the transformation to speed homo-
genizes the variance) This table shows four separate interaction
effects: Panel A shows the effect of manipulating the gain for
Ag (Jri = +1, yr; = +4) on the mean differences in choice
probabilities; Panel B shows the effect of manipulating the loss
for Ag (¥r2 = —1, Yro = —4) on the mean differences in choice
probabilities; Panel C shows the effect of the gain for Ag on the
mean differences in choice speeds; and Panel D shows the ef-
fect of the loss for A; on the mean differences in choice speeds.
In all four cases, the mean difference is defined as (mean for
Ag) — (mean for A, ). Increasing the gain caused the differences
in choice probability and choice speed to change from negative
to positive; whereas increasing the loss magnitude caused the
differences to change from positive to negative. Both interac-
tions shown in Panels C and D were statistically significant,
and, furthermore, both interactions were replicated in two
other experiments (Busemeyer, 1982, Experiment 2; Buse-
meyer, 1985, Experiment ).

Contrary to the extended EBA theory, the differences be-
tween mean choice speed for each action were nonzero, and,
furthermore, the sign of the differences in mean choice speed
changed systematically in the same direction as the differences
in choice probability. Note that decision field theory correctly
predicts the interaction patterns for choice speed without esti-
mating any new parameters from this part of the data. In con-
clusion, decision field theory successfully predicts this basic
relationship between choice probability and choice speed,
whereas EBA theory currently is unable to account for this
fundamental relation.

Effects of Time Pressure on Decision Accuracy

Interest in the effects of time pressure on decision making
has increased rapidly within the last few years (see Svenson &

Maule, in press). One explanation for the effects of time pres-
sure on decision making is that short deadlines force the deci-
sion maker to adopt a simple heuristic strategy that takes less
time to execute but is less accurate (e.g., see Payne, Bettman, &
Johnson, 1988). This implies that increasing time pressure al-
ways results in a decrease in deciston accuracy (i.., a decrease in
the probability of choosing the action that produces the largest
SEU).

Decision field theory provides an alternative explanation:
Rather than switching decision strategies, decision accuracy is
controlled by adjusting the inhibitory threshold bound, 6. If the
discriminability ratio is very high, or the initial starting posi-
tion is close to zero, then decision field theory predicts that
increasing the inhibitory bound will increase decision accu-
racy. However, if the discriminability ratio is very low, and the
initial starting position is biased in the correct direction by past
experience, then decision field theory predicts that time pres-
sure may improve decision accuracy by increasing the effect of
the initial starting position on choice probability.

The results shown in Table 1 1 were taken from an experiment
on uncertain decision making under time pressure by Buse-
meyer (1985). At the beginning of each choice trial, subjects
were given a deadline time limit, and then they were asked to
choose between a certain value (labeled here as action Ap ) and
an uncertain action (labeled here as action Ag). A known mon-
etary payoff was delivered if the certain value was chosen. The
monetary payoff for the uncertain action was randomly sam-
pled from a normal distribution with a mean equal to zero.
Subjects were given 360 trials of training to learn the distribu-
tion of payoffs produced by the uncertain alternative.

The probability of choosing action Ag following training for
each of 18 conditions are presented in Table 11. The first col-
umn indicates the deadline time limit condition (1, 2, or 3 s),
and the second column indicates the value of the certain alter-
native (-3¢, 0¢, +3¢). The next three columns contain the ob-
served and predicted probabilities obtained when the standard
deviation of the uncertain payoff equaled 5¢, and the last three
columns contain the results obtained when the standard devia-
tion of the uncertain payoff equaled 50¢, Each proportion is
based on an average of 1,560 observations.

Two important interactions need explanation. The first in-
teraction is analogous to the Myers effect—that is, the interac-
tion between the certain value and the uncertain standard de-
viation on choice probability in Table 11. When the certain
value was positive, increasing the standard deviation increased
the probability of choosing the uncertain action; however,
when the certain value was negative, increasing the standard
deviation had the opposite effect. This crossover interaction is a
violation of the independence property implied by simple scal-
ability theories. The second interaction is the crossover interac-
tion between the deadline time limit and the standard devia-
tion of the uncertain action. Under the small standard devia-
tion condition, increasing the time limit increased the
probability of choosing the action with the largest expected
value. But under the large standard deviation condition, in-
creasing the time limit had the opposite effect, or, in other
words, increasing the deliberation time decreased accuracy
(where the correct action is the one producing the largest ex-
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Table 11
Probability of Choosing the Uncertain Alternative From Experiment 1 of Busemeyer (1985)
Uncertain Uncertain
standard (5¢) standard (50¢)
RW RW

_Time Certain DF DF
Iimit (s) value Observed Predicted predicted Observed Predicted predicted

1 +3 11 .09 Ry 27 .26 .30

1 0 47 .50 .50 48 48 .50

1 -3 .88 87 .88 62 61 .65

2 +3 .07 .08 .09 31 .32 .32

2 0 .53 .51 50 .52 .49 .50

2 -3 91 91 93 .58 .58 .64

3 +3 .06 .06 .08 .36 37 .34

3 0 .53 .52 .50 .50 .49 .50

3 -3 .94 .95 96 .55 .56 .62
Note.  Each proportion is based on 1,560 trials. The empirical pattern of results was replicated in a second

independent experiment. Eleven parameters were used to fit the random walk subjective expected utility
theory (RW), and four parameters were used to fit the decision field (DF) model. The percentage of

variance predicted equals 99% for both models.

pected payoff). This interaction was replicated in a second ex-
periment by Busemeyer (1985).

If decision makers change to a simple heuristic strategy
under time pressure, then accuracy should decrease under time
pressure for both the small and large variance conditions. That
time pressure increased decision accuracy under the high vari-
ance condition is difficult to explain by using this view, because
it violates the accuracy-effort trade-off relation assumed by
cost-benefit theories of strategy selection (see Busemeyer, in
press).

This counterintuitive result can be explained by decision
field theory as follows. The initial starting position, z is
strongly biased in the direction of the mean input, 4, and this
bias has its greatest effect when the threshold criterion, 6, is
small (see Figure 7). Therefore, at short deadlines, accuracy
should be relatively good even for the high-variance condition
because of the effect of the initial starting position. However,
the effect of the initial starting position rapidly diminishes, and
the effect of the discriminability ratio rapidly increases as the
threshold bound increases (see Figure 7). Therefore, at long
deadlines, accuracy shouid be low for the high-variance condi-
tion because of the small discriminability ratio, but accuracy
should be high for the low-variance condition because of the
large discriminability ratio.

A quantitative test of this explanation was performed by esti-
mating four parameters from the 18 data points in Table 11 by
using the mapping rules shown in Table 4 (see the Appendix for
the parameter values).!® Stage 7 of Table 2 was needed for this
application: (a) The mean input was set as é = (0 — x), where O is
the mean of the uncertain action (Ag) and x is the monetary
value of certain alternative (A, ); (b) the variance of the input
was set equal to the variance of the uncertain action; (¢) the
inhibitory bound was linearly related to the time limit; (d) the
initial preference state was proportional to the mean input; and
() the goal gradient parameter was proportional to the value of
the certain alternative. (Note that negative certain values pro-
duce a larger avoidance component than positive certain val-

ues) The predictions from this model are shown under the
columns labeled DF (decision field) in Table [ 1. As can be seen,
this model successfully accounts for both of the crucial interac-
tions, and it also accounts for 99% of the variance in the choice
probabilities. A cross-validation test of decision field theory for
this data set is presented next.

Effect of Type of Conflict on Decision Time

One of the most interesting properties of the deliberation
process is that longer deliberation seems to be needed for avoid-
ance-avoidance decisions as compared with approach-ap-
proach decisions (Barker, 1942; Bockenholt et al., 1991; Buse-
meyer, 1985; Houston et al., 1991). According to decision field
theory, this effect of the type of conflict on decision time re-
sults from a steeper goal gradient for the avoidance subsystem
as compared with the approach subsystem. In other words, the
goal gradient parameter, ¢, is assumed to increase from an ap-
proach condition to an avoidance conflict condition, and this

!5 An alternative way to model the effects of deadline time limits on
decisions is to assume that the decision maker continues to accumulate
information until the deadline is reached and then stops and chooses
the action on the basis of the sign of the preference state at the dead-
line. This is called a fixed sample decision model, which was ruled out
by Busemeyer (1985). There are two obvious problems with thls model:
(a) It produces a fixed or constant stopping time {equal to the deadline)
with zero variance, and (b) the stopping time would not be affected by
the value of the certain alternative. However, the observed decision
times form a distribution with a mean located well before the deadline
and a nonzero variance that is an increasing function of the mean.
Furthermore, the mean decision time was inversely related to the value
of the certain alternative. Decision field theory (with a constant inhibi-
tory threshold as shown in Figure 6) satisfies these basic properties. It
is plausible that the inhibitory boundaries decay toward zero as the
deadline time limit approaches; however, this more complex model
was not needed to account for the main results.
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causes decision time to be longer for avoidance conflicts (see
Figure 9, right panel).

Recall that if the goal gradient parameter is eliminated, then
no differences in mean decision time are expected by changing
from an approach condition to an avoidance conflict condi-
tion. In particular, decision field theory reduces to random
walk SEU theory whenever ¢ + s = 0, where ¢ is the goal gra-
dient parameter and s is the growth-decay rate parameter.
Thus, an examination of the effect of type of conflict on deci-
sion time provides a critical test of the more complex decision
field theory in comparison with the simpler random walk SEU
theory.

The mean decision time data reported by Busemeyer (1985,
Experiment 1) provide a cross-validation test of the decision
field versus random walk SEU theories. The parameters of
both models were estimated from the choice data shown in
Table 11, and then these same parameters were used to make
predictions for mean decision time.

The choice probability predictions produced by the decision
field model for Table 11 have already been discussed. The ran-
dom walk SEU theory also was fit to the choice data in Table 11
by using the following mapping of experimental factors to
model parameters: (a) The mean input was estimated separately
for each value of the certain action (recall that the mean of the
uncertain action was fixed at zero in this experiment);'¢ (b) the
variance of the input was estimated separately for each stan-
dard deviation of the uncertain action; (c) the inhibitory bound
was estimated for each time limit condition; and {(d) the initial
preference state was estimated separately for each value of the
uncertain action. Altogether, 11 parameters were estimated
from the 18 choice probabilities (see the Appendix for the spe-
cific values). The predictions are shown under the columns
labeled RW (random walk) in Table [ 1. As can be seen, this
model successfully accounts for both of the crucial interactions,
and it accounted for over 99% of the variance in the choice
probabilities.

The primary test of the two theories is based on the predic-
tions for mean choice response time. Table 12 shows the results
for the mean response time for each combination of deadline
time limit and value of the certain alternative. Note that the
mean response times consistently increase as the certain value
changes from positive to zero to negative. The random walk
SEU theory incorrectly predicts that the zero certain value al-
ways produces the longest mean response times, and it fails to
predict much difference between the negative and positive cer-
tain value conditions. The slight difference that it does predict
is produced by differences in the magnitude of the biased ini-
tial state parameter for positive and negative certain values.
Also note that the random walk SEU theory was based on
seven more parameters than the decision field model (see Foot-
note 16).

Decision field theory accounts for the effect of the sign of the
certain value on mean response time. Observe that this is a
parameter-free prediction, because it was predicted by a model
whose parameters were estimated from the choice probability
data. According to decision field theory, the slower response
time for choice pairs containing a negative certain value was
due to a steeper avoidance gradient under the avoidance con-
flict condition. In conclusion, the goal gradient parameter is

needed to account for differences in decision times because of
differences in the avoidance versus approach nature of conflict
situations (Barker, 1942; Bockenholt et al., 1991; Busemeyer,
1985; Houston et al., 1991).

Preference Reversals Between Choice and Selling Prices

Choice may be the primary way to measure preference, but
selling prices are also used to measure preference. Surprisingly,
it turns out that these two measures of preference sometimes
produce contradictory preference orders (see Slovic & Lichten-
stein, 1983, for a review). Under certain conditions, subjects
will choose one action more frequently than another action, but
at the same time they will require a higher selling price for the
less frequently chosen action. Decision field theory provides a
way to link these discordant measures of preference together
within a common theoretical framework. As this extension of
the theory is covered in detail in another article (Busemeyer &
Goldstein, 1992), only a brief mention of this application will
be given here.

Busemeyer and Goldstein (1992) developed a dynamic and
stochastic matching model for buying and selling prices from
decision field theory. This unified approach to choice and pric-
ing provides additional leverage for testing the theory because
the joint distribution of choices and prices are explained by a
common set of parameters. Furthermore, the dynamic and sto-
chastic nature of the matching model provides predictions for
the distribution of selling prices as a function of various infor-
mation-processing factors, such as time, effort, and training.
Busemeyer and Goldstein (1992) showed in detail how this
matching model accounts for empirical findings from research
on preference reversals, including the basic findings obtained
by Lichtenstein and Slovic (1971), the effects of training found
by Lindman (1971), the effects of multiple play found by Wedell
and Bockenholt (1990), and the effects of elicitation procedure
found by Bostic, Herrnstein, and Luce (1990).

Violations of Transitivity

One of the most important axioms of deterministic-static
theories of decision making s the transitivity axiom: fA>_ B
and B=,C, then A=, C, for three arbitrary actions A, B,and C.
All deterministic-static utility theories that assign a single real
number to each action satisfy this axiom (¢.g., SEU theory, pros-
pect theory, rank-dependent utility theory).

Because of the variability of preferences, empirical tests of
this axiom are actually based on the following probabilistic

18 Several other versions of random walk SEU theory were also fit.
One version added a nonzero mean valence for the uncertain alterna-
tive for each variance condition. The same pattern of predictions for
mean response time were produced by this 13-parameter model as
were produced by the original 1 1-parameter random walk model. A
leaner 5-parameter version of the random walk model was also fit, but
the pattern of predictions for mean response time remain unchanged.
Finally, a version of the random walk model was fit with the inhibitory
bound independent of the standard deviation of the input, but this
produced very poor mean response time predictions. Although this
does not exhaust all of the possibilities, we could not find a version
that was consistent with all of the results that we have reviewed.
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Table 12
Mean Response Times From Experiment 1 of Busemeyer (1985)
Source
Observed RW model DF model
Time
limit (s) +32 0 -3 +3* 0 -3° +3* [t -3
1 .65 67 71 .69 .12 .70 .70 73 73
2 77 .82 .83 .76 .80 77 74 .80 .81
3 .84 .89 .92 .86 93 .87 .78 .88 94
M .76 79 82 77 .82 78 74 .80 .83

Note. Each qbservation was based on 3,120 observations. The pattern of results was replicated in a
second experiment. RW = random walk; DF = decision field. The predictions from each model were
based on the parameters estimated from the choice data. No new parameters were used to predict the

mean response times.

# The value of the certain alternative for each model was +3, 0, —3.

definitions of transitivity (see Luce & Suppes, 1965, p. 340).
Assume that the following conditions are met: Pr(A, B)> .5 and
Pr(B, C) = .5. Then strong stochastic transitivity (SST) satisfies
Pr(A, C)= max[Pr(A, B), Pr(B, C)], and weak stochastic transi-
tivity (WST) satisfies Pr(A, C) = .5. Naturally, SST implies
WST.

Recall that the simple scalability hypothesis is the primary
way to extend deterministic—static utility models to account for
the magnitude of choice probability. All simple scalability the-
ories satisfy SST (Tversky & Russo, 1969). This is due to the fact
that all simple scalability models satisfy independence between
alternatives, and SST is satisfied if and only if independence is
satisfied (Tversky & Russo, 1969).

Decision field theory does not always satisfy SST. In fact,
violations of SST are expected for precisely the same reasons as
violations of independence between alternatives. For example,
violations of SST are expected to occur whenever the similarity
between pairs of actions is manipulated. (Note that the covari-
ance term in Equation 2f is influenced by similarity)

Empirically, violations of SST have been commonly ob-
served when the similarity between a pair of actions is manipu-
lated (Becker et al.,, 1963a; Mellers, Chang, Birnbaum, & Or-
donez, 1992; Rumelhart & Greeno, 197 {; Tversky, 1972). Viola-
tions of SST have also occurred when the variance of the
payoffs was manipulated (Lindman, 1971).

Unlike violations of SST, violations of WST are rare. More-
over, they are only obtained under highly special conditions
involving just noticeable differences in dimension values (Bu-
descu & Weiss, 1987; Lindman & Lyons, 1978; Montgomery,
1977; Ranyard, 1977, Tversky, 1969; Zakay & Beer, 1992). For
this reason, these violations are not treated as seriously as the
more pervasive violations of SST.

Decision field theory is unable to account for these violations
of WST. One could generalize the theory by replacing the linear
stochastic difference equation (i.e., Equation 7) with a nonlin-
ear equation (cf. Grossberg & Gutowski, 1987) and thereby ac-
count for violations of WST. However, theories that generally
predict violations of WST fail to explain why WST is almost
always satisfied. The key is to find a nonlinear theory that
generally satisfies WST, but violates it under very special cir-
cumstances. Until this is achieved, the parsimony gained by

using a theory that satisfies WST may outweigh the loss in
predictive accuracy for an isolated condition.

Summary of Experimental Tests

Decision field theory was compared with five other major
theories of decision making under uncertainty: rank-depen-
dent utility, simple scalability theories, probabilistic regret
theory, EBA theory, and a random walk choice model. For each
comparison, we identified an important qualitative property
that could be used to empirically discriminate between the two
theories. For example, independence between alternatives was
used to distinguish decision field theory from simple scal-
ability theories. Furthermore, the qualitative properties that we
selected for comparison were critical properties that rule out
large classes of models (rather than specific cases). For example,
violations of independence between alternatives rule out all of
the various versions that fall into the large class of simple scal-
ability models. For each comparison, the qualitative tests fa-
vored decision field theory over the comparison theory.

At first impression, one might wonder whether the success of
decision field theory in these comparisons resulted from the
use of more parameters. On the contrary, each of the compari-
son models had more parameters available to account for the
data in Tables 612 than did the number used by decision field
theory to account for these results. For example, rank-depen-
dent utility theory allows one to estimate utility parameters for
each payoff and a weight parameter for each event, but a new
set of weights may be estimated separately for each rank order-
ing of the payoffs. This produces more parameters than the two
parameters used by decision field theory. Despite the flexibil-
ity provided by the extra weight parameters for each rank order-
ing of payoffs, rank-dependent utility theory cannot account
for the violations of stochastic dominance observed in Table 6.
The probabilistic regret model involves five regret parameters
plus additional subjective probability parameters to account for
the results in Table 8 (more than the five parameters used by
decision field theory), but it cannot account for the interaction
effects shown in Table 9. The elimination by aspects model
allows a separate parameter for every single choice pair shown
in Table 8 (the ratio of the values of the unique aspects); never-
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theless, it cannot account for the relation between choice proba-
bility and decision speed shown in Table 10. The random walk
model was fit by using more parameters than was used in deci-
sion field theory, but it could not account for the effect of sign of
the certain alternative on mean decision time in Table 12. Thus,
the success of decision field theory over the comparison the-
ories was not due to the use of more parameters.

Whenever a general theory is presented, the question of test-
ability arises. To address this important issue, we have empha-
sized the importance of using a cross-validation model testing
methodology. For example, in this article, we estimated parame-
ters from the choice probability data and then used these same
parameters to make new predictions for decision time. In Buse-
meyer and Goldstein (1992), we estimated parameters from the
choice probability data and then used these same parameters to
make new predictions for mean selling price. Ideally, all com-
peting theories could be compared by using this powerful
model-testing methodology. However, cross-validation method-
ology requires a theory that can make precise quantitative pre-
dictions for multiple measures of preference. At present, few
theories of decision making under uncertainty fulfill this strin-
gent requirement. Decision field theory is unique among deci-
sion making theories under uncertainty in the systematic use of
cross-validation for testing its predictions.

Concluding Comments

Deterministic-static theories have dominated the field of de-
cision making under uncertainty for the last 45 years. These
theories have served a useful purpose by providing a rough
first-order approximation to human decision behavior. How-
ever, these theories fail to provide any basis for explaining two
of the most basic phenomena of human decision making: (a)
the variability of preferences and (b) the systematic relation
between preference and deliberation time. A higher fidelity,
second-order approximation that captures these two funda-
mental properties of human decision behavior is long overdue.

Decision field theory provides a stochastic—dynamic alterna-
tive based on a description of the deliberation process that lies
at the heart of human decision-making behavior. The main
advantages of decision field theory include the following: (a) It
accounts for a wider range of phenomena (see Table 2); (b) at the
same time, it provides a more detailed process-orientated expla-
nation of each phenomena; (c) its roots lie within a long tradi-
tion of motivation behavior in psychology (e.g., Lewin, 1935;
Miller, 1959); and (d) its processing assumptions are more in
keeping with modern approaches to cognition {e.g., Diederich,
in press; Heath, 1992; Link, 1992; Ratcliff, 1978; Smith, 1992).

One of the most important ideas presented here 1s that the
deliberation process involves an accumulation of information
about the consequences of a decision, and the amount of atten-
tion allocated to the various consequences changes over time
during deliberation. If this basic idea is correct, then there is a
simple recipe for producing reversals in the direction of prefer-
ence under time pressure manipulations: Present the decision
maker with a choice between two alternatives, in which the first
alternative has an advantage on the most prominent or salient
dimension, but thessecond alternative has an advantage on all of
the remaining dimensions. Under a short deadline time limit,

only the most prominent dimension tends to be processed, and
the first alternative should be chosen more frequently Under
longer deadlines, the most prominent dimension is still pro-
cessed first, but many additional dimensions are also pro-
cessed, so that the second alternative should be chosen more
frequently. As this recipe indicates, further research examining
the effects of attentional manipulations on deliberation will
help illuminate the dynamics principles that guide the human
decision process.
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Appendix

The equations for ¢, §, and ¢ can be generalized as follows when
more than two payoffs are produced by each action.

¢=b-(vpr + Vy) — a (Vg + VL)

6= (er - er)'(l - aa) + (va - Up[_)'(l - [)0)

3 2 2
0 =og" + o — 2o

Define A as the subset of gains that can result from taking action Ag,
and S,, x € A, is the event that produces x when action Ag is chosen.
Vg = 2 WS- u(x).

XEA
Define B as the subset of losses that can result from taking action
Ag,andS,, x € B, is the event that produces x when action Ay is chosen.
Upr = 2 WS,) - ulx).
XEB
Define C as the subset of gains that can result from taking action A;,
and S, x € C, is the event that produces x when action A_ is chosen.
vy = 2 WS- w0
x€C
Define D as the subset of losses that can result from taking action
A,,andS,, x €D, is the event that produces x when action A, is chosen.
v = 2 WS- ulx).
XED

Define F as the subset of payoffs that can result from taking action
Ag,and S,, x € E is the event that produces x when action Ay is chosen.

or’ = ZF WS - [u(x) ~ (v + v

Define G as the subset of payoffs that can result from taking action
Ar,and§,, x €G, is the event that produces x when action A, is chosen.

ol = 2 w(S) - [ul(x) ~ (v + v,
xEG
Define S, , as the joint event that produces the payoff x for action Ag
and the payoff y for action A,.

orL = 2 WS, ) [u(x) — (Vg + D)) [u(y) — (v + V)L
xEF,yeG

Link and Heath (1975) derived the equations for choice probability
and the conditional mean response time for a general random walk
model. These equations provide only approximate solutions to the dis-
crete-time-discrete-state random walk model. However, they are exact
for the continuous-time--continuous-state version of the random walk
(i.e., the Wiener process). The probability of choosing action A; over
A, for the Wiener process is

expl4 - (d/o) - (6/0)] — exp[2-(d/s)-(0 — 2)/0]
exp{4-(dfo)-(6/0)] — 1 '

where d is the mean valence difference, ¢ is the variance of the valence
difference, 4 is the inhibitory threshold, and z is the initial starting
position. The mean number of samples required to reach the threshold
criterion for choosing Ay for the Wiener process is

Pr(Aq. A =

(AD)

E[Njchoose Ay} = (1/d)- {(26) - coth{4(d/o)}8/0)]
— (8 + z)-coth [2(d/o)8 + 2)/s]}, (A2)
where coth(x) is the hyperbolic cotangent function. The mean time to

choose A, can be obtained from Equation A2 by replacing d with —d
and z with —z.

Busemeyer and Townsend (1992) derived the probability that action
Ag is chosen over action A, for both the discrete- (4 > 0) and continu-
ous- (h — 0) time versions of decision field theory. The equations for
the continuous-time process are given below. The probability of choos-
ing action Ag over A for decision field theory is

Pri{Ag, Ay = S(z)/5(8). (A3)
Y
S(x) = f expil(c + ).y — 2-5-y)/o%idy.

andcisthe goal gradient parameter, s is the growth—decay rate parame-
ter, § is the mean valence input, ¢° is the variance of the valence input, ¢
is the inhibitory threshold, and z is the initial starting position. The
mean choice time conditioned on the choice of action Ag for decision
field theory is

E[T[choose Ag] = 2- {S(z2)- H,(2) + [S(8) ~ S(2)]- Ho2)}/S(2), (A4)

where

1 = [ 186) = 01+ S/S(0)- .
2 = [ 1800 = SO - Srs@) -,

J(x) = 1/{o” -expll{c + 8)- x> = 2-5-x)/™)}.

and S{x) is defined in Equation A3. The mean time conditioned on the
choice of A is obtained by substituting — for § and —z for z in Equation
A4d.

The continuous-time model requires the integral of the normal den-
sity function, which can only be done by using a series expanston. For
this reason, the discrete-time formulas may be more convenient. For
very small time units, the two formulas agree very closely, and in the
limit they agree exactly {see Busemeyer & Townsend, 1992).

The predictions from decision field theory were generated from the
discrete-time equations presented in Busemeyer and Townsend (1992)
because these equations are easier to implement than the continuous
equations. The time unit was fixed at # = .000625, as this produced
results that matched the continuous-time model up to the first two
decimal places.

Predictions for Table 6

Two parameters (indicated by italics) were estimated from the first
17 choice proportions in Table 6: u(4) = —u(—4) = 2.76 (subjective values
for payoffs +4 and —4), and § = /.70 - ¢ (the inhibitory threshold). The
remaining parameters were either fixed or derived from the estimates:
w(y) = ~u=) = v, y =1, 2 (the values for payoffs+1 and £2); w(S;) =
Pr(S,) (the actual event probability from Table 6); (s + ¢} = 0 (zero
growth-decay plus goal gradient); and z = 0 (no bias). The mean input.
5, and the variance of the input, ¢, were computed from the formulas
shown in Table 4. This model accounted for 98% of the variance in the
17 proportions. Slightly better fits were obtained by including a posi-
tive growth—decay rate parameter, but this extra parameter did not
change the basic pattern of predictions, and so we retained the simpler
model.

The same parameters used in Table 6 were then used again to predict
the probabilities for Table 7. The payoffs ¢+ 16, —16) never appeared in
Table 6, and so we fixed u(16) = —u(=16) = 16 to show that the model
predicts violations of independence without estimating any new pa-
rameters. The fit to the 12 data points in Table 7 is improved by esti-
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mating u(16) and u(—16), but this did not change the basic pattern of
predictions.

Predictions for Table 8

Five parameters (indicated by italics) were estimated from the 54
choice proportions in Table 8: u(@) = 2.90, u(-4) = —2.97 (values for
payoffs +4 and —4); w(S,) = .5 +.72-(j/6), j=+1,%£2,£3 (weight for §, at
each context cue); w(S,) =1 — w(S,); 6 = .49 - ¢ (inhibitory threshold);
and z = tanh(92 - [u(yr,) —u(yr>)] - 8 (initial preference state). The
remaining parameters were either fixed or derived from the following
estimates: u()) = u(—y) = ), y= 1, 2 (the values for payoffs+1,+2),and (¢
+ §) = 0 (zero growth—decay plus goal gradient parameter). The mean
input, 8, and the variance of the input, ¢°, were computed from the
formulas given in Table 4. The model accounted for 98% of the vari-
ance in the 54 proportions. Slightly better fits were obtained with a
positive growth-rate parameter, but this extra parameter did not
change the basic pattern of predictions, and so the simpler model was
retained. The main difference between these parameters and those
estimated from the data in Table 6 is the inclusion of an initial bias,
which is assumed to be an increasing function of the mean input (aver-
aged over context cues). This is probably due to the fact that Busemeyer
(1982) used more extensive training than did the experiments reported
in Table 6, which would allow a stronger bias to build up from past
experience with each payoff matrix.

The same parameters used in Table 8 were then used again to predict
the mean response times for each action in Table 10. The mean choice
response time for each action was computed from Equation 5b in Buse-
meyer and Townsend (1992), but Equation A4 produces the same pat-
tern of results.

Predictions for Table 11

Four parameters (indicated by italics) were estimated from the 18
choice proportions of Table 11 for the decision field model: 6= 1.139-
g+ .36- (L—1)- 0, L=1,2,3(L isthe time limit); z= tanh(~.10- x)-

8(1), x = —3,0, +3 (x is the certain value); and c = —.125 - x, x=-3,0,
+3, (c is the goal gradient parameter). The main difference between
these parameters and those obtained from the previous fit to the data
in Table 8 is the goal gradient parameter, ¢, which is a function of the
value of the certain alternative. The mean of the uncertain alternative
was set to zero, and so the mean input was set as 6 = (0 — x), where x is
the value of the certain alternative in Table { 1. The standard deviation
of the input, ¢, was set equal to the standard deviation of the uncertain
alternative from Table 1 1.

For the random walk model, 11 parameters (indicated by italics)
were estimated from the 18 choice proportions of Table 11: d(+3) =
—1.67, d(0) = .12, d=3) = 2.08 {d for each certain value); o(5) = .04,
o(50) = 50.64 (v for each uncertain standard deviation); 6(1) = .014 - o,
6(2)=.018- ¢,6(3)=.024 - o (¢ for each time limit); and z(+3)= —47-
8(1), z(0)= —.03 - 8(1), z(-3) = .22 - 6(1) (an initial bias for each certain
value). Note that the inhibitory bound, 8, is proportional to the stan-
dard deviation of the input for this model (but see Footnote 15). The
decision field model has 7 fewer parameters than the random walk
model, even though it includes a goal gradient parameter.

These same parameters were then used to predict the mean response
times. The time unit and intercept of the time scale are unknowns, and
so the predicted response times shown in Table 12 have been adjusted
by multiplying by a constant and adding a constant to the original
predictions generated from the model. However, this transformation
does not change the pattern of the predictions, which is our main
concern.

The predictions for both the random walk and the decision field
model were generated by using both the discrete-time equations in
Busemeyer and Townsend (1992) with £ = .000625 and continuous-
time Equations A3 and A4 from this article. The resuits shown in
Tables 10 and 11 are exactly the same with both versions.
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