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1 Introduction

Motivic homotopy theory is a new and in vogue blend of algebra and topology.
Its primary object is to study algebraic varieties from a homotopy theoretic
viewpoint. Many of the basic ideas and techniques in this subject originate in
algebraic topology.

This text is a report from Voevodsky’s summer school lectures on motivic
homotopy in Nordfjordeid. Its first part consists of a leisurely introduction to
motivic stable homotopy theory, cohomology theories for algebraic varieties,
and some examples of current research problems. As background material, we
recommend the lectures of Dundas [Dun] and Levine [Lev] in this volume.
An introductory reference to motivic homotopy theory is Voevodsky’s ICM
address [Voe98]. The appendix includes more in depth background material
required in the main body of the text. Our discussion of model structures for
motivic spectra follows Jardine’s paper [Jar00].

In the first part, we introduce the motivic stable homotopy category. The
examples of motivic cohomology, algebraic K-theory, and algebraic cobordism
illustrate the general theory of motivic spectra. In March 2000, Voevodsky
[Voe02b] posted a list of open problems concerning motivic homotopy theory.
There has been so much work done in the interim that our update of the status
of these conjectures may be useful to practitioners of motivic homotopy theory.

The second and third author would like to thank Vladimir Voevodsky for
helpful discussions concerning the content of this text, and his kind permission
to include a sketch proof of Theorem 4.3. The actual wording here, and the
responsibility for any misinterpretations, are our own.

2 Motivic Stable Homotopy Theory

In this section, we introduce the motivic stable homotopy category. Although
the construction of this category can be carried out for more general base
schemes, we shall only consider Zariski spectra of fields.

A final word about precursors: In what follows, we use techniques which
are basic in the study of both model categories and triangulated categories.
Introductory textbooks on these subjects include [Hov99] and [Nee01].

2.1 Spaces

Let k be a field and consider the category Sm/k of smooth separated schemes
of finite type over Spec(k). From a homotopical point of view, the category
Sm/k is intractable because it is not closed under colimits.

The spaces we consider are the objects in the category

Spc(k) : = ∆opShvNis(Sm/k)

of Nisnevich sheaves on Sm/k [Lev] with values in simplicial sets [Dun].
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We mention two typical types of examples of such sheaves. First, any
scheme in Sm/k determines a representable space via the Yoneda embedding.
This holds since the Nisnevich topology is sub-canonical [Lev]. Second, any
simplicial set can be viewed as a constant Nisnevich sheaf on Sm/k, and also
as a constant sheaf in any other Grothendieck topology.

A pointed space consists of a space X together with a map

x : Spec(k) �� X .

Here, we consider Spec(k) as a representable sheaf with constant simplicial
structure. Let Spc•(k) denote the category of pointed spaces. If X is a space,
let X+ denote the canonically pointed space X � Spec(k). By adding disjoint
base-points, it follows that the forgetful functor from Spc•(k) to Spc(k) has
a left adjoint.

It is important to note that the category of pointed spaces has a symmetric
monoidal structure: Suppose X and Y are pointed spaces. Then their smash
product X ∧ Y is the space associated to the presheaf

U
� �� X(U) ∧ Y (U) .

The sheaf represented by the Zariski spectrum Spec(k) is the terminal presheaf
with value the one-point set

U
� �� ∗ .

Clearly, this shows that Spec(k)+ is a unit for the smash product.
Recall that in classical stable homotopy theory, when constructing spectra

of pointed simplicial sets one inverts only one suspension coordinate, namely
the simplicial circle. This part works slightly differently in the motivic context.
An exotic aspect, which turns out to play a pivotal role in the motivic stable
homotopy theory, is the use of two radically different suspension coordinates.
In order to define the motivic stable homotopy category, we shall make use of
bispectra of pointed spaces.

The first of the motivic circles is well-known to topologists: Let ∆[n] denote
the standard simplicial n-simplex [Dun]. Recall that the simplicial circle S1

is the coequalizer of the diagram

∆[0] �� �� ∆[1] .

We denote by S1
s the corresponding pointed space.

The second motivic circle is well-known to algebraic geometers: Denote by
A

1 ∈ Sm/k the affine line. Then the Tate circle S1
t is the space A

1
�0, pointed

by the global section given by the identity; this is the underlying scheme of
the multiplicative group.

Since pointed spaces Spc•(k) acquires a smash product, we may form the
n-fold smash products Sn

s and Sn
t of the simplicial circle and the Tate circle.

A mixed sphere refers to a smash product of Sm
s and Sn

t .
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2.2 The Motivic s-Stable Homotopy Category SHA
1

s (k)

To invert S1
s we shall consider spectra of pointed spaces. This is analogous to

the situation with ordinary spectra and the simplicial circle.

Definition 2.1 An s-spectrum E is a sequence of pointed spaces {En}n≥0

together with structure maps

S1
s ∧ En

�� En+1 .

A map of s-spectra
E �� E′

consists of degree-wise maps of pointed spaces

En
�� E′

n

which are compatible with the structure maps.
Let Spts(k) denote the category of s-spectra.

Pointed spaces give examples of s-spectra:

Example 2.2 The s-suspension spectrum of a pointed space X is the s-
spectrum Σ∞

s X with n-th term Sn
s ∧ X and identity structure maps.

The next step is to define weak equivalences of s-spectra. If n ≥ 1 and
(X,x) is a pointed space, let πn(X,x) denote the sheaf of homotopy groups
associated to the presheaf

U
� �� πn(X(U), x|U) ,

where x|U is the image of x in X(U). If n ≥ 2, this is a Nisnevich sheaf of
abelian groups.

The suspension homomorphism for ordinary pointed simplicial sets yields
suspension homomorphisms of sheaves of homotopy groups

πn(X) �� πn+1(S1
s ∧ X) .

If E is an s-spectrum and m > n are integers, consider the sequence

πn+m(Em) �� πn+m+1(S1
s ∧ Em) �� πn+m+1(Em+1) �� · · · .

The sheaves of stable homotopy groups of E are the sheaves of abelian groups

πn(E) : = colim
m>n

πn+m(Em) .

A map between s-spectra E and E′ is called an s-stable weak equivalence if
for every integer n ∈ Z, there is an induced isomorphism of sheaves

πn(E) �� πn(E′) .
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Definition 2.3 Let SHs(k) be the category obtained from Spts(k) by inverting
the s-stable weak equivalences.

Remark 2.4 One can show that Spts(k) has the structure of a proper sim-
plicial stable model category. The associated homotopy category is SHs(k). In
this model structure, the weak equivalences are the s-stable weak equivalences.

There is an obvious way to smash an s-spectrum with any pointed space. If
we smash with the simplicial circle, the induced simplicial suspension functor
Σ1

s becomes an equivalence of SHs(k): Indeed, an s-spectrum is a Nisnevich
sheaf on Sm/k with values in the category Spt of ordinary spectra. Since
the simplicial suspension functor is an equivalence of the stable homotopy
category SH, it is also an equivalence of SHs(k). The term ‘s-stable’ refers to
this observation.

Remark 2.5 There is a canonical functor

Spt �� Spts(k)

obtained by considering pointed simplicial sets as pointed spaces. A stable weak
equivalence of spectra induces an s-stable weak equivalence of s-spectra, and
there is an induced functor

SH �� SHs(k)

between the corresponding homotopy categories.

The basic organizing principle in motivic homotopy theory is to make the
affine line contractible. One way to obtain this is as follows: An s-spectrum
F is A

1-local if for all U ∈ Sm/k and n ∈ Z, there is a bijection

HomSHs(k)(Σ∞
s U+, Σn

s F ) �� HomSHs(k)(Σ∞
s (U × A

1)+, Σn
s F )

defined by the projection

U × A
1 �� U .

We say that a map
E �� E′

of s-spectra is an A
1-stable weak equivalence if for any A

1-local s-spectrum
F , there is a canonically induced bijection

HomSHs(k)(E′, F ) �� HomSHs(k)(E,F ) .

Definition 2.6 Let the motivic s-stable homotopy category SHA
1

s (k) be the
category obtained from Spts(k) by inverting the A

1-stable weak equivalences.
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The following Lemma is now evident.

Lemma 2.7 Assume X ∈ Sm/k. Then the canonical map

X × A
1 �� X

induces an A
1-stable weak equivalence of s-spectra.

In particular, the s-suspension spectrum Σ∞
s (A1, 0) is contractible.

We note that the simplicial suspension functor is an equivalence of SHA
1

s (k).
The last step in the construction of the motivic stable homotopy category is
to invert the Tate circle so that smashing with S1

t becomes an equivalence.
But first we discuss an unsatisfactory facet of the motivic s-stable homotopy
category; part of this is motivation for work in the next section.

In topology, a finite unramified covering map of topological spaces

Y �� Z ,

induces a transfer map
Σ∞Z+

�� Σ∞Y+

in the ordinary stable homotopy category. The first algebraic analogue of a
covering map is a finite Galois extension of fields, say k′/k. However, in the
s-stable homotopy category SHA

1

s (k) there is no non-trivial transfer map

Σ∞
s Spec(k)+ �� Σ∞

s Spec(k′)+ .

This follows by explicit calculations: If E is an s-spectrum and πs denotes
ordinary stable homotopy groups, then

HomSHs(k)(Σ∞
s Sn

s , E) = HomSH(Σ∞Sn, E(Spec(k)))
= πs

n(E(Spec(k))) .

Now, let X ∈ Sm/k and suppose that

HomSm/k(A1,X) = HomSm/k(Spec(k),X) .

This is satisfied if X = Spec(k′), where k′ is a field extension of k. Then the
above implies an isomorphism

Hom
SHA1

s (k)
(Σ∞

s Sn
s , Σ∞

s X+) = HomSH(Σ∞Sn, Σ∞X(Spec(k))+) .

When X = Spec(k′), note that

HomSm/k(Spec(k), Spec(k′)) = ∅ .

By letting n = 0, we find
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Hom
SHA1

s (k)
(Σ∞

s Spec(k)+, Σ∞
s Spec(k′)+)

= HomSH(Σ∞S0, Σ∞Spec(k′)(Spec(k))+)
= HomSH(Σ∞S0, Σ∞∗)
= 0 .

Remark 2.8 It turns out that the existence of transfer maps for finite Galois
extensions and the Tate circle being invertible in the homotopy category are
closely related issues. Transfer maps are incorporated in Voevodsky’s derived
category DMeff

− (k) of effective motivic complexes over k [Voe00b]. There is a
canonical Hurewicz map relating the motivic stable homotopy category with
DMeff

− (k). If k is a perfect field, the cancellation theorem [Voe02a] shows that
tensoring with the Tate object Z(1) in DMeff

− (k) induces an isomorphism

HomDMeff
− (k)(C,D)

∼= �� HomDMeff
− (k)

(
C ⊗ Z(1),D ⊗ Z(1)

)
.

2.3 The Motivic Stable Homotopy Category SH(k)

The definition of SH(k) combines the category of s-spectra and the Tate circle.
We use bispectra in order to make this precise.

Let m,n ≥ 0 be integers. An (s, t)-bispectrum E consists of pointed spaces
Em,n together with structure maps

σs : S1
s ∧ Em,n

�� Em+1,n ,

σt : S1
t ∧ Em,n

�� Em,n+1 .

In addition, the structure maps are required to be compatible in the sense
that the following diagram commutes.

S1
s ∧ S1

t ∧ Em,n

τ∧Em,n ��

S1
s∧σt

��

S1
t ∧ S1

s ∧ Em,n

S1
t ∧σs

��
S1

s ∧ Em,n+1
σs �� Em+1,n+1 S1

t ∧ Em+1,n
σt��

Here, τ flips the copies of S1
s and S1

t . There is an obvious notion of maps
between such bispectra. An (s, t)-bispectrum can and will be interpreted as a
t-spectrum object in the category of s-spectra, that is, a collection of s-spectra

En : = E∗,n

together with maps of s-spectra induced by the structure maps

S1
t ∧ En

�� En+1 .
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We write Spts,t(k) for the category of (s, t)-bispectra. If X is a pointed space,
let Σ∞

s,tX denote the corresponding suspension (s, t)-bispectrum.
If E is an (s, t)-bispectrum and p, q are integers, denote by πp,q(E) the

sheaf of bigraded stable homotopy groups associated to the presheaf

U
� �� colim

m
Hom

SHA1
s (k)

(Sp−q
s ∧ Sq+m

t ∧ Σ∞
s U+, Em) .

This expression makes sense for p < q, since smashing with S1
s yields an

equivalence of categories

SHA
1

s (k) �� SHA
1

s (k), E
� �� S1

s ∧ E .

Moreover, in the above we assume q + m ≥ 0.

Definition 2.9 A map E → E′ of (s, t)-bispectra is a stable weak equivalence
if for all p, q ∈ Z, there is an induced isomorphism of sheaves of bigraded
stable homotopy groups

πp,q(E) �� πp,q(E′) .

We are ready to define our main object of study:

Definition 2.10 The motivic stable homotopy category SH(k) of k is obtained
from Spts,t(k) by inverting the stable weak equivalences.

Remark 2.11 There is an underlying model category structure on Spts,t(k);
the weak equivalences are the stable weak equivalences defined in 2.9. More-
over, this model structure is stable, proper, and simplicial.

By construction, the suspension functors Σ1
s and Σ1

t induce equivalences
of the motivic stable homotopy category. Hence, analogous to 2.7, we have:

Lemma 2.12 Assume X ∈ Sm/k. Then the canonical map

X × A
1 �� X

induces a stable weak equivalence of suspension (s, t)-bispectra.

In 2.13, we note that maps between suspension spectra in SH(k) can be
expressed in terms of maps in SHA

1

s (k). As the proof in the Nisnevich topology
hinges on finite cohomological dimension, it is not clear whether there is a
similarly general result in the etale topology.

Proposition 2.13 If X ∈ Sm/k and E ∈ Spts,t(k), there is an isomorphism

HomSH(k)(Σ∞
s,t X+, E) = colim

n
Hom

SHA1
s (k)

(Sn
t ∧ Σ∞

s X+, En) .
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Proof. If E = (Em,n) is some (s, t)-bispectrum, recall that En is the s-
spectrum defined by the sequence (E0,n, E1,n, . . .). By model category theory,
there exists a fibrant replacement Ef of E in Spts,t(k) and isomorphisms

HomSH(k)(Σ∞
s,t X+, E) = HomSpts,t(k)(Σ∞

s,t X+, Ef )/�

= HomSpts(k)(Σ∞
s X+, Ef

0 )/� .

The relation 	 is the homotopy relation on maps; in our setting, homotopies
are parametrized by the affine line A

1. By using properties of the Nisnevich
topology – every scheme has finite cohomological dimension, coverings are
generated by so-called upper distinguished squares which will be introduced
in Definition 2.18 – one can choose a fibrant replacement Ef so that

Ef
0 = colim

n
((E0)f �� Ωt((E1)f ) �� Ωt(Ωt((E2)f )) �� · · · ) .

Here, (En)f is a fibrant replacement of En in Spts(k), and Ωt is the right
adjoint of the functor

S1
t ∧ − : Spts(k) �� Spts(k) .

Since the s-suspension spectra Σ∞
s X+ and Σ∞

s X+ ∧A
1
+ are both finitely

presentable objects in Spts(k), we have

HomSpts(k)(Σ∞
s X+, Ef

0 )/� = colim
n

HomSpts(k)(Σ∞
s X+, Ωn

t ((En)f ))/� .

The latter and the isomorphism

HomSHs(k)(Σ∞
s X+, Ωn

t (En)) = HomSHs(k)(Sn
t ∧ Σ∞

s X+, En) ,

obtained from the adjunction, imply the claimed group isomorphism. �

Suppose X,Y ∈ Sm/k. As a special case of 2.13, we obtain an isomorphism
between HomSH(k)(Σ∞

s,t X+, Σ∞
s,t Y+) and

colim
m

Hom
SHA1

s (k)
(Sm

t ∧ Σ∞
s X+, Sm

t ∧ Σ∞
s Y+) .

Remark 2.14 We will not discuss details concerning the notoriously difficult
notion of an adequate smash product for (bi)spectra. Rather than using spectra,
one solution is to consider Jardine’s category of motivic symmetric spectra
[Jar00]. An alternate solution using motivic functors is discussed by Dundas
in this volume [Dun].

For our purposes, it suffices to know that a handicrafted smash product
of bispectra induces a symmetric monoidal structure on SH(k). The proof of
this fact is tedious, but straight-forward. The unit for the monoidal structure
is the ‘sphere spectrum’ or the suspension (s, t)-bispectrum Σ∞

s,t Spec(k)+ of
the base scheme k. Moreover, for all X,Y ∈ Sm/k, there is an isomorphism
between the smash product Σ∞

s,tX+ ∧ Σ∞
s,tY+ and Σ∞

s,t(X × Y )+.
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Next we summarize the constructions

Spc•(k)
Σ∞

s �� SHA
1

s (k)
Σ∞

t �� SH(k) .

The spaces in the motivic setting are the pointed simplicial sheaves on the
Nisnevich site of Sm/k. By using the circles S1

s and S1
t , one defines spectra of

pointed spaces as for spectra of simplicial pointed sets. The notion of A
1-stable

weak equivalences of s-spectra forces the s-suspension spectrum of (A1, 0), the
affine line pointed by zero, to be contractible. We use the same class of maps
to define the motivic s-stable homotopy category SHA

1

s (k).
Our main object of interest, the motivic stable homotopy category SH(k)

is obtained by considering (s, t)-bispectra and formally inverting the class of
stable weak equivalences; such maps are defined in terms of Nisnevich sheaves
of bigraded homotopy groups.

If
Σ∞

s,t : Sm/k �� SH(k)

denotes the suspension (s, t)-bispectrum functor, there is a natural equivalence
of functors

Σ∞
s,t = Σ∞

t ◦ Σ∞
s .

Remark 2.15 Work in progress by Voevodsky suggests yet another construc-
tion of SH(k). This uses a theory of framed correspondences; a distant al-
gebraic relative of framed cobordisms, which may have computational advan-
tages.

Next, we shall specify a triangulated structure on SH(k). As for a wide
range of other examples, this additional structure provides a convenient tool
to construct long exact sequences.4

The category Spts,t(k) is obviously complete and cocomplete: Limits and
colimits are formed degree-wise in Spc•(k). In particular, there is an induced
coproduct ∨ in SH(k). We also claim that the latter is an additive category:
Since the simplicial circle S1

s is a cogroup object in the ordinary unstable
homotopy category, we conclude that every spectrum in SH(k) is a two-fold
simplicial suspension. Thus all objects in SH(k) are abelian cogroup objects,
and the set of maps out of any object is an abelian group.

To define a triangulated category structure on SH(k), we need to specify
a class of distinguished triangles and also a shift functor [−]. Suppose that E
is an (s, t)-bispectrum. Its shift E[1] is the s-suspension of E. Any map

f : E �� E′

of (s, t)-bispectra has an associated cofibration sequence

4 The homotopy categories SHs(k) and SHA
1

s (k) are also triangulated.
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E �� E′ �� Cone(f) �� Σ1
sE .

The cone of f is defined in terms of a push-out square in Spts,t(k), where
∆[1] is pointed by zero:

E
E∧0 ��

f

��

E ∧ ∆[1]

��
E′ �� Cone(f)

The map
Cone(f) �� Σ1

sE

collapses E′ to a point.
A distinguished triangle in SH(k) is a sequence that is isomorphic to the

image of a cofibration sequence in Spts,t(k). It follows that any distinguished
triangle in SH(k)

X �� Y �� Z �� X[1] ,

induces long exact sequences of abelian groups

· · · [E,X[n]] �� [E, Y [n]] �� [E,Z[n]] �� [E,X[n + 1]] · · · ,

· · · [Z[n], E] �� [Y [n], E] �� [X[n], E] �� [Z[n − 1], E] · · · .

Here, [−,−] denotes HomSH(k)(−,−).
The next lemma points out an important class of distinguished triangles.

Lemma 2.16 If
X �� �� Y

is a monomorphism of pointed spaces, then

Σ∞
s,t X �� Σ∞

s,t Y �� Σ∞
s,t Y/X �� Σ∞

s,t X[1]

is a distinguished triangle in SH(k).

Proof. The model structure in Remark 2.11 shows that the canonically in-
duced map

Cone(Σ∞
s,t(X �� �� Y )) �� Σ∞

s,t Y/X

is a stable weak equivalence. �

Remark 2.17 Note that 2.16 applies to open and closed embeddings in Sm/k.
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Definition 2.18 An upper distinguished square is a pullback square in Sm/k

W ��

��

V

p

��
U

i �� X

where i is an open embedding, p is an etale map, and

p|p−1(X�U) : p−1(X � U) �� (X � U)

induces an isomorphism of reduced schemes.

Any Zariski open covering gives an example of an upper distinguished
square: If X = U ∪ V , let W = U ∩ V .

The Nisnevich topology is discussed in detail in [Lev]. The generating
coverings are of the form

{i : U �� X, p : V �� X} .

where i, p and W = p−1(U) form an upper distinguished square.
Since spaces are sheaves in the Nisnevich topology, we get:

Lemma 2.19 A square of representable spaces which is obtained from an
upper distinguished square is a pushout square.

In the following, we show that upper distinguished squares give examples
of distinguished triangles in SH(k). Part (a) of the next result can be thought
of as a generalized Mayer-Vietoris property:

Corollary 2.20 For an upper distinguished square, the following holds.

(a) There is a distinguished triangle in SH(k):

Σ∞
s,t W+

�� Σ∞
s,t U+ ∨ Σ∞

s,t V+
�� Σ∞

s,t X+
�� Σ∞

s,t W+[1] .

(b) There is a naturally induced stable weak equivalence:

Σ∞
s,t V/W �� Σ∞

s,t X/U .

Proof. By Remark 2.17 and Lemma 2.19, the pushout square of representable
spaces associated to an upper distinguished square is a homotopy pushout
square. This implies item (a) because the suspension functor Σ∞

s,t preserves
homotopy pushout squares.

To prove (b), we use 2.19 to conclude there is even an isomorphism between
the underlying pointed spaces. �

In the next result, the projective line P
1 is pointed by the rational point

at infinity. Another piece of useful information about mixed spheres is:
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Lemma 2.21 In SH(k), there are canonical isomorphisms:

(a) Σ∞
s,t (A1/A

1
� 0) = Σ∞

s,t (S1
s ∧ S1

t ).

(b) Σ∞
s,t (P1,∞) = Σ∞

s,t (S1
s ∧ S1

t ).

Proof. To prove (a), we use 2.12, and 2.16 to conclude there is a distinguished
triangle:

Σ∞
s,t (A1

� 0, 1) �� Σ∞
s,t (A1, 1) �� Σ∞

s,t (A1/A
1

� 0) �� Σ∞
s,t (A1

� 0, 1)[1] .

To prove (b), cover the projective line by two affine lines; the choice of a point
on P

1 is not important, since all such points are A
1-homotopic. Moreover,

by 2.20(a), there is a distinguished triangle

Σ∞
s,t (A1

� 0)+ �� Σ∞
s,t A

1
+ ∨ Σ∞

s,t A
1
+

�� Σ∞
s,t P

1
+

�� Σ∞
s,t (A1

� 0)+[1] .

To remove the disjoint base-points, we point all spaces by 1: Spec(k) → A
1
�0

and consider the quotients. For instance, we have

Σ∞
s,t(A

1
� 0)+/Σ∞

s,tSpec(k)+ = Σ∞
s,t(A

1
� 0, 1) .

By considering the resulting distinguished triangle, the claim follows from
homotopy invariance 2.12. �

Remark 2.22 The pointed space T : = A
1/A

1
� 0 is called the Tate sphere.

There is also a ‘motivic unstable homotopy category’ for spaces, and 2.21 holds
unstably. We refer the reader to Sect. 5.2 for the unstable theory.

We place emphasis on a typical instance of 2.20(b):

Corollary 2.23 Suppose there is an etale morphism

p : V �� X ,

in Sm/k, and Z is a closed sub-scheme of X such that there is an isomorphism

p−1(Z) �� Z .

Then there is a canonical isomorphism in SH(k):

Σ∞
s,t (V/V � p−1(Z)) = Σ∞

s,t (X/X � Z) .

As in classical homotopy theory, there is also a notion of Thom spaces in
motivic homotopy theory.
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Definition 2.24 Suppose there is a vector bundle E → X in Sm/k, with zero
section i : X → E. Its Thom space is defined by setting

Th(E/X) : = E/E � i(X) ,

pointed by the image of E � i(X).

Example 2.25 We give some examples of Thom spaces.

(a) Suppose we have given vector bundles

E1
�� X1, E2

�� X2

in Sm/k. Then, as pointed spaces

Th(E1 × E2/X1 × X2) = Th(E1/X1) ∧ Th(E2/X2) .

(b) The Thom space of the trivial 1-bundle

A
1 × X �� X

is the smash product T ∧ X+.

Theorem 2.26 (Homotopy Purity) Suppose there is a closed embedding
in Sm/k

i : Z
� � �� X .

Denote the corresponding normal vector bundle of Z in X by NX,Z .
Then there is a canonical isomorphism in SH(k):

Σ∞
s,t Th(NX,Z) = Σ∞

s,t (X/X � i(Z)) .

To prove the general case of the homotopy purity theorem, one employs
the well-known deformation to the normal cone construction based on the
blow-up of X × A

1 with center in Z × {0}. This is an algebraic analog of the
notion of tubular neighborhood in topology. In what follows, by ‘isomorphism’
we mean a canonical isomorphism in SH(k).

Next we construct the isomorphism in the homotopy purity theorem for
any finite separable field extension k′/k. By the Primitive Element Theorem,
there exists an element α such that k′ = k(α). Consider the surjective map

φ : k[X] �� k′,X
� �� α .

If f is the minimal polynomial of α, then the induced closed embedding

i : Spec(k′) � � �� A1
k

sends the closed point of Spec(k′) to the closed point x of A
1
k, corresponding

to the prime ideal (f). We claim there is an isomorphism
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Σ∞
s,t Th(NA1

k,k′) = Σ∞
s,t (A1

k/A
1
k � {x}) .

With respect to the identification of the normal bundle of i with A
1
k′ , the

Thom space Th(NA1
k,k′) is isomorphic to A

1
k′/A

1
k′ � {0}.

In k′[X], f factors into irreducible polynomials, say f1, . . . , fq. Denote
by x1, . . . , xq the corresponding closed points. Since the extension k′/k is
separable, we may assume f1 = X − α and fi(α) �= 0 if i �= 1. We have an
automorphism

k′[X] �� k′[X],X � �� X − α .

By the above, there is an isomorphism

Σ∞
s,t Th(NA1

k,k′) = Σ∞
s,t (A1

k′/A
1
k′ � {x1}) .

We note that
A

1
k′ � {x1} � � �� A1

k′

fits into the upper distinguished square:

A
1
k′ � {x1, x2, . . . , xq} ��

��

A
1
k′ � {x2, . . . , xq}

��
A

1
k′ � {x1} �� A1

k′

By applying 2.20(b), we find

Σ∞
s,t Th(NA1

k,k′) = Σ∞
s,t (A1

k′ � {x2, . . . , xq}/A
1
k′ � {x1, x2, . . . , xq}) .

The right hand side of this isomorphism is related to A
1
k/A

1
k � {x} via the

upper distinguished square

A
1
k′ � {x1, x2, . . . , xq} ��

��

A
1
k′ � {x2, . . . , xq}

��
A

1
k � {x} �� A1

k

which defines an isomorphism

Σ∞
s,t (A1

k′ � {x2, . . . , xq}/A
1
k′ � {x1, x2, . . . , xq}) = Σ∞

s,t (A1
k/A

1
k � {x}) .

By using the fact that the isomorphism of 2.26 is compatible in the obvious
sense with etale morphisms, one shows that the isomorphism we constructed
above coincides with the isomorphism in the homotopy purity theorem.

Remark 2.27 Given a finite etale map

Y �� X ,

the proof of 2.26 implies there exists, in SH(k), a transfer map

Σ∞
s,t X+

�� Σ∞
s,t Y+ .
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3 Cohomology Theories

The introduction of the motivic stable homotopy category via spectra provides
a convenient framework for defining cohomology theories of algebraic varieties.
Such theories encode important data about the input, often in a form which
allows to make algebraic manipulations. We shall consider the examples of
motivic cohomology, algebraic K-theory and algebraic cobordism.

3.1 The Motivic Eilenberg-MacLane Spectrum HZ

In stable homotopy theory, the key to understand cohomology theories is to
study their representing spectra. Singular cohomology is a prime example.
This motivates the construction of the motivic Eilenberg-MacLane spectrum,
which we denote by HZ.

Let K(Z, n) denote the Eilenberg-MacLane simplicial set with homotopy
groups

πiK(Z, n) =

{
Z i = n,

0 i �= n.
(1)

The simplicial set K(Z, n) is uniquely determined up to weak equivalence by
(1). A model for K(Z, n) can be constructed as follows: Denote by Z(−)
the functor which associates to a pointed simplicial set (X,x) the sim-
plicial abelian group Z[X]/Z[x]. That is, the simplicial free abelian group
generated by X modulo the copy of the integers generated by the base-
point. Then K(Z, n) is the underlying simplicial set of the simplicial abelian
group Z(∆[n]/∂∆[n]). Moreover, the K(Z, n)’s assemble to define a spectrum
HZ which represents singular cohomology: The integral singular cohomology
group Hn(X, Z) coincides with HomSH(Σ∞X+,HZ).

In motivic homotopy theory, there is a closely related algebro-geometric
analog of the spectrum HZ. But as it turns out, it is impossible to construct
an (s, t)-bispectrum whose constituent terms satisfy a direct motivic analog
of (1); however, by using the theory of algebraic cycles one can define an (s, t)-
spectrum HZ that represents motivic cohomology. Next, we will indicate the
construction of HZ.

If X ∈ Sm/k, let L(X) be the following functor: Its value on U ∈ Sm/k
is the free abelian group generated by closed irreducible subsets of U × X
which are finite over U and surjective over a connected component of U . For
simplicity, we refer to elements in this group as cycles. The graph Γ (f) of a
morphism

f : U �� X

is an example of a cycle in U × X.
It turns out that L(X) is a Nisnevich sheaf, hence a pointed space by

forgetting the abelian group structure. Moreover, there is a map

Γ (X) : X �� L(X) .
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One can extend L(−) to a functor from pointed spaces to Nisnevich sheaves
with values in simplicial abelian groups.5 For example, we have that

L(S0
s ∧ S1

t ) = L((A1
� 0, 1))

is the quotient sheaf of abelian groups L(A1
� 0)/L(Spec(k)), considered as a

pointed space. The pointed space L(S1
s ∧ S1

t ) turns out to be equivalent to

L(P1,∞) = L(P1)/L(Spec(k)) .

Remark 3.1 One can show that L(P1,∞) is weakly equivalent to the infinite
projective space P

∞. Hence, if k admits a complex embedding, taking complex
points yields an equivalence

L(P1,∞)(C) ∼ CP
∞ = K(Z, 2).

The exterior product of cycles induces a pairing

L(Sp
s ∧ Sq

t ) ∧ L(Sm
s ∧ Sn

t ) �� L(Sp+m
s ∧ Sq+n

t ) .

In particular, we obtain the composite maps

σs : S1
s ∧ L(Sm

s ∧ Sn
t )

Γ (S1
s)∧id�� L(S1

s ) ∧ L(Sm
s ∧ Sn

t ) �� L(Sm+1
s , Sn

t ) ,

σt : S1
t ∧ L(Sm

s ∧ Sn
t )

Γ (S1
t )∧id�� L(S1

t ) ∧ L(Sm
s ∧ Sn

t ) �� L(Sm
s , Sn+1

t ) .

(2)

Remark 3.2 A topologically inclined reader might find it amusing to compare
the above with Bökstedt’s notion of functors with smash products.

Definition 3.3 The Eilenberg-MacLane spectrum HZ is the (s, t)-bispectrum
with constituent pointed spaces HZm,n : = L(Sm

s ∧ Sn
t ) and structure maps

given by (2).

Remark 3.4 Let � be a prime number. The Eilenberg-MacLane spectrum with
mod-� coefficients is defined as above by taking the reduction of L(X) modulo
� in the category of abelian sheaves.

We can now define the motivic cohomology groups of (s, t)-bispectra.

Definition 3.5 Let E be an (s, t)-bispectrum and let p, q be integers.
The integral motivic cohomology groups of E are defined by

HZ
p,q(E) : = HomSH(k)(E,Sp−q

s ∧ Sq
t ∧ HZ) .

5 Since every pointed space is a colimit of representable functors and L preserves
colimits, it suffices to describe the values of L on Sm/k.
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Suppose X ∈ Sm/k. The integral motivic cohomology group Hp,q(X, Z) of
X in degree p and weight q is by definition HZ

p,q(Σ∞
s,tX+). One can show that

Hp,q(X, Z) is isomorphic to the higher Chow group CHq(X, 2q−p) introduced
by Bloch in [Blo86].

In Sect. 4, we shall outline an approach to construct a spectral sequence
whose E2-terms are the integral motivic cohomology groups of X. Its target
groups are the algebraic K-groups of X. Since there is a spectral sequence for
topological K-theory whose input terms are singular cohomology groups, this
would allow to make more precise the analogy between motivic and singular
cohomology.

3.2 The Algebraic K-Theory Spectrum KGL

In 2.21(b), we noted that the suspension (s, t)-bispectra of (P1,∞) and S1
s ∧S1

t

are canonically isomorphic in SH(k). In fact, we may replace the suspension
coordinates S1

s and S1
t by P

1 without introducing changes in the motivic stable
homotopy category. In order to represent cohomology theories on Sm/k, it
turns out to be convenient to consider P

1-spectra. To define the category
of such spectra, one replaces in 2.1 every occurrence of the simplicial circle
by the projective line. If E is a P

1-spectrum, we may associate a bigraded
cohomology theory by setting

Ep,q(X) : = HomSH(k)(Σ∞
P1X+, E ∧ Sp−2q

s ∧ (P1)∧q) . (3)

An important example is the spectrum representing algebraic K-theory, which
we describe next.

If m is a non-negative integer, we denote the Grassmannian of vector spaces
of dimension n in the n + m-dimensional vector space over k by Grn(An+m).
By letting m tend to infinity, it results a directed system of spaces; denote
the colimit by BGLn. There are canonical monomorphisms

· · · � � �� BGLn
� � �� BGLn+1

� � �� · · · .

Denote by BGL the sequential colimit of this diagram.
Let KGL be a fibrant replacement of

Z × BGL

in the unstable motivic homotopy theory of k. Then there exists a map

β : P
1 ∧ KGL �� KGL , (4)

which represents the canonical Bott element of

K0(P1 ∧ (Z × BGL)) .

More precisely, the map (4) is adjoint to a lift of the isomorphism
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Z × BGL �� ΩP1(Z × BGL)

in the unstable motivic homotopy category which induces Bott periodicity in
algebraic K-theory. Details are recorded in [Voe98].

Definition 3.6 The algebraic K-theory spectrum KGL is the P
1-spectrum

(KGL,KGL, · · · ,KGL, . . . ) ,

together with the structure maps in (4).

As in topological K-theory, there is also Bott periodicity in algebraic K-
theory: The structure maps of KGL are defined by lifting an isomorphism in
the unstable motivic homotopy category, so there is an isomorphism

P
1 ∧ KGL = KGL . (5)

If k admits a complex embedding, taking C-points defines a realization
functor

tC : SH(k) �� SH .

This functor sends Σ∞
s,t Sp,q to the suspension spectrum of the p-sphere and

KGL to the ordinary complex topological K-theory spectrum.

3.3 The Algebraic Cobordism Spectrum MGL

In what follows, we use the notation in 3.2. Denote the tautological vector
bundle over the Grassmannian by

γn,m
�� Grn(An+m)

The canonical morphism

Grn(An+m) �� Grn(An+m+1)

is covered by a bundle map γn,m
�� γn,m+1. Taking the colimit over m

yields the universal n-dimensional vector bundle

γn
�� BGLn .

The product
A

1 × γn
�� BGLn

with the trivial one-dimensional bundle

A
1 �� Spec(k)
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is classified by the canonical map

BGLn
�� BGLn+1 .

In particular, there exists a bundle map

A
1 × γn

�� γn+1 .

On the level of Thom spaces, we obtain the map

Th(A1) ∧ Th(γn) = (A1/A
1

� 0) ∧ Th(γn) �� Th(γn+1) . (6)

Here, note that we may apply 2.25(a) since the map between γn and BGLn

is a colimit of vector bundles of smooth schemes. From (6) and Remark 2.22,
we get

cn : P
1 ∧ Th(γn) �� Th(γn+1) . (7)

Definition 3.7 The algebraic cobordism spectrum MGL is the P
1-spectrum

(Th(γ0),Th(γ1), . . . ,Th(γn), . . .) ,

together with the structure maps in (7).

The algebraic cobordism spectrum is the motivic analog of the ordinary
complex cobordism spectrum MU. One can check that

tC(MGL) = MU .

The notions of orientation, and formal group laws in ordinary stable homotopy
theory have direct analogs for P

1-spectra.

4 The Slice Filtration

In classical homotopy theory, the Eilenberg-MacLane space K(Z, n) has a
unique non-trivial homotopy group. And up to homotopy equivalence there is
a unique such space for each n (1). The situation in motivic homotopy theory
is quite different. For example, the homotopy groups πp,q(HZ) are often non-
zero, as one may deduce from the isomorphism between πq,q(HZ) and the
Milnor K-theory of k. To give an internal description of HZ within the stable
motivic homotopy category, we employ the so-called slice filtration. In what
follows, we recall and discuss the status of Voevodsky’s conjectures about the
slices of the sphere spectrum 1 = Σ∞

s,tSpec(k)+, HZ, and KGL. For more
details, we refer to the original papers [Voe02b] and [Voe02c].

Let SHeff(k) denote the smallest triangulated sub-category of SH(k) which
is closed under direct sums and contains all (s, t)-bispectra of the form Σ∞

s,tX+.
If n ≥ 1, the desuspension spectrum Σ−n

t Σ∞
s,tX+ is not contained in SHeff(k).
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The ‘effective’ s-stable homotopy category SHeff
s (k) is defined similarly, by

replacing Σ∞
s,t with the s-suspension Σ∞

s .
In this section, we shall study the sequence of full embeddings of categories

· · · � � �� Σ1
s,tSHeff(k) � � �� SHeff(k) � � �� Σ−1

s,t SHeff(k) � � �� · · · . (8)

The sequence (8) is called the slice filtration. For an alternative formulation
of the slice filtration, consider [Lev03]. The above is a filtration in the sense
that SH(k) is the smallest triangulated category which contains Σn

s,tSHeff(k)
for all n and is closed under arbitrary direct sums in SH(k). For each n, the
category Σn

s,tSHeff(k) is triangulated. Moreover, this category has arbitrary
direct sums and a set of compact generators.

Neeman’s work on triangulated categories in [Nee96] shows that the full
inclusion functor

in : Σn
s,tSHeff(k) � � �� SH(k)

has a right adjoint

rn : SH(k) �� Σn
s,tSHeff(k) .

such that the unit of the adjunction is an isomorphism

Id �� rn ◦ in .

Consider now the reverse composition

fn : SH(k)
rn �� Σn

s,tSHeff(k)
in �� SH(k) .

The counit
fn+1

�� Id

applied to the functor fn determines a natural transformation

fn+1 = fn+1 ◦ fn
�� fn .

If E is an (s, t)-bispectrum and n ∈ Z, then the slice tower of E consists
of the distinguished triangles in SH(k)

fn+1E �� fnE �� snE �� fn+1E[1] . (9)

Definition 4.1 The n-th slice of E is snE.

Remark 4.2 Since fn+1E, fnE ∈ Σn
s,tSHeff(k), we get that snE ∈ Σn

s,t

SHeff(k). The adjunction above implies that snE receives only the trivial map
from Σn+1

s,t SHeff(k). Standard arguments show that these properties character-
ize, up to canonical isomorphism, the triangulated functors
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sn : SH(k) �� SH(k) .

Suppose that E ∈ Σn
s,tSHeff(k) and let k ≤ n. Then fkE = E and the k-th

slice skE of E is trivial for all k < n.

Slice towers are analogous to Postnikov towers in algebraic topology; the
slices corresponding to the cofibers or quotients. If E is an ordinary spectrum,
recall that its Postnikov tower expresses E as the sequential colimit of a
diagram of cofibrations

· · · �� P−1E
p0 �� P0E

p1 �� P1E �� · · ·
pn �� PnE

pn+1 �� · · · .

The canonical map
PnE �� E

induces isomorphisms on all stable homotopy groups πi and i ≤ n, whereas
for i > n we have

πi(PnE) = 0 .

It follows that the cofiber of pn is an Eilenberg-MacLane spectrum ΣnHπn(E);
hence, in particular an HZ-module. Now recall that the zeroth stage of the
Postnikov tower of the ordinary sphere spectrum is the Eilenberg-MacLane
spectrum HZ.

This gives some topological motivation for the following conjecture, which
in turn implies a characterization of motivic cohomology entirely in terms of
the motivic stable homotopy category.

Conjecture 1. s01 = HZ.

The collection of the functors sn is compatible with the smash product,
meaning that if E and F are objects of SH(k), there is a natural map

sn(E) ∧ sm(F ) �� sn+m(E ∧ F ) .

In particular, we get a map

s0(1) ∧ sn(E) �� sn(E) .

If Conjecture 1 holds, then the above allows us to conclude that each slice of
an (s, t)-bispectrum has a natural and unique structure of a module over the
motivic cohomology spectrum.

Theorem 4.3 Conjecture 1 holds for all fields of characteristic zero.

Remark 4.4 According to [Lev03, Theorem 8.4.1], Theorem 4.5 holds for
every perfect field.
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In our sketch proof of 4.3, we start with the zeroth slice of HZ.

Lemma 4.5 Let k be a field of characteristic zero. Then s0HZ = HZ.

To prove 4.5, we will make use of the following facts: First, the motivic
Eilenberg-MacLane spectrum is an effective spectrum. Thus

f0HZ = HZ .

Second, if X is a scheme in Sm/k, then every map in SH(k) from Σ1
s,tΣ

∞
s,t X+

to HZ is trivial by Voevodsky’s cancellation theorem [Voe02a].6

Hence, for every E ∈ Σ1
s,tSHeff(k), we get isomorphisms

HomΣ1
s,tSHeff (k)(E, r1HZ) = HomSH(k)(i1E,HZ)

= 0 .

This proves

r1HZ = 0 .

In particular, f1HZ = 0 and hence

s0HZ = f0HZ

= HZ .

Denote by C the cone of the unit map

1 �� HZ .

To finish the proof of 4.3, note that by 4.5 it remains to show

s0C = 0 .

Remark 4.2 shows it suffices to prove that C is contained in Σ1
s,tSHeff(k).

If k is a field of characteristic zero, then HZ has an explicit description in
terms of infinite symmetric products of A

n and A
n

�0. This allows to conclude
the statement about C. We shall sketch a proof.

Recall that

HZn,n = L(Sn
s ∧ Sn

t )

is weakly equivalent to the quotient sheaf L(An)/L(An
� 0).

Let Leff(An) denote the sheaf which maps U ∈ Sm/k to the free abelian
monoid generated by closed irreducible subsets of U ×A

n which are finite over
U and also surjective over a connected component of U .

The sheaf Leff(An
� 0) is defined similarly. In particular, Leff consists of

cycles with nonnegative coefficients. Denote the quotient Leff(An)/Leff(An
�0)

6 In other words, motivic cohomology of X in weight −1 is zero.
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by HZ
eff
n,n. It is straightforward to define HZ

eff
m,n and moreover note that, along

the same lines as above, these pointed spaces form an (s, t)-bispectrum HZ
eff .

If n ≥ 1, the canonical map

HZ
eff
n,n

�� HZn,n

turns out to be a weak equivalence of pointed spaces.
Furthermore, the canonical inclusion

1 �� HZ

factors through

1 �� HZ
eff .

Hence the quotient of the latter map is equivalent to C.
Next, we consider Tn = A

n/A
n

� 0. Let HZ
≤d
n,n be the subsheaf of HZ

eff
n,n

mapping U ∈ Sm/k to the cycles of degree ≤ d over U . Then the natural
inclusion

Tn � � �� HZ
eff
n,n

has a filtration

Tn = HZ
≤1
n,n

� � �� HZ
≤2
n,n

� � �� · · · � � �� HZ
≤d
n,n

� � �� · · · � � �� HZ
eff
n,n.

Taking quotients HZ
≤d
n,n/HZ

≤d−1
n,n induces a filtration of the quotient sheaf

HZ
eff
n,n/Tn. Results of Suslin-Voevodsky [SV96] imply that HZ

≤d
n,n/HZ

≤d−1
n,n

is isomorphic to the d-th symmetric power sheaf (Tn)∧d/Sd of Tn, where Sd

denotes the symmetric group on d letters. This uses the characteristic zero
assumption.

One can show that (Tn)∧d/Sd is contained in the smallest class of pointed
spaces which is closed under homotopy colimits and contains all X/(X − Z),
where Z is a closed subscheme of X ∈ Sm/S of codimension ≥n + 1. After
resolving all singularities in Z, homotopy purity 2.26 implies that the (s, t)-
suspension spectrum of any space in this class is contained in Σn+1

s,t SHeff(k).
This ends our sketch proof of 4.3.

Analogous to (8), there exists a slice filtration in SHA
1

s (k). For n ≥ 0, let
Σn

t SHA
1

s (k) be the smallest compactly generated triangulated sub-category of
SHA

1

s (k) which is closed under arbitrary direct sums, and generated by the
objects Σn

t Σ∞
s X+. We obtain the filtration

· · · � � �� Σn
t SHA

1

s (k) � � �� Σn−1
t SHA

1

s (k) · · · � � �� Σ0
t SHA

1

s (k) = SHA
1

s (k) .

The t-suspension functor Σ∞
t preserves the slice filtrations in the sense that

Σ∞
t (Σn

t SHA
1

s (k)) ⊆ Σn
s,tSHeff(k) .
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Denote the right adjoint of this inclusion by

Ω∞
t : SH(k) �� SHA

1

s (k) .

Conjecture 2. There is an inclusion Ω∞
t (Σn

s,tSHeff(k)) ⊆ Σn
t SHA

1

s (k).

In topology, recall that first applying the suspension functor, and second
the loop space functor preserve connectivity. An inductive argument shows
that the following implies Conjecture 2.

Conjecture 3. If X ∈ Sm/k and n ≥ 0, then Ω1
t Σ1

t Σ∞
s (Sn

t ∧X+) ∈ Σn
t SHA

1

s (k).

This conjecture is not known at present, even if k is a field of characteristic
zero. A proof seems to require a fair amount of work. A possible approach to
prove Conjecture 3 is to develop an analog of the theory of operads, at least
for A∞-operads, in order to have an explicit model for ΩP1ΣP1(X). Framed
correspondences might be a useful tool in working out such a theory.

At last in the section, we relate the above machinery to a possibly new
approach to some recent advances in algebraic K-theory.

In [Bei87], Beilinson conjectured the existence of an Atiyah-Hirzebruch
type spectral sequence for the algebraic K-groups of nice schemes. In [BL95],
Bloch and Lichtenbaum constructed such a spectral sequence. Their work has
been expanded by Friedlander and Suslin [FS02], by Levine [Lev01], and by
Suslin [Sus03].

The slice tower (9) acquires an associated spectral sequence. In the example
of KGL, one obtains

HomSH(k)(Σ∞
s,tX+, Sp−q

s ∧ Sq
t ∧ s0KGL) ⇒ K−p−q(X) . (10)

The main problem with this spectral sequence is to identify the input
terms in (10) with motivic cohomology.

Conjecture 4. s0KGL = HZ.

Because of Bott periodicity (5), the above describe all the slices of KGL.
More precisely, one expects

snKGL = Σn
s,tHZ .

As a consequence, Conjecture 4 and (10) would imply the Atiyah-Hirzebruch
type spectral sequence

Hp−q,q(X, Z) ⇒ K−p−q(X) . (11)

Strong convergence of (11) is shown in [Voe02c]. In the same paper, it was
noted that Conjectures 1 and 2 imply Conjecture 4.
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5 Appendix

In this appendix, written by the second and third author, we shall discuss in
some details the homotopy theoretic underpinnings of the theory presented in
the main body of this note.

Some results in motivic homotopy theory depend on a characterization of
Nisnevich sheaves in terms of upper distinguished squares. For completeness,
in the following section we review the connection between upper distinguished
squares and the Nisnevich topology, as described by Morel and Voevodsky
in [MV99].

This brings us to the topic of model structures for simplicial presheaves
on the smooth Nisnevich site of k. Nowadays there exist several such model
structures. At a first encounter, the choice of a model structure might be
a quite confusing foundational aspect of the theory. However, the flexibility
this choice offers clearly outweighs the drudgery involved in learning about
the various models; in fact, this development is a result of various quests to
improve the machinery leading to the construction of SH(k). Our exposition
follows the paper of Goerss and Jardine [GJ98].

The final section deals with the motivic stable model structure as presented
in [Jar00]. In the 1990’s topologists discovered model structures with compat-
ible monoidal structures, and such that the associated homotopy categories
are all equivalent as monoidal categories to the ordinary stable homotopy cat-
egory. Motivic stable homotopy theory have in a few years time acquired the
same level of technical sophistication as found in ordinary stable homotopy
theory. An example of a highly structured model for SH(k) is the model of
motivic functors described in [Dun].

In this appendix, using the Zariski spectrum Spec(k) of a field k as the
base-scheme is mainly for notational convenience. Although smoothness is
essential in the proof of the homotopy purity Theorem 2.26, it is not a foun-
dational requirement for setting up motivic model structures. The theory we
shall discuss works well for categories of schemes of (locally) finite type over
a finite dimensional Noetherian base-scheme.

5.1 The Nisnevich Topology

In Sect. 2, we constructed several examples of distinguished triangles by means
of upper distinguished squares:

W ��

��

V

p

��
U

i �� X

(12)

Recall the conditions we impose on (12): i is an open embedding, p is an etale
map, and p−1(X �U) → (X �U) induces an isomorphism of reduced schemes.
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Exercise 5.1 Show that the real affine line A
1
R
, A

1
R
�{(x2+1)}, A

1
C
�{(x−i)},

and A
1
C

�{(x+i)(x−i)} define an upper distinguished square. Here, irreducible
polynomials are identified with the corresponding closed points on affine lines.

The Grothendieck topology obtained from the collection of all upper dis-
tinguished squares is by definition the smallest topology on Sm/k such that,
for each upper distinguished square (12), the sieve obtained from the mor-
phisms i and p is a covering sieve of X, and the empty sieve is a covering
sieve of the empty scheme ∅. Note that for a sheaf F in this topology we have
F (∅) = ∗. A sieve of X is a subfunctor of the space represented by X under
the Yoneda embedding. A sieve is a covering sieve if and only if it contains a
covering arising from an upper distinguished square.

To tie in with the Nisnevich topology, we record the following result due
to Morel-Voevodsky [MV99].

Proposition 5.2 The coverings associated to upper distinguished squares
form a basis for the Nisnevich topology on Sm/k.

In the proof of 5.2, we use the notion of a splitting sequence for coverings:
Suppose X ∈ Sm/k and the following is a Nisnevich covering

{fα : Xα
�� X}α∈I . (13)

We claim there exists a finite sequence of closed embeddings

∅ = Zαn+1
�� Zαn

�� · · · �� Zα0 = X , (14)

and for 0 ≤ i ≤ n, Spec(k)-sections sαi
of the natural projections

fαi
×X (Zαi

� Zαi+1) : Xαi
×X (Zαi

� Zαi+1) �� (Zαi
� Zαi+1) .

To construct the sequence (Zαi
)n+1
i=0 we set Zα0 : = X. For each generic point

x of X, the Nisnevich covering condition requires that there exists an index
α0 ∈ I and a generic point xα0 of Xα0 such that fα0 induces an isomorphism
of residue fields k(x) → k(xα0). The induced morphism of closed integral
subschemes corresponding to the generic points is an isomorphism over x,
hence an isomorphism over an open neighborhood Uα0 of x. It follows that
fα0 has a section sα0 over Uα0 as shown in the diagram:

Xα0

fα0

��
Uα0

sα0

��

� � �� Zα0

Next, set Zα1 : = Zα0 � Uα0 . With this definition, there exists a Nisnevich
covering {Xα ×X Zα1 → Zα1}α∈I . The next step is to run the same argument
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for Zα1 . Iterating this procedure, we obtain a strictly decreasing sequence of
closed subsets of X with the ascribed property. Since X is Noetherian, the
sequence will terminate.

We note that the existence of splitting sequences for coverings implies that
the Nisnevich topology on Sm/k is Noetherian in the sense that every covering
allows a finite refinement. This follows because there is only a finite number
of the pairs (Zαi

� Zαi+1) and {fαi
: Xα → X}n

i=0 is a Nisnevich covering.
Next, we sketch a proof of 5.2: First, it is clear that every covering obtained

from an upper distinguished square is indeed a Nisnevich covering. Conversely,
consider the covering sieve R generated by a Nisnevich covering of X (13)
and the corresponding splitting sequence (14). Since X is Noetherian, we may
assume that I is finite and the sieve R is obtained from the morphism

f :
∐

α∈I Xα
�� X .

The idea is now to construct an upper distinguished square where the scheme
subject to the open embedding i has a splitting sequence of length less than
that of (14).

Denote by s the Spec(k)-section of f over X � Zαn
. Note that we have

obtained the upper distinguished square:

W ��

��

V = (
∐

α∈I Xα) � (f−1(X � Zαn
) � Im(s))

p

��
U = (X � Zαn

) i �� X

Here, the splitting sequence associated to the Nisnevich covering
∐

α∈I Xα ×X (X � Zαn
) �� (X � Zαn

) (15)

has length one less than (14).
The covering sieve R is obtained by composing the Nisnevich coverings

{
∐

α∈I Xα ×X (X � Zαn
) �� (X � Zαn

), V = V } , (16)

{U �� X,V �� X} . (17)

By considering the length of the splitting sequence for (15), we may assume
that (16) is a covering in the topology generated by upper distinguished
squares. The same holds trivially for (17).

Corollary 5.3 A presheaf on the smooth Nisnevich site of k is a sheaf if and
only if it maps every upper distinguished square to a cartesian diagram of sets
and the empty scheme to ∗.
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The empty scheme ∅ represents a simplicial presheaf on Sm/k. Its value
on the empty scheme is ∗, not the empty set, which distinguishes it from the
initial presheaf. Recall that a Nisnevich neighborhood of x ∈ X consists of an
etale morphism f : V → X together with a point v ∈ f−1(x) such that the
induced map k(x) → k(v) is an isomorphism. The Nisnevich neighborhoods
of x ∈ X yield a cofiltering system. Let Oh

X,x denote the henselization of the
local ring of X at x. Its Zariski spectrum equals the limit of all Nisnevich
neighborhoods of x ∈ X.

When F is a sheaf on the smooth Nisnevich site of k, denote by F (Oh
X,x)

the filtered colimit of F (V ) indexed over all the Nisnevich neighborhoods of x.
By restricting to a small skeleton of Sm/k, we obtain a family of conservative
points for the Nisnevich topos ShvNis(Sm/k), namely

F
� �� F (Oh

X,x) .

In other terms, a morphism of sheaves F → G on the smooth Nisnevich site
of k is an isomorphism if and only if F (Oh

X,x) → G(Oh
X,x) is an isomorphism

for all x ∈ X.
Denote by ∆opPreNis(Sm/k) the category of simplicial presheaves on the

smooth Nisnevich site of k. Recall from [Dun] the notion of weak equivalence
between simplicial sets. A morphism X → Y in ∆opPreNis(Sm/k) is called a
schemewise weak equivalence if for all X ∈ Sm/k there is an induced weak
equivalence X (X) → Y(Y ). In particular, a morphism of discrete simplicial
presheaves is a schemewise weak equivalence if and only if it is an isomorphism.
There is the much coarser notion of a stalkwise weak equivalence.

Definition 5.4 A morphism X → Y in ∆opPreNis(Sm/k) is called a stalkwise
weak equivalence if for all X ∈ Sm/k and x ∈ X there is an induced weak
equivalence of simplicial sets X (Oh

X,x) → Y(Oh
X,x).

An important observation is that the simplicial presheaves are evaluated
at Hensel local rings; this is particular to the Nisnevich topology. If we instead
considered the etale topology, we would have evaluated at strict Hensel local
rings. In this way, the stalkwise weak equivalences in ∆opPreNis(Sm/k) depend
on some of the finest properties of the Nisnevich topology.

Exercise 5.5 Give an example of a stalkwise weak equivalence which is not
a weak equivalence on all local rings. (Hint: An example can be obtained by
considering the pushout of the upper distinguished square in Exercise 5.1.)

So far we have encountered two important properties of the Nisnevich
topology: First, the collection of all upper distinguished squares generates
the Nisnevich topology. This implies a useful characterization of Nisnevich
sheaves. Second, the stalkwise weak equivalences are completely determined
by Henselizations of Zariski local rings. These two facts are among the chief
reasons why developing motivic homotopy theory in the Nisnevich topology
turns out to give a whole host of interesting results.
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There exist two other characterizations of stalkwise weak equivalences. To
review these, we generalize combinatorial and topological homotopy groups
for simplicial sets to the setting of Nisnevich sheaves of homotopy groups of
simplicial presheaves. Recall that Kan employed the subdivision functor Ex∞

to define combinatorial homotopy groups of simplicial sets without reference
to topological spaces [Dun]. We recall Jardine’s generalization to simplicial
presheaves [Jar87, §1].

First, we require an extension of Ex∞ to the simplicial presheaf category
∆opPreNis(Sm/k). If X is a simplicial presheaf on the smooth Nisnevich site
of k, let ExmX denote the simplicial presheaf with n-simplices

[n] � �� ∆opPreNis(Sm/k)(sdm∆[n],X ) .

In the above expression, sdm denotes the subdivision functor iterated m times.
Its simplicial structure is obtained by precomposition with the simplicial sets
maps involving the subdivision sdm.

Using the natural last vertex maps sd∆[n] → ∆[n], for n ≥ 0, and iterating,
we get the diagram

X �� Ex1X �� Ex2X �� · · · . (18)

Denote by Ex∞X the colimit of (18) in the presheaf category. There is, by
construction, a canonically induced schemewise weak equivalence, and hence
stalkwise weak equivalence

X �� Ex∞X .

A morphism X → Y of simplicial presheaves is a local fibration if for every
commutative diagram of simplicial set maps

Λk[n] ��
� �

��

X (X)

��
∆[n] �� Y(X)

there exists a covering sieve R ⊆ Sm/k(−,X) such that for every φ : Y → X
in R and in every commutative diagram as below, there exists a lift:

Λk[n] ��
� �

��

X (X) �� X (Y )

��
∆[n] ��

��

Y(X) �� Y(Y )

Local fibrations are the morphisms with the local right lifting property with
respect to the inclusions Λk[n] ⊆ ∆[n], n > 0, of the boundary ∂∆[n] having
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the k-th face deleted from its list of generators. Simplicial presheaf morphisms
having the analogously defined local right lifting property with respect to
all inclusions ∂∆[n] ⊆ ∆[n], n > 0, are local fibrations. We say that X is
locally fibrant if the morphism X → ∗ to the simplicial presheaf represented
by Spec(k) is a local fibration. Schemewise Kan fibrations (i.e. morphisms
X → Y which for every member X of Sm/k gives a Kan fibration of simplicial
sets X (X) → Y(X)) are local fibrations. The simplicial presheaf Ex∞X is a
typical example of a locally fibrant object.

Exercise 5.6 Show that X → Y is a local fibration if and only if for all
X ∈ Sm/k and x ∈ X, the map X (Oh

X,x) → Y(Oh
X,x) is a Kan fibration of

simplicial sets.
Conclude that X is locally fibrant if and only if X (Oh

X,x) is a Kan complex
for all X ∈ Sm/k and x ∈ X.

When comparing model structures for simplicial presheaves and simplicial
sheaves on Sm/k, we shall employ the Nisnevich sheafification functor for
presheaves [Lev]. Recall that the functor aNis is left adjoint to the inclusion

ShvNis(Sm/k) ⊆ PreNis(Sm/k).

A degreewise application extends it to simplicial presheaves.

Exercise 5.7 Show that X → aNisX is a local fibration by proving that it has
the local right lifting property with respect to the inclusions ∂∆[n] ⊆ ∆[n].

Consider a locally fibrant simplicial presheaf X on Sm/k and a pair of
simplicial set maps

∆[n]
f ��
g

�� X (X).

Then f is locally homotopic to g if there exists a covering sieve R ⊆
Sm/k(−,X) such that, for each φ : Y → X in R, there is a commutative
diagram:

∆[n]

f

��

d0
�� ∆[n] × ∆[1]

hφ

��

∆[n]d1
��

g

��
X (X)

φ∗
�� X (Y ) X (X)

φ∗
��

In addition, f and g are locally homotopic relative to ∂∆[n] provided each
homotopy hφ is constant on ∂∆[n] ⊆ ∆[n] × ∆[1] and

f |∂∆[n] = g|∂∆[n] .

One shows easily that local homotopy relative to ∂∆[n] is an equivalence
relation for locally fibrant simplicial presheaves [Jar87, Lemma 1.9].
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If x is a zero-simplex of X (k), let x|X be the image of x in X (X)0 under the
canonically induced morphism X (Spec(k)) → X (X). Consider the following
set of all equivalence classes of maps of pairs

(
∆[n], ∂∆[n]

) �� (X (X), x|X
)

where the equivalence relation is generated by relative local homotopies. For
n ≥ 1, the associated Nisnevich sheaves πloc

n (X , x) of combinatorial homotopy
groups are formed by letting X vary over the Nisnevich site on Sm/k. When
n = 0, we take the sheaf associated with local homotopy classes of vertices.

As for simplicial sets, a tedious check reveals that πloc
n (X , x) is a sheaf of

groups for n ≥ 1, which is abelian for n ≥ 2.
The Nisnevich site Sm/k ↓ X has the terminal object IdX , with topology

induced from the Nisnevich topology on the big site Sm/k. So for a locally
fibrant simplicial presheaf X , the zero-simplex x ∈ X |X(IdX)0 determines a
sheaf of homotopy groups πloc

n (X|X,x).

Definition 5.8 A morphism f : X → Y of simplicial presheaves on the
smooth Nisnevich site of k is a combinatorial weak equivalence if for all n ≥ 1,
X ∈ Sm/k, and zero-simplices x ∈ X (X)0 there are induced isomorphisms of
Nisnevich sheaves

πloc
0 (X ) �� πloc

0 (Y) ,

πloc
n (Ex∞X|X,x) �� πloc

n (Ex∞Y|X, f(x)).

Exercise 5.9 Show the following assertions.

(i) There is a combinatorial weak equivalence of simplicial presheaves X → Y
if and only if for each X ∈ Sm/k and x ∈ X there is a naturally induced
weak equivalence of simplicial sets X (Oh

X,x) → Y(Oh
X,x).

(ii) If X is a locally fibrant simplicial presheaf, then πloc
n (X ) → πloc

n (Ex∞X )
is an isomorphism for every n ≥ 0.

If X ∈ ∆opPreNis(Sm/k) and x ∈ X (X)0 is a zero-simplex, let πn(X , x)
denote the sheaf on Sm/k ↓ X associated to the presheaf

(U �� X) � �� πn(X (U), x|U) .

Note that this definition uses homotopy groups obtained by passing to the
geometrical realization of the simplicial set X (U).

The sheaf of path components π0(X ) of a simplicial presheaf X is the
Nisnevich sheafification of the coequalizer of the presheaf diagram

X1

d0 ��
d1

�� X0 .

The definition of topological weak equivalence is strictly parallel to that
of combinatorial weak equivalences:
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Definition 5.10 A morphism X → Y in ∆opPreNis(Sm/k) is a topological
weak equivalence if for all n ≥ 1, X ∈ Sm/k, and x ∈ X (X)0 there are
naturally induced isomorphisms of Nisnevich sheaves

π0(X ) �� π0(Y) ,

πn(X|X,x) �� πn(Y|X, f(x)) .

For proofs of the following result, see [DI04, 6.7] and [Jar87, 1.18].

Lemma 5.11 For any simplicial presheaf X ∈ ∆opPreNis(Sm/k), X ∈ Sm/k,
and x ∈ X (X)0 there are naturally induced isomorphisms of Nisnevich sheaves

πn(X|X,x) �� πloc
n (X|X,x) .

Exercise 5.12 Let X → Y be a morphism of simplicial presheaves. If X and
Y are locally fibrant, show that X → Y is a topological weak equivalence if and
only if there are naturally induced isomorphisms of Nisnevich sheaves

πloc
0 (X ) �� πloc

0 (Y) ,

πloc
n (X|X,x) �� πloc

n (Y|X, f(x)).

Exercises 5.9 and 5.12 show that the classes of combinatorial, stalkwise,
and topological weak equivalences coincide. To emphasize the local structure,
we refer to them as local weak equivalences. We also use the notation ∼loc.

A simplicial presheaf X on Sm/k satisfies Nisnevich descent if for every
upper distinguished square (12), the following diagram is a homotopy cartesian
square of simplicial sets:

X (X) ��

��

X (V )

��
X (U) �� X (W )

(19)

The following fundamental result is the Nisnevich descent theorem which
was proven by Morel-Voevodsky in [MV99].

Theorem 5.13 Suppose X and Y satisfy Nisnevich descent on Sm/k, and
there is a local weak equivalence

X ∼loc �� Y .

Then X and Y are schemewise weakly equivalent.

Remark 5.14 We point out that the Nisnevich descent theorem also holds for
the big site of finite type S-schemes, where S denotes a Noetherian scheme of
finite Krull dimension.
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Theorem 5.13 follows easily from the following Lemma.

Lemma 5.15 Suppose X satisfies Nisnevich descent on Sm/k, and there is
a local weak equivalence

X ∼loc �� ∗ .

Then X and ∗ are schemewise weakly equivalent, so that X is schemewise
contractible.

The Lemma implies the Theorem: Our object is to prove that for every
X ∈ Sm/k, there is a weak equivalence of simplicial sets

X (X) �� Y(X) .

It suffices to show that the schemewise homotopy fiber over any zero-simplex
x ∈ Y(X)0 is contractible. Since X and Y are locally weakly equivalent and
satisfy Nisnevich descent, it follows that the schemewise homotopy fiber is
locally weakly equivalent to ∗ and satisfies Nisnevich descent on Sm/k ↓ X.
Lemma 5.15 applies to the Nisnevich site of Sm/k ↓ X. Thus the homotopy
fiber is schemewise contractible. We conclude there is a schemewise weak
equivalence

X ∼sch �� Y .

Later in this text, we shall use an alternate form of the Nisnevich descent
theorem in the context of constructing model structures for spectra of spaces.
Since the proof of 5.13 and its reformulation makes use of model structures on
the presheaf category ∆opShvNis(Sm/k), we will discuss such model structures
in the next section.

5.2 Model Structures for Spaces

This section looks into the construction of a motivic model structure on
∆opShvNis(Sm/k). Instead of using simplicial sheaves, we shall work in the
setting of simplicial presheaves. The motivic model structure for simplicial
sheaves follows immediately from the existence of a Quillen equivalent motivic
model structure on the corresponding presheaf category ∆opPreNis(Sm/k).

There are now several model structures underlying the motivic homotopy
category. The classes of weak equivalences coincide in all these motivic mod-
els. However, the motivic models differ greatly with respect to the choice of
cofibrations. Now, the good news is that having a bit a variety in the choice of
foundations gives a more in depth understanding of the whole theory. As our
cofibrations we choose monomorphisms of simplicial presheaves. This has the
neat effect that all objects are cofibrant. On the other hand, this choice makes
it difficult to describe the fibrations defined using the right lifting property
with respect to trivial cofibrations. In other models, there are more fibrant
objects and the fibrations are easier to describe, but then again not every
object is cofibrant.
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We do not attempt to give a thorough case by case study of each motivic
model. The reader can consult the following list of papers on this subject:
Blander [Bla01], Dugger [Dug01], Dugger-Hollander-Isaksen [DHI04], Dundas-
Röndigs-Østvær [DRØ03], Isaksen [Isa04], Jardine [Jar03], and Voevodsky
[Voe00a].

Recall that a cofibration of simplicial sets is simply an inclusion. Jardine
[Jar87] proved the theorem that monomorphisms form an adequate class of
cofibrations in the simplicial presheaf setting. Adequate means, in particular,
that the classes of local weak equivalences and monomorphisms form a model
structure on ∆opPreNis(Sm/k). This leads to the model structure introduced
by Morel-Voevodsky [MV99]. The main innovative idea in their construction
of the motivic theory is that the affine line plays the role of the unit interval
in topology. In our discussion of the Jardine and Morel-Voevodsky model
structures, we follow the approach in the paper of Goerss-Jardine [GJ98].

For the basic notions in homotopical algebra we will use, such as left/right
proper and simplicial model categories, see for example [Dun]. First in this
section, we deal with Jardine’s model structure on ∆opPreNis(Sm/k). Global
fibrations are, by definition, morphisms having the right lifting property with
respect to morphisms which are monomorphisms and local weak equivalences.
This forces half of the lifting axiom M4 in the model category structure. We
refer to the following model as the local injective model structure.

Theorem 5.16 The classes of local weak equivalences, monomorphisms and
global fibrations define a proper, simplicial and cofibrantly generated model
structure for simplicial presheaves on the smooth Nisnevich site of k.

Fibrant objects in the local injective model structure are called globally
fibrant. An essential input in the proof of 5.16 is the following list of properties:

P1 The class of local weak equivalences is closed under retracts.
P2 The class of local weak equivalences satisfies the two out of three axiom.
P3 Every schemewise weak equivalence is a local weak equivalence.
P4 The class of trivial cofibrations is closed under pushouts.
P5 Let γ be a limit ordinal, considered as a partially ordered set.

Suppose there is a functor

F : γ �� ∆opPreNis(Sm/k) ,

such that for each morphism i ≤ j in γ there is a trivial cofibration

F (i) ��∼loc �� F (j) .

Then there is a canonically induced trivial cofibration

F (i) ��∼loc �� colim
j∈γ

F (j) .
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P6 Suppose there exist trivial cofibrations for i ∈ I

Fi
��∼loc �� Gi .

Then there is a canonically induced trivial cofibration

∐
i∈I Fi

��∼loc �� ∐
i∈I Gi .

P7 There is an infinite cardinal λ which is an upper bound for the cardinality
of the set of morphisms of Sm/k such that for every trivial cofibration

X ��∼loc �� Y and every λ-bounded subobject Z of Y there exists some
λ-bounded subobject W of Y and a diagram of simplicial presheaves:

W ∩X � � ��
��

∼loc

��

X
��
∼loc

��
Z � � �� W � � �� Y

Properties P1–P3 are clear from our discussion of local weak equivalences
in Sect. 5.1. For example, the morphism of presheaves of homotopy groups
induced by a schemewise weak equivalence is an isomorphism.

To prove P4, we consider a pushout diagram in ∆opPreNis(Sm/k) where i
is a cofibration and a local weak equivalence:

X
��

i ∼loc

��

f �� Z
j

��
Y �� Y ∪X Z =: W

We want to prove that the right vertical morphism is a local weak equivalence.
Pushouts along monomorphisms preserves schemewise weak equivalences, so
we may assume that all simplicial presheaves are schemewise fibrant; hence,
locally fibrant, and moreover that f is a monomorphism. Exercise 5.9 and the
characterization of local weak equivalences by combinatorial homotopy groups
πloc imply: j is a local weak equivalence if and only if for every X ∈ Sm/k
and every diagram

∂∆n α ��
� �

��

Z(X)

j(X)

��
∆n

β �� W(X)

(20)

there exists a covering sieve R of X together with a local homotopy. That is, for
every φ : U → X in R, there is a simplicial homotopy ∆n×∆1 → W(U), which
is constant on ∂∆n, from φ∗◦β to a map β′ with image in Z(U). Replacing the
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inclusion ∂∆n ↪→ ∆n in diagram (20) by an appropriate subdivision K ↪→ L,
one can assume that the image under β of every simplex σ of L lies either in
Z(X) or in Y(X) (or in both, meaning that β(σ) ∈ X (X) = Y(X) ∩ Z(X)).
Since L is obtained from K by attaching finitely many simplices (of dimension
0 ≤ d ≤ n), one may construct the required simplicial homotopy by induction
on these simplices. In case the simplex has image in Z(X), use a constant
local homotopy. Otherwise, one can construct a local homotopy as desired,
because i is a local weak equivalence. Observe that this requires passing to a
covering sieve as many times as there are non-degenerate simplices in L � K.

The first step in the proof of P5 is left to the reader as an exercise:

Exercise 5.17 Note that there is a functor

Ex∞F : γ �� ∆opPreNis(Sm/k), i
� �� Ex∞F (i) ,

together with a natural transformation

F �� Ex∞F .

By considering the following commutative diagram, show that it suffices to
prove P5 when F (i) is a presheaf of Kan complexes for all i ∈ γ:

F (i)

��

�� colim
j∈γ

F (j)

��
Ex∞F (i) �� colim

j∈γ
Ex∞F (j)

(Hint: Schemewise weak equivalences are local weak equivalences.)

Taking the previous exercise for granted, we may now assume that each
F (i) is a presheaf of Kan complexes.
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Consider the diagram obtained from the Nisnevich sheafification functor:

F (i)

��

�� colim
j∈γ

F (j)

��

�� aNis(colim
j∈γ

F (j))

∼=
��

aNisF (i) �� colim
j∈γ

aNisF (j) �� aNis(colim
j∈γ

aNisF (j))

Concerning the left lower horizontal morphism, note that aNisF (i) → aNisF (j)
is a local weak equivalence of locally fibrant simplicial presheaves; hence a
schemewise weak equivalence, which implies a schemewise and hence a local
weak equivalence between aNisF (i) and colim

j∈γ
aNisF (j).

The associated Nisnevich sheaf morphisms are all local weak equivalences,
so that starting in the right hand square and using the two out of three
property for local weak equivalences, it follows that all the morphisms in the
diagram are local weak equivalences. This proves P5.

It is time to consider property P6. Again, let us start with an exercise.

Exercise 5.18 Show there is no loss of generality in assuming that Fi and
Gi are Kan complexes for all i ∈ I. (Hint: Ex∞ preserves coproducts.)

The proof proceeds by noting the local weak equivalence between locally
fibrant presheaves aNisFi → aNisGi. In effect, we use

∐
i∈I aNisFi

∼sch �� ∐
i∈I aNisGi .

Sheafification induces the commutative diagram:

aNis

∐
i∈I Fi

∼=
��

∐
i∈I Fi

��

��

�� ∐
i∈I Gi

��

�� aNis

∐
i∈I Gi

∼=
��

aNis

∐
i∈I aNisFi

∐
i∈I aNisFi

�� ∼loc �� ∐
i∈I aNisGi

�� aNis

∐
i∈I aNisGi

By starting with the outer squares, an easy check shows that all morphisms
in the diagram are local weak equivalences. The part of property P6 dealing
with cofibrations is clear.

In the formulation of property P7 or the ‘bounded cofibration condition’,
we implicitly use that Sm/k is skeletally small. The latter means that isomor-
phism classes of objects in Sm/k form a set. If κ is an infinite cardinal and
X ∈ Sm/k, then the cardinality of X is less than κ, written card(X) < κ, if
the following hold:

C1 The cardinality of the underlying topological space of X is smaller than
the cardinal κ.



Voevodsky’s Nordfjordeid Lectures 185

C2 For all Zariski open affine patches Spec(A) of X we have card(A) < κ.

Suppose that A is a commutative ring with unit, such that card(A) < κ.
Then, as a ring, A is isomorphic to the quotient by an ideal of a polynomial
ring Z[T ] on a set T of generators such that card(T ) < κ. This implies the
inequality card(Z[T ]) < κ. Hence, the cardinality of the collection of ideals
of Z[T ] is bounded above by 2κ. It follows that the collection of isomorphisms
classes of all affine schemes Spec(A) such that card(A) < κ forms a set. To
generalize to schemes, use that isomorphism classes of schemes are bounded
above by isomorphism classes of diagrams of affine schemes. Fixing an infinite
cardinal κ such that card(k) < κ, implies, from what we have just observed,
that Sm/k is skeletally small; thus, the formulation of P7 makes sense.

On a related matter, a cofibration in ∆opPreNis(Sm/k)

X �� �� Y

is λ-bounded if the object Y is λ-bounded, i.e. for all X ∈ Sm/k, n ≥ 0, each
set Yn(X) has smaller cardinality than λ. For each object X ∈ Sm/k, there
is the X-section functor

X � �� X (X) .

It has a left adjoint whose value on the standard simplicial n-simplex ∆[n] is
the λ-bounded simplicial presheaf hX∆[n] defined by

Y
� �� ∐

φ : Y →X ∆[n] .

Using adjointness yields bijections between morphisms of simplicial sets and
morphisms of simplicial presheaves,

∆[n] �� Y(X), hX∆[n] �� Y .

It follows that any simplicial presheaf on the smooth Nisnevich site of k is a
filtered colimit of its λ-bounded subobjects because the generating simplicial
presheaves hX∆[n] are all λ-bounded.

Suppose now that X ��∼loc �� Y is given, and choose a λ-bounded sub-
presheaf Z ⊆ Y. By applying the functor Ex∞, we may assume that all
simplicial presheaves in sight are locally fibrant. The proof of P7 proceeds by
constructing inductively a sequence of λ-bounded subobjects

W0 := Z ⊆ W1 ⊆ W2 · · ·

such that, for each X ∈ Sm/k, all local lifting problems of the form

∂∆n ��
� �

��

Wi ∩ X (X)

��
∆n �� Wi(X)
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have solutions over Wi+1. Such a local lifting problem amounts to an element
e in a relative local homotopy group πloc

n (Wi ∩ X ,Wi). This element maps
to zero in πloc

n (X ,Y). Since local homotopy groups commute with filtered
colimits, and since Y is the filtered colimit of its λ-bounded subobjects by
assumption on λ, there exists a λ-bounded subobject We

i such that e maps
to zero in the group πloc

n (We
i ∩ X ,We

i ). The relative local homotopy group
πloc

n (Wi∩X ,Wi) is λ-bounded as well, thus Wi+1 is the union of all the We
i ’s.

This completes the inductive step.
Set W : = ∪Wi, which is again λ-bounded. It follows, using properties of

morphisms having the local right lifting property with respect to the inclusions
∂∆n ⊆ ∆n, that there is a local weak equivalence

W ∩X ��∼loc �� W .

This finishes the sketch proof of P7.
In the statement that the local injective model structure is simplicial, we

made implicitly use of the fact that the presheaf category ∆opPreNis(Sm/k)
is enriched in the category of simplicial sets. The simplicial structure of a
function complex

hom(X ,Y)

is determined by

hom(X ,Y)n := ∆opPreNis(Sm/k)(X × ∆[n],Y) .

As a simplicial presheaf, the tensor object

X × ∆[n]

is given by

(X × ∆[n])(X) := X (X) × ∆[n] .

Pointed function complexes and tensor objects are defined similarly making
pointed simplicial presheaves into a category enriched in pointed simplicial
sets.

Proof. (Theorem 5.16). In the lectures [Lev] we learned that small limits and
small colimits exist for the presheaf category PreNis(Sm/k). Hence, the limit
axiom M1 holds for ∆opPreNis(Sm/k) [Dun]. We have already noted that the
two out of three axiom M2 holds for the class of local weak equivalences.

The retract axiom M3 holds trivially for both local weak equivalences and
cofibrations. Global fibrations are defined by the right lifting property with
respect to trivial cofibrations; using this, it follows that global fibrations are
closed under retracts.
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Consider the lifting axiom M4. In our case, global fibrations are rigged so
that the right lifting property part of M4 holds. For the part of M4 which is
not true by definition, consider the diagram where i is a cofibration and p is
a trivial global fibration:

X ′ ��
��

��

X
∼loc

����
Y ′ ��

���
�

�
�

Y
We want to prove that the indicated filler exists. In the following, let us assume
the factorization axiom M5 holds for the canonical morphism

Y ′ ∪X ′ X �� Y .

With this standing assumption, we obtain the commutative diagram:

X ′ ��
��

��

X
��

i

��

��
∼loc

ji
����������� X

∼loc

����

Z

���
�

�
�

∼loc 		 		�
��

��
��

�

Y ′ ∪X ′ X ��




j


��������

Y

Y ′



���������

������������������������������

Concerning this diagram we make two remarks:

(i) Note that ji is a cofibration being the composition of the cofibrations.
(ii) Commutativity implies there is a local weak equivalence

X �� i �� Y ′ ∪X ′ X �� Y .

Hence, there is a local weak equivalence

X �� ji �� Z ��∼loc �� Y .

Thus ji is a trivial cofibration according to M2.

We conclude that the filler with source Z exists rendering the diagram
commutative. This uses the definition of global fibrations in terms of the
right lifting property with respect to trivial cofibrations. Note that the above
immediately solves our original lifting problem. At this stage of the proof, we
have not used the properties P4–P7.
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The serious part of the proof is to prove the factorization axiom M5.
Consider an infinite cardinal λ as in P7. We claim that a morphism

X �� Y

is a global fibration if it has the right lifting property with respect to all trivial
cofibrations with λ-bounded targets. In other words, for morphisms as above,
we claim there exists a filler in every commutative diagram of the form:

X ′ ��
��

∼loc

��

X

��
Y ′ ��

���
�

�
�

Y

Here, we may of course assume that the left vertical morphism is not an
isomorphism. In effect, there exists a λ-bounded subobject Z of Y ′ which is
not a subobject of X ′. By property P7, there exists a λ-bounded subobject
W of Y ′ containing Z, and a diagram:

W ∩X ′ ��
��

∼loc

��

X ′ ��
��

∼loc

��

X

��

W �� W ∪X ′

���
�

�
�

�

��
Y ′ �� Y

Concerning this diagram we make two remarks:

(i) Property P4 implies the trivial cofibration

X ′ ��∼loc �� W ∪X ′ .

(ii) By the assumption on the right vertical morphism, the partial filler exists.

Consider now the inductively ordered non-empty category of partial lifts
where we assume X ′ �= X ′′:

X ′ ��




∼loc



��
��

��
���

∼loc

��	
		

		
		

		
		

		
	

X

��

X ′′

��









��
Y ′ �� Y
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From P5 and Zorn’s lemma, there exists at least one maximal partial lift
X ′′ �� Y ′. Maximality implies X ′′ = Y ′. This solves our lifting problem.

So far, we have made the key observation that morphisms having the right
lifting property with respect to all trivial cofibrations with λ-bounded targets
are global fibrations. The converse statement holds by definition of global
fibrations. We recall from [Dun] that – in more technical terms – this means
there exists a set of morphisms, called generating trivial cofibrations, which
detects global fibrations. Alas, the argument gives no explicit description of
the generators.

We can now set out to construct factorizations of the form:

X
f ��

���
��

��
��

���
∼loc

if ���
��

��
��

Y

Zf

pf

�� ����������

The proof is a transfinite small object argument.
Given a cardinal β > 2λ we define inductively a functor

F : β �� ∆opPreNis(Sm/k) ↓ Y ,

by setting

(i) F (0) : = f and X(0) = X ,
(ii) For a limit ordinal ζ,

X (ζ) : = colim
γ<ζ

X (γ) .

Transitions morphisms are obtained via pushout diagrams

∐
D ZD

∐
D iD ��

��

∐
D WD

��
X (γ) �� X (γ + 1)

indexed by the set of all diagrams D where the left vertical morphism is a
λ-bounded trivial cofibration:

ZD
��∼loc ��

��

WD

��
X (γ) �� Y

We note the following trivial cofibrations:
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(i) Property P6 implies

∐
D iD :

∐
D ZD

��∼loc �� ∐
D WD .

(ii) Part (i) and P4 imply

X (γ) ��∼loc �� X (γ + 1) .

Using these constructions, we may now consider the induced factorization:

X

i(β)
����

��
��

��
��

�
�� Y

colim
γ<β

X (γ)

F (β)

�������������

Property P5 lets us conclude that the first morphism in the factorization is a
trivial cofibration.

For the second morphism, one has to solve lifting problems of the form

X ′ ��
��

∼loc

��

colim
γ<β

X (γ)

F (β)
��

Y ′ ��

��

Y

where the left vertical morphism is λ-bounded. To obtain the lifting, note
that since β > 2λ, the upper horizontal morphism factors through some lower
stage X (γ) of the colimit.

It remains to prove the second part of the factorization axiom M5.
Functorial factorization in the model structure on simplicial sets allows us to
factor any morphism in the presheaf category

X �� Y

into a cofibration and a schemewise weak equivalence

X �� �� Z ∼sch �� Y .

If we factor the schemewise weak equivalence into a trivial cofibration and a
fibration, we obtain a commutative diagram:

X �� �� Z ∼sch ��
��

∼loc

��












Y

W

�� ���������

The only comments needed here are:
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(i) There is a cofibration obtained by composition of morphisms

X �� �� W .

(ii) There is a local weak equivalence obtained by P2 and P3

W ∼loc �� Y .

Hence items (i) and (ii) imply the desired factorization

X �� �� W ∼loc �� �� Y .

An alternate and more honest way of proving the second part of M5 resembles
the transfinite small object argument given in the first part. This implies that
there exists a set of generating cofibrations.

For the second part of M5, we note a stronger type of factorization result:
Given a presheaf morphism

X �� Y ,

there exists a factorization

X �� �� W ∼sch �� �� Y .

Consider Sm/k in the indiscrete topology, i.e. the only covering sieves are
maximal ones [Lev]. One can construct the local injective model structure
for the indiscrete topology. This is a simplicial cofibrantly generated model
structure on ∆opPreNis(Sm/k) where the weak equivalences are schemewise
weak equivalences and cofibrations are monomorphisms. We refer to it as the
injective model structure.

Applying M5 in the injective model structure to the morphism

Z ∼sch �� Y ,

yields the factorization:

Z ∼sch ��
��

∼sch

��












Y

W

�� ���������

Since M2 holds for schemewise weak equivalences, we immediately obtain the
refined form of factorization in the local injective model structure.

Left properness is the assertion that local weak equivalences are preserved
under pushouts along cofibrations:
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X
��

��

∼loc

⇓
�� Y

��
Z ∼loc �� Z ∪X Y

All objects are cofibrant in the local injective model structure. Since in any
model category, pushouts of weak equivalences between cofibrant objects along
cofibrations are weak equivalences [Hov99, Cube Lemma 5.2.6], left properness
follows.

Right properness is the assertion that local weak equivalences are preserved
under pullbacks along global fibrations:

X ×Y Z ∼loc ��

��

Z

����
X

⇑
∼loc �� Y

However, even a stronger property holds, because local weak equivalences are
closed under pullback along local fibrations. The reason is that pullbacks com-
mute with filtered colimits, which implies that it suffices to consider pullback
diagrams of the form:

X ×Y Z(Oh
X,x) ∼ ��

��

Z(On
X,x)

����
X (Oh

X,x) ∼ �� Y(Oh
X,x)

The result follows because the category of simplicial sets is right proper. �

Making analogous definitions of local weak equivalences, monomorphisms
and global fibrations for simplicial sheaves, we infer that there exists a local
injective model structure for spaces. The proof consists mostly of repeating
arguments we have seen in the simplicial presheaf setting. Details are left to
the reader.

Theorem 5.19 The classes of local weak equivalences, monomorphisms and
global fibrations define a proper, simplicial and cofibrantly generated model
structure for simplicial sheaves on the smooth Nisnevich site of k.

Existence of local injective model structures on the categories of pointed sim-
plicial presheaves and pointed simplicial sheaves follow immediately from ex-
istence of the respective local injective model structures on ∆opPreNis(Sm/k)
and ∆opShvNis(Sm/k).

A globally fibrant model for a simplicial presheaf X consists of a local
weak equivalence
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X �� GX ,

where GX is globally fibrant. We have seen that globally fibrant models are
well-defined up to schemewise weak equivalence. Globally fibrant models exist,
and can be chosen functorially, because of the factorization axiom M5. Note,
however, that the morphism from X to GX is not necessarily a cofibration,
so that we will not be tied down to any particular choice of GX . The letter G
stands for ‘global’ or for ‘Godement’ in the civilized example of the smooth
Nisnevich site of k where Godement resolutions yield globally fibrant models.
Globally fibrant models in the simplicial sheaf category are defined similarly.
Note that a globally fibrant simplicial sheaf is globally fibrant in the simplicial
presheaf category.

Exercise 5.20 Nisnevich descent holds for any globally fibrant simplicial
sheaf. (Hint: Use the characterization of sheaves in the Nisnevich topology,
see 5.3.)

We may reformulate the Nisnevich descent Theorem 5.13 in terms of glob-
ally fibrant models.

Theorem 5.21 A simplicial presheaf X satisfies Nisnevich descent on Sm/k
if and only if any globally fibrant model GX is schemewise weakly equivalent
to X .

Proof. We consider the commutative diagram obtained by sheafifying:

X aNis ��

��

aNisX

��
GX GaNis �� GaNisX

All morphisms are local weak equivalences. In addition, GaNis is a schemewise
weak equivalence, since locally weakly equivalent globally fibrant models are
schemewise weakly equivalent. Exercise 5.20 implies, since GaNisX is a sheaf,
that GX satisfies Nisnevich descent.

Theorem 5.13 implies, provided Nisnevich descent holds for X , that there
is a schemewise weak equivalence

X ∼sch �� GX .

Conversely, if X is schemewise weakly equivalent to any of its globally
fibrant models; which we have already shown satisfies Nisnevich descent, it
follows easily that X satisfies Nisnevich descent. �

The model structure we shall discuss next is the A
1- or motivic model

structure introduced by Morel-Voevodsky [MV99]. Precursors are the local
injective model structure and localization techniques developed in algebraic
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topology. What results is a homotopy theory having deep connections with
algebraic geometry.

The motivic model structure arises as the localization theory obtained
from the local injective model structure by “formally inverting” any rational
point of the affine line

∗ �� A1
k .

Since any two rational points correspond to each other under k-automorphisms
of A

1
k, it suffices to consider the zero section 0: Spec(k) → A

1
k. Getting the

motivic theory off the ground involves to a great extend manipulations with
function complexes of simplicial presheaves. The main innovative idea is now
to replace the local weak equivalences by another class of simplicial presheaf
morphisms making the affine line contractible, which we will call motivic weak
equivalences, and prove properties P1-P7 for the motivic weak equivalences.
With this input, proceeding as in the construction of the local injective model
structure, we get a new cofibrantly generated model structure for simplicial
presheaves ∆opPreNis(Sm/k). This is the motivic model structure.

Definition 5.22 The classes of motivic weak equivalences and fibrations are
defined as follows.

(i) A simplicial presheaf Z is motivically fibrant if it is globally fibrant and
for every cofibration

X �� �� Y ,

the canonical morphism from Z to ∗ has the right lifting property with
respect to all presheaf inclusions

(X × A
1
k) ∪X Y �� �� (Y × A

1
k)

induced by the zero section of the affine line.
(ii) A simplicial presheaf morphism

X �� Y

is a motivic weak equivalence if for any motivically fibrant simplicial
presheaf Z there is an induced weak equivalence of simplicial sets

hom(Y,Z) �� hom(X ,Z) .

(iii) A simplicial presheaf morphism is a motivic fibration if it has the right
lifting property with respect to morphisms which are simultaneously mo-
tivic weak equivalences and monomorphisms.

The lifting property in item (i) is equivalent to having a trivial global
fibration

Hom(A1
k,Z) ∼loc �� �� Hom(∗,Z) .
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Note that the above morphism is always a global fibration.
It follows that a globally fibrant simplicial presheaf Z is motivically fibrant

if and only if all projections

A
1
X

�� X

induce weak equivalences of simplicial sets

Z(X) ∼ �� Z(A1
X) .

In general, there is no explicit description of motivic fibrations.
The following are examples of motivic weak equivalences:

X × ∗ �� X × A
1
k ,

(X × A
1
k) ∪(X×∗) (Y × ∗) �� �� (Y × A

1
k) .

Every local weak equivalence is a motivic weak equivalence for trivial reasons.

Exercise 5.23 Show that a vector bundle p : X �� Y in Sm/k is a mo-
tivic weak equivalence. Proceed by induction on the number of elements in an
open cover of Y which trivializes p.

Theorem 5.24 There exists a functor

L : ∆opPreNis(Sm/k) �� ∆opPreNis(Sm/k) ,

and a monomorphism of simplicial presheaves

ηX : X �� L(X )

such that the following holds:

(i) L(X ) is motivically fibrant.
(ii) For every motivically fibrant Z, there is an induced weak equivalence of

simplicial sets

hom(L(X ),Z) ∼ �� hom(X ,Z) .

In the construction of the functorial motivic fibrant replacement functor L,
we shall make use of the fact that there exists a continuous functorial fibrant
replacement functor LG in the local injective model structure [GJ98]. That
LG is continuous simply says that the natural maps of hom-sets extend to
natural maps of hom-simplicial sets

LG : hom(X ,Y) �� hom(LGX ,LGY)

which are compatible with composition.
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Let I be the set of simplicial presheaf morphisms

X × hX∆[n] ∪X×Z Y × Z � � �� Y × hX∆[n] .

A typical element in I will be denoted

Cα
� � �� Dα .

Choose a cardinal β > 2λ. Then the first step in the construction of L is
setting

L0X : = LGX .

At a limit ordinal ζ < β, set

LζX : = LG(colim
γ<ζ

LγX ) .

At successor ordinals, consider the pushout diagram
∐

α∈I Cα × hom(Cα,LζX ) ��

��

LζX

��∐
α∈I Dα × hom(Cα,LζX ) �� PILζX

and set

Lζ+1X : = LG(PILζX ) .

These constructions give the natural definition

LX : = colim
ζ<β

LζX .

Recall that we choose β > 2λ so that any morphism with target LX factors
through some LζX . On account of this observation, we leave it as an exercise
to finish the proof of 5.24.

We have the following characterizations of motivic weak equivalences.

Lemma 5.25 The following assertions are equivalent.

(i) There is a motivic weak equivalence

X ∼mot �� Y .

(ii) For every motivically fibrant simplicial presheaf Z, there is an isomor-
phism in the local injective homotopy category

Ho∆opPreNis(Sm/k)∼loc(Y,Z)
∼= �� Ho∆opPreNis(Sm/k)∼loc(X ,Z) .



Voevodsky’s Nordfjordeid Lectures 197

(iii) There is a local weak equivalence

L(X ) ∼loc �� L(Y) .

Proof. Recall that motivically fibrant objects are in particular globally fibrant,
so that (i) implies (ii).

Let Z be motivically fibrant. By abstract homotopy theory there is an
isomorphism in the local injective homotopy category between

Ho∆opPreNis(Sm/k)∼loc(X ,Z) ,

and
Ho∆opPreNis(Sm/k)∼loc(L(X ),Z) .

When (ii) holds, this implies an isomorphism

Ho∆opPreNis(Sm/k)∼loc(L(Y),Z)
∼= �� Ho∆opPreNis(Sm/k)∼loc(L(X ),Z) .

Theorem 5.24 shows that L(X ) and L(Y) are motivically fibrant; this implies
an isomorphism in the local injective homotopy category

L(X )
∼= �� L(Y) .

The latter is equivalent to (iii).
When (iii) holds, (i) follows by contemplating the simplicial set diagram:

hom(L(Y),Z) ∼ ��

∼
��

hom(Y,Z)

��
hom(L(X ),Z) ∼ �� hom(X ,Z)

The horizontal morphisms are weak equivalences according to Theorem 5.24.
Our assumption implies without much work that the left vertical morphism
is a weak equivalence. �

We are ready to state the existence of the motivic model structure.

Theorem 5.26 The classes of motivic weak equivalences, motivic fibrations
and monomorphisms define a proper, simplicial and cofibrantly generated
model structure for simplicial presheaves on the smooth Nisnevich site of k.

The proof of 5.26 follows the same script as we have seen for the local
injective model structure. Properties P1-P7 are shown to hold for the class
of motivic weak equivalences rather than the class of local weak equivalences.
Note that P1-P3 hold trivially, while P4-P6 follow from 5.25 using that trivial
fibrations of simplicial sets are closed under base change. Finally, the proof
of P7 follows the sketch proof of the same property in the local injective
structure, using the motivic fibrant replacement functor [GJ98, 4.7].
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Remark 5.27 In the Morel-Voevodsky paper [MV99] the notions of left and
right proper model structures are reversed. However, proper model structure
means the usual thing.

In the following, we discuss the motivic model structure for the category
of spaces Spc(k), i.e. simplicial sheaves on the smooth Nisnevich site of k.

A morphism in Spc(k) is a motivic weak equivalence if it is a motivic weak
equivalence in the simplicial presheaf category. Motivic fibrations are defined
similarly. The cofibrations are the monomorphisms.

Concerning sheafified simplicial presheaves and local weak equivalences,
there is the following useful result.

Lemma 5.28 Suppose that X is a simplicial presheaf and Y is a simplicial
sheaf. Then

X �� Y
is a local weak equivalence if and only if the same holds true for the morphism

aNisX �� Y .

We note the local weak equivalence

X ∼loc �� aNisX .

Since the Nisnevich sheafification functor is idempotent up to isomorphism
[Lev], an easy consequence of Lemma 5.28 is that any simplicial presheaf is
both local and motivic weakly equivalent to its sheafification.

Exercise 5.29 Show that a morphism between simplicial sheaves is a motivic
fibration if and only if it has the right lifting property with respect to motivic
trivial cofibrations of simplicial sheaves.

Theorem 5.30 Let Spc(k) be the category of simplicial Nisnevich sheaves on
Sm/k.

(i) Motivic weak equivalences, motivic fibrations and cofibrations define a
proper, simplicial and cofibrantly generated model structure on Spc(k).

(ii) The Nisnevich sheafification functor induces a Quillen equivalence

∆opPreNis(Sm/k)∼mot
��
∆opShvNis(Sm/k)∼mot.��

Proof. The limit axiom M1 holds for simplicial sheaves, see e.g. [Lev]. The
two out of three axiom M2 and the retract axiom M3 follow immediately
since the corresponding statements hold for simplicial presheaves.

Exercise 5.29 shows that the right lifting property part of axiom M4 holds.
Given the motivic model structure for simplicial presheaves, the second part
of the lifting axiom M4 holds tautologically.
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Let X → Y be a morphism in the simplicial sheaf category. We consider
the motivic trivial cofibration and motivic fibration factorization part of M5.
The motivic model structure shows there is a simplicial presheaf Z together
with morphisms having the required factorization in the simplicial presheaf
category. Since Y is a simplicial sheaf, we may sheafify Z, and employ axiom
M5 for the local injective model structure for the simplicial sheaf category.
This gives the diagram:

X ��
��

∼mot

����
��

��
��

Y

Z �� ∼loc ��

mot
�� �����������

��
∼loc

��

W

loc

����

aNisZ
��

∼loc

����������

From the above diagram, we deduce:

(i) There is a motivically trivial cofibration of simplicial sheaves

X ��∼mot �� W .

(ii) To obtain the factorization, it suffices to show that the global fibration
between W and Y is a motivic fibration.

As objects of the site ∆opPreNis(Sm/k) ↓ Y, note that Z and W are both
cofibrant and globally fibrant. We claim that a local weak equivalence between
globally fibrant simplicial presheaves is a schemewise weak equivalence. In
fact, a standard trick in simplicial homotopy theory shows the morphism in
question is a homotopy equivalence. A global fibration of simplicial sheaves is
also a global fibration of simplicial presheaves, and whether a global fibration
of simplicial presheaves is also a motivic fibration can be tested schemewise.
This implies the statement in (ii).

For the second half of axiom M5, we proceed as above by forming the
diagram:

X ��
��

����
��

��
��

Y

Z �� ��

∼mot
�� �����������

��
∼loc

��

W

∼loc

����

aNisZ
��

����������

We want to show that the morphism between W and Y is a motivic fibration.
Since the morphism between Z and Y is a motivic fibration of simplicial
presheaves, we may conclude by noting that the motivic trivial cofibration
between Z and W is a schemewise weak equivalence.
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The right adjoint in the adjunction (ii) preserves motivic fibrations and
trivial motivic fibrations. Hence we are dealing with a Quillen pair. To show
that Nisnevich sheafification is a left Quillen equivalence, let X be a simplicial
presheaf, Y a motivically fibrant simplicial sheaf, and Z a motivically fibrant
simplicial presheaf. We claim that a morphism in ∆opPreNis(Sm/k)∼mot, say

X �� Y (21)

is a motivic weak equivalence if and only if Nisnevich sheafification yields a
motivic weak equivalence of simplicial sheaves

aNisX �� Y . (22)

In effect, Lemma 5.28 shows that the canonical map

X �� aNisX (23)

is a local weak equivalence, hence a motivic weak equivalence. This implies the
claim. Moreover, a more refined result holds. Assuming the morphism in (21)
is a motivic weak equivalence, we have the diagram of function complexes:

hom(Y,Z) ��

∼

�������������
hom(aNisX ,Z)

hom(X ,Z)

∼
��������������

(24)

Now we use the following facts: The local injective model structure is simpli-
cial, every simplicial presheaf is cofibrant in the local injective model structure,
the morphism in (23) is a local weak equivalence, and finally Z is globally fi-
brant. Then, by a standard result in homotopical algebra, we get the second
weak equivalence indicated in (23). We have just shown for every motivically
fibrant simplicial presheaf Z that there is a weak equivalence

hom(Y,Z) �� hom(aNisX ,Z) .

In particular, the morphism in (22) is a motivic weak equivalence.
Clearly, the motivic model structur is left proper. For right properness,

consider Exercise 5.34. �

Analogously to the work in this section, one shows there exist motivic
model structures on the categories of pointed simplicial presheaves and
pointed simplicial sheaves on the smooth Nisnevich site of k. The relevant
morphisms may be defined via forgetful functors to the unpointed categories.

We will need the following consequences of Nisnevich descent.

Lemma 5.31 Consider morphisms of motivically fibrant simplicial presheaves

X0
�� X1

�� X2
�� · · · .
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(i) Any globally fibrant model

colim
n∈N

Xn
��
G colim

n∈N

Xn

is motivically fibrant.

(ii) Any motivically fibrant model

colim
n∈N

Xn
�� X

is a schemewise weak equivalence.

Proof. Nisnevich descent 5.21 shows that the morphism in (i) is a schemewise
weak equivalence. The weak equivalences of simplicial sets

Xn(X) �� Xn(X ×k A
1
k)

induced from the projection map X ×k A
1
k → X induce weak equivalences in

the filtered colimit. This implies (i). Item (ii) follows directly from (i). �

We will briefly discuss the notion of ‘motivic flasque simplicial presheaves’.
Such presheaves occupy a central role in the motivic stable theory presented
here. Another motivation is that, based in this notion, Isaksen has constructed
motivic flasque model structures for simplicial presheaves [Isa04]. First, we
shall recall the notion of flasque presheaves. This goes back to the pioneering
work of Brown and Gersten on flasque model structures for simplicial sheaves
[BG73]. Recently, Lárusson worked in this theme in [Lár04], demonstrating
the applicability of abstract homotopy theoretic methods in complex analysis.

A simplicial presheaf X of Kan complexes is flasque if every finite collection
of subschemes Xi of a scheme X induces a Kan fibration

hom(X,X ) �� hom(∪Xi,X ) .

The union is formed in the presheaf category, i.e. ∪Xi is the coequalizer of
the diagram of representable presheaves

∐
i,j Xi ×X Xj

����
∐

i Xi .

There is a canonical monomorphism from ∪Xi to X. In particular, the empty
collection of subschemes of X induces the morphism

hom(X,X ) �� hom(∅,X ) .

The class of flasque simplicial presheaves is closed under filtered colimits.
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Example 5.32 Globally fibrant simplicial presheaves are flasque.

Pointed simplicial presheaves X and Y have an internal hom

Hom∗(X ,Y) .

In X-sections there is the defining equation

Hom∗(X ,Y)(X) = hom∗(X|X,Y|X) .

Here, the simplicial presheaf X|X is the restriction of X to the site Sm/k ↓ X
along the forgetful functor Sm/k ↓ X → Sm/k. For objects X and Y of Sm/k
there is a natural isomorphism

Hom∗(X,Y)(Y ) ∼= Y(X ×k Y ) .

Since the Tate sphere T is the quotient A
1
k/(A1

k � {0}), it follows that the
internal hom Hom∗(T,X ) sits in the pullback square where the right vertical
morphism is induced by the inclusion:

Hom∗(T,X )

��

�� Hom(A1
k,X )

��
∗ �� Hom((A1

k � {0}),X ) .

Jardine uses this fact to prove that when X is flasque, then so is the internal
hom Hom∗(T,X ), and moreover, that Hom∗(T,−) preserves filtered colimits
of simplicial presheaves, and schemewise weak equivalences between flasque
simplicial presheaves [Jar00, §1.4].

A flasque simplicial presheaf X is motivically flasque if for all objects
X ∈ Sm/k the projection

X ×k A
1
k

�� X

induces a weak equivalence of simplicial sets

X (X) �� X (X ×k A
1
k) .

If X is motivically flasque, we have noted that Hom∗(T,X ) is flasque;
to see that Hom∗(T,X ) is motivically flasque, it remains to show homotopy
invariance. For every X ∈ Sm/k we have the fiber sequence

Hom∗(T,X )(X) �� X (X ×k A
1
k) �� X (X ×k (A1

k � {0})) .

Comparing with the corresponding fiber sequence for X ×k A
1
k, it follows that

Hom∗(T,X ) is homotopy invariant.
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The next lemma summarizes some properties of the internal hom functor
Hom∗(T,−).

Lemma 5.33 The Tate sphere satisfies the following properties.

(i) For sequential diagrams of pointed simplicial presheaves, we have

Hom∗(T, colim
n∈N

Xn) ∼= colim
n∈N

Hom∗(T,Xn) .

(ii) If X is motivically flasque, then so is the internal hom Hom∗(T,X ).

(iii) Hom∗(T,−) preserves schemewise equivalences between motivic flasque
simplicial presheaves.

That the Tate sphere is ‘compact’ refers to the combination of all the
properties listed in 5.33.

Modern formulations of homotopical algebra allow for different approaches
to the local injective and motivic model structures. One of these approaches
is via Bousfield localization. In the context of cellular model categories, the
authorative reference on this subject is Hirschhorn’s book [Hir03]. The notion
of combinatorial model categories, as introduced by Jeff Smith [Smi], provide
acceptable inputs for Bousfield localization. A model category is combinatorial
if the model structure is cofibrantly generated, and the underlying category is
locally presentable. This makes it quite plausible that all the model structures
on simplicial presheaves on the smooth Nisnevich site of k that we discussed
are indeed combinatorial. Starting with the schemewise model structure, with
schemewise weak equivalences and schemewise cofibrations, the local and the
motivic model structure can be constructed using Bousfield localizations. In
general, right properness is not preserved under Bousfield localization of model
structures. However, the motivic model structure is right proper.

Exercise 5.34 Compare the proofs of right properness of the motivic model
structure in [Jar00, Appendix A] and [MV99, Theorem 2.7].

This finishes our synopsis of basic motivic unstable homotopy theory.

5.3 Model Structures for Spectra of Spaces

This section deals with the nuts and bolts of the model structures underlying
the motivic stable homotopy theory introduced by Voevodsky [Voe98].

The original reference for the material presented in this section is [Jar00].
We will not attempt to cover the motivic symmetric spectra part of Jardine’s
paper. The main point of working with the category of motivic symmetric
spectra is that it furnishes a model category for the motivic stable homotopy
theory with an internal symmetric monoidal smash product. These issues,
and some other deep homotopical structures, are discussed from an enriched
functor point of view in [Dun]. Using a Quillen equivalent model structure
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for the motivic unstable homotopy category, Hovey [Hov01] constructed a
model structure similar to the one we will discuss here. A major difference
between the approaches in [Hov01] and in [Jar00] is that Hovey does not use
the Nisnevich descent theorem in the construction of the model structure.
At any rate, using the internal smash product for symmetric spectra and
comparing with ordinary spectra, it follows without much fuss that SH(k)
has the structure of a closed symmetric monoidal and triangulated category.
The homotopy categories SHs(k) and SHA

1

s (k) acquire the exact same type of
structure.

First, we discuss the level model structures, and second the stable model
structure. There are two level model structures. These structures share the
same class of weak equivalences, but their classes of cofibrations and fibrations
do not coincide. This is reminiscent of the situation with different models
for the motivic unstable homotopy category. The interplay between the level
models are important for the construction of the more interesting stable model
structure, whose associated homotopy category is the motivic stable homotopy
category.

The motivic spectra we consider are suspended with respect to the Tate
sphere T , i.e. sequences of pointed simplicial presheaves E = {En}n≥0 on the
smooth Nisnevich site of k together with structure maps

σ : T ∧ En
�� En+1 .

The usual compatibility conditions are required for morphisms of motivic
spectra. Note that, in the smash product, the Tate sphere is placed on the
left hand side.

An optimistic, but homotopy theoretic correct definition of the smash
product of two motivic spectra is given by

(E ∧ E′)n : =

{
Ei ∧ E ′

i n = 2i,

T ∧ (Ei ∧ E ′
i) n = 2i + 1.

In even degrees, the structure map is the identity, while in degrees n = 2i + 1
one makes the choice

T ∧ (T ∧ (Ei ∧ E ′
i))

∼= �� (T ∧ Ei) ∧ (T ∧ E ′
i)

σ∧σ′
�� Ei+1 ∧ E ′

i+1 .

Then the following diagram commutes, where, up to sign, the left vertical
twist isomorphism is homotopic to the identity:
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T ∧ (T ∧ (Ei ∧ E ′
i))

∼= (12)

��

∼=
(23)

�� (T ∧ Ei) ∧ (T ∧ E ′
i) �� (T ∧ Ei) ∧ E ′

i+1

��

T ∧ (T ∧ (Ei ∧ E ′
i))

T ∧ ((T ∧ Ei) ∧ E ′
i)

��
T ∧ (Ei+1 ∧ E ′

i)
∼= �� Ei+1 ∧ (T ∧ E ′

i) �� Ei+1 ∧ E ′
i+1

It follows that the suggested smash product of spectra is neither associative
nor commutative before passing to the homotopy category. Hence, the smash
products and actions are only given up to homotopy. See also Remark 2.14.

There are some set theoretic problems involved in inverting a class of
morphisms in a category. Once the model structure has been constructed, we
may define the motivic stable homotopy category. Quillen’s theory of model
structures, or homotopical algebra, provides the foundation for any treatment
of motivic stable homotopy theory.

In the motivic levelwise model structures, the weak equivalences are lev-
elwise motivic weak equivalences. We may choose levelwise cofibrations or
levelwise fibrations. Both choices induce model structures on motivic spectra.

To construct the motivic stable model structure, we employ the T -loops
functor. It is right adjoint to smashing with the Tate sphere functor. This leads
to the process of T -stabilization, and a proof of the model axioms for motivic
spectra which avoids reference to Nisnevich sheaves of homotopy groups. The
cofibrations are defined levelwise. We end the discussion by relating motivic
stable weak equivalences to Nisnevich sheaves of bigraded stable homotopy
groups of (s, t)-spectra, as in Sect. 2.3.

Although the construction of the motivic stable model structure is more
involved, we note that formal techniques originating in the study of spectra
of simplicial sets can be hoisted to motivic spectra. We will make use of the
approach set forth by Bousfield-Friedlander [BF78], and of injective motivic
spectra as a notion for fibrant objects in the motivic level model structure; the
latter uses ideas introduced in the Hovey-Shipley-Smith paper on symmetric
spectra of simplicial sets [HSS00].

From now on, all simplicial presheaves are pointed.

Definition 5.35 A morphism of motivic spectra

E �� E′

is a levelwise equivalence if for every non-negative integer n ≥ 0, there is a
motivic weak equivalence of simplicial presheaves
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En
∼mot �� E ′

n .

Levelwise cofibrations and levelwise fibrations are defined likewise.
A cofibration is a morphism having the left lifting property with respect to

all levelwise equivalences which are levelwise fibrations.
An injective fibration is a morphism having the right lifting property with

respect to all levelwise equivalences which are levelwise cofibrations.

Lemma 5.36 Let n ≥ 1 and consider a morphism of motivic spectra

i : E �� E′ ,

having the additional properties that there are canonically induced cofibrations
of simplicial presheaves on the smooth Nisnevich site of k

E0
�� �� E ′

0 ,

En ∪T∧En−1 T ∧ E ′
n−1

�� �� T ∧ E ′
n.

Then i is a cofibration of motivic spectra.

Proof. Consider the lifting problems where the right hand vertical morphism
in the diagram of motivic spectra is a levelwise equivalence and levelwise
fibration:

E ��

i

��

F

��
E′ ��

s

��

F ′

En
��

in

��

Fn

��
E ′

n
��

sn

��

F ′
n

We construct fillers sn and s by using an induction argument.
If n = 0, then since the right hand vertical morphism is a motivically trivial

fibration and cofibrations in the motivic model structure are monomorphisms,
the filler s0 exists according to axiom M4 for the motivic model structure.

Suppose that the n-th filler sn has been constructed. Then, since we are
dealing with morphisms of spectra, there is the commutative diagram:

T ∧ En

��

�� T ∧ E ′
n

ΣT sn �� T ∧ Fn

��
En+1

�� Fn+1

This allows us to consider the commutative diagram:
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T ∧ En

��

�� En+1

��

�� Fn+1

��

T ∧ E ′
n

�� T ∧ E ′
n ∪T∧En

En+1

�������������������

��

��
E ′

n+1





�� F ′
n+1

Now, the lower central vertical morphism is a cofibration by our assumptions,
which implies, using the argument for n = 0, that the indicated filler exists.
By commutativity of the diagram this morphism is also the n + 1-th filler.

We leave it to the reader to verify the fact that the fillers assemble into a
morphism of motivic spectra. �

Exercise 5.37 With the same notations and assumptions as in the previous
Lemma, show that if the cofibrations of simplicial presheaves are motivic weak
equivalences, then i is a level equivalence and cofibration.

We have collected the crux ingredients needed in the proof of:

Proposition 5.38 The category of motivic spectra together with the classes
of level equivalences, cofibrations, and level fibrations has the structure of a
proper simplicial model category.

The simplicial model structure arises from the smash products E ∧ K,
where K is a pointed simplicial set, and the function complexes hom∗(E,E′)
with n-simplices all morphisms E ∧ ∆[n]−+ → E′. In this definition, we
consider the standard n-simplicial set with an added disjoint base-point as a
constant pointed space.

Suppose we want to factor a morphism of motivic spectra

E �� E′

into a cofibration and a level equivalence, followed by a level fibration.
In level zero, this follows from the motivic model structure.
Assume there exist such factorizations up to level n, and consider the

commutative diagram:

T ∧ En
��

∼mot

��

�� En+1

��
∼mot

��
T ∧ Fn

��

�� T ∧ Fn ∪T∧En
En+1

��∼mot ��

��

Fn+1

mot

�����������������

T ∧ E′
n

�� E′
n+1
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The left vertical cofibration and motivic weak equivalence are both part of the
induction hypothesis. Trivial cofibrations are closed under pushouts in any
model category, so that we get the right vertical cofibration and motivic weak
equivalence. There is a canonical morphism from the pushout to E′

n+1 which
we may factor in the motivic model structure, as depicted in the diagram.
Using 5.36, this clearly produces a motivic spectrum consisting of the Fi’s
together with the factorization we wanted.

Exercise 5.39 Finish the proof of 5.38.

There is the following analogous result involving injective fibrations. We
will not dwell into the details of the proof, which uses a transfinite small
object argument, since the techniques are reminiscent of what we have seen
for simplicial presheaves. The method of proof is to show for motivic spectra
properties analogous of P1-P7.

Proposition 5.40 The category of T -spectra together with the classes of level
equivalences, level cofibrations, and injective fibrations is a proper simplicial
model category.

If X is a simplicial presheaf on Sm/k, its T -loops functor is defined by
setting

ΩTX : = Hom∗(T,X ) .

Taking T -loops is right adjoint to smashing with T .
The T -loops ΩT E of a motivic spectrum E is defined by setting

(ΩT E)n : = ΩTEn

= Hom∗(T, En) .

The structure maps

σT : T ∧ (ΩT E)n
�� (ΩT E)n+1

are defined, and this is a possible source for confusion, by taking the adjoint
of the composite morphism

T ∧ ΩTEn ∧ T �� T ∧ En
�� En+1 .

The T -loops functor
E

� �� ΩT E

is right adjoint to smashing with the Tate sphere on the right

E
� �� E ∧ T .

This gives an alternate way of describing the structure maps of ΩT E by taking
adjoints
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σ∗
T : En

�� Hom∗(T, En+1) .

There is another functor Ω�
T which Jardine calls the ‘fake T -loop functor’

[Jar00]. By definition, there is the T -spectrum

(ΩT E)n = (Ω�
T E)n ,

with structure maps adjoint to the morphisms obtained by applying ΩT to
σ∗

T . That is,

ΩT (σ∗
T ) : ΩT (En) �� ΩT (Hom∗(T, En+1)) .

The reason for the letter � is that the fake T -loops functor

E
� �� Ω�

T E

is right adjoint to smashing with the Tate sphere on the left

E
� �� T ∧ E ,

where σT∧E
n = T ∧ σE

n .
Suppose that m is an integer and E is a motivic spectrum. Then a shifted

motivic spectrum E[m] is obtained, in the range where it makes sense, by
setting

E[m]n : =

{
Em+n m + n ≥ 0,

∗ m + n < 0.

The structure maps are reindexed accordingly. Note that E[m] gives iterated
suspensions when m is positive, and iterated loops when m is negative.

Exercise 5.41 Let E be a motivic spectrum. Is it true that the morphisms

(E ∧ T )n = En ∧ T
∼= �� T ∧ En → En+1 = E[1]n

form a morphism of motivic spectra between E ∧ T and E[1]?

The case m = 1 is particularly important because the morphisms σ∗
T

determine a morphism of motivic spectra

σ∗
T : E �� Ω�

T E[1] .

By iterating the above, as many times as there are natural numbers, we get
the sequence

E
σ∗

T �� Ω�
T E[1]

Ω�
T σ∗

T [1] �� (Ω�
T )2E[2]

(Ω�
T )2σ∗

T [2] �� · · · . (25)
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Let QT E denote the colimit of the diagram (25), and consider the canonically
induced morphism

ηE : E �� QT E

The functor QT is called the stabilization functor for the Tate sphere.
We will have occasions to consider the level fibrant model of E obtained

from the motivic levelwise model structure

jE : E �� JE ,

and the composite morphism

η̃E : E
jE �� JE

ηJE �� QT JE .

We are ready to define stable equivalences and stable fibrations.

Definition 5.42 Let
φ : E �� E′

be a morphism of motivic spectra. Then

(i) φ is a stable equivalence if it induces a level equivalence

QT J(φ) : QT JE �� QT JE′ .

(ii) φ is a stable fibration if it has the right lifting property with respect to all
morphisms which are cofibrations and stable equivalences.

A first observation is

Lemma 5.43 Level equivalences are stable equivalences.

Proof. Taking the level fibrant model of a level equivalence yields a level
equivalence between level fibrant motivic spectra. Now, in each level there is
a motivic weak equivalence of motivically fibrant objects, so that a standard
argument for simplicial model categories shows that we are dealing with a
schemewise weak equivalence of motivically flasque objects. We may conclude
since the Tate sphere is compact according to 5.33. �

Lemma 5.43 shows that every stable fibration is a levelwise fibration.
The main theorem in this section is:

Theorem 5.44 The category of motivic spectra together with the classes of
stable equivalences, cofibrations, and stable fibrations forms a proper simplicial
model category.

In the proof, we make use of the following Lemma.

Lemma 5.45 Let E and E′ be motivic spectra.
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(i) A levelwise fibration
φ : E �� E′

is a stable fibration if there is a level homotopy cartesian diagram:

E ��

φ

��

QT JE

QT J(φ)

��
E′ �� QT JE′

(ii) Stable equivalences are closed under pullbacks along level fibrations.
(iii) If E is stably fibrant, then E is level fibrant, and there are schemewise

weak equivalences

σ∗
T : En

�� Hom∗(T, En+1) .

In particular, from (i) and (iii), we note that E is stably fibrant if and only
if E is level fibrant and for all n ≥ 0, there are schemewise equivalences

σ∗
T : En

�� Hom∗(T, En+1) .

Proof. Given 5.43, item (i) follows provided there are levelwise equivalences

QT J(η̃E) = QT J(ηJE) ◦ QT J(jE) : QT JE �� QT J2E �� (QT J)2E

η̃QT JE = ηJQT JE ◦ jQT JE : QT JE �� JQT JE �� (QT J)2E .

Let us consider the first level equivalence. The morphism QT J(jE) is a level
equivalence by construction. To show that QT J(ηJE) is a level equivalence,
we consider the commutative diagram:

QT JE
QT (ηJE) ��

QT (jJE)

��

QT QT JE

QT (jQT JE)

��
QT J2E

QT J(ηJE)�� (QT J)2E

A cofinality argument shows QT (ηJE) is an isomorphism since Hom∗(T,−)
commutes with sequential colimits of pointed simplicial presheaves; cp. 5.33.
Partially by definition, the morphism jJE is a level equivalence which in each
level consists of motivically flasque simplicial presheaves. Lemma 5.33, see (i)
and (ii), shows that stabilizing with respect to the Tate sphere T preserves
this property, so that QT (jJE) is a level equivalence.
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Now the crux of the proof is that Nisnevich descent and compactness of
the Tate sphere imply that the right vertical morphism is a level equivalence,
see 5.31(ii), applied to jQT JE , and 5.33(i), (ii). The above implies that the
composition QT J(η̃E) is a level equivalence.

Next, we consider the second level equivalence. We have already noted the
left vertical schemewise weak equivalence and upper horizontal isomorphism
in the commutative diagram:

(QT JE)n

σ∗
T ��

jQT JE

��

Hom∗(T, (QT JE)n+1)

Hom∗(T,jQT JE)

��
(QT JE)n+1

σ∗
T �� Hom∗(T, (JQT JE)n+1)

Lemma 5.33(i), and (ii) applied to jQT JE implies the level equivalence

ηJQT JE : JQT JX �� QT JQT JX .

This implies the level equivalence η̃QT JE .
Item (ii) follows from properness of the motivic levelwise model structure

with level fibrations, together with a straight-forward argument.
In the proof of (iii), we employ the motivic levelwise model structure with

injective fibrations. There is a natural level cofibration and level equivalence
of motivic spectra

iE : E �� IE,

where IE is injective. Generally, a level equivalence with an injective target
is called an injective model for the source.

Exercise 5.46 Show that a morphism of motivic spectra

φ : E �� E′

is a stable equivalence if and only if it induces a level equivalence

IQT J(φ) : IQT JE �� IQT JE′ .

Show that IQT JE is stably fibrant.

We have shown that the composite morphism

E
jE �� JE

ηJE �� QT JE
iQT JE �� IQT JE



Voevodsky’s Nordfjordeid Lectures 213

is a stable equivalence. We may factor the latter morphism into a cofibration,
followed by a level equivalence and level fibration:

E ��

		�
��

��
��

� IQT JE

E′

�����������

(26)

Note that the morphism
E′ �� IQT JE

is a stable fibration because it has the right lifting property with respect to
all cofibrations. Hence E′ is stably fibrant, and there are schemewise weak
equivalences in all levels

σ∗
T : E ′

n
�� Hom∗(T, E ′

n+1).

Moreover, the cofibration in diagram (26) is also a stable equivalence according
to 5.43 and the two out of three property of stable equivalences, so that E is
a retract of E′. The result follows. �

Corollary 5.47 The following hold.

(i) A morphism of motivic spectra is a stable fibration and stable equivalence
if and only if it is a level fibration and a level equivalence.

(ii) Every level fibration between two stably fibrant motivic spectra is a stable
fibration.

Following the script for ordinary spectra, our aim is now to finish the proof
of 5.44. There is really only axiom M5 which requires a comment.

Proof. First, we note that the category of motivic spectra

Spt(∆opPreNis(Sm/k), T )

is bicomplete: If F is a functor from a small category I to motivic spectra,
one puts

(colim
i∈I

F (i))n : = colim
i∈I

(F (i))n,

(lim
i∈I

F (i))n : = lim
i∈I

(F (i))n .

When forming colimits, the structure maps are given by

colim
i∈I

σ : T ∧ (colim
i∈I

(F (i))n) ∼= colim
i∈I

(T ∧ F (i)n) �� colim
i∈I

(F (i)n) .

The isomorphism we use above arises from the canonical morphism from the
colimit of the suspension with T functor to the same functor applied to the
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colimit; since the suspension is a left adjoint – which we have inverted – this is
an isomorphism. When forming limits, the structure maps are defined similarly
using the adjoint structure maps σ∗

T . Axiom M1 for Spt(∆opPreNis(Sm/k), T )
follows immediately.

What remains to be proven is the trivial stable cofibration and stable
fibration part of axiom M5. Let X → Y be a morphism of motivic spectra
and form the commutative diagram:

X ��

������������� IQT JX

����
��

��
��

�

Y ×IQT JY Z ��

������������
Z

����
��

��
��

��

Y �� IQT JY

The right hand side makes use of the cofibration–level equivalence and level
fibration factorization axiom. Then, Z is level fibrant and in each level, the
cofibration–level equivalence is a schemewise equivalence of motivically flasque
simplicial presheaves; it follows that Z is stably fibrant, and the level fibration
is a stable fibration.

Since stable fibrations are closed under pullbacks, Y ×IQT JY Z �� Z is

a stable fibration as well. Via part (ii) of Lemma 5.45 and M2, the morphism
X �� Y ×IQT JY Z is a stable equivalence. Factor this stable equivalence
into a cofibration composed with a level fibration–level equivalence:

X ��

������������� W

Y ×IQT JY Z

�������������

On account of 5.43, the cofibration in the diagram is a stable equivalence.
On the other hand, the level fibration–level equivalence is a stable fibra-
tion according to 5.47. This proves the, in our case, non-trivial part of
axiom M5. �

The same definitions and arguments give the stable model structure for
motivic spectra of spaces. We will leave the analogous formulations for spaces
to the reader.

Finally, we shall interpret stable equivalences in terms of Nisnevich sheaves
of bigraded stable homotopy groups of (s, t)-spectra. The first step is to make
sense of the following statement:
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Lemma 5.48 There is a stable equivalence of motivic spectra

E �� E′

if and only if there is an isomorphism of motivic stable homotopy presheaves

πp,qE ∼= πp,qE
′ .

When E is level fibrant, the starting point for defining motivic stable
homotopy groups is the filtered colimit

En

σ∗
T �� ΩTEn+1

ΩT σ∗
T �� Ω2

TEn+2

Ω2
T σ∗

T �� · · · .

In X-sections, we get the groups πpQTEn(X) defined as the filtered colimit of
the diagram

πp(En)(X)
πp(σ∗

T )(X) �� πp(ΩT En+1)(X)
πp(ΩT σ∗

T )(X)�� πp(Ω2
T En+2)(X) ��πp(Ω2

T σ∗
T )(X)�� · · · .

Passing to the homotopy category associated to the motivic stable model
structure over the scheme X, we can recast the latter as

[Sp
s , En|X] �� [Sp

s ∧ T, En+1|X] �� [Sp
s ∧ T∧2, En+2|X] �� · · · .

Next, we want to rewrite this colimit taking into account the unstable version
of 2.21.

Lemma 5.49 There is a motivic weak equivalence between the Tate sphere T
and the smash product S1

s ∧ S1
t .

Now, working in the homotopy category, so that we no longer need to
impose the fibrancy condition, one obtains an alternative way of considering
the groups in X-sections by taking the filtered colimit of the diagram

[Sp
s , En|X] �� [Sp+1

s ∧ S1
t , En+1|X] �� [Sp+2

s ∧ S2
t , En+2|X] �� · · · .

Definition 5.50 Let E be a motivic spectrum. The degree p and weight q
motivic stable homotopy presheaf πp,qE is defined in X-sections by setting

πp,qE(X) := colim
p,q∈Z

([Sp+n
s ∧ Sq+m

t , En|X] �� [Sp+n+1
s ∧ Sq+m+1

t , En+1|X] · · · ) .

Exercise 5.51 Define

ΩS1
s
(−) : = Hom∗(S1

s ,−) ,

ΩS1
t
(−) : = Hom∗(S1

t ,−) .
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Show the presheaf isomorphisms

πp,qE ∼=






π0Ω
p−q
S1

s
QT (JE[−q])0 p ≥ q ,

π0Ω
q−p
S1

t
QT (JE[−p])0 p ≤ q .

Unraveling the indices, one finds the identification

πp,qE(X) ∼= πp−qQT JE−q(X) . (27)

Next we look into the proof of 5.48.

Proof. A stable equivalence between E and E′ induces for all integers m ∈ Z

the levelwise schemewise weak equivalence

QT JE[m] �� QT JE′[m] .

Hence, in all sections, the induced maps between motivic stable homotopy
groups of E and E′ are isomorphisms (27).

Conversely, if πp,qE and πp,qE
′ are isomorphic presheaves for p ≥ q ≤ 0,

then there is a levelwise weak equivalence

QT JE �� QT JE′ .

This shows that E → E′ is a stable equivalence. �

Because of the motivic weak equivalence between T and S1
s ∧ S1

t , we may
switch between motivic spectra and S1

s ∧ S1
t spectra [Jar00, 2.13]. In other

words, a motivic spectrum consists of pointed simplicial presheaves {En}n≥0

and structure maps
S1

s ∧ S1
t ∧ En

�� En+1 .

Using this description, we shall see that a motivic spectrum E yields an
(s, t)-bispectrum E∗,∗ as discussed in the beginning of Sect. 2.3:

...
...

...

S2
t ∧ E0 S1

t ∧ E1 E2 · · ·
S1

t ∧ E0 E1 S1
s ∧ E2 · · ·

E0 S1
s ∧ E1 S2

s ∧ E2 · · ·

In the s-direction there are structure maps

σs : S1
s ∧ Em,n

�� Em+1,n .

If m ≥ n, we use the identity morphism. If m < n, we use the morphism
obtained from switching smash factors
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S1
s ∧ Sn

t ∧ Em
τ∧1 �� Sn−1

t ∧ S1
s ∧ S1

t ∧ Em
1∧σ �� Sn−1

t ∧ Em+1 .

Similarly, in the t-direction there are structure maps

σs : S1
t ∧ Em,n

�� Em,n+1 .

If m > n, we use the morphism obtained from switching smash factors

S1
t ∧ Sm

s ∧ En
τ∧1 �� Sm−1

s ∧ S1
t ∧ S1

s ∧ En
1∧σ �� Sm−1

s ∧ En+1 .

If m ≤ n, we use the identity morphism.
Associated to an (s, t)-bispectrum E∗,∗, there are presheaves of bigraded

stable homotopy groups πp,qE. In X-sections, one considers the colimit of the
diagram:

...
...

[Sp+m
s ∧ Sq+n+1

t , Em,n+1|X]
(σs)∗ ��

(σt)∗

��

[Sp+m+1
s ∧ Sq+n+1

t , Em+1,n+1|X] ��

(σt)∗

��

· · ·

[Sp+m
s ∧ Sq+n

t , Em,n|X]
(σs)∗ ��

(σt)∗

��

[Sp+m+1
s ∧ Sq+n

t , Em+1,n|X] ��

(σt)∗

��

· · ·

Exercise 5.52 In the above diagram, explain why there is no loss of generality
in assuming that Em,n is motivically fibrant for all m,n ∈ Z.

Explicate the maps (σs)∗ and (σt)∗.

A cofinality argument shows the colimit of the above diagram of X-sections
can be obtained by taking the diagonal and employing the transition maps
(σs)∗ and (σt)∗ in either order. In particular, starting with a motivic spectrum,
its degree p and weight q motivic stable homotopy presheaf is isomorphic to
the bigraded presheaf πp,q of its associated (s, t)-bispectrum.

Lemma 5.48 and the previous observation show that

E �� E′

is a stable equivalence if and only if there is an isomorphism of bigraded
presheaves

πp,qE∗,∗ �� πp,qE
′
∗,∗ .
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The structure maps in the t-direction determine the sequence of morphisms
of s-spectra

E∗,0

(σt)∗ �� ΩS1
t
E∗,1

Ω
S1

t
(σt)∗

�� Ω2
S1

t
E∗,1

Ω2
S1

t
(σt)∗

�� · · · .

The presheaf πp,qE is the filtered colimit of the presheaves in the diagram

sπpΩ
q+n
S1

t
JE∗,n

�� πpΩ
q+n+1
S1

t
JE∗,n+1

�� · · · .

To conclude the discussion of homotopy groups, let E be a motivic spectrum,
and note that a cofinality argument implies there is a natural isomorphism of
bigraded presheaves

πp,qE ∼= πp,qE∗,∗ .
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