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A PROOF OF PROTOCOL CORRECTNESS

by J. PACHL C1)

Abstract. - The paper présents a formai description of the medium access protocol used in the
Cambridge Ring, and aproofthat the protocol recovers from transient transmission errors.

1. INTRODUCTION

Medium access protocols for local area networks must recover from
transient transmission errors. This leads to challenging design problems,
since errors may corrupt the control information used by the protocol for
recovery.

To control medium access in ring networks, certain protocols use
permissions to transmit (empty slots in slotted rings, tokens in token rings),
which are passed from node to node around the ring. Often a single bit
distinguishes an empty slot from full or a token from a data frame, and
an error may invert the value of that bit. For example, a full slot could be
accidentally marked empty as a resuit of a single transmission error; that
would produce an inconsistent view of the protocol state among the nodes
in the network, which could then persist for a long time. A correct protocol
must recover from such situations.

Wheeler [3] explains how the Cambridge Ring protocol recovers from
transmissions errors that could otherwise lead to livelocks. The present paper
contains a formai proof that the protocol described in [3] is indeed "correct"
(in the sense defined below). Although the formai proof is certainly longer
and more difficult to read than the explanation in [3], it offers additional
benefits: It gives us confidence that we have not overlooked any (even very
unlikely) exécution scénarios. As a by-product of the proof we also obtain
a bound on the length of the recovery phase.
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The present paper uses the notation and the spécification approach
developed in [1]. The reader is referred to [1] for a more detailed discussion
of the underlying model and of related issues.

2. NOTATION

The cardinality of a finite set S is #S. The négation of a predicate P is ->P.
We shall use the same notation as in [1]. The communication network

is a unidirectional ring with N nodes, numbered 0 , 1 , . . . , N — 1. The
unidirectional communication channels lead from node 0 to node 1, from
node 1 to node 2, etc, and from node N - 1 to node 0. There is a single
frame circulating in the ring. For integers i and u, 0 < i < N, u > 0, let
Sf u be the content of the u-th frame sent by node i, and let R* u be the
content of the u-th frame received by node i.

The statement that node i sends the u-th received frame without changes
is written

(1) S*u = R* u.

The statement that the u-th frame sent by node i is delivered without
transmission errors is written

(2) #J+i,u = Sf, u

when i < N — 1, and

when i = JV — 1. It is sometimes more convenient to use the notation

Rp = Riu, Sp = Sh u

where p = uN + i, 0 < i < N, u > 0. Then (1) is equivalent to

while (2) and (3) are equivalent to

The content of a frame is an array of bits. The b-th bit of a frame F is
denoted F [b]. In the protocol in section 3, the frame has B + 1 bits; the
frame consists of two control bits F [0] and F [1] and B - 1 bits in the
data part F [2...J3].
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A PROOF OF PROTOCOL CORRECTNESS 215

Every node has a client (a higher-level protocol), which occasionally offers
an array of exactly B — 1 to be broadcast over the network. For integers i
and u, 0 < i < N> u > 0, let data^ u be either a special value nil or an array
of B - 1 bits. If data* u ^ nil then data^ u is the data block available from
the client of node i so that it can be sent in the w-th frame (and broadcast
around the ring). If data* u =nil then no data are to be sent at that time.

A protocol defines each S* u in terms of (data* JO < j < z),

( J | O ( S ; | i O
When we discuss the correctness of protocols in this setting* it is useful

to view the protocols as implementing a broadcast service. The data offered
by the client of the protocol should be transmitted in the frame around
the ring and thus received by all the nodes including the sender. However,
sometimes the data broadcast around the ring are corrupted by a transmission
error. What then should the correctness of the protocol mean?

The following définition captures an important notion of correctness: If
there are no transmission errors-after time t, then there exists time i! > t
such that ail data sent after tf are correctly broadcast around the ring. This
property is called eventual relability in [1]; it belongs to the family of self-
stabilization properties, which have been extensively investigated in recent
years [2]. Note that no assumption is made about the number and pattern
of transmission errors before time t, and no claim is made about protocol
opération before time tf.

In this paper we prove that the Cambridge Ring protocol described by
Wheeler [3] has the correctness property defined in the previous paragraph.
Indeed, the theorem in the next section states that, beginning at some time
after the last transmission error, if a node sends data from its client then no
other node sends its data until the frame complètes its round trip.

Eventual reliability as just defined does not imply fairness. We do not
deal with fairness issues in this paper. It is easy to see that the Cambridge
Ring protocol is fair: The opportunity to transmit the client data is circulated
around the ring.

3. THE PROTOCOL

The protocol makes use of a special node in the ring, the monitor node.
In our notation, the monitor is node number 0; it has no cliënt, and thus it
never sends its own data. Therefore

(4) data*} u — nil for u > 0.
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216 J. PACHL

The frame F contains two control bits, F [0] and F [1]:

F[0] F[l] F [2... B)

The control bit F [0] is called the full/empty bit The frame is marked
empty when F [0] = 0; it is marked full when F [0] = 1. The control bit
F [1] is called the monitor bit, It is used by the monitor node.

For 0 < i < N9 u > 0, define

(5) send* (i, u) = (u > 1 and ->send* (i, u - 1)

and data*} u / nil and R* u [0] = 0).

Note that -isend* (0, u), by (4). Now S* u is defined separately for the
monitor node and for the ordinary (non-monitor) nodes:

Case i — 0 (monitor):

(6) Slu[0] = Rlu{l]

(7) S?,„[l] = 0

(8) Slu[2...B]=Rlu[2...B]

Case i / 0 (non-monitor):

{ 1 if send* (i, u)

0 if send#(«, u-1)
Ri u [0] otherwise

1 i f send*(t, u)
i?» u [i] otherwise

^ « i f s e n d * («' w)
J Ç J 2 . . . J 3 ] otherwise

When 0 < i, j < JV, define

SEND' [i, j] = {ifc|z < fe < j and send* (k, u)}.

THEOREM: For the protocol defined by (4), (5), (6), (7), (8), (9), (10)
and (11), let TQ > 0 be such that i2p+i — Sp for p > roN, and
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A PROOF OF PROTOCOL CORRECTNESS 217

let u > r0 + ((1/2) N - l )2 . If 0 < i < N and send# (i, u) then
SEND* [i + l , J V - l ] = 0 = SEND*+1 [0, î].

The theorem states that, no matter what transmission errors occur before
the ro-th round trip of the frame, if no errors occur during the ro-th and
subséquent round trips then the network statilizes within ((1/2) N - l ) 2

round trips. That is, the network reaches the state in which whenever a
node sends data from its client, the data are forwarded once around the ring
without interférence from other nodes.

4. PROOF OF THE THEOREM

From now on we assume that (4), (5), (6), (7), (8), (9), (10) and (11) hold,
and that there is TQ > 0 such that Rp+i = Sp for p > ro N.

For u > 0, define

r («) = ttSEND; [1, N-ï\.

The crucial fact to be established in the proof is that F (u) < 1 for
u> r0 + ((1/2) J V - l ) 2 .

LEMMA 1: If u > r0 - 1, 0 < m < j < N, SEND* [m + 1, j] = 0 and
S^u+i M - 1 then SEND*+1 [m + 1, j] = 0 .

Proof: Since u + 1 > ro, we have 5* u, 1 = i2^+1 w + 1 for m < k < j .
Thus, since 5^^ u + 1 [0] = 1, from (9) we have i2^ u + 1 [Ô] = 1 for m < k < j .
Hence -tsend* (&, u + 1) for m < k < j , by (5). •

LEMMA 2: If u > r0 - 1, 0 < i < j < N and SEND* [i, j] - 0 then
jjSEND*+1 [i, j] < 1.

Proof: If SEND*+1 [i, j] / 0 , let m = min SEND^+1 [i, j]. Then
sm> u+i [0] - 1 by (9) and SEND^+1 [m + 1, j] - 0 by Lemma 1. D

LEMMA 3: If u > r0 - 1, anû? F (u) = 0 tóerc F (u + 1) < 1.

Proof: Set i = 1 and j = N - 1 in Lemma 2. D

LEMMA 4: If u > ro - 1, 0 < i < j < N and send* (i, u) then
B S E N D : [i, j] > H S E N D : + 1 [i, j].

Proof: Décompose the interval [i, j] into subintervals [i'', ƒ] such that
SEND^ [i;, ƒ] = {i'}. Then JSEND;+1 [i; + 1, j7] < 1 by Lemma 2,

vol. 28, n° 3-4, 1994



2 1 8 J. PACHL

and -isend* (if, u + 1) by (5). Sum over the subintervals [if, ƒ] to obtain
the resuit. D

LEMMA 5: If u > r0 and T (u) > 1 then S^ u + 1 [0] = 1.

Proof: Since u > r0, we have S*u — #*+1)W for 0 < % < N - 1 and

Sjv-i, u = Ro, «+1- S i n c e r («) > Lby (10> w e ' h a v e sl u [!] = ! f o r s o m e

j , 0 < j < JV.' Thus from (10) it follows that I§ w + 1 [1]'= 1, and therefore
5g,„+i[0] = 1 by (6). D

LEMMA 6: Ifu >r^and T(u) > 1 then ttSEND^ [1, j] > K S E N D ; + 1 [1, j]
for 0 < j < N.

Proof: We have S^u+1 [0] = 1, by Lemma 5. Let
i = min SEND* [1, N — 1], From Lemma 1 (with m = 0) we obtain
SEND' + 1 [1, i] = 0 . If i > j then

ttSEND#
w+1 [1, j] < «SEND:+1 [1, i] = 0.

If i < j then

: [1, j) = (iSEND: [i, j) > t(SEND:+1 [*, j] = ttSEND:+1 [1, j]

by Lemma 4. •

LEMMA 1: Ifu> r0, ^nrf T (u) > 1 ^ n r (u) > T (u + 1).

Proof: Set j — N — 1 in Lemma 6. •

LEMMA 8: If u > r0, send# (i, «) anrf SEND*+1 [i, iV - 1] = 0
r (u) > r (u + i).

Proof: This is obvious for i = 1. If 1 < i < N9 set j = i - 1 in
Lemma 6. Then

r (u) = DSEND; [i, N -1] > «SEND; [i, j]

>iSEND*u+1 [ l , j ] = r ( « + l) . D

LEMMA 9: Ifu>r0 and V (u) - T (u + 1) > 1 then

max SEND; [1, N - 1] < max SEND*+1 [1, N - 1].

Proo/- Set i = max SEND* [1, N - 1] in Lemma 8. D

LEMMA 10: Ifu>r0 then 1 + max SEND* [1, N -1]>2T (u).
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Proof: Let i = max SEND» [1, TV - 1]. Thus SEND' [1, N - 1] =
SEND* [1, i]. We have

SEND* _j [1, i] n SEND£ [1, i] = 0

by (5), and

by Lemma 2 and Lemma 4. It follows that 2)|SEND* [1, i] < i + 1. D

LEMMA 11: If u > r0 + ((1/2) N - l )2 then F (u) < 1.

Proof: For w > ro, define

A (u) = AT - 1 - max SEND^ [1, N - 1].

By Lemma 7 and Lemma 9, if u > TQ and F (u) > 1 then either

r (u) > r (u + 1)
or

r (u) = r (« + 1) and A (u) > A (u + 1).

Since F (u) and A (u) are bounded, it follows that r (v!) = 0 for some
u' > ro. From Lemma 3 and Lemma 7 it then follows that F («) < 1 for
ii > u'. To dérive an estimate on u1 — ro, we use the inequality

(12) A {u) + 2r (u) < N

which holds for u > ro by Lemma 10.

For 1 < k < L(l/2) Â J define

Uk — min {u\u > TQ and F (u) < k}.
Thus

- 1 - ' * * - U2 - Ul

and F (m) < 1; moreover ^[(1/2)^1 — ro by (12).
Weshall estimate wfc_i-wfc for k = 2 , 3 , . . . , [(1/2) N]. If F(ufc) < fc-1

then Wfc_i — Wfc = 0. If F (u^) = k then F (u) = k for u^ < u < Uk-i-
Therefore

A (uk) > A (uk + 1) > . . . > A («*_! - 1) > 0,

hence
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by (12). Summing over k from 2 to L(V2) ^ J w e get

L(l/2)JVj ( 1 2

ui - r0 = ui - uL(1/2) Tvj < X I ( ^ - 2fc + 1) < f - AT - 1 ) . D
k=2 ^ '

Proof of the theorem in section 3: In view of Lemma 11, it is enough
to prove that if u > ro, 0 < i < N9 T(u) < 1 and send* (i, u) then
SEND» [i + 1, N - 1] = 0 = SEND*+1 [0, i]. We get immediately
SEND* [0, i —1] = 0 = SENDJ [i+1, JV-1] because T(u) < 1. In addition,
Sô,u+i M = 1 by Lemma 5. Therefore i $ + 1 | t t + 1 [0] - 5 * u + 1 [0] = 1 for
0 < k < i - 1, by (9). Hence SEND*+1 [1, i] = 0 . D
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