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Abstract

Holography is one of the most interesting developments in String theory in the past few years. In this thesis,

we discuss various aspects of the correspondence at the phenomenological and conceptual levels. At the

phenomenological level, holographic duals of strong coupling QCD-like boundary theories is constructed using

intersecting D-branes configurations Dq-Dp-Dp, in which the Dp’s are probe branes under Dq’s background

geometry. Confinement, chiral symmetry phase transitions and their relation are carefully studied for various

values of q, p and other parameters of the system. In terms of discrete symmetry, introducing torsion

by adding the Nieh-Yan term (with space-time dependent coefficient) into 3+1 Einstein-Hilbert gravity is

postulated to correspond to parity symmetry breaking in the boundary. A solitonic solution, which we call

the torsion vortex as it resembles in many ways the Abrikosov vortex, is found in the bulk and believed to be

dual to the parity breaking vacuum of the boundary theory. At the conceptual level, we deliberately tackle

the boundary condition, variational principle and renormalization problems in non-relativistic holography.

The systematic boundary condition formalism of Skenderis and Van Rees is extended to scalar field in

Schrödinger space-time. In the same background, variational principle and renormalization procedures are

constructed for fermions and vector fields, paying careful attention to the representation theory of the

Schrödinger group. In any cases, 2-point functions for the dual operators are computed for various values of

the parameter spaces.
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Chapter 1

Introduction

String theory is one of the leading candidates for a consistent quantum gravity theory. It is more than just a

successful incorporation of the two pillars of theoretical Physics: Quantum Mechanics and General Relativity.

In addition, it reveals profound physical implication and relates different regimes of Physics that look very

unrelated from the outset; either between the short and the long, through T-duality, or the weak and the

strong, through S-duality. Remarkably, it also lays out a framework for another impressive, distinctive type

of duality which relates theories in different dimensionalities, the string/gauge duality. Simply speaking, the

string/gauge duality conjectures a correspondence between String theory (or supergravity as its low energy

limit) in a certain background geometry and a gauge theory living on the geometry’s boundary. In essence,

any bit of information in the “bulk” can be encoded in the “boundary” and vice versa. Hence the name

holography.

Needless to say, holography is one of the most interesting recent development in String theory. It

has a profound consequences, touching various aspect of modern Physics such as confinement and chiral

symmetry breaking, Quark-Gluon plasma, fluid dynamics, quantum Hall effect, superconductivity, etc. A

detailed introduction of the conjecture is out of the scope of this thesis. However, the basic idea can be

sketched as follows.

In String theory, there are solitonic objects called D-branes. A Dp-brane is a p spatial dimension (in-

finitely) extended object where open strings can end on. For example, D0-brane is geometrically the same

as a usual point particle. In the low energy limit, theories in the world volume of a stack of Nc coincident

D-branes are p+ 1-dimensional supersymmetric gauge theories with the gauge group U(Nc). As being soli-

tonic objects in String theory, D-branes are realized in supergravity (which is the low energy limit of String

theory) as black hole solutions. It is these black hole solutions that play a central role. The string-gauge

conjecture then says that [1] [2] in the large Nc limit String theory on the near horizon regime of these black

hole solutions is dual to the D-brane’s world volume theories on the boundary of the black hole geometry.

The temperature of the field theory is the Hawking’s temperature of the black holes. Now in certain limit

of the parameters, stringy loop effect is very suppressed and stringy excitations are very massive, leaving
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us with only classical supergravity on one side of the duality (the String theory side). On the other side,

in exactly the same limit, the corresponding gauge theories are strongly coupled. The duality hence relates

classical computations in supergravity to fully non-perturbative observables in gauge theories. In the special

case where the temperature is zero and the gauge theory is the conformal N = 4 super Yang-Mills, as for

the extremal D3-branes, the near horizon regime of the geometry produced by D3-branes is AdS5

ds2 =
L2

z2

(
− dt2 + dx⃗2 + dz2

)
(1.1)

(multiplied by an internal 5-sphere S5). Hence the name AdS/CFT. Here L is the radius of AdS. The

boundary of this geometry is at z = 0. It is for this case that the conjecture has been tested extensively.

Various quantities in the gauge theory such as the central charge, Wilson loops, correlation functions and

renormalization group flow (when the theory is slightly deformed) can be computed from the supergravity

side. In literature, the black hole geometry is called the ”bulk” geometry, while the D-branes world volume

theories are referred as the ”boundary” field theories.

The conjecture is recently extended by Melvin-twisting the D3-branes’s geometry [3, 4, 5]. At zero

temperature, the near horizon geometry is the so-called Schrödinger geometry

ds2 =
L2

z2

(
−β

2

z2
dt2 + 2dtdξ + dx⃗2 + dz2

)
(1.2)

(also multiplied by an S5), which possesses the non-relativistic conformal isometries for any L and β.

Although it is not yet clear what is the boundary of this geometry, it is widely believed that the dual theory

exists and is some non-relativistic conformal field theory sitting at z = 0. The nature of this correspondence,

which we shall call Sch/nrCFT or non-relativistic holography, is unfortunately largely unknown compared

to its relativistic counterpart. In this thesis we will develop a very first yet important step toward the

understanding of the non-relativistic holography by studying various aspects of probe scalars and fermions

in the bulk geometry.

So far we have been talking about a so-called top-down approach of holography, in which a string

embedding of the bulk geometry (and other possible fields) is prerequisite. There is, however, a bottom-up

approach. The idea is that AdS/CFT or Sch/nrCFT, after being stripped off the fancy and complicated

decorations of supersymmetry and various limits taken, leave us with a hope for a more general sense of

holography, in which gravity itself is actually describable as a field theory in one dimension lower. This hope

bases on the fact that gravity possesses no local conserved quantities, due to general covariance. Conserved

quantities are always quasi-local and are entirely encoded in the boundary of the region being computed.
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Black holes thermodynamics is a well-known example. The bottom-up approach hence does not require (or,

more reasonably put, does not yet worry about) a string embedding of the interested model from the outset.

As long as it contains gravity, it is very possible that there is a holographic dual. In fact, non-relativistic

holography was first proposed in this approach [6, 7].

Phenomenologically, holographic models in which the boundary theories possess some desired properties

can be constructed using either of the two approaches. In the top-down approach, apart from the D-

brane backgrounds of String theory, probe D-branes can be added [8] to include flavor degrees of freedom.

The desire is to realize QCD-like properties such as confinement, asymptotic freedom, chiral symmetry

breaking, meson spectroscopy, etc. in the boundary [9, 10, 11, 12, 13, 14, 15]. We will elaborate this

direction in details in chapter 2, where a system of background Dq-branes intersecting with probe Dp and

anti Dp-branes are constructed and studied. In the bottom-up approach, QCD-like holographic models are

extensively investigated [16, 17, 18, 19, 20]. Parity symmetry breaking in the boundary can also be realized,

as discussed in chapter 3, by considering torsional gravity [21]. Recently, condensed matter oriented models

such as superconductivity, superfluidity, quantum Hall effect, Lifshitz-like theories, etc, are successfully

constructed [22, 23, 24, 25, 26, 27].

In the heart of holography is the idea laid out by Witten [28] which relates the path integral with specified

boundary conditions in the bulk to the partition function with sources inserted at the boundary

Zbulk[ϕ
(0)
I ] = ⟨eSbd+ϕ

(0)
I ÔI ⟩. (1.3)

Here Sbd is the un-deformed action of the boundary theory, ϕ
(0)
I is the boundary value for a generic field ϕI

(with possibly an extra index I) and ÔI its dual operator in the boundary. For example, if ϕI is a gauge field

or the metric, ÔI should be some boundary conserved current or the stress-energy tensor, respectively. The

scaling dimension of ÔI is determined uniquely from the space-time dimensionality and the characteristics

of ϕI (spin and mass). The time-ordered 2-point function of ÔI can be computed directly from (1.3)

⟨T ÔIÔ
′
J⟩ =

δ2Zbulk[ϕ
(0)
I ]

δϕ
(0)
I δϕ

(0)′

J

(1.4)

The application of (1.3), however, is not as straightforward as it looks. In general, we need to worry about

various conceptual problems: the boundary condition, variational principle and renormalization.

To illustrate the idea, consider a non-back reacting scalar field on AdSd+1 background (1.1). (In the

top-down approach, this corresponds to working on the extremal D3-branes background, taking the near
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horizon limit and truncating the linearized bulk theory to a sector that involves only a scalar field)

S = −1

2

∫ √
−gddxdt

(
∂µϕ∂

µϕ+m2ϕ2
)
. (1.5)

Solving the equation of motion, we get

ϕ = ϕ(0)(zk)d/2Kν(kz) + ψ(0)(zk)d/2Iν(kz), (1.6)

where ν =
√

d2

4 +m2, k =
√
k⃗2 and ϕ(0), ψ(0) are arbitrary functions of the transverse momentum. Now

as Kν dictates the near boundary expansion of ϕ, ϕ(0) will determine the z = 0 boundary condition for

the scalar field. However, as is obvious fixing ϕ(0) does not completely fix the on-shell solution. Another

boundary condition is required. Different such boundary conditions in the bulk are thus interpreted as

corresponding to different causal processes in the boundary theory. For example, the authors of [29] believed

that requiring ϕ ∼ eikz as z → ∞ (namely, setting ψ = 0 in (1.6)) allowed us to compute the retarded 2-point

function of the dual operator. A more systematic, yet sophisticated, treatment of the boundary condition

problem for relativistic holography was discussed in [30, 31]. There a unique procedure of gluing together

segments of bulk geometries corresponding to a given time-contour in the boundary theory is postulated

and proved to yield the expected results for various 2-point functions. In chapter 4, we will elaborate the

method and extend it to the non-relativistic holography in the simple case of scalar fields.

The variational principle and renormalization problem are closely related. The former involves ensuring

the proper Dirichlet boundary condition in the bulk, while the latter requires the bulk partition function

Zbulk[ϕ
(0)
I ] to be finite. In practice, the classical (super)gravity limit is usually taken so that the partition

function can be identified with the exponential of on-shell action eiS
os
bulk[ϕ

(0)
I ]. The variational principle and

renormalization thus amount to adding appropriate counter terms to the bulk action such that the total

action’s variation vanishes when fixing ϕ(0) and its on-shell value is finite. These issues have been discussed

extensively in different contexts [?, 33, 34, 35, 36]. In the case of the scalar field at hands, the counter terms

are found to be

Sct =

∫
z=ϵ

ddxdt
√
−γ
(d−∆

2
ϕ2 +

1

2(∆− d− 2)
ϕ γϕ+ . . .

)
, (1.7)

where
√
−γ = z−d is the d-dimensional induced metric determinant, γ = z2k⃗2 and ∆ = d

2 + ν the scaling

dimension of the dual operator. The dots represent higher derivative terms. For special cases where ν is an

integer, logarithmic counter terms ∼ log ϵ may appear. Chapter 5 and 6 will be devoted to develop a de-
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tailed treatment of variational principle and renormalization for fermions and vector fields on the Schrödinger

space-time.

This thesis attempts to discuss holography both at the phenomenological and conceptual level. Chapter

2 introduces a generalization of a so-called Sakai-Sugimito model [13, 14], in which a transversely intersecting

system of Dq-Dp-Dp-branes is constructed in the bulk. In the boundary, confinement, chiral phase transitions

and their relation are carefully studied for various values of q and p. The next chapter intends to break

parity symmetry in the boundary theory by including torsion in 3+1 bulk gravity [21]. Torsonal gravity is

realized by adding a topological Nieh-Yan term (with space-time dependent coefficient) into the Einstein-

Hilbert action with negative cosmological constant. In Euclidean signature, an exact solitonic solution is

found, resembling in many ways the Abrikosov vortex solution in superconductivity. The dual theory is

suggested to behave qualitatively as the 2+1 Gross-Neveu theory coupled to a U(1) gauge field, sitting on

its parity breaking vacuum. Chapter 4 extends the Skenderis-van Rees realtime formalism for the boundary

condition problem to non-relativistic holography, starting with a scalar field on Schrödinger space-time [37].

The boundary 2-point functions so obtained are accurate, including the iϵ insertion, which confirms the

method. In the same background, we then move on to study probe fermions and vector fields [38, 39] in

chapter 5 and 6, respectively. Representation theory is carefully worked out, showing significant difference

from the relativistic cases. The variational principle and renormalization problem are deliberately tackled

and solved. The time-ordered 2-point functions are also computed for different values of the parameters.
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Chapter 2

Transversely Intersecting D-branes at
Finite Temperature and Chiral Phase
Transition

2.1 Introduction, summary and conclusions

A very interesting holographic model of QCD which realizes dynamical breaking of non-Abelian chiral

symmetry in a nice geometrical way is the Sakai-Sugimoto model [13]. In this model, one starts with Nc

D4-branes extended in (x0x1x2x3x4)-directions with x4 being a circle of radius R. The low energy theory

on the branes is a (4 + 1)-dimensional SU(Nc) SYM with sixteen supercharges. To break supersymmetry,

anti-periodic boundary condition for fermions around the x4-circle must be chosen. To this system, Nf D8

and Nf D8-branes are added such that they intersect the D4-branes at two (3 + 1)-dimensional subspaces

R3,1, and are separated in the compact x4-direction by a coordinate distance of ℓ0 = πR. In other words, the

D8 and D8-branes are located asymptotically at the antipodal points on the circle. The massless degrees of

freedom of the system are the gauge bosons coming from 4− 4 strings and chiral fermions coming from 4-8

strings. (Before compactifying x4, there are also massless adjoint scalars and fermions coming from the 4−4

strings. These modes become massive upon compactifying x4 and choosing anti-periodic boundary condition

for the adjoint fermions; fermions get masses at tree level whereas scalars get masses due to loop effects.)

The fermions localized at the intersection of D4 and D8-branes have (by definition) left-handed chirality and

the fermions at the intersection of D4 and D8-branes are right-handed. The U(Nf)×U(Nf) gauge symmetry

of the D8 and D8-branes in this model is interpreted as the chiral symmetry of the fermions living at the

intersections. At weak effective four-dimensional ’t Hooft coupling λ4 the low energy theory contains QCD

but this is not the limit amenable to analysis by the gauge-gravity duality. At strong-coupling (λ4 ≫ 1),

however, the theory is not QCD but can be analyzed using the gauge-gravity duality [40, 41, 42, 43], and it

has been suggested that it is in the same universality class as QCD. In lack of any rigorous proof for this

universality, the best one can do is to check whether this model at large Nc and large four-dimensional ’t

Hooft coupling exhibits the key features of QCD; namely, confinement and spontaneous chiral symmetry

breaking. In fact, it apparently does [13]. By considering Nf D8 and Nf D8-branes as probe “flavor” branes

in the near-horizon geometry of Nc “color” D4-branes and analyzing the Dirac-Born-Infeld (DBI) action
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of the flavor branes in the background, one observes that at some radial point in the bulk the preferred

configuration of the flavor branes is that of smoothly-connected D8 and D8-branes. This geometrical picture

is interpreted as dynamical breaking of U(Nf)×U(Nf) chiral symmetry (where the branes are asymptotically

separated) down to a single U(Nf) (where the branes connect). The model also shows confinement [44, 45].

Although choosing ℓ0 = πR makes calculations a bit simpler, there is no particular reason to consider the

flavor branes to be asymptotically located at the antipodal points of x4. In fact, the ℓ0 ≪ πR limit of the

Sakai-Sugimoto model is very interesting in its own right. By analyzing the ℓ0 ≪ πR limit, or equivalently

the R → ∞ limit, it was realized in [46] that the theory at the intersections can be analyzed both at weak

and strong effective four-dimensional ’t Hooft coupling λ4. At weak-coupling the model can be analyzed

using field theoretic methods and in fact is a non-local version of Nambu-Jona-Lasinio (NJL) model [47].

At strong-coupling it can be analyzed by studying the DBI action of the flavor branes in the near-horizon

geometry of the color branes and exhibits chiral symmetry breaking via a smooth fusion of the flavor branes

at some (radial) point in the bulk. A nice feature of this model is that the scale of chiral symmetry breaking

is different from that of confinement [46], and one can completely turn off confinement by taking the R→ ∞

limit. Therefore the ℓ0 ≪ πR limit of the Sakai-Sugimoto model provides a clean holographic model of just

chiral symmetry breaking without complications due to confinement.

The finite-temperature analysis (at large Nc and large ’t Hooft coupling λ4) of the Sakai-Sugimoto model

as well as the holographic NJL model [46], was carried out in [48, 49]. Putting the flavor branes as probes

(Nf ≪ Nc) in the near-horizon geometry of Nc non-extremal D4-branes and analyzing the DBI action of the

flavor branes, one obtains [48, 49] that at low temperatures (compared to ℓ−1
0 ) the energetically-favorable

solution is that of smoothly-connected D8 and D8-branes which, like its zero-temperature counterpart, is

a realization of chiral symmetry breaking. At high enough temperatures, on the other hand, the preferred

(in the path integral sense) configuration is that of disjoint D8 and D8-branes, hence chiral symmetry is

restored. Also, when x4 is compact and ℓ0 < πR, there exists an intermediate phase where the dual gauge

theory is deconfined while chiral symmetry is broken [48].

It is certainly interesting to explore whether the holographic realization of chiral symmetry breaking

and restoration is specific to a particular model such as the aforementioned ones, or generic in the sense

that other intersecting brane models will realize it, too. To search for genericness (or non-genericness) of

chiral symmetry breaking in intersecting brane models, a system of Dq-Dp-Dp-branes was considered at zero

temperature in [50] where the color Dq-branes are stretched in non-compact (x0x1 . . . xq)-directions. The

flavor Dp and Dp-branes intersect the color branes at two (r + 1)-dimensional subspaces Rr,1. Without

flavor branes, the low energy theory on the color branes and whether it can be decoupled from gravity (or
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other non-field theoretic degrees of freedom) with an appropriate scaling limit was analyzed in [51]. The low

energy theory on the Dq-branes is asymptotically free for q < 3, conformal for q = 3, and infrared free for

q > 3. While for q ≤ 5, there always exists a scaling limit for which the open string modes can be decoupled

from the closed string modes, there exists no such limit for q = 6. With the flavor branes present, an analysis

was carried out in [50] where the behavior of the model for both small and large effective ’t Hooft coupling

λeff ∼ λq+1ℓ
3−q
0 (ℓ0 is the asymptotic coordinate distance between Dp and Dp-branes, and λq+1 is the ’t

Hooft coupling of the (q + 1)-dimensional theory on the Dq-branes.) was considered. Taking the Nc → ∞

limit while keeping λeff fixed and large, amounts, in the probe approximation, to putting the flavor branes

in the near-horizon geometry of Nc color branes. (See [50, 51] for the validity of the supergravity analysis

in these models.) Determining the shape of the flavor branes (relevant for chiral symmetry breaking) by

analyzing their DBI action in the background geometry, it was observed that [50] for q ≤ 4 there always

exists a smoothly-connected brane solution which is energetically favorable. For a subclass of these general

intersecting brane models, namely those for which q+p−r = 9, the above-mentioned connected solutions can

be identified with the U(Nf) × U(Nf) chiral symmetry being spontaneously broken. Following [50] we will

call the brane models for which q+p−r = 9 as transversely-intersecting brane models and their intersections

as transverse intersections. For q = 5, there exists no connected solution except when ℓ0 takes a particular

value. For this particular value of ℓ0 which is around the scale of non-locality of the low energy theory on the

D5-branes (which is a little string theory; see [52] for a review of little string theories), there is a continuum

of connected solutions whose turning points can be anywhere in the radial coordinate of the bulk geometry.

All such solutions are equally energetically favorable. For q = 6, there is a connected solution but is not the

preferred one. The more energetically favorable solution, in this case, is that of disjoint branes. Due to the

lacking of an appropriate decoupling limit for q = 6, it is not clear whether one can realize such a solution

as a phase for which chiral symmetry is unbroken.

Summary and conclusions The purpose of this chapter is to investigate some aspects of non-compact

transversely-intersecting D-brane models at finite temperature, in particular the number of solutions, their

behavior, and whether or not such solutions can be identified with a chirally broken (or restored) phase of the

dual gauge theory living at the intersections [14]. The main reason for us to consider transverse intersections

is that in the probe approximation the generalization of the Abelian U(1) × U(1) chiral symmetry to the

non-Abelian case is straightforward: one just replaces Nf = 1 with general Nf , and multiplies the flavor DBI

action by Nf . This is not the case in other holographic models of chiral symmetry breaking and restoration1.

1For non-transverse intersections, namely q + p − r ̸= 9, one can identify a symmetry in the common transverse direction
as a chiral symmetry for the fermions of the intersections [53]. In some cases the generalization to low-rank non-Abelian chiral
symmetry is possible [54], but such generalizations are not generic.
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Note that the Sakai-Sugimoto model [13], its non-compact version [46], and the D2-D8-D8 model analyzed

in [55] which holographically realizes a non-local version of the Gross-Neveu model [56] are examples of

transverse intersections.

This chapter is organized as follows. In section two we first review the general set up of the transversely-

intersecting Dq-Dp-Dp-branes, then consider the system at finite temperature at large Nc and large effective

’t Hooft coupling λeff . There are two saddle point contributions (thermal and black brane) to the bulk

Euclidean path integral, and each can potentially be used as a background geometry dual to the color

theory. Comparing the free energies of the two saddle points, we determine which one is dominant (has

lower free energy) for various q’s. For q ̸= 5, the dominant saddle point is the black brane geometry,

whereas for q = 5, the thermal geometry is typically dominant. In section three we present the solutions

to the equation of motion for the DBI action of the flavor branes placed in the near horizon geometry

of black Dq-branes. By a combination of analytical and numerical techniques, we show that, unlike the

zero-temperature case, for ℓ0/β less than a critical value, there exist generically two branches of smoothly-

connected solutions (and of course, a solution with disjoint branes) for q ≤ 4. (β is the circumference of

the asymptotic Euclidean time circle, and is equal to the inverse of the dual gauge theory temperature

T .) Note that some of these branches were previously missed in the literature. One branch which we will

call the “long” connected solution gets very close to the horizon of the black Dq-branes whereas the other

one named “short” connected solution stays farther away from it. Beyond the critical value, the flavor

branes are “screened” and cannot exist as a connected solution. The situation is, however, different for

q = 5, 6. For q = 5 and T < (2πR5+1)
−1, where R5+1 denotes the characteristic radius of the D5-brane

geometry, the flavor branes must be placed in the near horizon geometry of thermal D5-branes. Like the

zero temperature case, we find that there exists an infinite number of connected solutions when ℓ0 is around

the non-locality scale of the low energy theory on the D5-branes. This scale is set by the (inverse) hagedorn

temperature of D5-brane little string theory. There are no connected solution for other values of ℓ0, though.

For T = (2πR5+1)
−1 the flavor branes should be considered in the near horizon geometry of black D5-branes.

In this case there always exists one connected solution, as well as a disjoint solution, for small ℓ0 (compared

to (2πR5+1)
−1). In fact, at this particular temperature there is one connected solution for ℓ0’s much less

than R5+1. The number of solutions for ℓ0 beyond the non-locality scale (∼ R5+1) depends on the dimension

of the intersections. For four-dimensional intersections, there are two connected solutions up to a critical

value whereas for two-dimensional intersections there is no connected solution. Of course, for both two- and

four-dimensional intersection there is always a solution representing disjoint branes. Having determined the

flavor brane solutions in the background of thermal and black D5-branes, it is not clear whether or how these
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solutions represent a chirally-broken or restored phase in the dual theory, mainly because in the geometry

of D5− branes, there are modes (non-field theoretic) which cannot totally be decoupled from the dual field

theory degrees of freedom. Lastly, for q = 6, independent of what value ℓ0/β takes, there always exist one

connected solution (and a disjoint solution).

In section four, we map out different phases of the dual gauge theories and determine whether or not

there is a chiral symmetry breaking-restoration phase transition. We do this by comparing the regularized

free energies of the various branches of the solutions found in section three. For q ≤ 4 the short solution is

preferred to both long and disjoint solutions at small enough temperatures (compared to ℓ−1
0 ), hence chiral

symmetry is broken. At high temperatures, however, chiral symmetry gets restored and this phase transition

is first order. For q = 5 and T < (2πR5+1)
−1, the infinite number of connected solutions are all equally

energetically favorable, and each one of them is preferred over the disjoint solution. For T = (2πR5+1)
−1,

we find that for small enough ℓ0/(2πR5+1) the disjoint solution is preferred. For larger values of ℓ0, there

is no connected solution so the disjoint solution is the vacuum. As we alluded to earlier, it is not clear to

us that the preferred solutions of the flavor branes in the background of color D5-branes can be associated

with different phases of the dual theory. For q = 6, although we find that the disjoint solution is always

preferred and there is no phase transition, there is no clear way to associate this solution with unbroken

chiral symmetry in the dual field theory. This is because the is no decoupling limit that one can take to

separate the gravitational degrees of freedom of those of the dual theory.

Section five is devoted to a brief analysis of the number of solutions and their energies for transversely-

intersecting Dq-Dp-Dp-branes with compact xq. In section six we speculate how the order parameter for chiral

symmetry breaking can be realized in finite-temperature transversely-intersecting D-branes by including the

thermal dynamics of an open string tachyon stretched between the flavor branes, and how it may depend on

temperature. Finally, in the appendix we present detailed calculations for the free energies of the near horizon

geometries of color Dq-branes (with the topology of either S1 × S1 or S1 × R in the t− xq submanifold) to

determine the dominant background geometry (either thermal or black brane) at low and high temperatures.

2.2 Transverse intersections at finite temperature

We start this section by reviewing first the general setup for transverse intersections of Dq-Dp-Dp-branes and

identifying the massless degrees of freedom at intersections. We consider the system at finite temperature

in the large Nc and large ’t Hooft coupling limits. Since there is more than one background, we determine

the one with the lowest free energy and consider that as the background dual to the color sector of the dual
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theory at finite temperature. We then write the equation of motion for the flavor branes. This section is

followed in the next section by an analysis of the solutions to the equation of motion as a function of the

dimensions of the intersections r, as well as q. (For transverse intersections p, the spacial dimension of the

flavor branes, is determined once r and q are given.)

2.2.1 General setup

Consider a system of intersecting Dq-Dp-Dp-branes in flat non-compact ten-dimensional Minkowski space

where Nc Dq-branes are stretched in (x0x1 . . . xq)-directions, and each stack of Nf Dp and Nf Dp-branes

are extended in (x0x1 . . . xr)- and (xq+1 . . . x9)-directions. The Dp- and Dp-branes are separated in the

xq-direction by a coordinate distance ℓ0 and intersect the Dq-branes at two (r+1)-dimensional intersections

x0 x1 . . . xr . . . xq . . . . . . x9

Dq × × . . . × . . . × . . . . . . .

Dp × × . . . × . . . . . . . . . . ×
Dp × × . . . × . . . . . . . . . . ×.

(2.1)

Using T-duality one can determine the massless degrees of freedom localized at the intersection. It turns

out that for transverse intersections, q+ p− r = 9, the massless modes which come from the Ramond sector

in the p − q strings are Weyl fermions. These fermions are in the fundamentals of U(Nc) and U(Nf). The

massless modes at the other intersection are also Weyl fermions which transform in the fundamentals of

U(Nc) and U(Nf) of the Dp-branes.

One way to put the above system at finite temperature (at large Nc, large effective ’t Hooft coupling λeff ,

and in the probe approximation Nf ≪ Nc) is to start with the geometry of black Dq-branes as background.

The Euclidean metric for this geometry is

ds2 =

(
u

Rq+1

) 7−q
2 (

f(u)dt2 + dx⃗2
)
+

(
u

Rq+1

)− 7−q
2 ( du2

f(u)
+ u2dΩ2

8−q

)
, (2.2)

with

f(u) = 1−
(uT
u

)7−q
, (2.3)

where in the metric dΩ2
8−q is the line element of a (8 − q)-sphere with a radius equal to unity, and Rq+1,

11



which denotes the characteristic radius of the geometry, is given by

R7−q
q+1 = (2

√
π)5−qΓ

(7− q

2

)
gsNcl

7−q
s = 27−2q(

√
π)9−3qΓ

(7− q

2

)
g2q+1Ncl

10−2q
s , (2.4)

where gs is the string coupling. The Euclidean time is periodically identified: t ∼ t+ β, where β is equal to

the inverse of the temperature T of the black branes. In (2.3) the horizon radius uT is related to β as

T = β−1 =
7− q

4π

( uT
Rq+1

) 7−q
2 1

uT
. (2.5)

The relationship between uT and β comes about in order to avoid a conical singularity in the metric at

u = uT . Note that for black D5-branes β is independent of uT , and equals 2πR5+1.

Also, the dilaton ϕ and the q-form RR-flux Fq are given by

eϕ = gs

(
u

Rq+1

) 1
4 (q−3)(7−q)

, Fq =
2πNc
V8−q

ϵ8−q, (2.6)

where V8−q and ϵ8−q are the volume and the volume form of the unit (8− q)-sphere, respectively.

There is, however, another background with the same asymptotics as (2.2) which may potentially compete

with the aforementioned background. The metric for this (thermal) geometry is

ds2 =

(
u

Rq+1

) 7−q
2 (

dt2 + dx⃗2
)
+

(
u

Rq+1

)− 7−q
2 (

du2 + u2dΩ2
8−q

)
, (2.7)

with the Euclidean time t being periodically identified with a period β = T−1. Unlike the black brane

geometries (2.2), β could take arbitrary values in the thermal geometries (2.7). The dilaton and the q-form

RR-flux are the same as (2.6).

In the appendix we have calculated the free energies of both thermal and black brane geometries. Except

for q = 5, the difference in free energies ∆S of the two geometries subject to the same asymptotics is given

by

∆S = Sthermal − Sblack brane =
9− q

g2s
V9u

7−q
T , (2.8)

where V9 is the volume of space transverse to the radial coordinate u: V9 = Vol(S8−q)Vol(Rq)Vol(S1β).

The volume V9 is measured in string unit ls where for simplicity we set ls = 1. The difference in free

energies (2.8) shows that the thermal background is less energetically favorable compared to the the black

brane background (2.2). Thus, there is no Hawking-Page type transition between the two geometries which
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holographically indicates that there is no confinement-deconfinement phase transition in the dual theory.

The situation is different for q = 5. Semi-classically, once the characteristic radius R5+1 is given, the black

D5-brane geometry will have a fixed temperature T = (2πR5+1)
−1. At this specific temperature, there are

two saddle points contributing to the (type IIB) supergravity path integral: thermal and black D5-brane

geometries. The difference in free energies of the two saddle points is (see the appendix for more details)

Sthermal D5 − Sblack D5−brane =
8π

g2s
Vol(S3)Vol(R5)R5+1u

2
T , at β = 2πR5+1, (2.9)

showing that the black brane geometry is the saddle point with lower free energy. However, at temperatures

other than (2πR5+1)
−1, the thermal geometry is the only saddle point, although due to the hagedorn

temperature of the D5-brane theory, one should only consider temperatures less than (2πR5+1)
−1. Thus,

for T < (2πR5+1)
−1 we use the thermal D5-brane geometry as background.

2.2.2 Flavor Dp-Dp-branes in black Dq-brane geometries

We are interested in the dynamics of the flavor Dp and Dp-branes in the background of the black Dq-brane

geometries. As we alluded to earlier, for q = 5 the thermal geometry of Nc D5-branes (once the limit of the

near horizon geometry is taken) is the background that one should use for the dual finite temperature field

theory for T < (2πR5+1)
−1. We also analyze the dynamics of the flavor branes in the background of the black

D5-branes in which case it is understood that the dual theory is at a fixed temperature T = (2πR5+1)
−1.

We are interested in the static shape of the flavor branes as a function of the radial coordinate u. Therefore

we choose the embedding

t = σ0, x1 = σ1, . . . xr = σr, xq = σq,

u = u(σq), xq+2 = σq+1, . . . x8 = σp−1, x9 = σp,
(2.10)

subject to the boundary condition

u(±ℓ0
2
) = ∞, (2.11)

where {σ0, · · · , σp} are the worldvolume coordinates of the flavor branes. This boundary condition simply

states that the asymptotic coordinate distance between the Dp and Dp-branes is ℓ0. Ultimately the stability

of such an assumption lies in the large Nc limit.

From now on, we set Nf = 1. As it becomes apparent in what follows, the generalization to Nf ≪ Nc is

straightforward. The dynamics of a Dp-brane (and a Dp-brane) is determined by its DBI plus Chern-Simons
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action. Solving the equations of motion for the gauge field, one can safely set the gauge field equal to zero

and just work with the DBI part of the action. After all, it is this part of the full action which is relevant

for our purpose of determining the shape of the Dp and Dp-branes. Therefore, with gauge field(s) set equal

to zero, the dynamics is captured by the DBI action

SDBI = µp

∫
dp+1σ e−ϕ

√
det(gab), (2.12)

where µp is a constant, and gab = GMN∂ax
M∂bx

N is the induced metric on the worldvolume of the Dp-brane.

For a Dp-brane forming a curve u = u(xq), the DBI action (2.12) reads

SDBI = β C(q, r)

∫
drx dxq u

γ
2

[
f(u) +

( u

Rq+1

)2δ
u

′2
] 1

2

, (2.13)

where

C(q, r) =
µp
gs

Vol(S8−q)Rq+1
1
4 (q−7)(r−3),

γ = 2 +
1

2
(7− q)(r + 1), (2.14)

δ =
1

2
(q − 7),

and u
′
= du/dxq. For a Dp-brane forming a curve u(xq) in the thermal D5-brane geometry the DBI action

is obtained by setting f(u) = 1 in (2.13). The integrand in (2.13) does not explicitly depend on xq, therefore

L − u
′
∂L/∂u′

must be conserved (with respect to xq). A first integral of the equation of motion is then

obtained

u
γ
2 f(u)

[
f(u) +

( u

Rq+1

)2δ
u

′2
]− 1

2

= u
γ
2
0 , (2.15)

where u0 parametrizes the solutions. We now analyze the solutions of (2.15).

2.3 Multiple branches of solutions

The simplest solution of the equation of motion in (2.15), namely u0 = 0, corresponds to xq = constant. In

order to satisfy the boundary condition (2.11), one obtains xq = ±ℓ0/2. So, the u0 = 0 solution corresponds

to disjoint Dp and Dp-branes descending all the way down to the horizon at u = uT . Also, note that the

existence of this solution is independent of β.
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For u0 ̸= 0, solving for u
′
yields

u
′2

=
1

u0γ

( u

Rq+1

)−2δ

f(u)
(
uγf(u)− u0

γ
)
. (2.16)

Since the left hand side of (2.16) is non-negative, the right hand side of (2.16) must also be non-negative

resulting in u ≥ max{uT , u∗}, where u∗ is a possible turning point. Therefore, for allowed solutions one

must have u ≥ u∗ > uT .

The possible turning points are determined by analyzing the zeros of the right hand side of (2.16).

Setting f(u∗) = 0 will not result in a valid turning point. So, the other possibilities come from solving

uγ∗f(u∗)− uγ0 = 0, which we will rewrite as follows

uγ∗ − uσ∗u
−2δ
T − uγ0 = 0, (2.17)

where

σ = γ + 2δ = 2 +
1

2
(7− q)(r − 1). (2.18)

Note that since r ̸= 0 (and in fact, for the cases of interest, it is either 1 or 3), σ is always a positive integer

which, combined with the fact that δ < 0, implies that σ < γ.

We use (2.16) to relate the integration constant u∗, or equivalently u0, to the parameters of the theory,

namely the (inverse) temperature β and the asymptotic distance between the Dp and Dp-branes ℓ0. First,

rearrange (2.16) to get

xq(u) = R−δu
γ
2
0

∫ u

u∗

(
u−2δ − u−2δ

T

)− 1
2
(
uγ − uσuT

−2δ − uγ0

)− 1
2

du

= R−δ(uγ∗ − uσ∗u
−2δ
T )

1
2

∫ u

u∗

(
u−2δ − u−2δ

T

)− 1
2 × (2.19)(

uγ − uσuT
−2δ − (uγ∗ − uσ∗u

−2δ
T )

)− 1
2

du,

where in the second line we used (2.17) to trade u0 for u∗. Changing to a new (dimensionless) variable

z = u/uT , (2.19) becomes

xq(z) = − δ

2π
β(zγ∗ − zσ∗ )

1
2

∫ z

z∗

(
z̃−2δ − 1

)− 1
2
(
z̃γ − z̃σ − (zγ∗ − zσ∗ )

)− 1
2

dz̃, (2.20)
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where z∗ ∈ (1,∞). Taking the z → ∞ limit, we can relate z∗ to β and ℓ0

ℓ0
β

= − δ

π
(zγ∗ − zσ∗ )

1
2

∫ ∞

z∗

(
z−2δ − 1

)− 1
2
(
zγ − zσ − (zγ∗ − zσ∗ )

)− 1
2

dz. (2.21)

As we mentioned earlier, the solutions to the equation of motion are parametrized by possible value(s) of

the turning point z∗. For a fixed ℓ0/β, it is the number of z∗ which determines the number of (connected)

solutions. Thus, one has to analyze ℓ0/β as a function of z∗ to determine the number of solutions for a fixed

ℓ0/β.

2.3.1 Analytical analysis

There are regions of z∗ for which ℓ0/β as a function of z∗ can be given analytically. These are the z∗ → 1+

and z∗ ≫ 1 regions. For any z∗, the integral in (2.21) can be evaluated numerically. The numerical results

will be presented shortly after the analytical analysis for the two limiting cases is given.

q = 5

q = 6

`0
β

z∗ →∞1← z∗

q ≤ 4

Figure 2.1: Behavior of ℓ0/β versus z∗ in two regions of z∗ → 1 and z∗ ≫ 1 for various q’s. Except for q = 5, these plots
illustrate the number of connected Dp-branes at low and high temperatures placed in the background of black Dq-branes. For
q = 5, it is understood that β is fixed; β = 2πR5+1, and different solutions is obtained by varying ℓ0.

First consider the z∗ → 1+ limit. Taking z∗ = 1 + ϵ where 0 < ϵ≪ 1, (2.21) is approximated by

ℓ0
β

∼ − δ

π

√
−2δϵ

∫ ∞

1+ϵ

(z−2δ − 1)−
1
2 (zγ − zσ + 2δϵ)−

1
2 dz. (2.22)

Ignoring some numerical prefactors, the behavior of (2.22), is approximated by
√
ϵ
∫∞

zδ−
γ
2 dz for large

values of z. Since δ − γ
2 < −2 for all q and r of interest, one has

√
ϵ
∫∞

zδ−
γ
2 dz ∼

√
ϵ. On the other hand,

when z approaches z∗ such that z − z∗ > 0, we define z = z∗ + x with 0 < x ≪ 1, and expand out the
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integrand of (2.22) around x. We get

ℓ0
β

∼ − δ

π
√
−2δ

√
ϵ

∫
0

(x(x+ ϵ))−
1
2 dx

∼ − 1

π

√
−2δ

√
ϵ log

√
ϵ, (2.23)

indicating that the leading behavior of ℓ0/β in the z∗ → 1 limit is −
√
ϵ log

√
ϵ.

For the z∗ ≫ 1 region, we can approximate (2.21) by (recall δ < 0 and σ < γ)

ℓ0
β

∼ − δ

π
z

γ
2
∗

∫ ∞

z∗

zδ
(
zγ − zγ∗

)− 1
2

dz + · · ·

= − δ

π
z1+δ∗

∫ ∞

1

yδ
(
yγ − 1

)− 1
2

dy + · · ·

= − δ

γ
√
π

Γ
[
γ−2(1+δ)

2γ

]
Γ
[
γ−(1+δ)

γ

] z1+δ∗ + · · · , (2.24)

where · · · represents terms subleading in z∗, and in the second line in (2.24) we have changed the variable

from z to y = z/z∗. Thus, aside from a numerical factor, the z∗ → ∞ limit of (2.21) reads

ℓ0
β

∼ z1+δ∗ . (2.25)

This expression is identical to the one derived for the zero temperature case in [50]. This resemblance is

not accidental because the large z∗ limit corresponds to having a turning point very far away from the

horizon of the background geometry. The results obtained for this limit should then match those derived

for the zero temperature case. An interesting feature of (2.25) is that for the black D5-branes ℓ0/(2πR5+1)

is independent of z∗ and approaches a constant value of 1/(r + 3). This value has been argued in [50] to

be around the scale of non-locality of the low energy effective theory on D5-branes. The analysis for the

dynamics of the flavor branes placed in the thermal D5-brane geometry is the same as the analysis when

they are placed in the zero temperature D5-brane geometry. The zero temperature analysis has already been

done in [50] where it was found that there exist an infinite number of connected solutions for one specific

value of ℓ0 = 2πR5+1/(r + 1), and none for other ℓ0’s.

Analyzing (2.21) for the two regions of z∗ → 1+ and z∗ ≫ 1, the minimum crude conclusion that one can

draw is that for small enough ℓ0/β there exist two connected solutions (one closer to the horizon which we

will name ”long” connected solution, and the other farther away from it named ”short” connected solution)

for q ≤ 4 and only one curved solution for q = 6. For q = 5 and for T < (2πR5+1)
−1, there exists an infinite
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number of connected solutions for just ℓ0 = 2πR5+1/(r + 1) and none for others. On the other hand, for

T = (2πR5+1)
−1, there is only one connected solution given that ℓ0 ≪ 2πR5+1. The analysis for the two z∗

regions has been summarized in Figure 2.1.

2.3.2 Numerical analysis for the number of solutions

For generic values of ℓ0/β, the allowed number of solutions can be determined by numerically integrating

(2.21) and plotting ℓ0/β versus z∗. The results for various intersections and Dq-branes are shown in Figure

2. Although we have plotted ℓ0/β versus z∗ for z∗ ∈ (1, 50), the qualitative behavior of the plots stays the

same if one considered larger values of z∗. As we will describe below, the number of curved solutions depends

on what configuration is being considered. Note that regardless of the configuration, there always exists a

disjoint solution. In what follows in the rest of this subsection, when we say there exist one or two solutions

for a particular system we have connected solutions in mind.

(3+ 1)-dimensional intersections In this case there are three allowed D-brane configurations which are

transversely intersecting. These are the D4-D8-D8, D5-D7-D7 and D6-D6-D6 configurations shown on the

top row in Figure 2.2.

For the D4-D8-D8 configuration (shown on the upper left corner in Figure 2), there is a critical value

of (ℓ0/β)cr ≈ 0.17 beyond which there exists no connected solution for the flavor branes. Below this

critical value there are two connected solutions which we earlier called the “short” and the “long” connected

solutions. The existence of these two types of solutions and the critical value of 0.17 were already noted by

the authors of [49] in the their analysis of the holographic NJL model at finite temperature. We will see in

the next section that the short solution is always more energetically favorable to the long one. Since there

also exists a disjoint solution, determining the chirally-broken or chirally-symmetric phase of the dual field

theory (which is a non-local version of the NJL model [46]) is just a matter of comparing the free energies

of the disjoint and short connected solution. This will be done in the next section.

The analysis for the D5-D7-D7 and D6-D6-D6 cases are, however, more subtle, and the holographic

interpretation of the solutions is less transparent for reasons to be mentioned below. For the D5-D7-D7

configuration at temperature T = (2πR5+1)
−1, there are two critical values of (ℓ0/(2πR5+1))cr ≈ 0.168 and

0.175. For ℓ0/(2πR5+1) < 0.168 there is always one connected solution, for 0.168 < ℓ0/(2πR5+1) < 0.175

there are two, and for ℓ0/(2πR5+1) > 0.175 there exists none. Comparing these results to the ones obtained

for the zero-temperature D5-D7-D7 configuration, one observes that while at zero temperature [50], there are

either an infinite number of solutions or none, at T = (2πR5+1)
−1 there are different numbers of solutions
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(one, two, or none) depending on what values ℓ0 take; see Figures 2 and 3. For D5-D7-D7 configuration at

temperatures T < (2πR5+1)
−1, the situation is the same as the zero temperature case. There exist connected

solutions only for a specific value of ℓ0 = πR5+1/3. Indeed, there are an infinite number of such solutions;

see Figure 3.

For D6-D6-D6 configuration, the situation is simpler. For any ℓ0/β there always exists one and only one

connected solution. As we will see in the next section all these connected solutions are less energetically

favorable compared to disjoint solutions. The observation that for color D6-branes at finite temperature

there is always one connected solution, hence no ”screening length”, is in accord with the fact that the near

horizon geometry of D6-branes cannot be decoupled from the gravitational modes of the bulk geometry [51].

(1+ 1)-dimensional intersections In this case, there are five allowed configurations (shown on the sec-

ond and third rows in Figure 2), namely D2-D8-D8, D3-D7-D7, D4-D6-D6, D5-D5-D5 and D6-D4-D4. Con-

figurations with q ≤ 4 show similar behavior. For q ≤ 4 there always exists a critical (ℓ0/β)cr beyond which

connected solutions cease to exist. The critical value obtained from Figure 2 is (ℓ0/β)cr ≈ 0.225, 0.223, 0.227

for color D2, D3 and D4-branes, respectively. Below these critical values there are two solutions, the short

and long solutions2.

For the D5-D5-D5 system at T = (2πR5+1)
−1, below a critical value of (ℓ0/(2πR5+1))cr ≈ 0.251 there is

always one solution whereas above this value connected solutions do not exist. Note the difference (depicted

in Figure 3) of this case with the D5-D7-D7 system: for the D5-D5-D5 configuration, there is no range of

ℓ0/(2πR5+1) for which there exist the short and long solutions. Like the D5-D7-D7 configuration, for the

D5-D5-D5 system at T < (2πR5+1)
−1, there is an infinite number of connected solutions when 2ℓ0 = πR5+1

and none for other ℓ0’s.

For the D6-D4-D4 configuration, there is always one connected solution for arbitrary values of ℓ0/β.

Notice that the behavior of the flavor branes in the geometry of color D5 and D6-branes with (1 + 1)-

dimensional intersections is qualitatively the same as their behavior with (3 + 1)-dimensional intersections.

2.4 Energy of the configurations

As we saw in the previous section there are typically more than one solution for a given ℓ0/β. In fact,

just to recap, for ℓ0/β less than a critical value there are generically three branches of solutions for q ≤ 4;

one disjoint and two connected solutions. There are also an infinite number of solutions for q = 5 at

2The authors of [55] studied the D2-D8-D8 system at finite temperature but missed the existence of the long connected
solution.
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Figure 2.2: Behavior of ℓ0/β versus z∗ obtained numerically for generic values z∗ for various q’s and intersections of interest,
i.e. r = 1 and r = 3. The blue plots show the behavior for 3 + 1 intersections whereas the red plots show the behavior for
1 + 1 intersections. These plots show the number of connected Dp-branes (for all temperatures) placed in the background of
black Dq-branes. For q = 5, the temperature T is fixed: T = (2πR5+1)−1. Except for q = 5, 6, such solutions can potentially
be realized as different phases of the holographic dual theories.

T < (2πR5+1)
−1 as long as ℓ0 = 2πR5+1/(r + 3). There are two branches of solutions for q = 6 for any

ℓ0/β; one disjoint and one connected solution. Since there are various configurations for a particular value

of ℓ0/β, one needs to compare their on-shell actions to determine which configuration is more energetically

favorable. In this section we analyze the energy of these configurations by a combination of analytical and

numerical techniques. The energy of these configurations by themselves is infinite. We regulate the energies

of connected configurations by subtracting from them the energy of disjoint configurations

Ẽ = limΛ→∞

{∫ Λ

z∗

dz z
σ
2

(
1− zγ∗ − zσ∗

zγ − zσ

)− 1
2 −

∫ Λ

1

dz z
σ
2

}
, (2.26)

where Λ is a cutoff and the difference in energy E is related to Ẽ as

E = −δβ
2

π
C(q, r) u

γ
2

T

∫
drx Ẽ. (2.27)
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2.4.1 Analytical analysis

The integral in (2.26) is complicated and as far as we know cannot be integrated analytically for generic

values of z∗. However, like the integral in (2.21), there are two regions of z∗ → 1 and z∗ ≫ 1 for which we

can integrate Ẽ(z∗) analytically. In the z∗ → 1 limit, it can be shown that Ẽ is positive for all q and r.

Indeed, let’s rewrite (2.26) as follows

ẼΛ =

∫ Λ

z∗

dz z
σ
2

[(
1− zγ∗ − zσ∗

zγ − zσ

)− 1
2 − 1

]
−
∫ z∗

1

dz z
σ
2

=
(∫ z′∗

z∗

dz z
σ
2

[(
1− zγ∗ − zσ∗

zγ − zσ

)− 1
2 − 1

]
−
∫ z∗

1

dz z
σ
2

)
+

∫ Λ

z′∗

dz z
σ
2

[(
1− zγ∗ − zσ∗

zγ − zσ

)− 1
2 − 1

]
. (2.28)

The last integral in (2.28) is positive for any z′∗. If z∗ = 1 + ϵ, we can choose z′∗ = 1 + 3ϵ and the difference

in the bracket is estimated to be

ϵ(
√
6− 2) + ϵ

(
log(

√
2 +

√
3)− 1

)
+ o(ϵ2), (2.29)

which is also positive.

Approximating (2.26) in the z∗ ≫ 1 region yields

ẼΛ ∼
∫ Λ

z∗

dz zδ+γ
(
zγ − zγ∗

)− 1
2 −

∫ Λ

1

dz z
σ
2 ,

=

{∫ Λ

z∗

dz zδ+γ
(
zγ − zγ∗

)− 1
2 −

∫ Λ

0

dz z
σ
2

}
+

2

σ + 2
. (2.30)

Note that in the large z∗ limit, z∗ ≃ z0 where z0 = u0/uT . As a result, from (2.30) we see that the energy

of the connected configurations approaches their zero temperature value obtained in [50]. This is expected

since in this regime the connected flavor branes are very far away from the horizon hence receive little effect

from it. The disjoint configuration, on the other hand, always keeps in touch with the horizon and gets a

finite temperature contribution − 2
σ+2 . The term in the curly bracket of (2.30) is already computed in [50]

in terms of Beta functions, giving an energy difference of

Ẽ = limΛ→∞ẼΛ

=
1

γ
z

γ
2 +δ+1
∗ B

[
− 1

2
− δ + 1

γ
,
1

2

]
+

2

σ + 2
. (2.31)
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Figure 2.3: Behavior of Ẽ versus ℓ0/β obtained numerically for various q’s and intersections of interest, i.e. r = 1 and r = 3.
The blue plots show the behavior for 3 + 1 intersections whereas the red plots show the behavior for 1 + 1 intersections. The
plots for the color D5-branes are for a fixed (inverse) temperature of β = 2πR5+1.

Since z∗ ≫ 1, the last term is irrelevant in determining the sign of Ẽ. We see immediately that Ẽ > 0 for

q ≥ 6 and Ẽ < 0 for q ≤ 4. For q = 5, the Beta function vanishes, and a more careful investigation must be

made to determine the sign of Ẽ. It turns out that in going from (2.26) to (2.30), we have over-estimated

the energy for the joined brane configurations: there is a correction with leading behavior ∼ −z(r−1)/2
∗ for

large z∗. Thus, for q = 5 we have Ẽ < 0 for r > 1, while the analytic analysis is not reliable for r = 1. The

analytic results for the two aforementioned limits of z∗ are summarized in Figure 4.

2.4.2 Numerical results and phase transitions

For generic value of z∗ the integral in (2.26) can be numerically integrated and one can plot Ẽ versus z∗.

Instead we will numerically eliminate z∗ between (2.21) and (2.26) and plot Ẽ versus ℓ0/β. The reason

for doing so is that one can easily observe the transitions, say from a connected configuration to a disjoint

configuration, in terms of both ℓ0 and β. The numerical results are shown in Figure 5. In the following we

will analyze these graphs and determine the phases of the vacuum as one varies ℓ0/β.

(3+ 1)-dimensional intersections As mentioned in the previous section, for 3+ 1-dimensional intersec-

tions we have three configurations. Consider first the D4-D8-D8 system. For ℓ0/β < (ℓ0/β)
e
cr ≈ 0.154 the
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short solution is more energetically favorable compared to both the disjoint and the long solutions. This

corresponds to the chiral symmetry being broken. (Here (ℓ0/β)
e
cr is a critical value read off the energy

diagrams in Figure 5. It is different from (ℓ0/β)cr obtained from the plots of Figure 2.) Above this value (up

to ℓ0/β ≈ 0.17) both short and long curved solutions have more energy compared to the disjoint solution, in-

dicating that the disjoint solution is the vacuum, hence chiral symmetry is restored and the phase transition

is of first order. Thus the chiral symmetry breaking-restoration phase transition occurs at (ℓ0/β)
e
cr ≈ 0.154.

For the D5-D7-D7 system at T = (2πR5+1)
−1 the behavior is surprising and to some extent more

involved. On the D5-D7-D7 plot in Figure 5 there are two special points with (ℓ0)
e
cr ≈ 0.168 and 0.17 (in

units of 2πR5+1). For ℓ0/(2πR5+1) < 0.168 the disjoint solution is more energetically favorable, hence chiral

symmetry in the dual theory is intact given that such a solution can represent a valid phase of the dual

theory. For 0.168 < ℓ0/(2πR5+1) < 0.17 there are three kinds of solutions, disjoint, short and long. It turns

out that the short solution has less energy than the other two indicating that chiral symmetry is broken.

For ℓ0/(2πR5+1) > 0.17 the disjoint solution becomes more energetically favorable, hence potentially chiral

symmetry gets restored. For temperatures less than (2πR5+1)
−1, the situation is the same as the zero

temperature case: there are an infinite number of connected solutions when 3ℓ0 = πR5+1, each equally

energetically favored, and each of them more favored over the disjoint solution. The existence of such

solutions may be rooted in the fact that the low energy theory on the color D5-branes is a non-local field

theory, a little string theory. Due to the fact that in the case of background D5-brane geometry the dual

field theory degrees of freedom cannot be totally decoupled from non-field theoretic degrees of freedom, it is

not clear to us whether such solutions can represent a chirally-broken phase of the dual gauge theory despite

the fact that, geometrically, they are smoothly connected.

For the D6-D6-D6 system, the disjoint solution is always favorable, although it is not clear whether one

can give a holographic interpretation that the “dual” field theory is in a chirally-symmetric phase. This is

because there exists no decoupling limit suitable for holography in the case of background D6-branes.

(1+ 1)-dimensional intersections For (1+1)-dimensional intersections, there are five allowed configura-

tions. Among these the models based on background Dq-branes with q ≤ 4 exhibit similar behaviors to their

counterparts with (3+1)-dimensional intersection. That is to say for sufficiently low temperatures (compared

to 1/ℓ0) chiral symmetry is broken while above a critical temperature it gets restored. The critical values at

which this (first order) phase transition occurs are (ℓ0/β)
e
cr ≈ 0.191, 0.196 and 0.206 for color D2, D3 and

D4-branes, respectively.

The model with color D5-branes again shows some surprises. Because of the mixing between the field
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theoretic and non-field theoretic degrees of freedom in holography involving background D5-branes, we have

no evidence that different behaviors of the flavor branes represent, via holographic point of view, either

chirally-symmetric or chirally-broken phases of the dual field theory. Nevertheless, one finds the following

results. At T = (2πR5+1)
−1 and for small enough ℓ0 (ℓ0 < (ℓ0)

e
cr ≈ 0.2498 × 2πR5+1) the disjoint solution

is preferred. Increasing ℓ0 up to ℓ0/(2πR5+1) < 0.251 will result in a phase where the connected solution is

favorable. This phase appears in our plot because we put a cutoff of Λ = 5 to regulate the energy integral.

Increasing the cutoff will decrease the range of ℓ0 for which this phase exists. It is plausible that in the

Λ → ∞ limit this phase disappears although our numerics does not allow us to check this explicitly. Sticking

for now with the cutoff we chose, if one increases ℓ0 further, there will be another phase transition to a

phase where the disjoint solution becomes favored. Due to space limitations, the resolution of the D5-D5-D5

plot in Figure 5 does not allow one to see all these phases. For temperatures less than (2πR5+1)
−1, like the

zero temperature case, there are an infinite number of connected solutions for ℓ0 = πR5+1/2, each equally

energetically favored, and none for other ℓ0’s. Each of these connected solutions is more favored over the

disjoint solution. For the D6-D4-D4 system, there is no phase transition and it is always the disjoint solution

which is energetically favorable.

2.5 Transverse intersections at finite temperature with compact

xq

An interesting property of the models we are studying here is that when xq is compact the scale of chiral

symmetry breaking is generically different from the scale of confinement which results in additional phases.

For example, for the Sakai-Sugimoto model at finite temperature, it was shown [48] that there exists an

intermediate phase where the system is deconfined while chiral symmetry is broken.

At finite temperature and xq direction being compact (with a radius of Rc), there are three geometries

where the topology of the t− xq submanifold is S1 × S1. One is a geometry which has the metric

ds2 =

(
u

Rq+1

) 7−q
2 (

dt2 + dx⃗2 + g(u)(dxq)2
)
+

(
u

Rq+1

)− 7−q
2 ( du2

g(u)
+ u2dΩ8−q

2
)
, (2.32)

with

g(u) = 1−
(uKK

u

)7−q
. (2.33)

We will call this geometry the thermal geometry. Although the Euclidean time period β is arbitrary in
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this geometry, the xq-circle cannot have arbitrary periodicity. In order for this geometry to be smooth at

u = uKK in the xq − u submanifold, one has to have

∆xq = βc =
4π

7− q

(
Rq+1

uKK

) 7−q
2

uKK, (2.34)

where we have defined βc = 2πRc. Although we do not specify the q-dependence of βc and Rc, one should

keep in mind that they depend on uKK and Rq+1 differently through (2.34) depending on what value for q

is given. There is another geometry whose metric takes the form

ds2 =

(
u

Rq+1

) 7−q
2 (

dt2 + dx⃗2 + (dxq)2
)
+

(
u

Rq+1

)− 7−q
2 (

du2 + u2dΩ8−q
2
)
. (2.35)

There is also the black brane geometry which is basically the same as (2.2) but with xq compact, and has

the (Euclidean) metric

ds2 =

(
u

Rq+1

) 7−q
2 (

f(u)dt2 + dx⃗2 + (dxq)2
)
+

(
u

Rq+1

)− 7−q
2 ( du2

f(u)
+ u2dΩ8−q

2
)
, (2.36)

where

f(u) = 1−
(uT
u

)7−q
. (2.37)

In this geometry the xq-circle has arbitrary periodicity whereas β is fixed by

β =
4π

7− q

(Rq+1

uT

) 7−q
2

uT . (2.38)

For all three geometries, the dilaton ϕ, and the q-form RR-flux Fq are given in (2.6); see the appendix for

more details. Also, Rq+1 is given in (2.4).

The three geometries whose line elements are given in (2.32), (2.35) and (2.36) are saddle points of

either type IIA or type IIB Euclidean path integral. For a given temperature, one needs to compare their

(regularized) free energies to determine which solution dominates the path integral. We have calculated the

free energies of these solutions in the appendix. For q ≤ 4, both the thermal and the black brane geometries

have less free energy compared to the geometry in (2.35), and this result is independent of temperature. So,

to determine the lowest energy saddle point we need to compare the free energies of (2.32) and (2.36). The
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difference in their free energies is given by

Sthermal − Sblack brane =
9− q

g2s
V9

(
4π

7− q
R

1
2 (7−q)
q+1

)2 7−q
5−q
(
β2 q−7

5−q − β
2 q−7

5−q
c

)
, (2.39)

where V9 = ββcVol(S
8−q)Vol(Rq−1) where we set ls = 1. Thus the thermal geometry (2.32) dominates when

β > 2πRc whereas for β < 2πRc it is the black brane geometry (2.36) which gives the dominant contribution

to the Euclidean path integral. This phase transition which happens at β = βc is the holographic dual of

confinement-deconfinement phase transition in the corresponding dual gauge theories [44].

For q = 6, again, both the thermal and black brane geometries have less free energy compared to the

geometry in (2.35). The difference in free energies for the geometries in (2.32) and (2.36) is given by

Sthermal D6 − Sblack D6−brane =
3V9

16π2g2sR6+1
(β2 − β2

c ), (2.40)

where V9 = ββcVol(S
2)Vol(R5). So, (2.40) indicates a phase transition at β = 2πRc. Unlike the q ≤ 4

cases, for q = 6 the thermal geometry (2.32) dominates for β < 2πRc whereas for β > 2πRc the black brane

geometry (2.36) dominates.

For q = 5, one needs to consider more possiblities. For β = 2πR5+1, there are two cases: either

βc = 2πR5+1 or βc ̸= 2πR5+1. For βc = 2πR5+1, both (2.32) and (2.36) are more favored over the geometry

whose metric is given in (2.35). The difference in free energies of (2.32) and (2.36) is

Sthermal D5 − Sblack D5−brane =
4

g2s
V9(u

2
T − u2KK), at βc = 2πR5+1. (2.41)

where V9 = ββcVol(S
3)Vol(R4). For βc ̸= 2πR5+1, on the other hand, the two saddle points with the same

asymptotics are the black brane geometry and the geometry in (2.35). In this case, the black brane geometry

is the dominant one

∆S =
4

g2s
V9u

2
T > 0. (2.42)

There are also two possibilities when β ̸= 2πR5+1. If βc ̸= 2πR5+1, the only saddle point consistent with

the asymptotics is (2.35) which determines the vacuum. If, on the other hand, βc = 2πR5+1, there are

two geometries with the same asymptotics, thermal and the one given in (2.35). The thermal geometry is
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dominant because

∆S = − 4

g2s
V9u

2
KK < 0. (2.43)

With xq being compact, the flavor branes are now sitting at two points separated by a distance ℓ0 on

the xq-circle. Note that there is no reason for the flavors branes to be located at the antipodal points on the

circle. As before, we consider the transverse intersections of the flavor and the color branes, and choose the

same embeddings and boundary conditions for the flavor branes as we did in (2.10) and (2.11) except that

now ℓ0 ≤ πRc. In what follows, we will focus on q ≤ 4 cases and consider both low and high temperature

phases of the background. In particular, we would like to know whether there always exists a range of

temperature above the deconfinement temperature where chiral symmetry is broken.

2.5.1 Behavior at high and low temperatures

For temperatures above the deconfinement temperature βc the profile of the flavor branes takes essentially the

same form as it did when xq was non-compact, hence, indicating the existence of short and long (smoothly)

connected solutions. Note that when xq is compact, for a fixed ℓ0, there is now a lower bound on ℓ0/β set

by the deconfinement temperature. For completeness, we have plotted ℓ0/β versus z∗ (z∗ being the radial

position at which the brane and anti-brane smoothly join) in Figure 6. The lower dotted line in each plot

represents the deconfinement temperature. As an example, we chose it to be at βc = 10ℓ0. The upper dotted

line shows chiral symmetry breaking-restoration phase transition which comes from comparing the energies

of connected and disjoint solutions. One can show, using energy considerations, that below the upper dotted

line chiral symmetry is broken in a deconfined phase via short connected solution while it is restored above

the line (where we have deconfinement with chiral symmetry restoration).

In the low temperature regime where the system is in a confined phase, the DBI action for the flavor

branes in the thermal background (2.32) now reads (with gauge fields set equal to zero)

SDBI = β C(q, r)

∫
drx dxq u

γ
2

[
g(u) +

1

g(u)

( u

Rq+1

)2δ
u

′2
] 1

2

, (2.44)

where C(q, r), γ and δ have all been defined in (2.14). The equation of motion for the profile is now

u
γ
2 g(u)

[
g(u) +

1

g(u)

( u

Rq+1

)2δ
u

′2
]− 1

2

= w
γ
2
0 , (2.45)

with w0 parameterizing the solutions. There exists a solution with w0 = 0 representing disjoint Dp and
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Figure 2.4: Behavior of ℓ0/β versus z∗ above the deconfinement temperature for q = 2, 3, 4. The lower dotted line represents a
transition to the confined phase whereas the upper dotted line represents chiral symmetry breaking-restoration phase transition.

Dp-branes descending down to u = uKK. For w0 ̸= 0, solving (2.45) for u
′
yields

u
′2

=
1

w0
γ

( u

Rq+1

)−2δ

g(u)2
(
uγg(u)− w0

γ
)
. (2.46)

Denoting the possible turning point(s) by w∗, analysis of (2.46) shows that u ≥ w∗ > uKK, with w∗ satisfying

wγ∗ − wσ∗u
−2δ
KK − wγ0 = 0, (2.47)

where σ has been defined as before. Integrating (2.46) gives

xq(y) = − δ

2π
βc(y

γ
∗ − yσ∗ )

1
2

∫ y

y∗

(
ỹ−2δ − 1

)−1(
ỹγ − ỹσ − (yγ∗ − yσ∗ )

)− 1
2

dỹ, (2.48)

where we have defined y = (u/uKK) ∈ (1,∞), and y∗ = w∗/uKK. Using (2.48) we can relate y∗ to ℓ0

ℓ0
βc

= − δ

π
(yγ∗ − yσ∗ )

1
2

∫ ∞

y∗

(
y−2δ − 1

)−1(
yγ − yσ − (yγ∗ − yσ∗ )

)− 1
2

dy. (2.49)

The analysis of ℓ0/βc as a function of y∗ determines the number of solutions. ℓ0/βc versus y∗ has been
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numerically plotted in Figure 7 for intersections of interest and for q = 2, 3, 4. As it is seen from Figure

7, there is always one smoothly connected solution (as well as a disjoint solution). The red and blue

plots represent smoothly connected solutions for (1+1)-dimensional and (3+1)-dimensional intersections,

respectively.
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Figure 2.5: Behavior of ℓ0/βc versus w∗ for q = 2, 3, 4.

For the energy of the connected solutions, one obtains

E = −δβ
π
βcC(q, r) u

γ
2

KK

∫
dxr Ẽ, (2.50)

where

Ẽ = limΛ→∞

{∫ Λ

y∗

dy y
σ
2

(
1− y2δ

)− 1
2
(
1− yγ∗ − yσ∗

yγ − yσ

)− 1
2 −

∫ Λ

1

dy
(
1− y2δ

)− 1
2

y
σ
2

}
, (2.51)

and Λ is a cutoff. Like the previous sections, one can numerically eliminate y∗ between (2.49) and (2.51)

and plot Ẽ versus ℓ0/βc. Although we have not shown the plots here, one can check (numerically) that the

smoothly connected solutions are always more energetically favorable compared to the disjoint solutions.

The plots in Figure 7 not only show the existence of a unique smoothly coonected solution (for the

confined phase) but also indicate a big difference for the behavior of the flavor branes below and above
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the confinement-deconfinement phase transition. For example consider the plot for D3- D7-D7 system.

Each point on the plot represents a unique curved solution for which increasing the temperature (up to

the deconfinement temperature βc) will have no effect on the shape of the U-shaped flavor branes. That is

to say that changing the temperature will not cause the flavor D7-D7-branes to join either closer to uKK

or farther away from it. Once ℓ0 and βc are specified, the shape of the brane stays the same independent

of the variation of the temperature up to the deconfinement temperature. The behavior just mentioned is

significantly different from the behavior of the flavor branes at high temperatures (where they are in black

brane backgrounds). For a fixed ℓ0, each point on the plot of D3-D7-D7 system in Figure 7 represents one

(or two) smoothly connected solution(s) for only a specific temperature. Varying the temperature will now

change the shape of the connected flavor branes and force them to go either closer to the horizon or stay

farther away from it.

There is another difference which is worthy of mentioning here. At the temperature for which the

confinement-deconfinement phase transition occurs, namely at β = βc, uKK = uT . For a fixed ℓ0, flavor

branes at temperatures above βc join at a radial point closer to uKK = uT than the same flavor branes

placed at temperatures below βc.

2.6 Discussion

In this chapter, we analyzed some aspects of transversely-intersecting Dq-Dp-Dp-branes at finite temperature.

In particular, we mapped out different vacuum configurations which can holographically be identified with

chiral symmetry breaking (or restoration) phase of their holographic dual theories. Although we showed

that generically the long connected solutions are less energetically favorable compared to the short connected

solutions we did not discuss their stability against small perturbations. Presumably a stability analysis along

the lines of [57] can be done to show that the long connected solution is unstable against small perturbations.

The analysis presented here can be generalized in various directions. For example, one can add a chemical

potential to the setup and look for new phases as was done in some specific models in [58, 59, 60, 61], or

consider the sysytem at background electric and magnetic fields [62, 63, 64] and study the conductivity of

the system or the effect of the magnetic field on the chiral symmetry-restoration temperature. We hope to

come back to these interesting issues in future.

Also, our analysis was entirely based on the DBI action for the flavor Dp-Dp-branes. In transversely-

intersecting D-branes, working with just the DBI (plus the Chern-Simons part of the) action misses, from

holographic perspectives, an important part of the physics, namely the vev of the fermion bilinear as an
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order parameter for chiral symmetry breaking. To determine the fermion bilinear from the holographic point

of view there should be a mode propagating in the bulk geometry such that asymptotically its normalizable

mode can be identified with the vev of the fermion bilinear. The DBI plus the Chern-Simons action cannot

give rise to the mass of the localized chiral fermions either. Note that for transverse intersections one cannot

write an explicit mass term for the fermions of the intersections because there is no transverse space common

to both the color and the flavor branes. So it is not possible to stretch an open string between the color and

flavor branes in the transverse directions. Therefore, the fermion mass must be generated dynamically. It

has been argued in [46] that including the dynamics of an open string stretched between the flavor branes

into the analysis will address the question of how one can compute fermion mass and bilinear vev in these

holographic models. More concretely, the scalar mode of this open string which transforms as bifundamental

of U(Nf)×U(Nf) has the right quantum numbers to be potentially holographically dual to the fermion mass

and condensation.

Recently, the authors of [65, 66, 67] shed light on this issue by starting with the so-called tachyon-DBI

action [68] claimed to correctly incorporate the role of the open string scalar mode, the tachyon, in a system

of separated Dp-Dp-branes. In fact, it was shown in [66, 67] that for the Sakai-Sugimoto model at zero

temperature, the open string tachyon will asymptotically have a normalizable as well as a non-normalizable

mode. They identified the normalizable mode with the vev of the fermion bilinear (order parameter for chiral

symmetry breaking) and the non-normalizable mode with the fermion mass. It is not hard to generalize the

calculations of [66, 67] to include all transversely-intersecting Dq-Dp-Dp systems at zero temperature where

one finds that there always exist both normalizable and non-normalizable modes for the asymptotic behavior

of the tachyon, and in the bulk of the geometry the tachyon condenses roughly at the same radial point where

the flavor branes smoothly join [69]. The calculation of the fermion mass and condensate for transversely-

intersecting Dq-Dp-Dp systems at finite temperature requires not only considering the tachyon-DBI action

of [68] in the black brane background of (2.2) but also calculating the tachyon potential as a function of the

temperature. In the case of a coincident brane and anti-brane in flat background, a partial result for such a

calculation was given in [70] (see also [71]). Some attempts in generalizing the results of [70, 71] for separated

brane-anti-branes (at least in the case of separated D8-D8 in flat space) has recently started in [72]. For

our purpose of extracting information about fermion mass and condensate, knowing the dependence of the

tachyon potential for separated flavor Dp-Dp-branes seems crucial. Ignoring the temperature dependence on

tachyon potential at zeroth order yields unsatisfactory results: It gives rise to the same results as one would

have obtained in the zero temperature case [69]. We know that this is not the right behavior because at zero

temperature there is no chiral phase transition.
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Chapter 3

Torsion and the Gravity Dual of
Parity Breaking in AdS4/CFT3
Holography
AdS4/CFT3 is currently emerging as a novel paradigm of holography that has qualitatively different proper-

ties from the more familiar AdS5/CFT4 correspondence. Particularly intriguing is the recent accumulation

of evidence that AdS4/CFT3 can be used to describe a plethora of phenomena in 2+1 dimensional condensed

matter systems, such as quantum criticality [73, 74], Quantum Hall transitions [75, 76, 77, 78], superconduc-

tivity [79, 80, 81, 82, 83], supefluidity [84, 85] and spontaneous symmetry breaking [86, 87, 88]. Furthermore,

AdS4/CFT3 is the appropriate setup to study the holographic consequences of generalized electric-magnetic

duality of gravity and higher-spin gauge fields [89, 90, 91, 92, 93].

In the absence of an explicit AdS4/CFT3 correspondence example,1 various toy models have been used

to study its general qualitative aspects. One of the aims of the present work it to provide yet another model

that can be used to unveil some salient and intriguing properties of AdS4/CFT3 holography. However, this

is not our only aim. We also wish to study here the relevance of torsion to four dimensional gravity from

a holographic point of view. The study of torsion is an interesting subject in itself that poses formal and

phenomenological challenges.2 In the context of a string theory description of gravity, torsion is omnipresent

through antisymmetric tensor fields. AdS4/CFT3 provides the basic setup where four dimensional torsion

can be holographically investigated.

We consider a simple toy model where torsion is introduced via the topological Nieh-Yan class [21]. In

particular, we consider the modification of the Einstein-Hilbert action with a negative cosmological constant

by the Nieh-Yan class, the latter having a spacetime-dependent coefficient. In the context of the 3+1-split

formalism for gravity [89] we point out that the torsional degrees of freedom are carried by the ‘gravitational

magnetic field.’ In pure gravity the magnetic field is fully determined by the frame field, and torsion vanishes.

In our model, the spacetime dependence of the Nieh-Yan coefficient makes some of the components of the

magnetic field dynamical and as a consequence torsional degrees of freedom enter the theory. Our toy model

is simple enough such that only one of the torsional degrees of freedom becomes dynamical. This degree

1The recently suggested field theoretic models for M2 branes [94, 95, 96, 97, 98, 99] are important steps towards the
understanding of the boundary side of AdS4/CFT3.

2See [100, 101, 102] for recent reviews and [103, 104] for other recent works.
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of freedom can be either carried by a pseudoscalar, in which case our model is equivalent to a massless

pseudoscalar coupled to gravity, or by a two-form gauge potential. In the latter case our model becomes

equivalent to a Kalb-Ramond field coupled to gravity.

Next, we find an exact solution of the equations of motion in Euclidean signature. Our metric ansatz is

that of a domain wall (in the bulk). The solution, the torsion vortex, has two distinct asymptotically AdS4

regimes along the “radial” coordinate. The pseudoscalar has a kink profile and it is finite at both of the

asymptotic regimes. Our torsion vortex can be viewed as a generalization of the axionic wormhole solution

of [105] in the case of non-zero cosmological constant. See also [106] for recent work on AdS wormholes.

Having in mind the holographic interpretation of our model we focus mainly on the case where the torsional

degree of freedom is carried by a pseudoscalar field. Following standard holographic recipes we find that the

torsion vortex is the gravity dual of a three dimensional system that possesses two distinct parity breaking

vacua. The two vacua are distinguished by the relative sign of the pseudoscalar order parameter. Our bulk

picture suggests that the transition from one vacuum to the other can be done by a marginal deformation of

the theory. In Appendix B we suggest that the above qualitative properties can be realized in the boundary

by the three dimensional Gross-Neveu model coupled to U(1) gauge fields.

Finally, we point out that the bulk physics of our vortex solution bears some resemblance to the Abrikosov

vortex of superconducting systems. There is a natural mapping of the parameters of the torsion vortex to

those of the Abrikosov vortex. We show that the gravitational parameter that is interpreted as an order

parameter satisfies a ϕ4-like equation and this motivates us to suggest that the cosmological constant is

related to the “critical temperature” as Λ ∼ T −Tc. We end with a discussion of multi-vortex configurations

and vortex condensation. The outcome of this analysis is that H-flux supports bubbles of flat spacetime.

The chapter is organized as follows. In Section 2 we discuss the relevance of torsional degrees of freedom

in gravity and their relation with the gravitational magnetic field. In Section 3 we present our toy model

and its various equivalent manifestations and discuss its 3+1-split formalism of [89]. In Section 4 we present

the explicit torsion vortex solution of our model. In Section 5 we discuss the holography of the torsion

vortex. Section 6 contains the bulk physics of the vortex and its relationship to the Abrikosov vortex. It

also contains the discussion of multi-vortices and vortex condensation. Technical details and the discussion

of the three-dimensional Gross-Neveu model coupled to U(1) gauge fields are contained in the Appendices.
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3.1 Torsional degrees of freedom in gravity

3.1.1 Preliminaries

In this chapter we will consider a four dimensional spacetime with a negative cosmological constant. The

Einstein-Hilbert action may be written as3

IEH =

∫
M

(
ϵabcde

a ∧ eb ∧Rcd − 1

6
Λϵabcde

a ∧ eb ∧ ec ∧ ed
)
, (3.1)

where ea denote the one-form frame fields, while ωab are the connection one-forms with curvature Rab =

dωab + ωac ∧ ωcb. As is well-known the variation of (3.1) gives the Einstein equations and also the zero

torsion constraint T a = dea + ωab ∧ eb = 0. By virtue of the latter this action can be written entirely in

terms of metric variables.

There are also a number of other terms that one may consider. These are all of potential interest to holog-

raphy because being total derivatives they may induce interesting boundary effects. We may parameterize

these terms as follows (writing all possible SO(3, 1)-invariant 4-forms constructed from ea, Rab, T
a):

Itop = n

∫
M

CNY + 2γ−1

∫
M

CIm + p

∫
M

P4 + q

∫
M

E4 , (3.2)

where CNY = T a ∧ Ta − Rab ∧ ea ∧ eb = d(T a ∧ ea) is the Nieh-Yan form, γ is often referred to as the

Immirzi parameter with CIm = Rab ∧ eb ∧ ea, P4 = − 1
8π2R

a
b ∧Rba = − 1

8π2 d(ω
a
b ∧Rba − 1

3ω
a
b ∧ ωbc ∧ ωca)

is the Pontryagin form and E4 = − 1
32π2 ϵabcdR

ab ∧Rcd is the Euler form. We note that P4 +
σ⊥a

2

4π2 CNY and

CNY − CIm are actually SO(3, 2) invariants [101]. These terms become of more interest, even in gravity, if

we allow the coefficients to become fields. Although we will not consider this problem here in full generality,

we will consider a particular example. We note that there is older literature, principally by d’Auria and

Regge [107] that also considered some such cases (usually in asymptotically Minkowski geometries). In the

course of the chapter, we will review what is known from those older works. The purpose of our work,

amongst other things, is to bring this up to date, and in particular focus on aspects of holography.

3.1.2 Torsion and the magnetic field of gravity

Our simple model involves only the Nieh-Yan (NY) term. It is interesting to discuss the physics of this

topological invariant before we embark on detailed calculations. We will see below that the NY term in

3We use IEH = −16πG4SEH where SEH is the usually normalized gravitational action. To fix notation we note that the
Einstein equations that follow from SEH are Gµν + Λgµν = 0. We will also write Λ = −3σ⊥/L

2.
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gravity plays a role similar to that of the θ-angle in gauge theories.

To see this, we explain below the relationship between the gravitational magnetic field Bα and torsion.

Consider the 3+1 split4 of the Einstein-Hilbert action (1) with the addition of the usual gravitational

Gibbons-Hawking boundary term IGH [89, 91, 92]

IEH + IGH =

∫
dt ∧

(
˙̃eα ∧ (−4σ⊥ϵαβγ ẽ

β ∧Kγ)

+2σ⊥N

{
2d̃ (Bα ∧ ẽα) + 2Bα ∧ T̃α + ϵαβγ

(
σBα ∧Bβ −Kα ∧Kβ − σ⊥Λ

3
ẽα ∧ ẽβ

)
∧ ẽγ

}
−4σ⊥N

αϵαβγ(D̃K)β ∧ ẽγ + 4Qα(Kβ ∧ ẽβ) ∧ ẽα + 4q0α

{
ϵαβγ T̃

β ∧ ẽγ
})

. (3.3)

In the 3+1 split formalism the dynamical variables in (3.3) are the “spatial”5 one-forms ẽα, Kα and Bα.

The first two are canonically conjugate variables. The magnetic field Bα carries the torsional degrees of

freedom as it can be seen for example if we write the definition of the non-trivial ‘spatial’ torsion as

T̃α = d̃ẽα − σϵαβγBβ ∧ ẽγ . (3.4)

It is easily seen that the radial component of torsion T 0 is determined by ẽα and Kα. Notice that (3.4)

implies that the tensor Bαβ is odd under ‘spatial’ parity, hence the trace Bαα is a pseudoscalar. Although a

priori the torsional degrees of freedom are not connected with the pair of conjugate variables ẽα andKα, they

are not dynamical as there is no kinetic term for Bα. Rather, they enter (3.3) algebraically and as such they

yield the algebraic zero torsion condition by virtue of which the magnetic field is related to the frame field.

Indeed, as discussed in Ref. [89], the q0α constraint sets to zero the antisymmetric part of Bα in deDonder

gauge, such that the first term in the second line of (3.3) vanishes. Then, the variation of (3.3) with respect

to Bα yields T̃α = 0, leaving as true dynamical variables ẽα and Kα. This is the gravitational analogue of

the electromagnetic case where the magnetic field is related to the gauge potential via the Bianchi identity.

Consider now adding to the Einstein-Hilbert action the Nieh-Yan class CNY with a constant coefficient

θ. Over a compact manifold, the NY class is a topological invariant and takes integer values6 [101]. Having

in mind holography, we are interested here in manifolds with boundary. In particular, the 3 + 1 split has

been set up so that the boundary is a constant-t slice. The NY term reduces to a boundary contribution.

4In appendix ?? we present a brief review of the 3+1 split formalism where the definitions of the various relevant quantities
appear and notation is explained. We note here that σ is the overall signature of the spacetime, while σ⊥ is the signature of
the radial direction and σ3 the signature of the boundary.

5By spatial, we will mean orthogonal to the “radial” coordinate t. In the case of AdS4, this radial coordinate is spacelike,
and thus σ⊥ = +1.

6More precisely, CNY /(2πL)
2 is integral, as it is equal to the difference of two Pontryagin forms.
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The explicit calculation yields

INY ≡ −2σ⊥θ

∫
CNY = 2σ⊥θ

∫
dt ∧

[
2ϵαβγ ˙̃e

α ∧ ẽβ ∧Bγ + ϵαβγḂ
α ∧ ẽβ ∧ ẽγ

]
. (3.5)

Adding (3.5) to (3.3) we obtain

IEH + IGH + INY =

∫
dt ∧

(
˙̃eα ∧ (−4σ⊥ϵαβγ ẽ

β ∧ [Kγ − θBγ ]) + 2σ⊥θϵαβγḂ
α ∧ ẽβ ∧ ẽγ

+ constraint terms
)
. (3.6)

Notice that the INY term has two effects. One is to modify the canonical momentum variable Kα 7→

Kα − θBα. This is analogous to the effect of the θ-angle in the canonical description of electromagnetism

[108]. The other is to provide a kinetic term for the singlet component of the magnetic field (one easily

verifies that only Bαα contributes in the second term in the first line of (3.6)). This second effect has no

analogue in electromagnetism. Taking the variation of (3.6) with respect to Bα, one finds that the zero

torsion condition still holds. This is expected of course since the INY term is purely a boundary term. As a

consequence, the true dynamical variables remain ẽα and Kα. However, the holography is slightly modified.

The variation of (3.6) gives on-shell

δ (IEH + IGH + INY )on shell =
∫
∂M

δẽα ∧
(
−4σ⊥ϵαβγ ẽ

β ∧ [Kγ − θBγ ]
)
on shell

. (3.7)

After the appropriate subtraction of divergences [91, 92], (3.7) yields a modified boundary energy momentum

tensor. The modification is due to the term 4σ⊥θϵαβγ ẽ
β ∧ Bγ which is parity odd and corresponds to the

unique symmetric, conserved and traceless tensor of rank two and scaling dimension three that can be

constructed from the three-dimensional metric [109]. It is the exact analogue of the topological spin-1

current constructed from the three dimensional gauge potential.

The form of the action (3.6) unveils an intriguing possibility. The above holographic interpretation was

based on the zero torsion condition that connects Bα to the frame field. However, to get the zero torsion

condition from (3.6) we needed to integrate by parts the last term in the first line. Hence, if θ were t-

dependent, the torsion would no longer be zero and the trace Bαα would become a proper dynamical degree

of freedom independent of ẽα. In such a case the holographic interpretation of (3.6) would change. The

new bulk degree of freedom would couple to a new pseudoscalar boundary operator. As a consequence, we

have the possibility to probe additional aspects of the boundary physics and describe new 2+1 dimensional

phenomena. That we do in the next section.
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3.2 The Nieh-Yan models

3.2.1 General aspects

In the previous section we sketched a mechanism by which torsional degrees of freedom become dynamical.

In particular, we have argued that the addition of the Nieh-Yan class with a space-time dependent coefficient

in the Einstein-Hilbert action makes dynamical a pseudoscalar degree of freedom connected to the trace of

the gravitational magnetic field. Adding boundary terms to the bulk action corresponds to a canonical

transformation. Consequently, by adding boundary terms we can change the canonical interpretation and

the variational principle. Consider first the action

I ′NY = IEH [e, ω] + IGH [e, ω] + 2

∫
M

F (x)CNY , (3.8)

where F is a pseudoscalar ‘axion’ field with no kinetic term. If F ≡ −σ⊥θ were a constant, this theory

would be equivalent to that studied in the last section. With F = F (x), we have additional terms in the

action involving gradients of F . If we perform the 3+ 1 split on this action, we will find that ẽα and Bα are

canonical coordinates, and their conjugate momenta will depend on F .

The action as given may be supplemented by additional boundary terms. Such boundary terms are

analogous to the Gibbons-Hawking term in gravity, but here involve the torsional degrees of freedom. In

particular, we can replace I ′NY by

INY = IEH [e, ω] + IGH [e, ω]− 2

∫
M

dF ∧ Ta ∧ ea . (3.9)

This action is such that ẽα and F are canonical coordinates with appropriate boundary conditions, while

Bα appears in the momentum conjugate to F . To investigate this theory, we note that the variation of the

action takes the form

δINY = 2

∫
M

δed ∧
[
ϵabcde

b ∧
(
Rcd − 1

3
Λec ∧ ed

)
+ 2dF ∧ Td

]
+2

∫
M

δωab ∧
[
ϵabcdT

c ∧ ed + dF ∧ eb ∧ ea
]
+ 2

∫
M

δF CNY

+2

∫
M

d[δea ∧
(
ϵabcde

b ∧ ωcd − dF ∧ ea
)
− Ta ∧ eaδF ] . (3.10)

A non-trivial configuration of F would source a particular component of the torsion. Indeed the classical
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equations of motion can be manipulated to yield in the bulk

T a ∧ ea = 3 ∗4 dF , (3.11)

where ∗4 denotes the Hodge-∗ operation. However, as d’Auria and Regge [107] showed, this classical system

is equivalent to a pseudoscalar coupled to torsionless gravity.

IPS = IEH [e, ω
◦
] + IGH [e, ω

◦
]− 3

∫
M

dF ∧ ∗4dF . (3.12)

This comes about as follows. We write the connection as ω = ω
◦
+ Ω, where ω

◦
is torsionless, and insert the

equation of motion (3.11). The latter becomes an equation7 for Ω, and we obtain (3.12).

The holographic interpretation of a massless pseudoscalar field coupled to torsionless gravity is that it

is dual to dimension ∆ = 3, 0 composite pseudoscalar operators in the boundary. The usual holographic

dictionary then says that only the ∆ = 3 operator appears in the boundary theory since only this is above the

unitarity bound of the three dimensional conformal group SO(3, 2). A scalar operator with dimension ∆ = 0

would simply correspond to a constant in the boundary. Hence, the sensible holographic interpretation of

the massless bulk pseudoscalar is that its leading behaviour determines the marginal coupling of a ∆ = 3

operator; the expectation value of the operator itself is determined by the subleading behaviour of the bulk

pseudoscalar.

Another equivalent formulation of this bulk theory is obtained by writing

∗4dF =
1

3
H . (3.13)

with H a 3-form field. This is the parameterization that would be most familiar from string theory, as the

system simply corresponds to an antisymmetric 2-form field. In this formulation, we write

IKR = IEH [e, ω
◦
] + IGH [e, ω

◦
] +

1

3

∫
M

H ∧ ∗4H +

√
2

3

∫
M

C ∧ d ∗4 H

= IEH [e, ω
◦
] + IGH [e, ω

◦
]− 1

2

∫
M

dC ∧ ∗4dC +

∫
M

d(C ∧ ∗4dC) . (3.14)

In the first equation, C appears as a Lagrange multiplier for the ‘Gauss constraint’ and in the second

expression, we have solved for the H equation of motion in the bulk, which is just H =
√

3
2dC.

7Explicitly this is Ωa
b = σ

4
ϵacdb∂cFed.
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3.2.2 The 3+1-split of the pseudoscalar Nieh-Yan model

To investigate the holographic aspects of our model it is most useful to use the ‘radial quantization’ in

which we think of the radial coordinate as ‘time’ t. We have derived the radial 3+1 split in the first order

formalism in [89], and this is summarized with explanations of notation in Appendix ??. Here we update

that calculation to include torsional terms. The Nieh-Yan deformation gives

−2

∫
dF ∧ T a ∧ ea = 2

∫
dt ∧

{
−Ḟ T̃α ∧ ẽα − ˙̃eα ∧ d̃F ∧ ẽα +N [2d̃F ∧Kα ∧ ẽα]

+Nα[2d̃F ∧ T̃α] +Qα[−σϵαβγ d̃F ∧ ẽβ ∧ ẽγ ]

}
. (3.15)

We see that the F field makes a contribution to the constraints, and has a conjugate momentum proportional

to the scalar part of the torsion (the part transverse to the radial direction). The full bulk action becomes

I =

∫
dt ∧

(
˙̃eα ∧ (4σ⊥ϵαβγK

γ ∧ ẽβ − 2d̃F ∧ ẽα)− 2Ḟ (ẽα ∧ T̃α)

+N

{
2ϵαβγ

(
(3)Rαβ − σ⊥K

α ∧Kβ − Λ

3
ẽα ∧ ẽβ

)
∧ ẽγ + 4d̃F ∧Kα ∧ ẽα

}
+4Nα

{
−σ⊥ϵαβγ(D̃K)β ∧ ẽγ + d̃F ∧ T̃α

}
+4Qα

{
(Kβ ∧ ẽβ) ∧ ẽα − 1

2
σϵαβγ d̃F ∧ ẽβ ∧ ẽγ

}
+ 4q0α

{
ϵαβγ T̃

β ∧ ẽγ
})

. (3.16)

We notice that the Q-constraint term can be written in the form

4Qαẽ
α ∧

(
Kβ ∧ ẽβ − σ ∗3 d̃F

)
. (3.17)

Because of this constraint (which relates the antisymmetric part of the extrinsic curvature to the vorticity

of F ), the momentum conjugate to ẽα is symmetric, i.e.

Πα = 4σ⊥ϵαβγK
γ ∧ ẽβ − 2d̃F ∧ ẽα

= 4σ⊥

(
ϵαβγK

γ ∧ ẽβ − 1

2
σ3 ∗3 (Kβ ∧ ẽβ) ∧ ẽα

)
. (3.18)

When written out in components, one finds that the antisymmetric part K[αβ] cancels

Πα = 4σ⊥(K(βα) − trK ηβα)ẽ
β . (3.19)
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This result is consistent with the fact noted above, that the system may be equivalently described as a

pseudoscalar field coupled to torsionless gravity. Moreover, if we take the deDonder gauge d†ẽα = 0, the

torsion constraint implies that B is symmetric.

The q0α constraint yields T̃ βαβ = 0. Out of the nine components of T̃ , which transform as 5 + 3 + 1

under SO(3) (or SO(2, 1)), this sets the triplet to zero (the 5 also vanishes on an equation of motion). The

momentum conjugate to F is given by

ΠF = −2ϵαβγ T̃αβγ . (3.20)

This is the singlet part of the torsion, which has become dynamical in this description of the theory, in the

sense that it is canonically conjugate to F .

3.3 The torsion vortex

We will now simplify the analysis by taking a coordinate basis, and looking for solutions of the form

ẽα = eA(t)dxα, N = 1, Nα = 0 , (3.21)

and we will further suppose that F = F (t). In this case Kα and Bα reduce to one degree of freedom each

as a result of the constraints

Kα = kẽα, Bα = bẽα , (3.22)

and one finds ΠA = −4σ⊥k and ΠF = 2σb. The action then takes the following relatively simple Hamiltonian

form

INY ∝
∫
dt d3x e3A(t)

[
ȦΠA + ḞΠF −

(
1

2
σ3Π

2
F +

1

8
σ⊥Π

2
A +

2

3
Λ

)]
. (3.23)

and the equations of motion give

Π̇A = 3ḞΠF , Π̇F + 3ΠF Ȧ = 0, ΠA = 4σ⊥Ȧ, ΠF = σ3Ḟ , (3.24)

Π2
A + 4σΠ2

F + 16
3 σ⊥Λ = 0 . (3.25)

These equations of motion could of course alternatively be obtained by considering the theory in the form

(3.12). It is convenient to rescale F (t) = 1
3Θ(t). Then the equations of motion can be put in the form

Ä+ 3Ȧ2 − 3a2 = 0, Ä =
1

12
σΘ̇2, Θ̈ + 3Θ̇Ȧ = 0 . (3.26)
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where we have set Λ = −3σ⊥a
2 with a = 1/L. These are of the standard form of domain wall equations that

have appeared numerous times in the AdS/CFT literature. However, there is a crucial difference. Notice

that the first two of (3.26) imply

Ȧ2 +
1

36
σΘ̇2 − a2 = 0 . (3.27)

For Euclidean signature (σ = σ3 = 1) the second term in (3.27) has positive sign in contrast to most of the

other holographic studies. This is due to the fact that in passing from Lorentzian to Euclidean signature

the pseudoscalar kinetic term acquires the ‘wrong sign’ [110]. This property allows for a remarkable exact

solution to the above system of non-linear equations in Euclidean signature, which we refer to as the torsion

vortex. To obtain it we define

h(t) = Ȧ(t) , (3.28)

at which point we have

ḣ =
1

12
Θ̇2, ḣ+ 3(h2 − a2) = 0 . (3.29)

The general solution is of the form

h(t) = a tanh 3a(t− t0) (3.30)

and we then have

ΠF = Ḟ = ±2
√
a2 − h2(t) = ±2a sech 3a(t− t0) (3.31)

which gives

Θ(t) = Θ0 ± 4 arctan
(
e3a(t−t0)

)
. (3.32)

The ± sign corresponds to kink/antikink and we will without loss of generality choose the + sign. We may

also solve for

eA(t) = α(2 cosh 3a(t− t0))
1/3 (3.33)

The parameter α is an arbitrary positive integration constant that sets the overall scale of the spatial part

of the metric. t0 may be interpreted as the position of the vortex; when t0 = 0 the torsion vortex sits in the

middle between the two asymptotically AdS4 regimes. Below, we will discuss the interesting holographic

interpretation of the torsion vortex.
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Figure 3.1: Plot of the torsion vortex solution vs. t. The blue dashed line is eA(t) while the red solid line is Θ(t). To make
the plot, we have chosen Θ0 = 0.

Note the curvature and torsion of this solution:

Rαβ = −Ḟ Ȧ ϵαβγdt ∧ eγ − a2eα ∧ eβ , (3.34)

Rα0 =
(
ḣ+ h2

)
dt ∧ eα − 1

2
Ḟ Ȧ ϵαβγe

β ∧ eγ , (3.35)

Tα = −1

2
Ḟ ϵαβγe

β ∧ eγ , (3.36)

T 0 = 0 . (3.37)

These are non-singular for all t ∈ (−∞,∞). The torsion vortex solution has divergent action, but this

divergence is cancelled by boundary counterterms, the same counterterms which render the action of AdS4

finite. To see this, the energy of the torsion vortex can be computed by evaluating the Euclidean action on

the solution. Introducing a cutoff at t = ±L, we find

Itv,on−shell = 4a2
∫
ϵαβγdx

α ∧ dxβ ∧ dxγ
∫
dte3A(t) (3.38)

= (6

∫
V̂ ol3) ·

(
4

3
aα3e3aL + . . .

)
, (3.39)

where the ellipsis contains terms that vanish when the cutoff is removed. As in pure AdS4, an appropriate

counterterm is of the form [111, 112]

Ic.t. = −4a

3

∫
∂M

ϵαβγ ẽ
α ∧ ẽβ ∧ ẽγ . (3.40)
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In the present case, we have such a counterterm on each asymptotic boundary, and thus we find

Ic.t. = −2
2a

3
α3e3aL · (6

∫
V̂ ol3) , (3.41)

which exactly cancels the divergent energy of the torsion vortex.

Furthermore, we note that in the Kalb-Ramond representation, the solution has

H = Θ̇V ol3 = ±6aα3V̂ ol3 ≡ ĤV̂ ol3 , (3.42)

where V̂ ol3 = 1
6ϵαβγdx

α ∧ dxβ ∧ dxγ . This corresponds to a ‘topological quantum number’ of the kink

∫
∗4H = ±∆Θ = ±2π. (3.43)

3.4 The torsion vortex as the gravity dual of parity symmetry

breaking

The holographic interpretation of the torsion vortex is also of interest. To study this, we set to zero without

loss of generality the integration constant Θ0 = 0 and pick the plus sign in (3.31), (3.32). Next we need the

asymptotic expansion of the vierbein which reads

ẽα = 2−1/3αe±a(t−t0)
(
1 +

1

3
e∓6a(t−t0) + · · ·

)
dxα for t→ ±∞ . (3.44)

This shows that our solution is asymptotically anti-de Sitter for both t → ±∞. The two asymptotic AdS

spaces have the same cosmological constant. From this expansion we could read the expectation value of the

renormalized boundary energy momentum tensor which would be given by the coefficient of the e±3at term

(see e.g. [91, 92]). Such a term is missing in (3.44), hence the expectation value of the boundary energy

momentum tensor is zero.

It is not immediately apparent how to interpret these two asymptotic regimes. Are they truly distinct, or

should they be identified in some way? We note that the pseudoscalar behaves in these asymptotic regimes

as

Θ(t) → 4e−3a(t−t0) − 4

3
e−9a(t−t0) + · · · for t→ −∞ , (3.45)

Θ(t) → 2π − 4e3a(t−t0) +
4

3
e9a(t−t0) + · · · for t→ +∞ . (3.46)
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From the above we confirm that Θ(t) is dual to a dimension ∆ = 3 boundary pseudoscalar that we denote

O3. In each one of the asymptotically AdS regimes, the leading constant behavior of Θ(t) corresponds to the

source (i.e., coupling constant) for O3 and the subleading term proportional to e∓3a(t−t0) to the expectation

value ⟨O3⟩. The two asymptotic regimes are distinguished by the behavior of Θ. In fact, the essential

difference is parity.

We can now describe the holography of our torsion vortex. In the t → −∞ boundary sits a three-

dimensional CFT at a parity breaking vacuum state. The order parameter is the expectation value of

the pseudoscalar which is ⟨O3⟩ = 4 in units of the AdS radius. The expectation value breaks of course

the conformal invariance of the boundary theory. Then, the theory is deformed by the same pseudoscalar

operator gO3 where g is a marginal coupling. The torsion vortex provides the holographic description of

that deformation. A solution with two asymptotic regimes is difficult to interpret in terms of the usual

holographic renormalization group. Note though that in this case, at t→ +∞ the space becomes AdS with

the same radius as at t→ −∞. Hence, the two boundary theories have the same ‘central charges’.8

We suggest that instead of interpreting the solution in terms of an RG flow, we should think of it as a

transition between two inequivalent vacua of a single theory. This statement is supported by the behavior

of Θ(t) in the two asymptotic regimes. For t→ ∞ the pseudoscalar asymptotes to the configuration (3.46).

The interpretation is now that when the marginal coupling takes the fixed value g∗ = 2π we are back to

the same CFT (i.e. having the same central charge) however in a distinct parity breaking vacuum such that

⟨O3⟩ = −4. In others words, the two asymptotic AdS regimes seem to describe two distinct parity breaking

vacua of the same theory. The two vacua are distinguished by the expectation value of the parity breaking

order parameter being ⟨O3⟩ = ±4. Quite remarkably, we also seem to find that starting in one of the two

vacua, we can reach the other by a marginal deformation with a fixed value of the deformation parameter.

Since the marginal operator is of dimension ∆ = 3 and parity odd, we tentatively identify it with a Chern-

Simons operator of a boundary gauge field. In this case the torsion vortex induces the T-transformation

in the boundary CFT [113, 109]. In Appendix B we will argue that the three dimensional Gross-Neveu

model coupled to abelian gauge fields exhibits a large-N vacuum structure that matches our holographic

findings. Although our bulk model is extremely simple to provide details for its possible holographic dual,

we regard this remarkable similarity as strong qualitative evidence that our torsion vortex is the gravity

dual of the ‘tunneling’ between different parity breaking vacua in three dimensions. However, in a three-

dimensional quantum field theory, we do not expect that tunneling can occur because of large volume effects,

8We use “central charge” in d = 3 for a quantity that counts the massless degrees of freedom at the fixed point. Such a
quantity may be taken to be the coefficient in the two-point function of the energy momentum tensor or the coefficient of the
free energy density. Recall that there is no conformal anomaly in d = 3.
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and distinct vacua remain orthogonal. Thus, referring to the torsion vortex as a tunneling event should be

taken figuratively. We leave to future work a more careful study of the boundary interpretation of the torsion

vortex solution. An interpretation will depend on the precise topology of the boundary.[114]

3.5 Physics in the Bulk: The Superconductor Analogy

The bulk interpretation of the exact solution is also interesting. Because the pseudoscalar field undergoes

Θ(t) → Θ(t) + 2π under t goes from −∞ to +∞, the exact solution corresponds to a topological kink. It

satisfies ∫
dtΘ̇ = 2π

In Figure 2, we plot the solution.

Figure 3.2: The blue dashed line is |h(t)|, resembling the order parameter of a superconductor, while the solid red line is ΠF ,
analogous to the magnetic induction of an Abrikosov vortex.

3.5.1 Gravity vortex as Abrikosov vortex

The gravity vortex solution (3.29-3.32) bears some resemblance to the Abrikosov vortex of superconducting

systems. In this section, we will explore this and point out some possibly interesting features. The first

thing to notice is that the plot in Figure ?? is identical to the profile of an Abrikosov vortex (see for example

Figure 5.1 in Ref. [115].) The codimension differs,9 but there is a correspondence between our radial t-

direction and the radial direction in the Abrikosov vortex, and |h| and ΠF correspond to the condensate and

magnetic induction of the superconductor, respectively. Table 1 summarizes the correspondence. In this

9The difference in dimensionality of the core is what we expect, since it supports a 3-form field strength in contrast to a
2-form field strength in superconductivity.
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Abrikosov vortex Torsion vortex

order parameter Φ order parameter |h| = |Ȧ|
T − Tc Λ

magnetic induction B ΠF

magnetic field H Ĥ

Z-quantized magnetic flux Z2-quantized electric flux

Table 3.1: Abrikosov vortex v.s. Torsion vortex

correspondence, since the order parameter is h = Ȧ, the superconducting phase (constant order parameter)

corresponds to AdS4, while the normal phase corresponds to flat space (h = 0). Far away from the core of

the torsion vortex, the geometry is asymptotically AdS, but at the core the spatial slice (at t→ t0) becomes

flat. To see this, note that if we think of the system as a pseudoscalar coupled to torsionless gravity, the

torsion vortex has ω
◦ α

β = 0 and ω
◦ α

0 = Ȧẽα, and so

R
◦ α

β = −h2ẽα ∧ ẽβ , (3.47)

R
◦ α

0 = (ḣ+ h2)dt ∧ ẽα , (3.48)

T
◦ α = 0 . (3.49)

Thus, at the core, we find that the Riemann tensor has components

Rα0α0 → −3a2α , (3.50)

Rαβαβ → 0 . (3.51)

This behavior is in line with an Abrikosov vortex in which there is normal phase at the core and supercon-

ducting phase away from the core.

The analogue of the magnetic field is what we have called Ĥ, proportional to the constant α3. In the

vortex, the magnetic induction, analogous to ΠF , has a penetration length λ ∼ 1/3a, and the coherence

length of the order parameter is ξ ∼ 1/6a. The penetration and coherence length are obtained by look-

ing at the exponential fall-off of these quantities in the core of the vortex, away from their values in the

superconducting phase.

The torsion vortex also has a quantized flux
∫
∗4H = ∆Θ = 2π. This flux is independent of any

parameters of the solution and of any rescaling of fields in the theory. Thus, this is an analogue of the

quantized magnetic flux in superconductivity.
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Finally, note the following interesting feature. If we take a derivative of the second equation in (3.29),

we arrive at

ḧ− 6Λh− 18h3 = 0 . (3.52)

This looks like a Landau-Ginzburg equation of motion of an effective ϕ4 theory. This leads us to interpret Λ ∼

T −Tc. Of course, there is no real temperature in the case of the torsion vortex, but we note that this implies

that the penetration and coherence lengths diverge as T → Tc with exponent 1/2, as in superconductivity.

3.5.2 Multi-vortices and Vortex Condensation

In the last section, we noted that there is a strong analogue between the torsion vortex solution and super-

conductivity. It is intriguing to carry the analogy further and consider multi-vortex configurations. We have

noted that at the core of the torsion vortex, the spatial sections are flat. Thus, one might imagine that if it

was favourable for torsion vortices to condense, as vortices do in Type I superconductors, then finite regions

of normal phase (corresponding to Λ = 0) would obtain. We will argue below that this can in fact occur,

although the system appears not to be unstable.

To understand the physics involved, the first step is to consider a configuration of two vortices. In the

superconductivity literature, this is a standard computation. One takes two vortices separated by a distance

ℓ and computes the Euclidean action. More precisely, we will treat this here as follows. Denoting the torsion

vortex schematically as Φ(t0), we take a configuration

{
Φ(ℓ/2), t > 0

Φ(−ℓ/2), t < 0
. (3.53)

We have taken a piecewise solution, because solutions of non-linear equations cannot be simply superimposed.

The result is not quite a solution to the equations of motion of course, failing at the midpoint between the

vortices. However, if we simply evaluate the Euclidean action, we find

SE(ℓ) = 4aα3 sinh(3aℓ/2) . (3.54)

Note that this is positive, so one might naively conclude that the vortices repel each other. However,

recall that the vortex profile exists not in flat space-time, but in the metric given by (3.33), which rises

asymptotically. As a result, as we move the vortices further apart, there is a corresponding rise in the metric
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between the vortices. So, we should directly evaluate the force

F = −dSE
dℓ

= −6aα3 cosh(3aℓ/2) < 0 . (3.55)

and thus we conclude that the vortices in fact attract each other. In the superconducting analogue, this

implies that we have a Type I superconductor. In such a superconductor, the number of vortices is determined

by the total magnetic flux, and the vortices tend to clump together forming (potentially) finite regions of

normal phase within the superconductor.

We now describe the analogous situation in our gravitational system. We have noted that the constant

Ĥ plays the role of the external magnetic induction, while H is the magnetic field, varying within the vortex,

with ∆Θ =
∫
∗4H. Following the superconducting analogue, if we put the system in a box of size 2L (that

is we impose a cutoff on each AdS asymptotic) the flux conservation equation is of the form

∆Θ = 2LĤ (3.56)

The vortices carry the flux in the superconductor, and so it is natural to ask what is the lowest energy

configuration satisfying (3.56)? To analyze this, consider an array of n vortices in a region of size L0. We

take the vortices to be equally spaced, as one can show that deviating from such a configuration causes a

rise in energy. For such a configuration, the flux quantization condition (3.56) gives a relation between n,L0

and Ĥ. Such a representative curve is shown in Fig 3.3a)

4 6 8 10
n

1.10

1.15

L0

aL

4 6 8 10
n

7.0

7.5

8.0

ãtot

bL

Figure 3.3: Size of normal state droplet a) and total energy b) vs. n for a multi-vortex.

If we solve this equation for L0 as a function of n and Ĥ, we can then compute the energy as a function

of n. One obtains a curve as in Fig 3.3b). One notes that the energy is minimized for large n, and in that
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case, the size L0 asymptotes to a fixed value, which is found to be

L0 =
Ĥ

6a
· 2L = α3 · 2L (3.57)

We conclude that the preferred configuration, given a fixed external flux, is a continuum of vortices arrayed

over a finite size region. Within this droplet, the system is in the normal phase. We have noted that the

vortex core is spatially flat, and so we surmise that within the droplet, the space-time is flat. The asymptotic

value of energy in Fig 2.3b) is precisely minus that contributed by the cosmological constant. Again, the

size of the droplet is set by the value of the external H-flux, and the boundary conditions are AdS. Note

that for a fixed cutoff, there is a critical field (given by Ĥ = 6a) for which the entire spacetime is flat.

3.6 Conclusions

In this chapter we have presented in detail a simple toy model, the Nieh-Yan model, where torsion enters

through the spacetime dependence of the coupling constant of the Nieh-Yan topological invariant. Although

we have discussed the model directly in terms of torsion, it can classically be put into equivalent forms as

either a massless pseudoscalar or a Kalb-Ramond field coupled to gravity. The model has an interesting

and non-trivial holographic interpretation. In particular, we have shown that it possesses an exact bulk

solution in Euclidean signature, termed the torsion vortex, having two asymptotically AdS4 regimes, while

the pseudoscalar acquires a kink profile. We have argued then that the holographic interpretation of this

torsion vortex is a three-dimensional CFT with two distinct parity breaking vacua. Moreover, our bulk

solution may imply that the deformation by a classically marginal pseudoscalar with a fixed coupling constant

induces a transition between the two parity breaking vacua separated by a domain wall, which would be

at infinity in the boundary components.[114] Remarkably, this qualitative behaviour is seen already in the

three-dimensional Gross-Neveu model coupled to U(1) gauge fields. The economy of our bulk model does

not allow a detailed identification of the bulk and boundary theories, nevertheless we believe that our results

provide a strong base where an exact bulk/boundary dictionary for AdS4/CFT3 can be based. A further

rather intriguing property of the torsion vortex is that it can be mapped into the standard Abrikosov vortex

of superconductivity. Such a map identifies flat spacetime with a superconductor’s normal phase, while AdS

is identified with a superconducting phase. The cosmological constant would then measure the deviation

from the ‘critical temperature’. A phenomenon of vortex condensation is found, similar to the analogous

case in type I superconductors.

The upshot of our results is that the torsional degrees of freedom of four dimensional gravity can provide
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holographic descriptions for a number of interesting properties of three dimensional critical systems. It

would be interesting to extend our analysis to more elaborate models where more torsional degrees of

freedom become dynamical. It is also of interest to discuss whether our simple model can be embedded into

M-theory.
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Chapter 4

Real-Time Correlators and
Non-Relativistic Holography

Correlation functions of operators in strongly coupled conformal field theories can often be computed using

the AdS/CFT correspondence. Euclidean correlators have a long history[28, 116] while the rich analytic

structure of various Lorentzian signature correlators, associated with the boundary condition problem in

the bulk, can also be obtained. The earliest proposal for the latter was by Son and Starinets[29], and there

have also been several elaborations of that method (see for example [117, 118]). Recently, Skenderis and van

Rees[30, 31] showed how the complex time contour of an arbitrary correlation function can systematically be

accounted for by gluing together manifolds of various signatures, carefully matching fields at the interfaces.

This method was used to calculate scalar two-point functions in AdS space, and in asymptotically AdS

spaces.

The extension of gauge-gravity duality ideas to a family of spacetimes of Galilean isometries and field

theories with non-relativistic invariance [6, 7] has been of much interest in the recent literature. It is expected

that such systems are of more direct relevance to condensed matter models. In particular, in the special case

where the isometries enlarge to the full Schrödinger algebra, the correspondence was more controllable and

extensively studied. The Schrödinger group itself has been of interest for many years as the full symmetry

of the free Schrödinger wave equation (as well as a few systems with certain interactions). The reader will

find discussions in the literature of the representation theory in many papers, particularly in low spatial

dimensional cases [119, 120, 121, 122]. In the holography point of view, correlation functions have recently

been computed using standard methods for scalars [6, 7, 123, 124] and for fermions [125]. String embedding

of the 4+1 Schrödinger geometry and extension to finite temperature and density was described in [3, 4, 5].

In this chapter, we reconsider Lorentzian correlators of non-relativistic systems by directly calculating

them using the Skenderis and van Rees technique in various dimensional Schrödinger geometries [37]. We

consider the time-ordered correlator and the Wightman function, as well as thermal correlators.

51



4.1 The Schrödinger Geometry and Scalar Fields

We consider the d+ 3 dimensional Lorentzian Schrödinger geometry[6, 7]

ds2 =
L2

z2

(
−β

2

z2
dt2 + 2dtdξ + dx⃗2 + dz2

)
, (4.1)

where z ≥ 0 and β, L are length scales. The x⃗ are coordinates in d-dimensional space. Rather than giving a

conformal class as in the relativistic (AdS) case, the quantity in parentheses is a metric of the Bargman type,

in which the coordinate ξ is null. The Killing field N = ∂ξ generates the central extension of the Schrödinger

algebra whose eigenvalue would be interpreted as ‘mass’ or ‘particle number’ in a weakly coupled non-

relativistic particle theory. In the present context, fields propagating in the bulk are to be taken to be

equivariant with respect to N

NΨ = inψ (4.2)

and dual quasi-primary operators are labeled by both conformal dimension and n. The ξ-direction is taken

to be compact so that the spectrum of dual operators is discrete.

This geometry has Schrödinger isometry with dynamical exponent equal to two. The Killing vectors are

of the form

N = ∂ξ (4.3)

D = z∂z + x⃗ · ∂⃗ + 2t∂t (4.4)

H = ∂t (4.5)

C = tz∂z + tx⃗ · ∂⃗ + t2∂t −
1

2
(x⃗2 + z2)∂ξ (4.6)

Mij = xi∂j − xj∂i (4.7)

K⃗ = −t∂⃗ + x⃗∂ξ (4.8)

P⃗ = ∂⃗ (4.9)

N is central, and D,H,C form an SL(2,R) algebra.

Consider a massive complex scalar propagating on the non-relativistic (Lorentzian) geometry with action

S = −1

2

∫
dd+3x

√
−g
(
gµν∂µϕ̄∂νϕ+m2

0/L
2|ϕ|2

)
(4.10)

The usual interpretation is that the dual theory lives on R1,d
at z = 0 and is coordinatised by the (t, x⃗)
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coordinates–ξ is not geometric in the usual sense. The isometry N : ξ 7→ ξ + a is central and thus N is

strictly conserved. Each operator of the boundary theory can be taken to have a fixed momentum (‘particle

number’) conjugate to ξ. ξ is usually taken compact (with circumference R) so that the spectrum of possible

momenta is discrete. In this case, the dimensionless ratio β/R is a parameter of the theory.

For example, the graviton mode coupling to the stress energy tensor of the boundary theory has particle

number zero [3, 5]. Here, we will consider a complex scalar with definite but arbitrary particle number n.

As we will see, it is very important that the scalar be complex. First, it carries a charge under N and so

we should expect it to be complex. More importantly though, it is dual to an operator in a non-relativistic

theory, and in such a theory there is a sort of polarization: a simple example of this occurs in free field

theories, in which the elementary field creates a particle (and not anti-particle) state.

Now, in this chapter we consider correlators of various types. In this regard, as developed by Skenderis

and van Rees[30, 31], we regard the metric (4.1) as defined formally for complex t, and a given correlator is

constructed from a particular contour in the complex t plane. Here, we consider two such cases, in which

the contour is constructed from horizontal (Lorentzian time) and vertical (Euclidean time) contour segments

(see Fig. 4.1).

τ3

τ0

t2

t1

M0

M2

M1

M3

T0

M2

M1

M0

0 T

τ0

t1

τ2

a) b)

Figure 4.1: Contours corresponding to the time-ordered correlator and the Wightman function, respectively.

In the next two subsections, we consider scalar fields in Lorentzian time and in Euclidean time, respec-

tively.

4.1.1 Lorentzian signature

Given the metric (4.1) for real time, the scalar equation of motion takes the form

z2∂2zϕ− (d+ 1)z∂zϕ+ z2(2∂t∂ξ + ∂2i ϕ) + β2∂2ξϕ−m2
0ϕ = 0. (4.11)
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We look for solutions of the form

ϕ(n) = einξe−iωt+ik⃗·x⃗fω,n,⃗k(z), ϕ̄(n) = e−inξeiωt−ik⃗·x⃗f̄ω,n,⃗k(z) (4.12)

in which case f satisfies

z2∂2zf − (d+ 1)z∂zf + z2(2ωn− k⃗2)f −m2f = 0, (4.13)

where m2 = m2
0 + β2n2. The general solution of (4.13) can be written in terms of modified Bessel functions

as

fn,ω,⃗k(z) = A(ω, k⃗)z
d
2+1Kν(qz) +B(ω, k⃗)z

d
2+1Iν(qz) (4.14)

with ν =
√
(d2 + 1)2 +m2 and q =

√
q2 =

√
k⃗2 − 2ωn. Kν and Iν correspond to non-normalizable and

normalizable modes, respectively. Their asymptotic behavior is as follows

z
d
2+1Kν(qz → 0) = Γ(ν)

z
d
2+1−ν

2−ν+1qν
+ ... (4.15)

z
d
2+1Iν(qz → 0) =

1

Γ(ν + 1)

z
d
2+1+ν

2νq−ν
+ ... (4.16)

z
d
2+1Kν(|qz| → ∞) =

√
πzd+1

2q
e−qz + ... (4.17)

z
d
2+1Iν(|qz| → ∞) =

√
zd+1

2πq

[
eqz(1 + ...) + e−qz−iπ(ν+1/2)(1 + ...)

]
. (4.18)

For q2 < 0, both Kν and Iν are regular everywhere, while for q2 > 0, Iν diverges for large z and should be

discarded. This situation is very similar to that of a scalar field propagating on AdSd+3, where the solution

can also be written in terms of modified Bessel functions. In fact this similarity is very useful and was

employed in Ref. [124] to compute the non-relativistic bulk-to-boundary propagator. We note though that

there is a small but important difference due to the non-relativistic nature of the boundary theory, that we

will explain presently.

Without loss of generality, we take n > 0. To construct the most general solution (with fixed n), we

must integrate over all values of ω, k⃗. However, q has a branch point at ω = k⃗2/2n, and we must then

say how to integrate over ω. Following [30], we do so by moving the branch point off of the real ω axis by

defining qϵ =
√
−2ωn+ k⃗2 − iϵ, q̄ϵ =

√
−2ωn+ k⃗2 + iϵ. The branch cut is taken along the negative real

axis. Clearly, we have made a choice here, but we will see later that this is the correct choice, for physical

reasons. Notice that since Re(qϵ), Re(q̄ϵ) > 0, Kν always decays exponentially as |qz| → ∞. In contrast, the
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large z behavior of Iν tells us that q, q̄ cannot have a real part. As a result, the iϵ insertion should not be

applied for the normalizable mode.1

With these comments, we arrive at the general solution to (4.13) in Lorentzian signature

ϕ(n)(t, x⃗) = einξ
∫
dω

2π

ddk

(2π)d
e−iωt+ik⃗·x⃗z

d
2+1

(
A(ω, k⃗)Kν(qϵz) + θ(−q2)B(ω, k⃗)Jν(|q|z)

)
(4.19)

where we have used Iν(
√
q2z) = Iν(−i|q|z) ∼ Jν(|q|z).

4.1.2 Euclidean signature

Next, we consider a similar analysis in Euclidean signature. To do so, we Wick rotate the metric (4.1) to[123]

ds2 = L2

(
β2 dτ

2

z4
+

−2idτdξ + dx⃗2 + dz2

z2

)
(4.20)

Although this metric is complex and thus not physical, it is possible to trace carefully through the analysis,

and this is what we need to do in any case for Euclidean signature.

The general solution is

ϕ(n)(τ, x⃗) = einξ
∫
dωE
2π

ddk

(2π)d
e−iωEτ+ik⃗·x⃗z

d
2+1A(ωE , k⃗)Kν(qEz) (4.21)

ϕ̄(n)(τ, x⃗) = e−inξ
∫
dωE
2π

ddk

(2π)d
eiωEτ−ik⃗·x⃗z

d
2+1Ā(ωE , k⃗)Kν(q̄Ez) (4.22)

where now qE =
√
q2E =

√
k⃗2 − i2ωEn. Note that in this case, the branch point is at imaginary ωE , and so

no iϵ insertion is necessary.

In contrast to the Lorentzian case, the Euclidean scalar does not have a normalizable mode. This is

because qE and q̄E cannot be pure imaginary, so Iν(qEz) is never regular in the interior. It is important to

note, however, that this statement applies to the case τ ∈ (−∞,∞). If τ is restricted, a normalizable mode

can emerge. For example, if τ ∈ [0,∞), we write ωE = −iω for ϕ and ωE = iω for ϕ̄ and the following mode

is allowable

ϕ ∼ einξe−ωτ+ik⃗·x⃗z
d
2+1Iν(qz) (4.23)

ϕ̄ ∼ e−inξe−ωτ−ik⃗·x⃗z
d
2+1Iν(q̄z) (4.24)

1This fact was not clearly spelled out in Ref. [30] in the relativistic analogue, but we will see later that it is an important
point.
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as long as ω > 0 and −2ωn+ k⃗2 < 0, or equivalently ω > k⃗2/2n.

A similar result pertains in the finite temperature case where τ ∈ [0, β]. Observe however that in contrast

to the relativistic real-time formalism, there is no normalizable mode for the Euclidean segment if we restrict

τ ∈ (−∞, 0). This is because we would need both ω < 0 and −2ωn + k⃗2 < 0, and these contradict each

other. This will have important consequences. In particular we note that there is no normalizable mode in

the segment M0 of either contour in Fig. 4.1.

4.2 Non-Relativistic Holography and Correlators

4.2.1 Matching Conditions

To construct correlation functions, we must match solutions at the interfaces between contour segments.

We will label field values on a contour segment Mn by a subscript, ϕn. Let us begin by considering the

Lorentzian(M1)-Lorentzian(M2) interface in Fig. 4.1b, where t1 ∈ [0, T ] and t2 ∈ [T, 2T ] (where T → ∞ is

a large time). The total action (for these two segments) is

S = SM1 + SM2 =

∫ T

0

dt1
(
gµνM1

∂µϕ̄1∂νϕ1 +m2
0/L

2ϕ̄1ϕ1
)
−
∫ 2T

T

dt2
(
gµνM1

∂µϕ̄2∂νϕ2 +m2
0/L

2ϕ̄2ϕ2
)

(4.25)

The relative minus sign arises because M1 and M2 have opposite orientation. For the same reason, the

metric in M2 is

ds2M2
= L2

(
− β2 dt

2
2

z4
+

−2dt2dξ + dx⃗2 + dz2

z2

)
, (4.26)

which has an extra minus sign in the off-diagonal component.

Requiring continuity of the momentum conjugate to ϕ̄ at the intersection t1 = t2 = T , we get

∂ξϕ1 = ∂ξϕ2. (4.27)

Along with the continuity of ϕ, we conclude that the matching conditions at t1 = t2 = T are

ϕ1(T ) = ϕ2(T ) (4.28)

n1 = n2 (4.29)

Thus, we do not need to impose first-order time derivative continuity of fields along the contour as in the
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relativistic case — it is just replaced by particle number conservation. It turns out that (4.28,4.29) are also

the matching conditions for Euclidean – Lorentzian interfaces.

4.2.2 Convergence and the Choice of Vacuum

The non-relativistic holographic correspondence is in general the same as its relativistic counterpart, where

the path integral with specified boundary conditions in the bulk is identified with the partition function with

sources inserted in the boundary theory. In the case of a complex bulk scalar, we must temporarily treat

the sources ϕ(0) and ϕ̄(0) as independent. The near boundary expansion of the fields are qualitatively the

same as scalars on AdSd+3

ϕ(n) = einξ
{
{z∆−

(
ϕ(0) + z2ϕ(2) + o(z4)

)
+ z∆+

(
v(0) + z2v(2) + o(z4)

)}
(4.30)

ϕ̄(n) = einξ
{
{z∆−

(
ϕ̄(0) + z2ϕ̄(2) + o(z4)

)
+ z∆+

(
v̄(0) + z2v̄(2) + o(z4)

)}
, (4.31)

with ∆± = 1 + d/2± ν and

ϕ(2m) =
1

2m(2∆+ − (d+ 2)− 2m)
0ϕ(2m−2), (4.32)

where here 0 = 2in∂t + ∂2i is the non-relativistic Laplacian. As usual the holographic correspondence

implies

eiS
bulk
C [ϕ̄(0),ϕ(0)] = ⟨ei

∫
C
(Ô†ϕ(0)+ϕ̄(0)Ô)⟩, (4.33)

where C denotes the contour. Although we have a very different geometry, it’s easily seen that in each patch

of the contour the bulk (either Euclidean or Lorentzian) on-shell action

Sos =
1

2

∫
ϵ

dd+1xdξ
√
|g| ϕ̄ gzz ∂zϕ (4.34)

is essentially the same as scalars on AdSd+3. As a result, the renormalization procedure proceeds in the same

way as AdSd+3/CFTd+2, which was carried out in much details in [?]. In specific, for Lorentzian signature

the counter terms take the form,

Sct =

∫
ϵ

dd+1xdξ
√
−γ
(d+ 2−∆+

2
ϕ̄ϕ+

1

2(∆+ − d− 4)
ϕ̄ γϕ+ . . .

)
, (4.35)

where
√
−γ = z−(d+2) is the (d+ 2)-dimensional induced metric determinant and γ = z2(2in∂t + ∂2i ) (we

will set L = 1 from now on). The dots represent higher derivative terms. For special cases where ν is an
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integer, logarithmic counter terms ∼ log ϵ may appear [?]. It’s important to note that Sct preserves the

Galilean subalgebra, since [ γ ,Ki] = 0. This is in parallel with relativistic holography where the Poincare

subalgebra is preserved by the counter terms. In any case, v(0) will determine the v.e.v of the dual operator

and its derivative with respect to the source ϕ(0) gives us the 2-point functions.

There is, however, a subtlety of which we must be cognizant. Unlike relativistic field theories, in non-

relativistic field theories an elementary field Ψ and its Hermitian conjugate Ψ† play the role of creation and

annihilation operators. There is a freedom to choose which is an annihilator, or equivalently a freedom to

pick the vacuum. Once a convention is chosen, Ψ and Ψ† are no longer on the same footing. This is also

true for any operator Ô, Ô†, in which Ô is constructed only from annihilators. This corresponds to the

fact that there is only a single pole in the complex ω-plane in the non-relativistic case. Consequently, the

time-ordered propagator will in fact have only a single temporal θ-function present. We expect to see this

coming about in the analysis, but to see this properly, one has to be careful with the convergence of various

integrals.

4.3 Correlation Functions

In both cases shown in Fig. 4.1, we have an initial vertical contour M0. The correlation functions of interest

are computed by including source(s) on horizontal component(s) of the contour. We first show that given

such a contour componentM0, there is no normalizable mode (such a mode would be everywhere subleading

in the z → 0 expansion). This implies that any solution with a specific boundary condition is unique.

Indeed, we argued in Section 4.1.2 that there is no non-trivial normalizable solution in M0. So in the cases

of interest (no sources on M0), ϕ0 = 0 identically. The matching condition between ϕ0 and ϕ1 then requires

that ϕ1(t1 = 0, x⃗, z) = 0. The most general normalizable solution on M1 is

ϕnorm1 (t1, x⃗, z) = einξ
∫
dω

2π

ddk

(2π)d
e−iωt1+ik⃗·x⃗z

d
2+1θ(−q2)B(ω, k⃗)Jν(|q|z). (4.36)

Multiply by z−
d
2 e−inξ−ik⃗

′·x⃗Jν(|q′|z) with q′2 = −2ω′n+ k⃗′2 < 0 and integrate over x⃗ and z. We then find

0 =

∫
dω

2π

ddk

(2π)d
ddx eix⃗·(k⃗−k⃗

′)B(ω, k⃗)θ(−q2)
(∫ ∞

0

dz zJν(|q|z)Jν(|q′|z)
)

(4.37)
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The z-integral is elementary, equals 1
|q|δ(|q| − |q′|), and this becomes

0 =

∫
dω

2π

ddk

(2π)d
ddx eix⃗·(k⃗−k⃗

′)B(ω, k⃗)θ(−q2) 1

|q′|
δ(|q| − |q′|) (4.38)

=
1

n

∫
dω

2π
B(ω, k⃗′)θ(2ωn− k⃗′2)δ(ω − ω′) (4.39)

=
1

2πn
B(ω′, k⃗′)θ(−q′2). (4.40)

Thus, if ϕ1(t, x⃗, z) = 0 at some time, there is no non-trivial normalizable mode. This reasoning in fact

applies for all segments of both contours in Fig. 4.1.

4.3.1 Bulk-Boundary Propagator and Time-ordered Correlator

Given the absence of a normalizable mode, any solution with sources that we find for the two contours in

Fig. 4.1 is unique. In this subsection, we consider contour Fig. 4.1a, with segments M0 (τ0 ∈ (−∞, 0]),

M1 (t1 ∈ [0, T ]), M2 (τ2 ∈ [0,∞)). We place a single δ-function source at x⃗ = 0, t1 = t̂1 on M1. From our

discussions above, ϕ1 must be of the form

ϕ1,(n)(t1, x⃗, z) =
2

Γ(ν)
einξz1+d/2

∫
dω

2π

ddk

(2π)d
e−iω(t1−t̂1)+ik⃗·x⃗

(qϵ
2

)ν
Kν(qϵz). (4.41)

as this satisfies z−∆−ϕ1,(n)(t1, x⃗, z)
∣∣
z→0

= einξδ(t1− t̂1)δ(x⃗), and any ambiguity corresponds to normalizable

modes, which we have argued are zero. Since there are no sources on M2, ϕ2 takes the form

ϕ2,(n) =
2πi

Γ(ν)
einξz1+d/2

∫
dω

2π

ddk

(2π)d
e−ω(τ+iT−it̂1)+ik⃗·x⃗θ(−q2)

(
|q|
2

)ν
Jν(|q|z). (4.42)

which has been deduced from the matching condition ϕ1(t1 = T ) = ϕ2(τ = 0) as follows. For any time

t1 > t̂1, we can re-expand ϕ1 in terms of Jν ’s. In particular, at t1 = T , we should have

∫
dω

2π

ddk

(2π)d
e−iω(T−t̂1)+ik⃗·x⃗qνϵ zKν(qϵz) =

∫
dω

2π

ddk

(2π)d
e−iω(T−t̂1)+ik⃗·x⃗C(ω, k⃗)θ(−q2)zJν(|q|z) (4.43)

for some C(ω, k⃗). To find this coefficient we use the same trick as in the last subsection: multiply both sides

by eiω
′(T−t̂1)−ik⃗′x⃗Jν(|q′|z) with q′2 = −2ω′n + k⃗′2 < 0 and integrate over x⃗, z. The right-hand side gives
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1
2πnθ(−q

′2)C(ω′, k⃗′), while the left-hand side can be computed using the following identity

∫ ∞

0

Kµ(at)Jν(bt)t
µ+ν+1dt =

(2a)µ(2b)νΓ(µ+ ν + 1)

(a2 + b2)µ+ν+1
,

Re(ν + 1) > Re(µ), Re(a) > |Im(b)| (4.44)

to give i
2n |q

′|ν .

The bulk-boundary propagator is essentially identified with ϕ1 itself: if we simply strip off the einξ factor,

we can write

Kn,n′(t, x⃗, z) = δn,n′K(n)(t, x⃗, z) (4.45)

K(n)(t, x⃗, z; t̂) =
2z1+d/2

Γ(ν)

∫
dω

2π

ddk

(2π)d
e−iω(t−t̂)+ik⃗·x⃗

(qϵ
2

)ν
Kν(qϵz). (4.46)

As shown in Ref. [124] for example, this is closely related to the bulk-boundary propagator in AdSd+3.

Alternatively, we may perform the integration directly, following the analogous treatment in Ref. [30]. To

do so, it is convenient to convert the ω-integral to an integration over p = qϵ, and the contour in the p-plane

is as shown in Fig. 4.2. Here though there is just one branch point (at ω = k⃗2/2n− iϵ) and the iϵ tells us

p

C

Figure 4.2: Contour of integration in the complex p-plane for the Lorentzian bulk-boundary propagator.

in which sense to traverse the cut. One arrives at

K(n)(t, x⃗, z; t̂) = θ(t1 − t̂1)
1

πd/2Γ(ν)

( n
2i

)∆+−1
(

z

t1 − t̂1

)∆+

e
in z2+x⃗2+iϵ

2(t1−t̂1) (4.47)

where ∆± = 1 + d/2± ν.

The correlator is then identified with the z∆+ coefficient in the near boundary expansion of ϕ1 (without

the einξ factor)

⟨T
(
Ô(n)(x⃗, t1)Ô†

(n)(x⃗
′, t′1)

)
⟩ = 1

πd/2Γ(ν)

( n
2i

)∆+−1 θ(t1 − t′1)

(t1 − t′1)
∆+

e
in

(x⃗−x⃗′)2+iϵ

2(t1−t′1) . (4.48)
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4.3.2 Wightman function

The time-ordered correlator, as we have explained, contains a single temporal θ-function. It does not tell

us about ⟨Ô(x⃗, t1)Ô†(x⃗′, t′1)⟩ for t′1 > t1. To find this 2-point function we work with the contour of Fig.

4.1b. Denote the segments by M0 (τ0 ∈ (−∞, 0]), M1 (t1 ∈ [0, T ]), M2 (t2 ∈ [T, 2T ]) and M3 (τ3 ∈ [0,∞))

as sketched in the figure. We place a δ-function source at x⃗ = 0, t1 = t̂1 on M1 and nowhere else. The

Wightman function is obtained then from ϕ2, the field on M2. Here ϕ0 = 0 and ϕ1 remain the same as

(4.41). Given experience from the last subsection, we can see immediately that ϕ2 should be

ϕ2,(n) =
2πi

Γ(ν)
einξz1+d/2

∫
dω

2π

ddk

(2π)d
e−iω(2T−t2−t̂1)+ik⃗·x⃗

(
|q|
2

)ν
θ(−q2)Jν(|q|z). (4.49)

This has been determined by requiring the matching condition ϕ1(t1 = T ) = ϕ2(t2 = T ). Notice the unusual

e+iωt2+ik⃗·x⃗ wave factor. It is related to the fact mentioned before that along this part of the contour, the

metric has an extra minus sign in the gt2ξ component.

It is now necessary to compute ϕ2 in coordinate space. We make a change of variable p = |q| =
√
2ωn− k⃗2

ϕ2 =
i

nΓ(ν)2ν
einξz1+d/2

∫ ∞

0

dp e−ip
2(2T−t2−t̂1)/2npν+1Jν(pz)

∫
ddk

(2π)d
e−ik

2(2T−t2−t̂1)/2neik⃗·x⃗. (4.50)

We note that both integrals converge if 2T − t2 − t̂1 → 2T − t2 − t̂1 − iϵ. The first integral is the standard

integral involving Bessel functions, while the second one is just a Gaussian integral. The final result is

ϕ2 = einξ
1

πd/2Γ(ν)

( n
2i

)∆+−1 ( z

t̃2 − t̂1 − iϵ

)∆+

e
in z2+x⃗2

2(t̃2−t̂1−iϵ) . (4.51)

where t̃2 = 2T − t2. Observe that ϕ2 is closely related to the bulk-boundary propagator (4.47) except for

the absence of the step function and a different iϵ insertion, as expected.

The vacuum expectation value of Ô(t̃2, x⃗) is

⟨Ô(t̃2, x⃗)e
i(ϕ1(0)Ô†+ϕ̄1(0)Ô)⟩ = 1

πd/2Γ(ν)

( n
2i

)∆+−1
∫
dt1d

dx′
e
in

(x⃗−x⃗′)2

2(t̃2−t1−iϵ)

(t̃2 − t1 − iϵ)∆+
ϕ1(0)(t1, x⃗

′). (4.52)

Taking a derivative with respect to ϕ1(0) and setting the source to zero, we get the Wightman function

⟨Ô(t̃2, x⃗)Ô†(t1, x⃗
′)⟩ = 1

πd/2Γ(ν)

( n
2i

)∆+−1 e
in

(x⃗−x⃗′)2

2(t̃2−t1−iϵ)

(t̃2 − t1 − iϵ)∆+
(4.53)

Notice that Ô† is always in the front of Ô because t1 is always the earlier contour time.
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4.3.3 Thermal Correlator

Finally, we compute a thermal correlator by taking the time direction to be compact of period β.

0 T

β

M1

M2M3

t1

t2
τ3

Figure 4.3: Thermal contour. Points with a circle are identified.

To compute the thermal time-ordered correlator and Wightman function, we consider the thermal contour

shown in Fig. 4.3, where t = 0 and t = −iβ are identified. We place a δ-function source at t1 = t̂1, x⃗ = 0.

Note that in contrast to the previous discussions, here there is no M0 component of the contour. It is

convenient in this context to write the general solution along M1 in the form

ϕ1 =
2einξz1+d/2

Γ(ν)

∫
dω

2π

ddk

(2π)d
e−iω(t1−t̂1)+ik⃗·x⃗

(
A(ω, k⃗)

(qϵ
2

)ν
Kν(qϵz) +B(ω, k⃗)

(q−ϵ
2

)ν
Kν(q−ϵz)

)
. (4.54)

where q−ϵ = q̄ϵ =
√
−2ωn+ k⃗2 + iϵ. In order that this correspond to a δ-function source for z → 0, we must

have A+B = 1. (Furthermore, the case B = −A corresponds to a normalizable mode.) Note that because

of the condition on A,B, although A and B are not necessarily analytic functions, their sum is analytic.

Thus for example, for any pole in A, there will be a corresponding pole in B with opposite residue. All of

their poles will contribute opposite residues and cancel out each other in the limit ϵ→ 0. In (4.54), the first

term has support for t1 > t̂1, while the second has support for t1 < t̂1.

The matching condition at (M1,M2) and (M2,M3) intersections imply that

ϕ2 =
2πieinξz1+d/2

Γ(ν)

∫
dω

2π

ddk

(2π)d
e−iω(2T−t2−t̂1)+ik⃗·x⃗A(ω, k⃗)

(
|q|
2

)ν
Jν(|q|z)θ(−q2) (4.55)

ϕ3 =
2πieinξz1+d/2

Γ(ν)

∫
dω

2π

ddk

(2π)d
e−ω(τ3−it̂1)+ik⃗·x⃗A(ω, k⃗)

(
|q|
2

)ν
Jν(|q|z)θ(−q2) (4.56)

The thermal condition ϕ1(t1 = 0) = ϕ3(τ3 = β) along with A+B = 1 then gives

A =
1

1− e−βω
, B =

1

1− e+βω
. (4.57)
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As usual, the time-ordered propagator is the coefficient of z∆+ in the small z expansion of ϕ1 (without the

einξ factor). Hence we get2

⟨T
(
Ô(x)Ô†(x′)

)
⟩ ∼

∫
dω

2π

ddk

(2π)d
e−iω(t−t

′)+ik⃗·(x⃗−x⃗′)
( (−2ωn+ k⃗2 − iϵ)ν

1− e−βω
+

(−2ωn+ k⃗2 + iϵ)ν

1− eβω

)
. (4.58)

Note that this has the expected form for a thermal correlator[30]

⟨T
(
Ô(x)Ô†(x′)

)
⟩ = −N(ω)∆A(ω, k⃗) + (1 +N(ω))∆R(ω, k⃗) (4.59)

In the present notation, N = −B. We can also write this as the zero temperature result plus a finite

temperature piece:

⟨T
(
Ô(x)Ô†(x′)

)
⟩ ∼

∫
dω

2π

ddk

(2π)d
e−iω(t−t

′)+ik⃗·(x⃗−x⃗′)

[
q2νϵ − 1

1− eβω
(q2νϵ − q2ν−ϵ)

]
(4.60)

The Wightman function can also be read off from ϕ2

⟨Ô(x)Ô†(x′)⟩ ∼ iπ

∫
dω

2π

ddk

(2π)d
e−iω(t−t

′−iϵ)+ik⃗(x⃗−x⃗′) (2ωn− k⃗2)ν

1− e−βω
θ(2ωn− k⃗2) (4.61)

2For integer ν, there is an extra logarithmic factor, namely q2ν±ϵ is replaced by q2ν±ϵ ln q
2
±ϵ.
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Chapter 5

Fermions and the Sch/nrCFT
Correspondence

In the present chapter, we investigate fermionic operators in the vacuum Schrödinger geometries [38]. Al-

though the problem of finite density is of most direct physical interest, the system poses some interesting

problems even in the ‘vacuum’ geometry that possesses the full Schrödinger isometry. We believe that these

issues should be sorted out before the finite temperature and density cases can be fully appreciated, and

in fact it is possible to do so with complete precision as exact analytic solutions exist, as they do in the

relativistic case [33, 34, 35, 36].

The system is, however, significantly different from its relativistic counterpart, as might be expected from

the more rich representation theory. Nevertheless, we are able to show that a sensible Dirichlet problem

exists for fermions. As in the relativistic case, the bulk on-shell action vanishes, and the on-shell action

is determined entirely by boundary terms. These boundary terms are determined by the requirements of

a sensible Dirichlet canonical structure and finiteness. In particular, we explain the structure of possible

boundary terms (which are required to preserve the Galilean symmetry of the regulated boundary theory)

and show that the on-shell action is finite with the inclusion of a finite number of local boundary counter

terms.

5.1 Background

For convenience, let’s rewrite the Schrödinger geometry

ds2 =
L2

z2

(
−β

2

z2
dt2 + 2dtdξ + dx⃗2 + dz2

)
(5.1)

Although we are primarily interested in Euclidean correlator, we will be working on the Lorentzian geometry,

as the former can be easily obtained by a Wick rotation. A convenient basis of orthonormalized (⟨ea, eb⟩ =

ηab) one-forms is

e0 =
L

z

[
z

β
dξ − β

z
dt

]
, ev =

L

β
dξ, er =

L

z
dz, ei =

L

z
dxi (5.2)
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which are dual to the orthonormal basis vectors

e0 = − z

L

z

β
∂t, ev =

z

L

[
z

β
∂t +

β

z
∂ξ

]
, er =

z

L
∂z, ei =

z

L
∂i (5.3)

The Levi-Civita connection has non-zero components

ω0
r =

1

L

(
ev − 2e0

)
, ω0

v = − 1

L
er, ωvr = − 1

L
e0, ωir = − 1

L
ei (5.4)

Correspondingly, the non-zero components of the Christoffel symbols are

Γzzz = −1

z
= Γξzξ = Γtzt (5.5)

Γizj = −1

z
δij , Γzij =

1

z
δij (5.6)

Γztξ =
1

z
, Γztt = −2

β2

z3
, Γξzt =

β2

z3
(5.7)

5.1.1 Dirac Operator

The spin connection in the spinor representation is obtained by writing ωab = ωA(TA)ab and replacing the

generators by those in the spinor representation. Since the local group is SO(d+ 2, 1), the index A can be

thought of as an antisymmetric pair of vector indices. We will use a basis for the Clifford algebra

{γa, γb} = 2ηab (5.8)

where a, b, ... = r, 0, v, i. It is always possible to take a basis in which γvγ0 and γr are Hermitian.1 For

example, a convenient basis is of the form

γ0 = −iσ2 ⊗ 1, γv = −σ1 ⊗ 1, γi = σ3 ⊗ τ i, γr = σ3 ⊗ τ r (5.9)

where τ i are a representation of Cℓ(d). We have (T [ab])αβ = − i
4 ([γ

a, γb])αβ . Thus, the spin connection

takes the form

ωαβ ∼ ωab([γa, γ
b])αβ . (5.10)

1In particular, to be definite, we will take γ0 to be anti-Hermitian and γv to be Hermitian.
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The γ’s are numerical matrices and their indices are those of the local frame, raised and lowered with η.

The Dirac operator in general may be written

D/ = γc
(
ec +

1

4
eµcωµ

a
b(γaγ

b)

)
. (5.11)

It will be convenient to split off the radial part

D/ = z
[
γr∂z + γi∂i

]
+
z2

β
(γv − γ0)∂t + βγv∂ξ −

1

2
γr [(d+ 2)1− γvγ0] . (5.12)

The problem can be organized by defining projection operators

P± =
1± γr

2
, Q± =

1± γvγ0

2
(5.13)

These commute with each other, so we can simultaneously diagonalize γr and γvγ0. We note that these

projection operators appear here naturally because they commute with spin(d) ⊂ spin(d + 2, 1). Thus, we

can be sure that full spin(d) representations occur for each of the four projection sectors.

Noting then that we can rewrite

γv − γ0 = −2Q+γ
0 = −2γ0Q−, γv = (Q− −Q+)γ

0 = γ0(Q+ −Q−) (5.14)

the Dirac operator becomes

D/ = z
[
(P+ − P−)∂z + γi∂i

]
−2

z2

β
γ0Q−∂t+βγ

0(Q+−Q−)∂ξ−
1

2
(P+−P−) [(d+ 2)1 + (Q+ −Q−)] (5.15)

Before proceeding with the solution of the Dirac equation, we will consider some details of the bulk repre-

sentation of the Schrödinger algebra that will be important in interpreting the solutions.
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5.1.2 The Schrödinger Algebra

In a local frame in the bulk, a field will carry a representation of spin(d+ 2, 1). Globally the geometry has

isometries given by the Killing vectors given in the previous chapter

N = ∂ξ (5.16)

D = 2t∂t + x⃗ · ∂⃗ + z∂z (5.17)

H = ∂t (5.18)

C = t2∂t + tx⃗ · ∂⃗ − 1

2
x⃗2∂ξ + tz∂z −

1

2
z2∂ξ (5.19)

Mij = xi∂j − xj∂i (5.20)

K⃗ = −t∂⃗ + x⃗∂ξ (5.21)

P⃗ = ∂⃗ (5.22)

where we have written explicitly the bulk representation on functions. We note that Mij generate spin(d)

and that {D,H,C} together generate sl(2,R). Since sl(2,R) ∼ so(2, 1), we recognize spin(d) ⊕ sl(2,R) ⊂

spin(d + 2, 1). Thus the representation theory can be understood quite simply in terms of highest weight

modules. It is traditional to take D diagonal with eigenvalues referred to generically as ∆, and since N is

central, it can be diagonalized as well, and in fact there are super-selection sectors labelled by the eigenvalue

of N

Ψ(z, t, ξ, x⃗) = einξΨ(z, t, x⃗). (5.23)

We refer to such functions as being equivariant.2 Highest weight states of fixed n,∆ correspond directly to

quasi-primary operators Ψ(t = 0, x⃗ = 0) in the boundary theory (at z = 0).3

However, for a non-trivial representation, we expect that the generators are modified accordingly, and

this structure is not complete. For example, we know (and we will verify below) that the spin(d) generator

should be replaced by

Mij = xi∂j − xj∂i +Σij (5.24)

when acting on spinor fields. To see how this comes about, we can consider doing Schrödinger transformations

2According to [126], the bulk spacetime should be thought of as the total space of a fibre bundle over non-relativistic space-
time, with ξ the fibre coordinate. In this sense, eq. (5.23) is interpreted as meaning that the field is a section of the associated
bundle of charge n. See also Refs.[127, 128].

3Here, by boundary we will simply mean the limit z → 0. Further discussion may be found in a later section.
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on the bulk spinor field. The spinor will transform by the Lie derivative[129]

Ψ → LξΨ = ∇ξΨ+
1

8
⟨∇eaξ, eb⟩[γa, γb]Ψ (5.25)

In this way, Lξ commutes with the Dirac operator, at least as long as ξ is a Killing vector.

Let us warm up by evaluating the Lie derivative for the spin(d) Killing vector

ξM = 2xjΘ
ji∂i (5.26)

where Θ is antisymmetric. In this case, we compute

∇ξMΨ = 2xjΘ
ji∂iΨ− 1

z
xjΘ

jiγiγ
rΨ (5.27)

⟨∇eaξM , eb⟩[γa, γb]Ψ = 4Θji

[
γjγi + 2

1

z
xjγiγr

]
Ψ (5.28)

This result does indeed correspond to (5.24). Now for ξK , we have

ξK = −tK⃗ · ∂⃗ + (x⃗ · K⃗)∂ξ (5.29)

and we find

LKΨ = (x⃗ · K⃗)∂ξΨ− tK⃗ · ∂⃗Ψ+
1

2β
z(γ0 − γv)Kiγ

iΨ (5.30)

By similar computations, we conclude that the representation on spinors is

Mij = xi∂j − xj∂i +
1

4
[γi, γj ] ≡ xi∂j − xj∂i + iΣij (5.31)

Ki = −t∂i + xi∂ξ +
1

2

z

β
(γ0 − γv)γi ≡ −t∂i + xi∂ξ + κi (5.32)

C = tz∂z + tx⃗ · ∂⃗ + t2∂t −
1

2
(x⃗2 + z2)∂ξ + ĉ (5.33)

where ĉ = + 1
2
z
β (x/ + zγr)(γ0 − γv). Notice that both κi and ĉ are nilpotent. D,H,Pi are unmodified. The

highest weight states of a Schrödinger multiplet are annihilated by both C and Ki, and so we see here that

these conditions apparently do not act diagonally on spin(d) components of the bulk Dirac spinor, but mix

them at a generic point in the bulk. However, as we will see, the on-shell Dirac spinor is constructed from

chiral spinors that are Q-chiral and as we show in detail in the appendix, ĉ and κ are such that Ki and C

act diagonally on these.
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5.2 Solutions of the Dirac Equation

Now we write spinors as linear combinations of doubly chiral spinors

Ψ(z, t, ξ, x⃗) = einξ
∑
εr,εℓ

∫
dω

2π

∫
ddk

(2π)d
eik⃗·x⃗e−iωtψεr,εl

n,ω,⃗k
(z) (5.34)

where

γrψεr,εl
n,ω,⃗k

(z) = εrψ
εr,εl

n,ω,⃗k
(z) (5.35)

γvγ0ψεr,εl
n,ω,⃗k

(z) = εlψ
εr,εl

n,ω,⃗k
(z) (5.36)

and εr, εl = ±1. By projecting the Dirac equation with P± and Q±, we find four equations (we drop the

subscripts on ψ for brevity)

(
z∂z −

1

2
(d+ 3) +m0

)
γ0ψ−,+ + izk//γ0ψ+,+ +

i

β
(2ωz2 − nβ2)ψ+,− = 0 (5.37)(

z∂z −
1

2
(d+ 1)−m0

)
ψ+,− + izk//ψ−,− + inβγ0ψ−,+ = 0 (5.38)(

z∂z −
1

2
(d+ 3)−m0

)
γ0ψ+,+ − izk//γ0ψ−,+ − i

β
(2ωz2 − nβ2)ψ−,− = 0 (5.39)(

z∂z −
1

2
(d+ 1) +m0

)
ψ−,− − izk//ψ+,− − inβγ0ψ+,+ = 0 (5.40)

Note that we have used the notation k// to emphasize that this is the quantity in the trivial metric. The

invariant is k/ = γaeiaki, and in the Schrödinger metric, this evaluates to k/ = z
Lk//. This accounts for the

single powers of z accompanying k//; this will be of additional importance later in the context of boundary

renormalization.

It is not difficult to disentangle the Dirac equations, and we find in particular that

[
z2∂2z − (d+ 1)z∂z +

(
d

2
+ 1

)2

− µ2
εr − q2z2

]
ψεr,− = 0 (5.41)

where

µεr =

√(
1

2
− εrm0

)2

+ n2β2 (5.42)

and

q2 = k⃗2 − 2nω (5.43)

In this paper, we consider only the case n ̸= 0. We note that q2 appears naturally, as it is the Fourier
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transform of the Galilean-invariant Schrödinger operator S = i∂t − 1
2n∇⃗

2. In particular, we note that when

acting on equivariants

[Ki,S] = 0 (5.44)

This fact will play a central role later in our discussion of renormalizability.

Thus we have

ψεr,−(k⃗, ω, z) = z1+d/2Kµεr
(qz)uεr (k⃗, ω) (5.45)

where u± are independent doubly chiral spin(d) spinors that satisfy

Q+u± = 0, γru± = ±u± (5.46)

Since we are interested in Euclidean correlator, we have dropped the solution proportional to Iµεr
(qz) by

requiring regularity at large z. Substituting these solutions back into the Dirac equations leads algebraically

to the other components of the Dirac spinor

ψ±,+ = ± i

nβ
z1+d/2γ0

[(
qzK ′

µ∓
(qz) +

(
1

2
±m0

)
Kµ∓(qz)

)
u∓(k⃗, ω)∓ izKµ±(qz)k//u±(k⃗, ω)

]

The general on-shell field then is

Ψ = −z1+d/2
∑
εr

[
iεr
nβ

(
1

2
− εrm0 − iεrnβγ

0

)
Kµεr

(qz) +
iεr
nβ

qzK ′
µεr

(qz) +
z

nβ
Kµεr

(qz)k//

]
γ0uεr (5.47)

From this general solution, we see that the leading terms at the boundary are

Ψ ∼
∑
εr

z∆
−
εr
Γ(µεr )

2

(q
2

)−µεr

Xεr
−(0)uεr + . . . (5.48)

where Xεr
−(0) ≡ 1− iεr

nβ (
1
2 − εrm0 − µεr )γ

0 and where

∆±
εr = 1 +

d

2
± µεr , (5.49)

We make several comments:

• For generic bulk mass, the two dimensions ∆−
εr are irrationally related. Thus u+ and u− must be

taken as independent sources. The only counter-example (for n ̸= 0) is if the bulk mass vanishes, in

which case µ+ = µ− and ∆−
+ = ∆−

− ≡ ∆−. Thus the massless case is special, in that the eigenvalues
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of D are degenerate. One can show however that in either case, u± transform separately under the

Schrödinger algebra.

• More precisely, the coefficient of the leading singularity is of the form Xεr
−(0)uεr and is not chiral. We

note though that the Xεr
−(0) are constant matrices and can be absorbed (by a basis change) into the

definition of boundary operators.

• The dependence on k// is subleading in the near-boundary (z → 0) expansion, and is associated with

the odd powers of z.

• The general solution is obtained by specifying two spin(d) spinors u± that are Q-chiral (Q+u± = 0).

Thus the Dirac equation has eliminated half of the degrees of freedom, as expected.

• The Schrödinger covariance of this expression is not manifest as written. To see this, consider the

symplectic 1-form

α = −idxµ ⊗ ∂µ (5.50)

which when acting on plane waves gives

α = −idz ⊗ ∂z + (ndξ − ωdt+ k⃗ · dx⃗) (5.51)

The scalar Lagrangian, for example, can be written

Sscalar ∼
∫ √

−g⟨α(ϕ), α(ϕ)⟩ = −
∫ √

−gϕ†∆ϕ (5.52)

For fermions, we replace the exterior algebra by the Clifford algebra, and hence we obtain

α→ −i z
L
γr∂z +

nβ

L
γv + ω

z2

Lβ
(γ0 − γv) +

z

L
k// (5.53)

This of course is the quantity appearing in the Dirac operator, apart from the spin connection terms.

What we learn from this is that the k// term should really be grouped with

Q = zk//+ nβγv + 2ω
z2

β
γ0Q− (5.54)

In particular, this combination is Galilean invariant, [Ki,Q] = 0, and also [D,Q] = 0. (Later, it will
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play a central role in the renormalizability of the theory.) We also note that

Q2 = z2S + n2β2 (5.55)

which is the scalar invariant noted above, where S = q2 = k⃗2 − 2nω.

Furthermore, when acting on the chiral spinors γ0u±, this simplifies to

Qγ0u± = nβ

(
γ0 +

zk//

nβ

)
γ0u± (5.56)

and thus the on-shell spinor can be rewritten

Ψ = − i

nβ
z1+d/2

∑
εr

[
εrqzK

′
µεr

(qz)− (m0 − εr/2)Kµεr
(qz)− iKµεr

(qz)Q
]
γ0uεr (5.57)

We note that vεr ≡ γ0uεr are chiral, with Q−vεr = 0. We note though that the individual pieces of Q

come in with different powers of z, and so going to the boundary is somewhat subtle. What we must

do is understand how the generators of the Schrödinger algebra act on the terms in the expansion of

the field. This is explained in detail in the Appendix.

5.3 Variational Principle and Boundary Renormalization

As in the relativistic case [33, 34, 35, 36], we need to add a boundary term to the Dirac action, as the bulk

part of the Dirac action vanishes on-shell. This boundary term serves to give the proper Dirichlet boundary

condition and simultaneously make the on-shell action finite. Since in the variational principle the field

variations are off-shell, first of all we have to state clearly what we mean by an off-shell spinor. The on-shell

solution (5.57) suggests that an off-shell spinor should have the same z expansion, except that the coefficients

are in general full unconstrained Dirac spinors. This off-shell spinor obviously carries a Schrödinger repre-

sentation through (5.31)-(5.33). However, as established in the appendix C, this representation is reducible.

Hence, it is natural that we define the off-shell spinor to be an irreducible representation that encompasses

all vacuum solutions (5.57). According to (C.19), it takes the form

Ψ =
∑
εr

[
z∆

−
−εr

∞∑
k=0

z2k
(
ρεr(2k) +Qρεr(2k+1)

)
+ z∆

+
−εr

∞∑
k=0

z2k
(
χεr(2k) +Qχεr(2k+1)

)]
(5.58)
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where Q is given by (5.54) and

γrρεr(m) = εrρ
εr
(m), Q−ρ

εr
(m) = 0 (5.59)

similarly for χ.

By comparison to the on-shell solution, one can deduce the on-shell relationship of ρεr(m) and χ
εr
(m) to the

independent quantities ρεr(0) ∼ uεr

ρεr(2k) = −ixεr−(2k)ρ
εr
(2k+1) =

xεr−(2k)

xεr−(0)

Γ(1− µ−εr )

k!Γ(k + 1− µ−εr )

(q
2

)2k
ρεr(0) (5.60)

χεr(2k) = −ixεr+(2k)χ
εr
(2k+1) = −

xεr+(2k)

xεr−(0)

Γ(1− µ−εr )

k!Γ(k + 1 + µ−εr )

(q
2

)2k+2µ−εr

ρεr(0), (5.61)

where xεr±(2k) = εr(
1
2 + εrm0 ± µ−εr + 2k).

As is well known, the bulk part of the Dirac action evaluates to zero on the equations of motion. The

on-shell action is determined entirely by the boundary term. The renormalized Dirac action must be of the

form

SLor =

∫
M

dd+3x
√
−g Ψi(D/ −m0)Ψ +

1

L2

∫
∂M

dt dξ ddx
√
γ ezrΨTΨ (5.62)

for some matrix T , which must respect the symmetries of the boundary theory. Given that

Ψ(z, t, ξ, x⃗) = einξΨ(z, t, x⃗) (5.63)

the action reduces to

R

∫
dd+1x

∫
dz

√
−g Ψi(D/n −m0)Ψ +R

∫
dt ddx

√
γ z−d−2 ΨTΨ (5.64)

where γ denotes the spatial induced d-metric of the boundary (which in our case is flat). We absorb this

overall factor of R into the normalization. We vary the action subject to the vanishing of the variation of

the source. Given our choice of action, we find

δS =

∫
Ψ̄(iγr + T )δΨ+

∫
δΨ̄TΨ (5.65)

A proper variational principle is obtained by requiring that terms involving δχ not appear in this expression.

This will force the variational principle to give the correct Dirichlet condition δρ = 0 on the boundary. In

addition to this requirement, the resulting on-shell action must be made finite by the addition of suitable

boundary counter-terms. As is customary, we will use minimal subtraction. By suitable, we mean any
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term that respects the symmetry of the regulated boundary theory. In the case of AdS, the boundary

counterterms are Poincaré invariant, which is the symmetry respected by the regulator. In our case, we

expect the counterterms to be Galilean invariant. Since these counterterms are all written in terms of the

boundary values of bulk fields, upon which the Schrödinger transformations act in the prescribed way, it is

appropriate to write the boundary counterterms as boundary values of bulk-invariant terms (that is, using

the bulk metric for contractions and the bulk realization of the symmetry generators).

Requiring the boundary term to be Galilean invariant, T has to be written in terms of operators that

commute with the Galilean generators, in particular the Ki. Careful consideration of this problem reveals

that such invariants may be constructed out of Pεr , γ
0Q− and Q and thus the most general boundary term

can be written as (here L = Q2/n2β2)4

T =
∑
εr

[
aεr (L) + bεr (L)

iQ
nβ

+

[
cεr (L) + dεr (L)

iQ
nβ

]
γ0Q−

]
Pεr (5.66)

where aεr (L), ... are functions to be determined. Although we have written the coefficient functions as

functions of Q2 ∼ L for notational brevity, since N is central and the fields are equivariant, this could just

as well be replaced by z2S = z2q2.

This form for T and the field written in the form (5.57) is most convenient to discuss the renormalizability

of the theory – it organizes the counterterms in an invariant fashion. What is more complicated here,

compared to the relativistic case, is that this organization is not homogeneous in powers of z. It is easy to

see in this form however how the renormalization will work – since Q2 ∼ L, we can regard T as an expansion

in powers of Q (rather than z). At any given order, canceling divergences will correspond to conditions on the

Taylor coefficients of the functions aεr(L), ... around L = 1. Depending on the values of various parameters

(mo, n, ...), we can terminate the Taylor expansion at some order, as all further contributions to the action

will be zero when the cutoff is removed. It remains then to demonstrate that the conditions on the Taylor

coefficients can be consistently solved to remove all divergences. We will not construct a general proof, and

in fact will work just at lowest order. Experience with these manipulations suggests that no problems will

be encountered at higher orders.

Given the form for T , we consider the variational problem; this will place conditions on the lowest order

Taylor coefficients of the functions in T . We write (5.65) in terms of δρεr(m) and δχ
εr
(m) and their conjugates.

Due to the fact that µ− − µ+ < 1 for n > 0, the only terms that possibly contain δχεr(m) are the finite term

4the similar expression for AdS would be
∑

εr
(aεr (q

2)+k/ bεr (q
2))Pεr , where Pεr is the projector along the radial direction.
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(z0 power), which evaluate to

(ρεr(0))
†δχεr(0)

[
−ibεr −

inβ

xεr−(0)

(aεr + iεr)

]
+ nβ(ρεr(0))

†δχεr(1)

[
iεr − (a−εr − id−εr ) +

nβ

xεr−(0)

(b−εr + ic−εr )

]
(5.67)

where aεr ≡ aεr (1), etc. To obtain this expression, we have used the on-shell relations for the ρεr(m). Similarly,

the only terms involving δχ† are

−(δχεr(0))
†ρεr(0)

[
ibεr +

inβ

xεr−(0)

(a−εr − id−εr )

]
+ nβ(δχεr(1))

†ρεr(0)

[
aεr −

nβ

xεr−(0)

(b−εr + ic−εr )

]
(5.68)

The variational principle requires each term to vanish separately, which results in three independent equations

bεr = − nβ

xεr−(0)

(aεr + iεr) (5.69)

bεr = − nβ

xεr−(0)

(a−εr − id−εr ) (5.70)

aεr =
nβ

xεr−(0)

(b−εr + ic−εr ) (5.71)

As argued above, given a specific value of aεr = aεr (1), ... satisfying (5.69)-(5.71), the higher order coefficients

in the Taylor expansion can be found successively by requiring the cancelation of subleading divergences.

There are, however, two things that those higher order coefficients cannot control, since they involve sub-

leading powers in z. They are the leading divergence, of the form ρεr†(0) ρ
εr
(0)

5, and the finite part of the on-shell

action. Requiring the leading divergence to be zero sets

−ibεr −
inβ

xεr−(0)

(a−εr − id−εr ) +
inβ

xεr−(0)

(
aεr −

nβ

xεr−(0)

(b−εr + ic−εr )

)
= 0, (5.72)

which is fortunately automatically satisfied from (5.70) and (5.71). The finite part of the on-shell action

is in fact independent of the values of aεr ,... (although the variation of the action is not). Indeed, a short

calculation gives

Sos =

∫
dω

2π

∫
ddk

(2π)d

∑
εr

2εrµ−εr
nβ

(ρεr(0))
†χεr(0)

= −2εrµ−εr
nβ

∫
dω

2π

∫
ddk

(2π)d

∑
εr

xεr+(2k)

xεr−(0)

Γ(1− µ−εr )

Γ(1 + µ−εr )

(
q2

4

)µ−εr

(ρεr(0))
†ρεr(0), (5.73)

where we have used the conditions (5.69)-(5.71). Thus, it is scheme independent.

5Other possible terms such as ρεr†
(0)

k//ρ−εr
(0)

must be thought of as a piece of ρ̄εr
(0)
γ0Qρ−εr

(0)
, but as we have discussed, this is

not Ki invariant, so will not appear.
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5.4 Boundary Operators

As we have seen, the leading term in the expansion of the field is proportional to Xεr
−(0)ρ

εr
(0), where X

εr
−(0)

is a constant matrix and ρεr(0) is a (doubly) chiral spinor field. It is convenient to take a basis of boundary

quasi-primary operators such that ρεr(0) act as the sources for operators of charge n and dimension ∆+
εr

∫
dt

∫
ddx

√
γ
[
(ρεr(0))

†(t, x⃗)On,εr (t, x⃗) + h.c.
]

(5.74)

This is possible because the Xεr
−(0) are constant matrices. This coupling preserves the Schrödinger invariance

at the boundary, obtained from the bulk transformations, for example

viKi : Ψ′(t′, x⃗′, z′) = ein(v⃗·x⃗+iv⃗
2t/2)(1 + v · κ)Ψ(t, x⃗, z) (5.75)

cC : Ψ′(t′, x⃗′, z′) = e−
inc
2

x⃗2+z2

1+ct (1 + cĉ)Ψ(t, x⃗, z), (5.76)

at z = 0. Under, say, a finite C transformation, the coupling (5.74) transforms as

∫
dt

∫
ddx

√
γ (ρεr(0))

†(t, x⃗)On,εr (t, x⃗) →
∫

dtddx

(1 + ct)d+2
(1 + ct)∆

+
−εr

+∆−
−εr (ρεr(0))

†(t, x⃗)On,εr (t, x⃗) (5.77)

given the appropriate transformation of boundary quasi-primary operators (see for example Ref. [122]).

Thus the coupling is invariant, as ∆+
εr +∆−

εr = d+ 2.

Given the form of the on-shell action, we then read off the two-point Euclidean correlator of quasi-primary

operators

⟨(On,εr )
†(t, x⃗)On′,ε′r

(t′, x⃗′)⟩ = −δεr,ε′rδn,n′

∫
dω

2π

ddk

(2π)d
e−iω(t

′−t)eik⃗·(x⃗
′−x⃗) 2εrµ−εr

nβ

xεr+(2k)

xεr−(0)

Γ(1− µ−εr )

Γ(1 + µ−εr )

(
q2

4

)µ−εr

(5.78)

By scaling, it is easy to see that this behaves as

(t′ − t)−∆+
−εr f

(
(x⃗′ − x⃗)2

(t′ − t)

)
,

and in fact this is just proportional to the scalar propagator. We note that this correlator preserves chirality,

and in particular no γ-matrix structure is present. This is expected of a non-relativistic theory at zero

density, as there is no essential difference between boson and fermion fields.

This is not to say that other correlation functions do not have more interesting structure. The subleading

terms in the asymptotic expansion of the field are sources for descendant operators. Given the form of the
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generators in the bulk (5.32,5.33), we see that Schrödinger transformations mix the descendant fields in an

interesting way. The correlation functions of dual operators will of course display a similar structure, and

thus these correlation functions can have non-trivial γ-matrix structure.

5.5 Conclusion

We have investigated carefully the Dirac fermion problem on the spacetime of Schrödinger isometry, which

is dual to the vacuum configuration of non-relativistic conformal field theories in d spatial dimensions. The

structure of the system is rather intricate, but a sensible Dirichlet problem exists and the boundary theory

is renormalizable.

Although the bulk geometry contains a compact null direction (coordinatized by ξ), the metric is of the

Bargman type and the usual holographic prescriptions go through more or less unmodified for equivariant

operators, with care taken in interpreting the boundary action. The bulk field sources operators of a highest

weight module of the Schrödinger algebra and the correct structure of two-point correlation functions is

obtained. It would be interesting to extend these computations to higher point functions and to finite

density.

Note that the results in this chapter are apparently different from those in [125]. It is because in their

paper the spinorial boundary operators carry a different representation of the Schrödinger group. It is the

spin-1/2 Levy-Leblond representation [119], in which a spinor consists of two components of dimensions

differing by one and transform into each other under the boost and special conformal transformation. In

this chapter, we tackle the standard problem of Dirac spinors on curved space-time and it turns out that

the boundary operators carry a pretty simple representation, where they transform as scalar fields under the

boost and special conformal.

———————————————————————————–
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Chapter 6

Vector Fields and the Sch/nrCFT
Correspondence

This chapter continues the the topic of non-relativistic holography where the conceptual problem of varia-

tional principle and renormalization are tackled by considering vector fields on the Schrödinger background

(4.1)

ds2 =
L2

z2

(
−β

2

z2
dt2 + 2dtdξ + dx⃗2 + dz2

)
From now on we set L = 1 for simplicity. In this space-time, we may classify vector fields by {n,m0}

where n is the eigenvalue of the central generator N (often referred to as the mass operator or the particle

number operator) and m0 is the bulk mass of the field. Because N = ∂ξ is central, fields can be taken

to be equivariant A(ξ, z, t, x⃗) ∼ einξA(z, t, x⃗) and hence for n ̸= 0, the fields are inherently complex. For

n = 0,m0 = 0, the vector field is in fact a gauge field, and is expected to be dual to a conserved global

current in the dual field theory.

Vector fields in relativistic holography has been studied extensively [28, 116, 34]. There the representation

theory is pretty much simple, and normally was not paid much attention. In the Schrödinger case, however,

as we have learnt in the last chapter it is crucial to carefully study the representations of the Schödinger

group carried by the sources. We will see that for the vector field, there is a significant distinction between

n = 0 and n ̸= 0 cases. While the former resembles AdS in many ways, the latter deviates qualitatively to

the standard expectation in terms of group representation.

We start the chapter with a general discussion on spin-1 representation of the Schrödinger group and

work out the expected 2-point functions for the boundary currents. We then devote the last two sections

studying in details vector fields in Schrödinger background, with n ̸= 0 and n = 0 respectively.
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6.1 Spin-1 representation of Schrödinger symmetry

6.1.1 bulk representation

The elements N,H, P⃗ ,D,Mij are represented in a straightforward manner on the components of vector

fields, so we will not have occasion to focus on them. The explicit realization of these generators in the bulk

are given in (5.16)-(5.22). Throughout this note we will focus mainly on the representation of the non-trivial

elements of the Schrödinger algebra: the boost K⃗ and the special conformal transformation C. They act on

the bulk coordinates as follows

K : x⃗′ = x⃗+ v⃗t; t′ = t; z′ = z; ξ′ = ξ − v⃗ · x⃗− 1

2
v⃗2t

C : x⃗′ =
x⃗

1 + ct
; t′ =

t

1 + ct
; z′ =

z

1 + ct
; ξ′ = ξ +

c

2

x⃗2 + z2

1 + ct

and so the corresponding Killing vectors (acting on scalar functions) are

Ki = −t∂i + xi∂ξ (6.1)

C = t(t∂t + x⃗ · ∂⃗ + z∂z)−
1

2
(x⃗2 + z2)∂ξ. (6.2)

The special conformal transformation, together with the dilatation, is different from all other elements of the

Schrödinger group in that it has a non-trivial Jacobian. The transformation law for a scalar field Φ(t, x⃗, z, ξ)

of scaling dimension ∆Φ is simply

K : Φ′(t′, x⃗′, z′, ξ′) = Φ(t, x, z, ξ) (6.3)

C : Φ′(t′, x⃗′, z′, ξ′) = λ∆ΦΦ(t, x⃗, z, ξ), (6.4)

or if we reduce to a field of definite particle number n (that is, an equivariant field), we have effectively

K : Φ′(t′, x⃗′, z′) = einv⃗·x⃗+
i
2nv⃗

2tΦ(t, x, z) (6.5)

C : Φ′(t′, x⃗′, z′) = e−
inc
2

x⃗2+z2

λ λ∆ΦΦ(t, x⃗, z), (6.6)

79



where λ = 1+ ct. Given the coordinate transformation above, we easily deduce the spin-1 representation of

the Schrödinger group. For a bulk 1-form field,

K : H′(t′, x⃗′, z′, ξ′) = H(t, x⃗, z, ξ) ·


1 0 0 0

−vi 1 0 0

0 0 1 0

− v⃗2

2 vi 0 1

 , (6.7)

C : H′(t′, x⃗′, z′, ξ′) = H(t, x⃗, z, ξ) ·


λ∆+2 0 0 0

cxiλ∆+1 λ∆+1 0 0

czλ∆+1 0 λ∆+1 0

− c2

2 (x⃗
2 + z2)λ∆ −cxiλ∆ −czλ∆ λ∆

 . (6.8)

Here H = (Ht,Hi,Hz,Hξ) are the components of a generic one-form whose components have scaling dimen-

sions (∆+ 2,∆+ 1,∆+ 1,∆) respectively. Notice that since Hξ transforms into itself under K and C (and

eventually under the whole Schrödinger group), the representation (6.7) and (6.8) can be reduced by setting

Hξ = 0 and dropping it from the multiplet. We also note that one can drop Hz, but only along with Hξ,

resulting in what we call the short representation {Ht,Hi}. Finally, the ultra-short representation {Ht} can

be obtained by further dropping Hi in the short representation. These representations will be of interest

holographically.

6.1.2 Dual Representations and the Source-Operator Coupling

In a holographic context, we are interested both in the representations of the isometry group that we have

in the bulk, but also in the representation theory of the dual operators in the dual field theory. The latter

can be deduced by consideration of how the source (i.e., the asymptotic of the bulk field) couples to its

dual operator. Roughly speaking then, the boundary representation can be obtained from the bulk one by

taking the z → 0 limit. We will find that all of the components of a vector field play a role in the boundary,

including the ξ-component. The important role played by the ξ-coordinate in the boundary is also clear

when we find the Schrödinger invariant source-operator coupling.

This coupling associates a bulk representation of the Schrödinger algebra to a boundary representation

of the same algebra. Given a bulk system, as we will construct below, we are handed a definite bulk

representation. We need to consider carefully what boundary representation, carried by the dual operators,

is induced. The one-form fields that we have discussed above naturally couple to vector operators in the

boundary. Let us first consider how such operators transform. In the boundary, the Schrödinger group acts

80



on the coordinates as

K : x⃗′ = x⃗+ v⃗t; t′ = t; ξ′ = ξ − v⃗x⃗− 1

2
v⃗2t

C : x⃗′ =
x⃗

1 + ct
; t′ =

t

1 + ct
; ξ′ = ξ +

c

2

x⃗2

1 + ct
,

which are generated by

Ki = −t∂i + xi∂ξ (6.9)

C = t(t∂t + x⃗ · ∂⃗ +∆)− 1

2
x⃗2∂ξ. (6.10)

Note that we interpret ξ here as a boundary coordinate. The vector field ∂ξ is still central, and so operators

can be taken to have definite eigenvalues n.

A one-form operator Ô = (Ôt, Ôi, Ôξ) with particle number n and scaling dimension (∆ + 2,∆+ 1,∆)

would transform as

K : Ô′(t′, x⃗′, ξ′) = Ô(t, x⃗, ξ) ·


1 0 0

−vi 1 0

− v⃗2

2 vi 1

 , (6.11)

C : Ô′(t′, x⃗′, ξ′) = Ô(t, x⃗, ξ) ·


λ∆+2 0 0

cxiλ∆+1 λ∆+1 0

− c2

2 x⃗
2λ∆ −cxiλ∆ λ∆

 . (6.12)

If we call the matrices appearing here K and C, a vector operator (Ôt, Ôi, Ôξ) would then transform via

K−1T and C−1T respectively. It can be seen that the one-form and vector operators are related by a

“boundary metric”

η =


0 0 1

0 1 0

1 0 0

 , (6.13)

which is preserved up to a re-scaling under the Schrödinger group, just as the relativistic conformal group

preserves up to a re-scaling the Minkovski metric. Similar to bulk representations, we also have short and

ultra-short representation {Ôt, Ôi} and {Ôt} respectively.

For a simple example, if we had free fermions we could construct the spin-1 current multiplet with

components Jm = iψ†∂mψ − i∂mψ
†ψ, m = t, i, ξ with (n,∆) = (0, d) where d is the number of spatial

dimensions. In the same model, operators of the form (ψ†pJmψ
q) have (n,∆) = (p − q, d + p+q

2 ). These

operators will have the corresponding dual sources in the bulk, coming from bulk vector fields with different

mass m0 and particle number n.
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Now the bulk field H give rise to a source S for operators in the boundary theory, and we write a

source-operator coupling of the general form

LI =

∫
∂M

SµÔ
µ (6.14)

which should be invariant under the Schrödinger group. If the sources S have (nS ,∆S), the dual operators

should have (nJ ,∆J) such that nS = −nJ and ∆S +∆J = d. However, having written this coupling, it is

important to realize that not all of the components of the source are independent. Before proceeding with

the discussion, let us pause to note what happens in the more familiar AdS cases. There the z-component

of the vector field is either a pure gauge (so that it does not contribute to the on-shell action) for m0 = 0, or

being determined by the other components through the equations of motion for m ̸= 0. In both instances,

the z-component does not source an independent operator in the boundary theory. The dual operators

always carry a vector representation in the boundary.

In the Schrödinger case, as we will see, for n = 0 we have the same situation as AdS. However, for n ̸= 0,

interesting thing happens, where it is the t-component of the vector field that becomes unphysical. The

z-component, instead, combines with the ξ-component to source a pair of scalar operators. (In the massless

limit, one of the combinations is not gauge invariant and also drops out of the system). In any case, we must

look at solutions to the equations of motion as a guide.

6.2 Boundary vector 2-point functions

Let us first consider the general form of the 2-point functions of vector operators, which follow from the

representation (6.11) and (6.12). The 2-point correlator of equivariant operators should satisfy

Gmn(t
′, x⃗′) = ⟨Ôm(t′, x⃗′)Ô†

n(0, 0)⟩ = ⟨Ô′
m(t′, x⃗′)Ô′†

n (0, 0)⟩ = G′
mn(t

′, x⃗′) (6.15)

in which the right hand side can be converted to a combination of the unprimed 2-point functions using

(6.11) and (6.12).

6.2.1 for n ̸= 0

Given that Ôξ transforms as if it were a scalar, we have

Gξξ(t, x⃗) = α
1

t∆
ein

x⃗2

2t (6.16)
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where ∆ is the scaling dimension of Ôξ and α an undetermined constant. All other components of Gmn can

be inferred from Gξξ using (6.15) for different symmetries of the Schrödinger group. For example, applying

(6.15) for K on Giξ gives the differential equation

vj(t∂j − inxj)Giξ = viGξξ, (6.17)

which gives Giξ = α xi

t∆+1 e
in x⃗2

2t . It can be checked that this form of Giξ is also consistent with the finite K

and C symmetry. Similar computations yield results

Gmn(t, x⃗) =


− x⃗4

4t∆+4 − x⃗2xi

2t∆+3 − x⃗2

2t∆+2

− x⃗2xj

2t∆+3

xixj

t∆+2

xj

t∆+1

− x⃗2

2t∆+2

xj

t∆+1
1
t∆

αein
x⃗2

2t . (6.18)

Hence, all vector 2-point functions are completely determined up to a proportionality constant. This constant

can be set to 1 by an appropriate rescaling of the operators.

6.2.2 for n = 0

For n = 0, one might simply consider the n → 0 limit of the above correlation functions. However, this

does not give the general result, and in fact will not be consistent with the correlators that we will obtain

holographically. At n = 0 there is another possible functional form for the 2-point functions. To see how

this comes about, consider the simplest piece of the correlator, Gξξ, which satisfies the K and C symmetry

constraints (6.15)

t∂iGξξ = 0

−t(t∂t + xi∂i)Gξξ = ∆tGξξ (6.19)

We will also need to consider constraints from other elements of the Schrödinger group but we will not write

them explicitly. One solution to these equations is Gξξ ∼ 1
t∆

, which is the n → 0 limit of (6.18). Because

the equations are proportional to t, there is another solution of the following form1

Gξξ = β
δ(t)

(x⃗2)∆−1
, (6.20)

1The power of x⃗2 is determined by D.
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which does not exist for n ̸= 0. If we look at the full system of equations for Gmn, we find that in fact β = 0,

but other components can have temporal δ-function support. The general result is

Gmn(t, x⃗) =


− 1

2∆(∆−1)
δ′′(t)

(x2)∆−1 + U δ′(t)
(x2)∆

+W δ(t)
(x2)∆+1

1
∆
δ′(t)xi

(x2)∆
−∆U δ(t)xi

(x2)∆+1

δ(t)
(x2)∆

1
∆
δ′(t)xj

(x2)∆
−∆U

δ(t)xj

(x2)∆+1

δ(t)
(x2)∆+1

(
∆+1
∆ δijx

2 − 2xixj

)
0

δ(t)
(x2)∆ 0 0

 . (6.21)

As we will see, this type of solution will be realized in the boundary theory. The current correlators are

determined up to two arbitrary constants U and W . It turns out that the U and W terms in (6.21)

essentially correspond to the 2-point functions of a short and ultra-short multiplet respectively. This is a

result of the fact that given any spin-1 multiplet {Ôt, Ôi, Ôξ}, we can always construct out of it a short

multiplet { d
d−∆∂tÔξ +

∆
d−∆∂iÔi, ∂iÔξ} and an ultra-short one {∂2i Ôξ}. This is a special feature of n = 0,

which causes an ambiguity in the spin-1 representation. Indeed, define

¯̂
Oξ = Ôξ

¯̂
Oi = Ôi + η ∂iÔξ

¯̂
Ot = Ôt +

ηd

d−∆
∂tÔξ +

η∆

d−∆
∂iÔi + κ ∂2i Ôξ, (6.22)

then { ¯̂Ot, ¯̂Oi, ¯̂Oξ} also forms a spin-1 multiplet for arbitrary η and κ. The ambiguity can be removed by

fixing U = W = 0 in (6.21). For d ̸= ∆, this is done by choosing η = (d−∆)U
2(2∆−d) and κ = W

4∆(2∆+2−d) . The

2-point functions becomes

Gmn(t, x⃗) =


− 1

2∆(∆−1)
δ′′(t)

(x2)∆−1
1
∆
δ′(t)xi

(x2)∆
δ(t)

(x2)∆

1
∆
δ′(t)xj

(x2)∆
δ(t)

(x2)∆+1

(
∆+1
∆ δijx

2 − 2xixj

)
0

δ(t)
(x2)∆ 0 0

 . (6.23)

When d = ∆, there is no short-multiplet ambiguity, so only κ is allowed in (6.22), which helps settingW = 0.

However, as will be clear later, this case corresponds to the massless limit and so there is an extra constraint

on the operators: the continuity equation ∂tÔξ + ∂iÔi = 0. This requires U = 0 too.

6.3 Vector fields on Schrödinger background: n ̸= 0

Now we consider the bulk equations of motion carefully. Because we are on a symmetric background, the

equations of motion have exact solutions that we can write in terms of Bessel functions. As above, there are

several distinct cases to consider.
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6.3.1 On-shell Solution

The bulk action for an n ̸= 0 complex massive vector field on the Schrödinger background takes the form

S = −
∫
M

dzdtddxdξ
√
|g|
(1
4
FµνF

µν∗ +
1

2
m2

0AµA
µ∗
)

(6.24)

and the equations of motion are

∇µFµν −m2
0Aν = 0. (6.25)

Here, µ, ν run over t, x⃗, ξ, z. Notice that for m0 ̸= 0, this equation implies that ∇νAν = 0, which we refer to

as the Lorentz condition. For m0 = 0, this does not follow, but we have a choice of gauge fixing condition

to make; in fact, ∇νAν = 0 seems to be the sensible gauge condition, as it does not break the Schrödinger

symmetry. After Fourier transforming the fields Aµ ∼ e−iωt+ik⃗·x⃗+inξ, one finds that the eqs. (6.25) can be

put in the following form using the Lorentz condition

0 = z2A′′
t − (d− 1)zA′

t − z2q2At −m2At −
2β2

z
A′
ξ +

2inβ2

z
Az + 2iωzAz (6.26)

0 = z2A′′
i − (d− 1)zA′

i − z2q2Ai −m2Ai − 2ikizAz (6.27)

0 = z2A′′
z − (d+ 1)zA′

z − z2q2Az + (d+ 1−m2)Az −
2inβ2

z
Aξ (6.28)

0 = z2A′′
ξ − (d− 1)zA′

ξ − z2q2Aξ −m2Aξ − 2inzAz, (6.29)

where m2 = m2
0 + n2β2 and where q =

√
k⃗2 − 2nω. We notice that Az and Aξ satisfy coupled equations

(6.28,6.29) independent of At and Ai and they may be solved exactly to give

Aξ =
1

β

∑
η=±

Cη z
d
2+1Kνη (qz) (6.30)

Az =
1

2inβ

∑
η=±

Cηz
d
2

(
αηKνη (qz)− 2zqKνη+1(qz)

)
, (6.31)

where

νη =

√(d
2
+ 1
)2

+m2 + γη (6.32)

αη = d+ 2 + 2νη + γη (6.33)

γη = η
√
d2 + 4m2

0 − d, (6.34)
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and Cη are arbitrary constants. Given these solutions, we see that Az, Aξ act as sources for At, Ai. The

specific solution to (6.27) can be found by defining Ãi = z−
d
2Ai and using the ansatz Ãi =

∑
η Uηz

VηKµη (qz),

yielding Uη = Cη
ki
nβ , Vη = 1 and µη = νη. Hence we get

Ai = Ciz
d
2Kν0(qz) +

∑
η

Cη
ki
nβ

z
d
2+1Kνη (qz), (6.35)

with

ν0 =

√
d2

4
+m2, (6.36)

and Ci constant. Similarly, At can be found without much difficulty

At = Ctz
d
2Kν0(qz) +

∑
η

Cηz
d
2

(
− γη

2νηαη
q Kνη+1(qz) +

γη
2νη(αη − 4νη)

q Kνη−1(qz)−
ω

nβ
zKνη (qz)

)
.

(6.37)

We notice that singularities appear in the solutions as n → 0. We should take greater care then with

n = 0 and derive the solutions for this case separately. We will do so in the next section.

We also notice that the on-shell solutions (6.30), (6.31), (6.35) and (6.37) suggest the following redefinition

of the fields

Aξ =
1

β

∑
η

Āη

Az =
1

2inβ

∑
η

(γη
z
Āη + 2Ā′

η

)
Ai = Āi +

ki
nβ

∑
η

Āη

At = Āt +
∑
η

(
− ω

nβ
Āη +

γ2η
4n2βz2

Āη +
γη

2n2βz
Ā′
η

)
, (6.38)

with which the equations of motion completely decouple and the on-shell solutions become

Āη = Cηz
d
2+1Kνη (qz) (6.39)

Āi = Ciz
d
2Kν0(qz) (6.40)

Āt = Ctz
d
2Kν0(qz). (6.41)
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The transformation properties of the barred fields can be inferred directly from those of the original fields

(6.7), (6.8) (with ∆ = 0). A simple calculation reveals that under K and C, Āη transform as scalars, while

{Āt, Āi} form a short spin-1 multiplet. The Lorentz condition simplifies significantly

∇νAν = −(d+ 1)zAz + z2
(
∂ξAt +

β2

z2
∂ξAξ + ∂tAξ + ∂iAi + ∂zAz

)
= 0 = ∂ξĀt + ∂iĀi,

which can be used to eliminate Āt in terms of Āi. This leaves us with only three physical Schrödinger

representations Āη, Āi, all transform as scalars under the boost and special conformal transformation. (Of

course, Āi transform as a spatial vector under rotations). As anticipated, the bulk action (6.24) written in

terms of Āη and Āi (after removing Āt and adding appropriate total derivatives) takes a simple form

S = −
∫
M

√
−g

{
1

2

(
∂µĀi∂

µĀi∗ +m2
0ĀiĀ

i∗
)
+
∑
η

4m2
0 − dγη
4n2β2

(
∂µĀη∂

µĀ∗
η + (m2

0 + γη)ĀηĀ
∗
η

)}
. (6.42)

This is a free system of a massive spatial vector and two massive scalars on the Schrödinger geometry.

It is important to note that at m0 = 0, 4m2
0 − dγ+ = 0 and hence Ā+ completely decouples. This effect

of reducing the physical degrees of freedom is expected because of the gauge symmetry present in that case.

Indeed, observe that at m0 = 0, Fzξ =
1
2z

∑
η γηĀη ∼ Ā−, so A− is gauge invariant. So is Āi: under a gauge

tranformation parameterized by ϕ, we have Ā′
i = A′

i− ki
n

∑
η Ā

′
η = Ai+ ikiϕ− ki

n (
∑
η Āη + inϕ) = Āi. Only

Ā+ is not gauge invariant and so is the mode that can be gauged away.

6.3.2 Variational Principle, Renormalization and 2-point Functions

Because of the simple form of the vector field solutions found above, the following will be very much like

scalars on the Schrödinger geometry, as studied in [124] [123] [37]. Writing

Kν(qz) = xν
1

(qz)ν
+ . . . yν(qz)

ν + . . . ,

where xν = Γ(ν)
21−ν , yν = Γ(−ν)

21+ν , we define the sources and vev of the dual operators to be the coefficients of

the “conjugate” powers of z

S(0)
η = xνηq

−νηCη; S
(0)
i = xν0q

−ν0Ci; (6.43)

V (0)
η = yνηq

νηCη; V
(0)
i = yν0q

ν0Ci, (6.44)
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As in the scalar case, the transformation properties of these quantities inherit directly from those of Āη

and Āi. Generically, the dual operators fall into three representations of the boundary Schrödinger group:

Ôη, carrying the scalar representations with scaling dimension ∆η = d
2 + 1 + νη, and Ôi, transforming as a

spatial vector under spatial rotation, but as scalars under the rest of the generators, having scaling dimension

∆ = d
2 + ν0. At m0 = 0, the dual operators reduce to only Ô− and Ôi.

The variational principle and renormalization proceed in the same way as scalars on Schrödinger geometry,

as discussed in [38], following [32]. We notice that the solutions found above are such that effectively it looks

like Āη can be thought of as two decoupled scalars on relativistic AdSd+3/CFTd+2, whereas for Āi (with

the lower index), d is shifted by 2 and can be thought of as d decoupled scalars on AdSd+1/CFTd. Thus,

we can immediately deduce the counter terms from the more familiar AdS case, and we find

Sct =

∫
∂M

dd+1xdξ
√
−γ

{(d−∆

2
ĀiĀ

i∗ +
1

2(∆− d− 2)
Āi∗ γĀi

)
+
∑
η

4m2
0 − dγη
2n2β2

(d+ 2−∆

2
ĀηĀ

∗
η +

1

2(∆− d− 4)
Ā∗
η γĀη

)}
, (6.45)

where
√
−γ = z−(d+2) is the (d+ 2)-dimensional induced metric determinant and γ = z2(2in∂t + ∂2i ) the

Schrödinger operator. The renormalized on-shell action hence evaluates to

SR,os = −R
∫
∂M

ddkdω

{
νη

yνη
xνη

4m2
0 − dγη
2n2β2

q2νηS(0)
η S(0)∗

η + ν0
yν0
xν0

q2ν0S
(0)
i S

(0)∗
i

}
, (6.46)

where R is the compactification radius of ξ direction. The 2-point functions can be read off immediately

⟨Ô†
η(k, ω)Ôη′(k, ω)⟩ = −δηη′Rνη

yνη
xνη

4m2
0 − dγη
2n2β2

q2νη (6.47)

⟨Ô†
i (k, ω)Ôj(k, ω)⟩ = −δijRν0

yν0
xν0

q2ν0 , (6.48)

keeping in mind that at m0 = 0 there is no Ô+.

6.4 Vector fields on Schrödinger background: n = 0

As mentioned before, the solutions found in the previous section possess singularities as n→ 0. The special

case n = 0 thus has to be treated separately.
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6.4.1 On-shell Solutions

For n = 0, the bulk vector field can be taken to be real with the standard action

S = −
∫
M

ddxdtdξdz
√
−g
(1
4
FµνF

µν +
1

2
m2AµA

µ
)
. (6.49)

The equations of motion are the n → 0 limit of (6.26)-(6.29) and can be solved exactly to give the general

solution

Aξ = Cξ z
d
2Kν0(kz) (6.50)

Az = Cz z
d
2+1Kν0(kz) (6.51)

Ai = Ci z
d
2Kν0(kz)− i

ki
k
Cz z

d
2+1Kν0+1(kz) (6.52)

At = Ct z
d
2Kν0(kz) + i

ω

k
Cz z

d
2+1Kν0+1(kz)

+ Cξ k
2β2z

d
2

( d− 2ν0
16ν0(ν0 + 1)2

Kν0+2(kz)−
d+ 2ν0

16ν0(ν0 − 1)2
Kν0−2(kz)−

2 + d

4ν0(ν20 − 1)

∂

∂ν0
Kν0(kz)

)
(6.53)

Note that now k =
√
k⃗2. Observe that there is apparent singularities at ν0 = 0, 1. The Lorentz condition

now takes the form

0 = ∇A ∼ (d− 2ν0)Cz + 2iωCξ − 2ikiCi (6.54)

We notice the qualitative difference from the n ̸= 0 results. Here Aξ and Az decouple from each other in

(6.50) and (6.51). Ct is no longer an unphysical degree of freedom and in fact does not even appear in the

Lorentz condition. Instead, for generic values of m0, Cz can be eliminated using the Lorentz condition, as

long as d− 2ν0 ̸= 02 Furthermore, there is no possible redefinition of the fields to decouple the equations of

motion (technically due to the ∂
∂ν0

Kν0(kz) term in (6.53)). Finally, as will be discussed in detail later, in

contrast to the n ̸= 0 case, the gauge limit m0 → 0 is not a singular limit. Note also that at this value of

m0, Az is a pure gauge. Hence, we have the similar situation as in AdS.

6.4.2 Sources and Vevs and their Transformations

The next step is to identify the sources and v.e.v. of the boundary operators and find their transformation

properties. They can be identified as the coefficients of the z
d
2−ν0 and z

d
2+ν0 terms in the on-shell solutions

2That is, as long as m0 ̸= 0. If m0 = 0, the Lorentz condition reduces to ωCξ = k⃗ · C⃗, which can clearly be interpreted as a
constraint equation, leading to the expected Ward identity in the boundary theory.
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(6.50)-(6.53), respectively

S(0)
z = xν0k

−ν0Cz

S
(0)
ξ = xν0k

−ν0Cξ

S
(0)
i = xν0k

−ν0Ci − i2ν0 xν0 kik
−ν0−2Cz

S
(0)
t = xν0k

−ν0Ct + i2ν0 xν0 ωk
−ν0−2Cz + κS xν0k

2−ν0β2Cξ, (6.55)

V (0)
z = yν0k

ν0Cz

V
(0)
ξ = yν0k

ν0Cξ

V
(0)
i = yν0k

ν0Ci

V
(0)
t = yν0k

ν0Ct + κV yν0k
2+ν0β2Cξ, (6.56)

where κS and κV are the corresponding momentum independent contributions coming from the last term

(proportional to Cξ) of (6.53), namely

κS = − d− 2ν0
16(ν0 + 1)2

+
d+ 2

4ν0(ν20 − 1)

(
π cot (πν0)− ψ(1− ν0)

)
(6.57)

κV = − d+ 2ν0
16(ν0 − 1)2

+
d+ 2

4ν0(ν20 − 1)

(
π cot (πν0) + ψ(1 + ν0)

)
, (6.58)

with ψ(x) the digamma function. As we will see shortly, in contrast to the n ̸= 0 case where the sources (and

vev) are scalars under the (boundary) boost and special conformal transformations, here they form a spin-1

representation (6.11) and (6.12). The observation made in section 2.2 then implies that the sources and vev

are only determined up to a field redefinition (6.22), dual to a redefinition of the boundary operators. The

desired redefinition will be determined so that the current 2-point functions take the normalized form (6.23).

We will come to this point later.

Throughout this section we adopt a more convenient hybrid representation where S(0) = S(0)(t, k⃗),

S(0) = (S
(0)
t , S

(0)
i , S

(0)
z , S

(0)
ξ ), and likewise for V(0). Let’s find the transformation properties of S(0) and

V(0). Given the finite boost

z′ = z, k′i = ki, ∂
′
t = ∂t − iviki, (6.59)
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and given that the bulk field A transforms as in (6.7), it is easy to show that vev transform as

V
(0)′

ξ = V
(0)
ξ

V (0)′

z = V (0)
z

V
(0)′

i = V
(0)
i + viV

(0)
ξ

V
(0)′

t = V
(0)
t − viV

(0)
i − v2

2
V

(0)′

ξ (6.60)

In other words, {V (0)
t , V

(0)
i , V

(0)
ξ } form a spin-1 representation, while V

(0)
z decouples from the rest. Note

that here V(0)′ stands for V(0)′(t′, k⃗′). Under the special conformal transformation, we have

z′ = z/λ, k′i = λki, ∂
′
t = λ2∂t − cλ

∂

∂ki
ki + cλz∂z. (6.61)

From (6.8) and the on-shell solutions (6.50)-(6.53), the transformation law for V
(0)
ξ is seen immediately

A′
ξ = Aξ ⇔ V

(0)′

ξ = λ
d
2+ν0V

(0)
ξ . (6.62)

For V
(0)
z we have

A′
z = λAz − czAξ ⇔ V (0)′

z = λ
d
2+ν0+2V (0)

z − cλ
d
2+ν0+1V

(0)
ξ . (6.63)

For V
(0)
i , the transformation law

A′
i = λAi − ic

∂

∂ki
Aξ

gives

V
(0)′

i z
d
2 k−ν0λ−

d
2−ν0Kν0 − ikiV

(0)′

z z
d
2+1k−ν0−1λ−

d
2−ν0−1Kν0+1

= λ
(
V

(0)
i z

d
2 k−ν0Kν0 − i

ki
k
V (0)
z z

d
2+1k−ν0Kν0+1

)
− ic

∂

∂ki

(
V

(0)
ξ z

d
2 k−ν0Kν0

)
.

Using ∂
∂ki

(
k−ν0Kν0

)
= −zkik−ν0−1Kν0+1 and equations (6.62), (6.63), the above equation implies

V
(0)′

i Kν0 − ikizk
−1λ−1Kν0+1

(
λ

d
2+ν0+2V (0)

z − cλ
d
2+ν0+1V

(0)
ξ

)
= λ

(
V

(0)
i λ

d
2+ν0Kν0 − i

ki
k
V (0)
z zλ

d
2+ν0Kν0+1

)
− ic

∂

∂ki
V

(0)
ξ λ

d
2+ν0Kν0 + icV

(0)
ξ

ki
k
zλ

d
2+ν0Kν0+1
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or

V
(0)′

i = λ
d
2+ν0+1V

(0)
i − icλ

d
2+ν0

∂

∂ki
V

(0)
ξ . (6.64)

For V
(0)
t , the computation is more involved but straightforward. From

A′
t = λ2At + c

i∂

∂ki
λAi + czλAz −

c2

2
(− ∂2

∂k2i
+ z2)Aξ

we get

V
(0)′

t z
d
2 k−ν0λ−

d
2−ν0Kν0 − κV yν0V

(0)′

ξ z
d
2 k2−ν0β2λ−

d
2−ν0+2Kν0 −

∂

∂t′

(
V (0)′

z z
d
2+1k−ν0−1λ−

d
2−ν0−2Kν0+1

)
+ V

(0)′

ξ z
d
2 k−ν0+2λ−

d
2−ν0+2X

=λ2
(
V

(0)
t z

d
2 k−ν0Kν0 − κV yν0V

(0)
ξ z

d
2 k2−ν0β2Kν0 −

∂

∂t

(
V (0)
z z

d
2+1k−ν0−1Kν0+1

)
+ V

(0)
ξ z

d
2 k−ν0+2X

)
+ cλ

i∂

∂ki

(
V

(0)
i z

d
2 k−ν0Kν0 − i

ki
k
V (0)
z z

d
2+1k−ν0Kν0+1

)
+ czλV (0)

z z
d
2+1k−ν0Kν0 −

c2

2
(z2 − ∂2

∂k2i
)
(
V

(0)
ξ z

d
2 k−ν0Kν0

)
,

where X = β2
(

d−2ν0
16ν0(ν0+1)2Kν0+2 − d+2ν0

16ν0(ν0−1)2Kν0−2 − 2+d
4ν0(ν2

0−1)
∂
∂ν0

Kν0

)
. After a careful calculation, this

gives

V
(0)′

t = λ
d
2+ν0+2V

(0)
t + icλ

d
2+ν0+1 ∂

∂ki
V

(0)
i +

c2

2
λ

d
2+ν0

∂2

∂k2i
V

(0)
ξ . (6.65)

Thus, (6.62), (6.63), (6.64) and (6.65) confirm that {V (0)
t , V

(0)
i , V

(0)
ξ } belong to a spin-1 (boundary) repre-

sentation with dimensions {d2 + ν0 + 2, d2 + ν0 + 1, d2 + ν0}. The way in which V
(0)
z transforms is unusual,

but it is necessary to ensure that the Lorentz condition (6.54) is K and C invariant.

For the sources, the computation is a little bit more complicated but the spirit is the same. What we

get is again a spin-1 representation, with dimensions {d2 − ν0 + 2, d2 − ν0 + 1, d2 − ν0}. The dual operators

{Ĵt, Ĵi, Ĵξ} therefore carry a spin-1 representation with dimensions {d2 + ν0 + 2, d2 + ν0 + 1, d2 + ν0}. The

boundary coupling is

SI =

∫
ddxdt

(
S
(0)
t Ĵξ + S

(0)
ξ Ĵt + S

(0)
i Ĵi

)
. (6.66)
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6.4.3 Variational Principle, Renormalization and 2-point Functions

As standard in holography, we need to add counter terms to the bulk action (6.49) to make the variational

principle work properly and simultaneously cancel all the divergences. A proper variational principle requires

the action’s variation to vanish under normalizable fluctuations of the bulk fields [38]. As the fluctuations

are necessarily off-shell, first of all we have to define the off-shell bulk fields. As is customary, the off-shell

fields are taken to have the same near boundary expansion as the on-shell solutions (6.50)-(6.53), except

that the coefficients of different powers of z are completely unrelated. Hence, we postulate the off-shell field

to be of the form

Aξ(z) = z
d
2

(
S
(0)
ξ z−ν0 − 1

4(ν0 − 1)
k2S

(2)
ξ z2−ν0 + · · ·+ V

(0)
ξ zν0 +

1

4(ν0 + 1)
k2V

(2)
ξ z2+ν0 . . .

)
(6.67)

Az(z) = z
d
2

(
S(0)
z z−ν0 − 1

4(ν0 − 1)
k2S(2)

z z2−ν0 + · · ·+ V (0)
z zν0 +

1

4(ν0 + 1)
k2V (2)

z z2+ν0 . . .
)

(6.68)

Ai(z) = z
d
2

(
S
(0)
i z−ν0 − 1

4(ν0 − 1)
k2S

(2)
i z2−ν0 + · · ·+ V

(0)
i zν0 +

1

4(ν0 + 1)
k2V

(2)
i z2+ν0 . . .

)
(6.69)

At(z) = z
d
2

(
S
(0)
t z−ν0 − 1

4(ν0 − 1)
k2S

(2)
t z2−ν0 + · · ·+ V

(0)
t zν0 +

1

4(ν0 + 1)
k2V

(2)
t z2+ν0 . . .

)
+

2 + d

4ν0(ν20 − 1)
z

d
2 ln (kz) k2β2

(
S
(0)
ξ z−ν0 + · · · − V

(0)
ξ zν0 + . . .

)
+ z

d
2−2β2

( d− 2ν0
4(ν0 + 1)

S
(0)
ξ z−ν0 − d+ 2ν0

4(ν0 − 1)
V

(0)
ξ zν0

)
, (6.70)

where S(0),S(2),V(0),V(2), . . . are independent coefficients. On-shell, for example, S(0) and V(0) are given

in (6.55) and (6.56) respectively. Notice the logarithmic behavior in (6.70), coming from the ν-derivative

term in the solution (6.53). Generically we do not have this kind of behavior in the n ̸= 0 case, even in the

relativistic counterpart. Howerver, as we will see, these terms will disappear in the renormalized on-shell

action.

The on-shell action (6.49) evaluates to

Sos = −R
4

∫
z=ϵ

ddxdt
√
−gAµF zµ. (6.71)

As is customary [37, 38], the counter terms consist of Galilean invariant combinations of induced field at the

boundary. The most general form of this type is

Sct = −R
4

∫
z=ϵ

ddkdω
√
−γ
(
a(q) z2(2AtAξ +AiAi) + b(q) AξAξ + c(q) z2(−iωAξ + ikiAi)

2
)
, (6.72)
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where γ is the d+2-dimensional induced metric and a(q), b(q), c(q) are polynomials of q = k2z2 3, of which

the coefficients are to be determined. It is physically illuminating to divide Sct into two pieces. One piece

involves the first few order of a(q), b(q) and c(q), responsible for ensuring a proper variational principle plus

canceling the leading divergences in the renormalized action. We will call this piece the Gibbons-Hawking

term, after the same name in gravity. At first sight, solving for the Gibbons-Hawking term always involves an

over-determined system of equations. The success of the variational principle and renormalization procedure

depends crucially on whether or not this system of equations is actually reducible to a solvable system. This

is what happens in the fermion case, where the system in fact turns out to be under-determined [38]. In the

case at hand, as we will see, the system is critical for ν0 > 1 and the Gibbons-Hawking term is unique. For

ν0 < 1, the system is over-determined. As discussed later, this might be related to the fact that there is a

singular point ν0 = 1.

The other piece consists of higher order terms in a(q), b(q) and c(q) so that no normalizable fluctuation

survives the z → 0 limit. This piece thus only takes care of the cancelation of (subleading) divergences. We

call it the counter-term. Since Sct is the most general Galilean invariant combination, at any order of z the

requirement of divergence cancelation leads at most to a critical system of equations. As a result, in principle

the counter-term can always be solved. Also, in contrast to the Gibbons-Hawking term, the counter-term,

along with the number of divergences in the bulk action, depends greatly on dimensionality and the mass.

Finally, it does not have any finite contribution, since if it had, so would its variation, which contradicts its

defining property. We will not discuss the counterterms much further.

Determining the Gibbons-Hawking term is indeed the central task in the variational principle and renor-

malization procedure. Using for (6.67)-(6.70) for the field and their variation (with V replaced by δV

appropriately), we collect the divergent and finite terms in δS that involve the normalizable fluctuation δV

δS = −R
2

√
−gδAµF zµ

=

{
R(d2 − 4ν20)

8z2(ν20 − 1)
− Rk2(ν20d

2 + ν0d
2 − 8d+ 4ν20d+ 16ν0d− 4dν30 − 12ν30 + 4ν40 + 32ν0 − 16)

64ν0(ν0 − 1)2(ν0 + 1)

}
×

× S
(0)
ξ δV

(0)
ξ − R(d− 2ν0)

4

(
S
(0)
t δV

(0)
ξ + S

(0)
ξ δV

(0)
t + S

(0)
i δV

(0)
i

)
− R(d2 − 4ν20)

64(ν0 + 1)2
S
(0)
ξ δV

(2)
ξ

+ z2ν0−2Rν
2
0(d+ 2)

2(ν20 − 1)
V

(0)
ξ δV

(0)
ξ (6.73)

(the integral over the transverse momentum is implied). These terms have to be cancelled against terms

3Should a(q), b(q) and c(q) contain ln (kz) to take care of the logarithmic terms in the bulk action? Fortunately not. Since
∂ν0Kν0Cξ ∼ (I−ν0 + Iν0 ) ln (kz)Cξ and Kν0Ct ∼ (I−ν0 − Iν0 )Ct, a cancelation of terms schematically of the form ∼ XtX′

ξ

will automatically ensure the cancelation of ∼ ln(kz)XξX
′
ξ, where X and X′ stand for any coefficients S(k), V (k) and their

variations
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coming from the variation of the Gibbons-Hawking term. As there is k2 in δS, the Gibbons-Hawking term

is parametrized by four unknowns

SGH = −R
4

∫
z=ϵ

ddkdω
√
−γ
(
a0 z

2(2AtAξ +AiAi) + b0 AξAξ + a1 k
2z4(2AtAξ +AiAi) + b1 k

2z2AξAξ

)
(6.74)

These unknowns are subjected to further constraints that the leading (up to k2) divergences of SGH have

to cancel those of Sos. The latter evaluates to

Sdivos = z−2ν0

{
Rd(2ν0 − d)

z216(ν0 + 1)
+
Rk2(ν0d

2 + 4ν0d− 4d− 8− 4ν30 + 8ν0)

64ν0(ν0 − 1)(ν0 + 1)
− Rk2(d+ 2)(d− 2ν0)

16ν0(ν0 − 1)(ν0 + 1)
ln z

}
S
(0)
ξ S

(0)
ξ

+ z−2ν0
(
− R(d− 2ν0)

8
− R(2ν0 − d− 2)

16(ν0 − 1)
k2z2

)(
2S

(0)
t S

(0)
ξ + S

(0)
i S

(0)
i

)
+
R(d2 − 4ν20)

16z2(ν20 − 1)
S
(0)
ξ V

(0)
ξ

+ z2ν0−2Rν
2
0(d+ 2)

4(ν20 − 1)
V

(0)
ξ V

(0)
ξ + o(k4). (6.75)

Computing similarly δSGH and SdivGH in terms of a0, a1, b0 and b1, we obtain a highly over-determined system:

twelve conditions (five for the variational principle and seven for the leading divergences) with four unknowns.

This system is not solvable for generic values of ν0. However, for ν0 > 1 the last term in (6.73) and (6.75)

becomes irrelevant, and the system collapses to a critical one, giving a unique Gibbons-Hawking term

SGH = −R
4

∫
z=ϵ

ddkdω
√
−γ
(d− 2ν0

2
z2(2AtAξ +AiAi) +

ν0(d− 2ν0)

2(ν0 + 1)
AξAξ

− 1

2(ν0 − 1)
k2z4(2AtAξ +AiAi) +

d+ 2− 2ν20 − 2ν0
4ν0(ν20 − 1)

k2z2AξAξ

)
. (6.76)

The renormalized on-shell action takes the form

SR,os = −R
4

∫
z=ϵ

ddkdω
√
−γ
{
2ν0

(
S
(0)
t V

(0)
ξ + S

(0)
ξ V

(0)
t + S

(0)
i V

(0)
i

)
+
(ν40d− 5ν20d− 8ν20 + 2d+ 4

4ν0(ν20 − 1)2

)
k2S

(0)
ξ V

(0)
ξ

}
. (6.77)

Now we can use the Lorentz condition (6.54) to write Cz in terms of the sources

Cz =
2ikν0

xν0(d+ 2ν0)

(
kiS

(0)
i − ωS

(0)
ξ

)
. (6.78)
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Using (6.55) and (6.56), the renormalized on-shell action can be rewritten as

SR,os = −Rν0yν0
2xν0

∫
z=ϵ

ddkdω
√
−γ k2ν0

{
2S

(0)
t S

(0)
ξ +

(
δij −

4ν0
d+ 2ν0

kikj
k2

)
S
(0)
i S

(0)
j

+
8ν0

d+ 2ν0

ωki
k2

S
(0)
i S

(0)
ξ +

(
− 4ν0
d+ 2ν0

ω2

k4
+ (κV − κS) +

ν40d− 5ν20d− 8ν20 + 2d+ 4

8ν20(ν
2
0 − 1)2

)
k2S

(0)
ξ S

(0)
ξ

}
.

As repeatedly mentioned, we have a freedom (6.22) to redefine the sources to simplify the current 2-point

functions. Taking the new S
(0)
t to be

S
(0)
t ≡ S

(0)
t +

(κV − κS

2
+
ν40d− 5ν20d− 8ν20 + 2d+ 4

16ν20(ν
2
0 − 1)2

)
k2S

(0)
ξ (6.79)

we finally get

SR,os = −Rν0yν0
2xν0

∫
z=ϵ

ddkdω
√
−γ k2ν0

{
2S

(0)
t S

(0)
ξ +

(
δij −

4ν0
d+ 2ν0

kikj
k2

)
S
(0)
i S

(0)
j

+
8ν0

d+ 2ν0

ωki
k2

S
(0)
i S

(0)
ξ − 4ν0

d+ 2ν0

ω2

k2
S
(0)
ξ S

(0)
ξ

}
.

The 2-point functions can be deduced immediately

Gmn = −Rν0yν0
xν0

k2ν0


− 4ν0
d+2ν0

ω2

k2
4ν0
d+2ν0

ωki
k2 1

4ν0
d+2ν0

ωkj
k2 δij − 4ν0

d+2ν0

kikj
k2 0

1 0 0

 , (6.80)

The Fourier transform (along with re-scaling of the operators appropriately) gives the form that we antic-

ipated above, (6.23). Notice that in contrast to the n ̸= 0 case, the m0 → 0 limit is nowhere singular and

there is no apparent reduction of degrees of freedom. This is because in this limit, the Lorentz condition

(6.54) does not fix the gauge completely. The remaining gauge freedom instead imposes the continuity

relation on the boundary currents

∂tJξ + ∂iJi = 0

.

6.5 Conclusions

In this chapter, we have carefully considered the representation theory of vector fields and the corresponding

vector operators in the spacetime with Schrödinger isometry, and worked out the boundary renormalization
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and determination of boundary 2-point functions. We have found that the case of non-zero particle number

is quite different from that of zero particle number. In the latter case, we have the same situation as in AdS

where the z-component of the vector field is unphysical holographically, leaving the sources to form a spin-1

representation of the boundary Schrödinger group. In the former case, however, it is the t-component of the

vector field that becomes unphysical. The z and ξ-components, corresponding to the two extra dimensions,

combine to source a pair of scalar operators. The dual operator content is a spatial vector multiplet and

either a pair of scalar multiplets (for m0 ̸= 0) or a single scalar multiplet (for m0 = 0). In any cases, the

2-point functions for the dual operators are computed.

The variational principle and renormalization procedure is also carried out deliberately for any values of

n following the method set out in [38]. In the case where n = 0, we found that the procedure only works for

ν0 > 1. We believe this is related to the apparent singularity at ν0 = 1, which seems to signal the fact that

for ν0 < 1 things should be treated quite differently. These cases are definitely interesting and will be left

for future study.
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Appendix A

Free energies of possible bulk
backgrounds

Following [48] we use the notation adopted in [130] to compute the free energy of possible finite temperature

Dq-brane backgrounds for type IIA and IIB supergravity, both compact and non-compact xq-direction.

A.1 Compact xq

The relevant parts of the supergravity action (in string frame) are

S = −(SEH + Sϕ + SRR + SNS),

= −
∫
e−2ϕ√g(R+ 4∂ϕ∂ϕ) +

1

2

∑
q

∫
F(q+2) ∧ ∗F(q+2) +

1

2

∫
e−2ϕH(3) ∧ ∗H(3). (A.1)

We are interested in backgrounds with H(3) not turned on, and choose the following ansatz for the metric

and the RR q-form Cq+1

ds2 = dτ2 + e2λ(τ)dx2∥ + e2λ̃(τ)dx2c + e2ν(τ)dΩ2
k, (A.2)

C(q+1) = A dx1 ∧ ... ∧ dxq−1 ∧ dxq−c ∧ dxc, (A.3)

where k = 8 − q, and dΩ2
k is the line element of unit k-sphere. Again, we have set ls = 1. The equation of

motion for C(q+1) has the solution

Ȧe−qλ−λ̃+kν = const. (A.4)

The RR action then becomes

−SRR =

∫
Q2eqλ+λ̃−kνdτ, (A.5)

98



where, again, we denoted the integration constant by Q2. For convenience, we change the variable from τ

to ρ defined by dρ = −eφdτ , where

φ = 2ϕ− qλ− λ̃− kν. (A.6)

Then

−SRR = −
∫
Q2eqλ+λ̃−kν−φdρ. (A.7)

Following the same argument as we did for q = 6, it is not hard to see that the action (A.1) takes the

form

S =

∫ (
k(k − 1)e−2ν−2φ − qλ′2 − λ̃′2 − kν′2 + φ′2 −Q2eqλ+λ̃−kν

)
dρ. (A.8)

Having put the action in the above form, the equations of motion are now in order

λ′′ =
Q2

2
e−2ϕ+2qλ+2λ̃ (A.9)

λ̃′′ =
Q2

2
e−2ϕ+2qλ+2λ̃ (A.10)

ν′′ = (k − 1)e−2ν−2φ − Q2

2
e−2ϕ+2qλ+2λ̃ (A.11)

ϕ′′ =
(5− k)Q2

2
e−2ϕ+2qλ+2λ̃, (A.12)

Define Φ = −2ϕ+ 2qλ+ 2λ̃, (A.9), then (A.10) and (A.12) result in

Φ′′ = 4Q2eΦ, (A.13)

which yields the following solution

Φ = −2 ln (

√
2Q

CC1
sinhC1ρ)− 2 lnC. (A.14)

The last term is there just for convenience. Solving for λ, λ̃ and ϕ in (A.9), (A.10) and (A.12), we obtain

λ = −1

4
ln
(√2Q

gsC1
sinhC1ρ

)
+ Cλ2 ρ, (A.15)

λ̃ = −1

4
ln
(√2Q

gsC1
sinhC1ρ

)
+ Cλ̃2 ρ, (A.16)

ϕ = −5− k

4
ln
(√2Q

gsC1
sinhC1ρ

)
+ Cϕ2 ρ+ ln gs, (A.17)
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with qCλ2 +Cλ̃2 −Cϕ2 = 0. The constants C1, C
λ
2 , C

λ̃
2 and Cϕ2 are to be determined. Define Φ0 = Φ+2 ln gs,

then the equation of motion for ν becomes

ν′′ = (k − 1)e
7−q
4 Φ0−2Cϕ

2 ρ−4 ln gs+2(k−1)ν − 1

2
Q2eΦ. (A.18)

If we take 2(k − 1)ν = q−3
4 Φ0 + 2Cϕ2 ρ+ Cν , then the above equation is satisfied if

Cν = ln
2Q2g2s
(k − 1)2

. (A.19)

Thus, we obtain

ν = − 5− k

4(k − 1)
ln
(√2Q

gsC1
sinhC1ρ

)
+

Cϕ2 ρ

k − 1
+

1

k − 1
ln

√
2Qgs
k − 1

. (A.20)

We now check whether the near horizon geometry of non-extremal Dq-branes satisfies (A.15), (A.16),

(A.17) and (A.20). This geometry takes the form

ds2 = f−1/2
q

(
dx2∥ + hdx2c

)
+ f1/2q

( 1
h
du2 + u2dΩ2

k

)
, (A.21)

e−2ϕ = g−2
s f (q−3)/2

q , (A.22)

where fq =
d′qgsNc

(lsu)7−q , d
′
p = (2

√
π)5−qΓ( 7−q2 ) and h = 1 − (uc/u)

7−q.The relation between u and pho can is

inferred from (A.15) and (A.16)

e2(λ̃−λ) = e2ρ(C
λ̃
2 −Cλ

2 ) = h, (A.23)

which gives

ρ = 1
2∆C2

lnh ⇒ dρ =
(7−q)u7−q

c uq−8

2∆C2

1
hdu, (A.24)
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where ∆C2 = C λ̃2 − Cλ2 . Calculating e
2λ from (A.15), we have

e2λ =
e2C

λ
2 ρ√(√

2Q
gsC1

)
sinhC1ρ

=

√√
2C1gs
Q

h
Cλ
2

∆C2√
h

C1
2∆C2 − h

−C1
2∆C2

=

√√
2C1gs
Q

h
Cλ
2

∆C2
− C1

4∆C2√
1− h

−C1
∆C2

. (A.25)

The only way to make e2λ in (A.25) to be equal to f
1/2
q is by imposing −C1 = ∆C2 and C1 = 4Cλ2 , or

C1 = 4Cλ2 ; C λ̃2 = −3C2λ. (A.26)

Thus, we have

e2λ =

√√
2C1gs
Q

( u
uc

) 7−q
2 ≡ f−1/2

q ⇒ Cλ2 =
Q(ucls)

7−q

4
√
2g2sNcd

′
q

. (A.27)

Also, the dilaton can be matched to (A.22) as long as we take Cϕ2 = (5− k)Cλ2 resulting in

e2ϕ = e2λ(5−k)+2 ln gs = g2sf
− q−3

2
q . (A.28)

Furthermore, from (A.20), we have

e2ν =
(√2Qgs
k − 1

) 2
k−1

e2λ
5−k
k−1 ≡ f1/2q u2 ⇒ Nc =

√
2Qlk−1

s

(k−1)d′q
. (A.29)

The final check is the guu component. To do that, we first need to compute e−2φ which gives

e−2φ = e−4ϕ+2qλ+2λ̃+2kν

= e
6k+2
k−1 λ−8Cλ

2 ρ+
2k

k−1 ln (
√

2Qgs
k−1 )−4 ln gs . (A.30)
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Hence

dτ2 = e−2φdρ2

=
(7− q)2u

2(7−q)
c u2(q−8)

64(Cλ2 )
2

1

h2
e

6k+2
k−1 λ−8Cλ

2 ρ+
2k

k−1 ln (
√

2Qgs
k−1 )−4 ln gsdu2

= f1/2q

1

h
du2, (A.31)

where we have used (A.27) and (A.29) to simplify the expression. Therefore, the exact solution we just

found indeed corresponds to the near horizon geometry of non-extremal Nc Dq-branes.

With (A.15), (A.16), (A.17) and (A.20) at hand, it is now straightforward to plug them into (A.8) to

get the on-shell action. Changing back to the u coordinate and being careful about the fact that dρ/du is

negative, we obtain (here prime denotes u derivative.)

S = −V9
∫ ∞

uc

{(
− qλ′2 − λ̃′2 − kν′2 + φ′2

)du
dρ

+
(
k(k − 1)e−2ν−2φ −Q2eqλ+λ̃−kν

)dρ
du

}
du

=
9− q

g2s
V9

∫ Λ

uc

(7− q) u6−qdu

=
9− q

g2s
V9

(
Λ7−q − u7−qc

)
, (A.32)

where Λ is the cutoff, and V9 = βRcVol(S
8−q)Vol(Rq−1) (in units where string length ls = 1). For q ≤ 4, it

is not hard to see from (A.32) that the geometry given in (2.35) for which uc = 0 has more free energy than

the geometries given in (2.32) and (2.36). The difference in free energies of the thermal and black Dq-brane

geometries is given by

Sthermal − Sblack brane =
9− q

g2s
V9

(
u7−qT − u7−qKK

)
, (A.33)

which using (2.34) and (2.38) can be equivalently expresses as

Sthermal − Sblack brane =
9− q

g2s
V9

(
4π

7− q
R

1
2 (7−q)
q+1

)2 7−q
5−q
(
β2 q−7

5−q − β
2 q−7

5−q
c

)
. (A.34)

Thus, for q ≤ 4 there is a phase transition at β = 2πRc. For β > 2πRc the thermal geometry (2.32)

dominates whereas for β < 2πRc it is the black brane geometry (2.36) which dominates the Euclidean path

integral. The case of D5-branes and any associated phase transition has been discussed in section 5.
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A.2 Non-compact xq

When xq is not compact, and q ̸= 5, there are only two geometries with the same asymptotic boundary

condition: the thermal geometry (2.7) and the black brane geometry (2.2) . The difference in free energies

of the two geometries is obtained by first setting uc = 0 in (A.32) for the thermal and uc = uT for the black

brane geometry, then subtracting the results

Sthermal − Sblack brane =
9− q

g2s
V9u

7−q
T , (A.35)

where V9 = Vol(S8−q)Vol(Rq)Vol(S1β) in units where ls = 1. The difference in free energies (2.8) is positive

indicating that independent of temperature the black brane geometry is always dominant and determines

the vacuum. The case of D5-branes has been discussed in section 2.
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Appendix B

Parity breaking in three dimensions

The qualitative behavior of the holographic dual of the torsion vortex solution found in chapter 3 could be

captured by the three dimensional Gross-Neveu model coupled to abelian gauge fields. The Euclidean action

of this model is1

I = −
∫
d3x

[
ψ̄a (/∂ − ie/A)ψa +

G

2N

(
ψ̄aψa

)2
+

1

4M
FµνFµν

]
. (B.1)

M is an UV mass scale. Introducing the usual Lagrange multiplier field σ, whose equation of motion is

σ = −2G
N ψ̄aψa we can make the action quadratic in the fermions

I = −
∫
d3x

[
ψ̄a (/∂ + σ − ie/A)ψa − N

2G
σ2 − 1

4M
FµνFµν

]
. (B.2)

The model possesses two parity breaking vacua distinguished by the value of the pseudoscalar order param-

eter ⟨σ⟩. This is seen as follows: switching off the gauge fields momentarily one integrates over the fermions

to produce a large-N effective action as

Z =

∫
(Dσ)eN[tr log(/∂+σ)−

1
2G

∫
d3xσ2] . (B.3)

The path integral has a non-zero large-N extremum σ∗ found by setting σ = σ∗ +
1√
N
λ

Z =

∫
(Dλ)eN

[
tr log(/∂+σ∗)− 1

2G

∫
d3xσ∗+

1√
N
{tr λ

/∂+σ∗
−σ∗

G

∫
d3xλ}+O(1/N)

]
(B.4)

The term in the curly brackets is the gap equation. To study it one considers a uniform momentum cutoff

Λ to obtain

1

G
=

∫ Λ d3p

(2π)3
2

p2 + σ2
∗
= (tr1)

[
Λ

π2
− |σ∗|

π2
arctan

Λ

|σ∗|

]
. (B.5)

1We use ψ̄i, ψi (a = 1, 2, ..., N) two-component Dirac fermions. The γ-matrices are defined in terms of the usual Pauli
matrices as γi = σi i = 1, 2, 3.
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Defining the critical coupling as

1

G∗
=

Λ

π2
, (B.6)

(B.5) possesses a non-zero solution for σ∗ when G > G∗ given by

|σ∗| =
2π

G

(
G

G∗
− 1

)
≡ m. (B.7)

The two distinct parity breaking vacua then have

σ∗ = −2G

N
⟨ψ̄aψa⟩ = ±m. (B.8)

Going back to (B.2) one can tune G > G∗ and start in any of the two parity breaking vacua. Suppose we

start from σ∗ = +m. To leading order in N we have

Z =

∫
(DAµ)(Dψ̄a)(Dψa)e

∫
d3x[ψ̄a(/∂+m−ie/A)ψa− N

2Gm
2+O(1/

√
N)− 1

4M FµνFµν ] (B.9)

As is well known [131, 132] for an odd number N of fermions the path integral (B.9) yields an effective

action for the gauge fields which for low momenta is dominated by the Chern-Simons term i.e.

Z ≈
∫
eSCS , (B.10)

with

SCS = i
ke2

4π

∫
d3xϵµνρAµ∂νAρ , k =

N

2
. (B.11)

Had we started from the σ∗ = −m vacuum, we would have found again (B.10), however with k = −N
2 , i.e.

the vacuum with σ∗ = −m yields an effective Chern-Simons action with k = −N
2 .

Consider now deforming the action (B.9) by the Chern-Simons term with a fixed coefficient as

Z =

∫
(DAµ)(Dψ̄i)(Dψi)e

∫
d3x[ψ̄i(/∂+m−ie/A)ψi− N

2Gm
2+O(1/

√
N)− 1

4M FµνFµν−iq
∫
d3xϵµνρAµ∂νAρ] . (B.12)

If q is fixed to

q =
Ne2

4π
, (B.13)

the effective action for the gauge fields resulting from the fermionic path integrals in (B.12) is going to

be exactly equal the one obtained when we start at the σ∗ = −m vacuum. In other words, deforming the
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σ∗ = +m vacuum with a Chern-Simons term with a fixed coefficient is equivalent to being in the σ∗ = −m

vacuum. This is exactly analogous to the holographic interpretation of our torsion vortex.
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Appendix C

Off-shell fermions on Schrödinger
geometry

In this appendix, we would like to identify the appropriate functional space for the off-shell fermion on

Schrödinger geometry. The criteria is that the off-shell fermion should carry an irreducible representation of

the bulk Schrödinger symmetry that encompass all vacuum solutions (5.57).

C.1 off-shell transformation

As a reminder, the realization in the bulk of the boost Ki and special conformal transformation C acting

on fermions is

Ki =− t∂i + xi∂ξ +
z

β
γ0γiQ− (C.1)

=K
(0)
i +

z

β
γ0γiQ− (C.2)

C =t(z∂z + x⃗∂⃗ + t∂t)−
1

2
(x⃗2 + z2)∂ξ +

z

β
(x/ + zγr)γ0Q− (C.3)

=C(0) − 1

2
z2∂ξ +

z

β
(x/ + zγr)γ0Q−. (C.4)

Motivated by the general solution of the Dirac equation, the off-shell spinors are assumed to have the near

boundary expansion

Ψ =z∆
−
+

∞∑
k=0

z2k(ΨI(2k) + zΨI(2k+1)) + z∆
+
+

∞∑
k=0

z2k(ΨII(2k) + zΨII(2k+1))

+ z∆
−
−

∞∑
k=0

z2k(ΨIII(2k) + zΨIII(2k+1)) + z∆
+
−

∞∑
k=0

z2k(ΨIV(2k) + zΨIV(2k+1)) (C.5)

containing four power series of z, in which the Ψ(m)’s are in general full Dirac spinors. For generic values of

d, m0 and n these series do not talk to each other under Schrödinger transformations. Each of them form a

separate representation of the Schrödinger group. As our purpose is to work out the transformation laws,

it is sufficient to focus on just one of them, say the one with ∆−
+. Results for the other series are inferred
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immediately.

Let’s re-parametrize the first series in terms of P and Q chiral spinors as follows

ΨI =
∑
k,ε′rε

′
ℓ

z∆
−
++2k

(
ρ
ε′rε

′
ℓ

(2k) +Q ρ
ε′rε

′
ℓ

(2k+1)

)
, (C.6)

where γrρεrεℓ(m) = εrρ
εrεℓ
(m) and γvγ0ρεrεℓ(m) = εℓρ

εrεℓ
(m) .

Our task is to find the transformation laws of ρεrεℓ(m) under the Schrödinger algebra, restricted to the non-

trivial isometries Ki and C. We will then argue that it is possible to consistently reduce the representation

by setting half of the fields to zero, leaving the ρεr+(m) untouched. At this point, the remaining fields ρ++
(m)

and ρ−+
(m) transform independently, so one of them can be further set to zero under the criteria that the left-

over representation should include all on-shell solutions. In particular, a suitable irreducible representation

corresponds to keeping ρ−+
(m) for Ψ

I , ΨII and ρ++
(m) for Ψ

III , ΨIV .

Transformations of ρεrεℓ(m) are straightforwardly found by acting with Ki and C on (C.6) and reading off

the coefficients of different powers of z. Projecting further by PεrQεℓ we get

k/δKiρ
ε̄rεℓ
(2k+1) =k/K

(0)
i ρε̄rεℓ(2k+1) +

1

β
γ0γiρ

εr−
(2k)δεℓ,+ − nγiρ

ε̄r−
(2k+1)δεℓ,− (C.7)

k/δCρ
ε̄rεℓ
(2k+1) =C

(0)k/ ρε̄rεℓ(2k+1) +
x/

β
γ0ρεr−(2k)δεℓ,+ − in

2
k/ ρε̄rεℓ(2k−1) − nx/ ρε̄r+(2k+1)δεℓ,+ +

1

β
γrγ0k/ ρεr−(2k−1)δεℓ,+ (C.8)

and

δKi
ρεrεℓ(2k) + nβγvδKi

ρε̄r ε̄ℓ(2k+1) +
2ω

β
γ0δKi

ρε̄r−(2k−1)δεℓ,+ = K
(0)
i

(
ρεrεℓ(2k) + nβγvρε̄r ε̄ℓ(2k+1) +

2ω

β
γ0ρε̄r−(2k−1)δεℓ,+

)
− 1

β
k/γ0γiρ

ε̄r−
(2k−1)δεℓ,+ (C.9)

δCρ
εrεℓ
(2k) + nβγvδCρ

ε̄r ε̄ℓ
(2k+1) +

2ω

β
γ0δCρ

ε̄r−
(2k−1)δεℓ,+ = C(0)

(
ρεrεℓ(2k) + nβγvρε̄r ε̄ℓ(2k+1) +

2ω

β
γ0ρε̄r−(2k−1)δεℓ,+

)
− in

2
ρεrεℓ(2k−2) +

1

β
γrγ0ρε̄r−(2k−2)δεℓ,+ − in2β

2
γvρε̄r ε̄ℓ(2k−1)

− inω

β
γ0ρε̄r−(2k−3)δεℓ,+ +

x/

β
γ0k/ ρε̄r−(2k−1)δεℓ,+ − εrnρ

εr+
(2k−1).

(C.10)

Here ε̄r,ℓ = −εr,ℓ and ρ
ε′rε

′
ℓ

(m) , m < 0 are defined to be zero. It is also important to note that the action of

C(0) (the part of C acting on functions), due to the term z∂z, depends on the dimension of the fields it acts
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on. From (C.7) and (C.8), we see that ρεr−(2k−1) transform into themselves

k/δKiρ
ε̄r−
(2k+1) =k/K

(0)
i ρε̄r−(2k+1) − nγiρ

ε̄r−
(2k+1) (C.11)

k/δCρ
ε̄r−
(2k+1) =C

(0)k/ ρε̄r−(2k+1) −
in

2
k/ ρε̄r−(2k−1), (C.12)

hence can be consistently set to zero. With that in mind, the transformations of ρεr−(2k) can be deduced from

(C.7), (C.8), (C.9) and (C.10) to read

k/δKiρ
εr−
(2k) =k/K

(0)
i ρεr−(2k) − nγiρ

εr−
(2k) (C.13)

k/δCρ
εr−
(2k)) =k/C

(0)ρεr−(2k) −
in

2
k/ ρεr−(2k−2) + nx/ ρεr−(2k). (C.14)

Again, they only transform into themselves. Thus, we have shown that the representation can be reduced

by setting ρεr−(m) = 0. The transformations of the remaining fields are simplified significantly

δKiρ
εr+
(2k+1) =K

(0)
i ρεr+(2k+1) (C.15)

δCρ
εr+
(2k+1) =C

(0)ρεr+(2k+1) −
in

2
ρεr+(2k−1) (C.16)

δKiρ
εr+
(2k) =K

(0)
i ρεr+(2k) (C.17)

δCρ
εr+
(2k) =C

(0)ρεr+(2k) −
in

2
ρεr+(2k−2) − εrnρ

εr+
(2k−1) (C.18)

Looking at (C.15)-(C.18), we notice that fields with opposite εr index do not mix under the transformations

as well. Thus, the representation can be maximally reduced by setting one of the two ρεr+(m) to zero. The

criteria is obvious: the leftover representation must include all solutions of the Dirac equation. Thus, in

(C.5) it corresponds to keeping only ρε̄r+(m) in the series with leading order z∆
±
εr . This gives the off-shell spinor

Ψ =
∑
εr

[
z∆

−
−εr

∞∑
k=0

z2k
(
ρεr(2k) +Qρεr(2k+1)

)
+ z∆

+
−εr

∞∑
k=0

z2k
(
χεr(2k) +Qχεr(2k+1)

)]
, (C.19)

where ρεr = ρεr+, etc.

C.2 Massless limit

In the massless limit, µ+ = µ− = µ, ∆±
− = ∆±

+ = ∆± and the expansion (C.5) collapses into just two series.

However, for each series all the analysis carried out above is still valid. The only difference is that now to

include all solutions of the Dirac equation in the reduced representation, for each series we must keep both
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ρεr+(m) rather than just one of them. The transformation laws are the same as (C.15)-(C.18). Again, fields

with opposite εr index do not mix under the transformations. Each series then contains two irreducible

representations of the Schrödinger group, labeled by εr.
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