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The Misbehavior of Reinforcement Learning

Gianluigi Mongillo, Hanan Shteingart and Yonatan Loewemstei

Abstract—Organisms modify their behavior in response to its child” (Ahigar 6:81) [2], a practice which is today both illegal
consequences, a phenomenon referred to as operant learning.in many countries and is strongly discouraged [3].
The computational principles and neural mechanisms underlying - gy conirast,quantitativestudies on how rewards and pun-
operant learning are a subject of extensive experimental and . h h ' behavior h ited th inal K of th
theoretical investigations. Theoretical approaches largely rely 'SNMents shape behavior have awaited the seminal work of the
on concepts and algorithms from Reinforcement Learing. The American psychologist Edward Thorndike at the end of*19
dominant view is that organisms maintain a value function, century. Thorndike placed cats in small cages and measured
that is a set of estimates of the cumulative future rewards the time it took the animals to open the cage, a feat requiring
associated with the different behavioral options. These values ar a particular action from the animal such as a lever press. The
then used to select actions. Learning in this framework results . . A
from the update of these values depending on experience of theStUdy of ho}"{ the escape time decrease_d with praCt'Ce in dif-
consequences of past actions. An alternative view questions theferent conditions, as well as other experiments, led Thikend
applicability of such a computational scheme to many real-life to formulate the_aw of Effect “Of several responses made to
situations. Instead, it posits that organisms exploit the intrinsic the same Situation, those which are accompanied or Close|y
variability in their action selection mechanism(s) to modify ¢45ed by satisfaction to the animal will be more firmly

their behavior, e.g., via stochastic gradient ascent, without the . . . . .
need of an explicit representation of values. In this review, we connected with the situation, so that, when it recurs, thitly w

compare these two approaches in terms of their computational be more likely to recur[4].

power and flexibility, their putative neural correlates and, finally, The theoretical foundations to the understanding of ogeran
in terms of their ability to account for behavior as observed |earning were laid in the middle of the #0century in three

in repeated-choice experiments. We discuss the successes anﬁines of research. First, simple quantitative operantrieay

failures of these alternative approaches in explaining the obserde . . . .
patterns of choice behavior. We conclude by identifying some of experiments in humans and animals have motivated mathemat-

the important challenges to a comprehensive theory of operant ical psychologists to construct quantitative phenomegiobd

learning. models of operant learning in these experiments [5]. At the
same time, the pioneers of artificial intelligence began to
explore trial-and-error learning as an engineering ppieci

|. INTRODUCTION Finally, developments in the field of optimal control, most
He who spares the rod hates his son, but he who loves notably the development of dynamic programming by Richard
him is careful to discipline him. Bellman, enabled the later development of what is today

(Proverbs 13:24) standa_rd remforcement Igarmng (RL) techmques [6].
| . ‘ ¢ behavi gif In this review we examine some of the different models for
. Operan.t earning refers to a process ol benavior modi 'Caﬁerant learning in view of the observed behavior of animals
tion in which the likelihood of a specific behavior is increds

d d th h I ) it and humans and briefly discuss the neural correlates of this
or decreased through positive or negative rein OrCemm’“"elearning behavior. The review is organized in the following

time _the behav_lor IS eXh'b'ted' Operant Iearn_mg has be%y. In Section Il we discuss alternative models for operant
practiced for millennia. Animals have been trained to mss'l%arning that are motivated by normative considerations. W

humans in work and war for many centu_nes_, |nd|ca_t|ng th@ﬁso discuss their putative or plausible neural basis. biti@e
the use ofcarrots and stick$o shape behavior is certainly ot A we discuss the results of discrete-trials operantriézy

Rew [:_L]' These insights vr\:erezno(t)(r)estrlcted to animal mgﬂ' experiments and relate them to the existing models. In @ecti
ssyrian parents, more t afn d,5 'yeari%go, were efn_c "%EB we discuss free-operant learning experiments and the
to use canning as means of educating children, 1.€., 0 Ingucdifficulty of relating them to existing models. In Section

long-term changes in their behavioiSpare the rod, spoil the IV we discuss phenomenological models. In Section V we
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The RL problem can be formulated as follows. Consider (@)
an agent interacting with an environment through conseeuti
perception-actiortycles. In each cycle, the agent gathers infor-
mation about the environment (referred to asotservatioi
and performs an action. The action can have both immediate
and long-term consequences. The immediate consequence is
that following the action, the agent receives a reward (tasca
signal). However, the action can also affect the envirortmen, ©
and thus affect future observations, actions and rewards. T Value-Based Learning Policy-Gradient Learning
goal of the agent is to choose actions so as to maximize
some measure of the overall collected rewards, for instancg2“ ™| Qe @) Q)

o a a
the average future reward per action. o~ P-4 o
RL is a collection of methods devised to find the optimal

policy — a (possibly stochastic) mapping from observatitins Tf
actions — that realizes the goal of the agent. The applitabil
and/or the effectiveness of the different methods depend aure 1. (a) Markov Decision Process: For clarity only some of the
the complexity of the agent-environment interaction. Riyg Po5siae 1artons and reuard conngencis e emesso) e Based
speaking, this complexity depends on how well the agent cetitained by choosing a given action in a given sté. Policy-Gradient
predict (in a statistical sense) the effects of its actionghe Learning: Policy parameters are adjusted by gradient ascems to maximize
environment given the observations. the average reward. See main text for details.

In some RL problems, the next state of the environment and
the reward obtained is a (possibly stochastic) functiobrdy  the current state and on the action taken, ¢he satisfy the
the current state and action. An RL problem which satisfies thy|jowing consistency conditions
above Markov propertyis called a Markov decision process
(MDP) (Fig. Xa)). If the agent has access to this state
(e.g., the current observation reveals the current statbeof  Q(s,a) =r(a,s) +~ Z T(s',a,s)m(a’,s)Q(s',a") (1)
environment) then the agent can select actions optimally by s',a’

considering only the current state. ... wherer(a, s) is the average reward from actianin states,
By contrast, there are situations where the observatidhs zj‘

Markov Decision Process

T(s1,a0 50)

T(soar, 50) T, 1)

4 - ; s',a, s) is the probability that the next state will ¢ after
to disclose the true (hidden) states of the environment. Ft% ing actiona in states, and(da’, s'), which describes the
instance, this could happen because the agent receives Ncy, is the probability of taking action’ in states’. The
partial information about the current state of the envirenin parametery denotes the discounting of future rewards. For
The information is partial in the sense that it does not alloﬂ{mplicity we assume that there is no temporal discounting
the agent to unambiguously distinguish among differeriesta

his. | | | i he | X drob and v = 1. To improve the policy, the agent can choose
This, in general, severely complicates the learning andrebn j, o501y state the action which maximizes the right hand side

problems, as described below. A simple model for this ki Eq. 1. This operation is callegolicy improvementThe

of situations is obtained by assuming that the probability olicy improvement theorem guarantees that the new policy

a given ot_:)servation depends on the curr_ent (hidden) ,St €hot worse than the old one, and it is better unless the

of the environment. Such an RL problem is called partially policy is the optimal one [6]. This changing the policy,

observable MDP (POMDP). however, will change the values of the states which have
to be recomputed under the new policy. This operation is

A. Value-based learning called policy evaluation By interleaving improvement and

In the case of finite MDPs (i.e., with a finite number of stat %valuatmn, which is callegiolicy iteration one is guaranteed

: . . . o find the optimal policy in a finite number of iterations.
and actions), one can univocally associate to each stétamac : . : .
) : : . Policy evaluation using Eq. 1 requires the knowledge of
pair avalue The value of a state-action pair, under a give o L ,
C - . e transition probabilitiesT’(s’,a,s) and of the rewards
policy, is a prediction about the future cumulative rewdrd t

) . . L . contingencies(a, s). Thus, one possibility for the agent is to
agent will obtain by taking that action in that state. To iy learn t%e trans(itié)n) probabilitiespand theyreward co% .

the policy, the agent can then search for actions that isere .

: i.e., learn the model of the environment), and then to use

the value function. Hereafter, we refer to RL methods thgt : . .

search the policy space via the value function as valueeba e model tocomputethe °'°“m"?" policy as descrl_bed at_)ove.
Methods of solution that explicitly learn the contingerscief

meLtggrdnSiﬁ algorithms in this class determine the o timgl]e environment, that is the parameters of the MDP model,
. 9 algor . . PiMaAre referred to as model-based methods, and are discussed
policy by computing the values of the different actions facle

possible state. Let)(a,s) be the future cumulative reward:;tli?nnight;]ne t;;:;cjt?énA\llt;Ln:stl\&e@Ié It: eE agimFio@l r;:g;l)y
the agent will obtain by taking action in states, and then 44 "9 '

fOIlOWIhg the Cu.r_rent policy. 'Becau§e of the Markov propert 1y < 1 is needed to guarantee the existence of the value functighein
i.e., the probability of reaching a given state depends only case of continuing tasks.



and use these values for action selection. Methods of salutby
that do not require learning a model of the environment (e.g.

in terms of state transition probabilities) are referredat m(a,8) = =P 5Q(a. S/)] 3)
model-free methods. Here, we focus on model-free methods o exp [BQ(d, 5)]
as these dominate the field of operant learning. where the sum is over all action’ available in states,

The basic idea behind model-free RL is to solve Eq. &nd 3 > 0 is a parameter controlling the stochasticity of
by stochastic approximation, while using estimates of thaction selection. The parametersind 1/3 control the trade-
values to choose actions. In this section we describe a aopuwff between exploration and exploitation. The smaller ¢hes
algorithm, called SARSA, that achieves this objective |8 parameters are the more dominant is exploitation.
consider the sequence of states, actions and rewards of aGompared to MDPs, POMDPs are computationally more
agent interacting with an environment. In each cycle, trenag difficult to solve. Even if the agent has a complete knowledge
being in states and taking actiom, updates its estimate of theof the dynamics of the POMDP, finding the optimal policy in
corresponding state-action value functi@fa, s) according to the general case is actually impossible — a completely géner

exact algorithm could be used to solve the halting problem

Q(a,s) « Q(a,s) +nd (2) [9]. One solution is to use SARSA or SARSA-like algorithms

treating the observations as if they were states (i.e., teeif
wheren > 0 is the learning rate, anfl= r(a, s) + Q(a’,s") — satisfied the Markov property). However, this algorithm may
Q(a, s) is thereward prediction error(RPE), witha’ ands’  converge to a solution that is far from optimality or may fail
being the next action and the next state, respectively. TP Rto converge altogether [10], [11]. For a survey of POMDPs
is a basic quantity that plays a central role in all valueebassolution techniques see [12] and references therein.
methods. Roughly speaking, it is a measure of how goodPutative neural correlatesThe largely dominant hypothesis
the agent is at predicting the consequences of its behavigithin the fields of neuroscience and neuroeconomics is that
A positive RPE is agood surprisefor it indicates that, as a the implementation of value-based algorithms by the brain
consequence of taking actianin states, the agent received aunderlies much of operant learning. It has been suggested
larger-than-expected reward and/or reached a state wigtrta that different brain regions support the different compates
than-expected value. That is, the agent waslerestimating required for value-based learning [13]. The cerebral &orte
the value of taking actiom in states. Similarly, a negative and more specifically the prefrontal regions, learn and rep-
RPE is abad surprisefor lower-than-expected reward hagesent the ‘states of the world’ which are task-relevanf,[14
been received and/or a state with lower-than-expectedevaja5]. The values of the states, or of the state-action, pairs
has been reached, indicating that the agentavasestimating are learned and represented in the basal ganglia, which is a
the value of taking actiom in states. sub-cortical structure known to be involved in action sttec

Note that the update in Eq. 2 requires information abo{&6]. Different proposals further partition the basal gémmto
the state in the beginning of the cycle the action taker, different functional components. According to one proposa
the immediate reward, the next state’ and the next action the values are coded in the striatum (the input structure of
a (s - a—r— s — d), giving this algorithm its name, the basal ganglia) and are directly used to select the action
SARSA. If the policy is kept fixed while is properly decayed [17], [18]. Another proposal suggests, instead, that tHeeg
to O (see [8] for a more precise statement) and each stateeed in the striatum are used to update the policy which
action pair is sampled infinitely often, then Eq. 2 is bound twould be maintained in the nucleus accumbens (which is a
converge to the solution of Eq. 1 with probability 1. subdivision of the striatum) and in the pallidum (which i th

The policy can be improved concurrently with the estimasutput structure of the basal ganglia) [19], [20]. The euitk
tion of the @ function by making action selection dependergdupporting these hypotheses is largely based on expesment
on the current estimate of th@’s. Typically this is achieved demonstrating that the neural activity in these brain negjio
by utilizing a stochastic policy that balancesgploitationand is correlated with some of the variables of the value-based
exploration Exploitation corresponds to choosing the actioRL model, as computed by fitting the RL model to the
associated with the highest value with the rationale th#téf experimentally measured behavior. For a detailed disonssi
values are accurate, thengaeedy policy (always choosing of this methodology see [21]
actions associated with the highest value) will maximize th However, the most influential support to the hypothesis that
average cumulative reward. By contrast, when the valudge brain implements value-based RL stems from a series
are not accurate, exploration, which corresponds to chgosiof beautiful experiments suggesting that a particular grou
actions that are currently sub-optimal, is useful for inyimg  of neurons, the dopamine neurons located in the midbrain,
the current estimates. The most widely used action setectiencodes the RPE (for review see [22]-[24]). In these ex-
functions, both in applications and when explaining operaperiments, monkeys were trained in a classical condit@gnin
learning, are the—greedyand thesoft-maxaction selection paradigm, in which repeatedly, visual or auditory cues were
functions. Ine-greedy, the agent chooses the actiomsso- followed by a reward, e.g. a drop of juice. Note that in cleaki
ciated with the higher value (i.e. the for which Q(a, s) is conditioning, unlike operant conditioning, the rewardaositin-
maximal) with a probabilityl — ¢ and chooses randomly andgent upon the stimulus rather than upon the response [25]. In
uniformly between all actions with a probability In soft- the ndve animals, dopamine neurons respond with a transient
max, the probability of selecting actianin states is given increase of their firing rates to reward delivery but not te cu



presentation. By contrast, in the trained animals, thegared which the reward depends only on the most recent observation
to the cue but not to the reward. Remarkably, in the traineshd action, and the observations are temporally indepénden
animal, dopamine neurons respond with a transient decieasand generated according to some time- and action-independe
their firing rate to reward omission after the cue. Theoadticdistribution [35]. There are generalizations to the policy
modeling reveals that this pattern of activity is to be expdc gradient approach that relax these assumptions. They are,
if the activity of these neurons represents the RPE [22]. Bowever, beyond the scope of this paper. The intereste@iread
more recent study has demonstrated a causal link betwéemgain referred to [33], [34] and references therein.
the dopamine signal and operant learning by replacing @war Let mg(a,0) — the probability of taking actioru upon
delivery with optogenetic activation of dopamine neurons iobservationo — be a suitable policy parametrization, aéd
mice. The results of this study provide a strong support ftie the vector of free parameters to be optimized. The average
the role of dopamine neurons in driving operant learning [26eward per action obtained by following poliey is given by

The pattern of dopamine neurons activity, in the specific
experimental conditions described above, does undeniably R(09) = Zp(o)mg(a,o)r(a, 0) 4)
mimic the behavior of a signal putatively related to RPE {22] 0,a
[24]. However, in other respects, that same pattern of &tivyyherep(o) is the probability of observing, andr(a, o) is the

seems inconsistent with lzona fideRPE signal. One evident ayerage reward obtained by taking actiompon observation
problem with the hypothesis of a one-to-one relation betweg performance can be improved by iterating

the (phasic) activity of dopamine neurons and the RPE is
the asymmetrywith which positive and negative errors can 6 < 6 +nVeR(6) (5)
be signaled. The ability to signal negative errors (throagh ) ] ]
transient decrease of the firing rates) is significantly lothan Wheren > 0 is the learning rate. If the learning rate converges
the ability to signal positive errors (through a transientrease © zero slowly enough [8] then such learning is guaranteed to
of the firing rates), due to the low baseline firing rates &onverge to a local maximum of the average reward. There
dopamine neurons<{(3-5 Hz) [27], [28]. Two workarounds to are different approgches to estimate the gra(_jiem(tﬂ). One
this problem have been suggested. One is that the relatipnskPProach consists in making small perturbations to thenpara
between dopamine firing rate and RPE is strongly non-line@iers and estimating the average reward obtained by faipwi
(however see [29]), and the other is that a different systeim | the corresponding policy over a suitably long 'gime interval
charge of signaling negative RPE, with the dopamine systdifPm the average reward estimates so obtained, one can
primarily signalingonly positive RPE [30]. then compute an estimate of the gradi&ni/z(6) by finite-
Another experimental result that appears inconsisterti wiifference methods. This is equivalentatchlearning, where
the dopamine-RPE hypothesis is the finding that dopamiR&rameters are changed only after a large amaaning
neurons also respond with a transient activity increase §§t@ (i-€., consecutive observation-action-reward triplétas
salient stimuli not associated with reward as well as ff€n experienced. An alternative approach, which is alse mo
stimuli predicting negative reward [27], [31]. These, ahe t Piologically plausible, consists in changing the paramsetes
short latency in dopamine response suggest that dopam9@n s new experience is acquired. This is equivalepnio
neurons activity might be instrumental in discovering stim line learning, V\(here parameters of_the policy are changed after
and/or motor responses that could be task-relevant, rétaar €ach observation-action-reward triplets. _
encoding the RPE [27], [32]. Finally, given the substantial A class of on-line algorithms can be derived by noting that
heterogeneity in the responses of dopamine neurons, it is

unclear how such a diverse neural population could broadcas v, R(g) = Zp(O)T(a70)ﬂe(a7O)ve log me(a,0) (6)
a global signal as the RPE [28]. o

Therefore, if one change® according to

B. Policy-gradient learning

One alternative approach for finding the optimal policy 0 < 0 +1nr(a,0)Velogmo(a, o) (7)

for an MDP is by searching the policy space without thevery time that actiom is taken upon observatian then the
intermediatestep of computing the value function. A widelyaverage change in the parameters is proportional §é(0)
used and effective way to perform such a search is to consi¢ege Eq. 6). Equation 7 is a special form of a general class of
a suitable parametric family of policies, and then find then-line learning rules called REINFORCE algorithms [35].
optimal parameters by gradient ascent (see [33], [34] andPutative neural correlatesThe use of gradient-based tech-
references therein). Hereafter, we refer to RL methods thatjues for learning in artificial systems, and particulairty
directly search the policy space by gradient ascent as poligrtificial neuronal networks, has a long and successfubhyist
gradient methods. An important advantage of policy-gnatdie[36], [37]. It is unclear, however, whether biological srsis
methods over value-based methods is that they retain thieiplement this kind of learning and, if that is the case, tigito
convergence guarantees under very general conditions wkich mechanisms. In order to gain insight into potential
applied to POMPDs [12]. mechanisms, we focus first on the process of action selection
For purpose of illustration, we consider below the appli- It is generally believed, that action selection emergemfro
cation of policy-gradient methods to a simplified problem, icompetition between different neural populations, eaairgp



for a different motor response. As a result of this compmtiti plasticity (see Sec. llI-B below) [51], [53], [54].
the neurons of thavinning population become active, firing To test directly whether policy-gradient learning is indee
at high rates, while the neurons corresponding toltis#ng implemented by synaptic modifications requires quaniiati
populations are quiescent. Consequently, the action ia¢edc measurements of theynaptic plasticity rulesn the living
with the winning population is executed [38]. The subsgintibrain. However, such experiments are currently techryicat
neural variability plays an important role in this comgetit demanding and therefore await future research.
process [39]. This variability manifests itself as varidpi
in the outcome of the competition, naturally implementing a . .
stochastic policy. The outcome of the competition is infoegh - Further considerations
by the inputs to the different populations. These inputs mayFor finite MDPs, value-based methods are guaranteed to
carry sensory and memory information about the currefibd the optimal policy while policy-gradient methods ardyon
state of the world and thus enable the system to respogulranteed to find a local maximum which may correspond
differently in different circumstances. Finally, the pesfies of to a sub-optimal policy. However, it is important to conside
the competing networks, e.g., the relative strengths oifitfna- how the qualities of the solutions degrade in face of the
population (positive) and inter-population (negativegdbacks ’practicalities’ required for real-world applicationsy ahen
can bias the network in favor and against different popoihsti  the assumptions about the dynamics of the agent-enviradnmen
In this framework, any physiological mechanism that modunrteractions are relaxed.
lates the winner-take-all dynamics underlying the actieles It is often the case for real-world problems that the
tion process would result in a change in the policy of the sigebservation-action space is very large. This poses seuarit
thus affecting the likelihood that a given action is seldctdems to value-based methods. One is the amount of memory
in a specific situation. One plausible candidate mechanisine needs in order to store the value function. Another is
is synaptic plasticity. It is well-established that the adfiies that, albeit policy iteration allows one to effectively selathe
of synapses change as a function of the activities of tipelicy space for the optimal policy, it is computationally-e
corresponding presynaptic and/or postsynaptic neurodls-[4 pensive and thus becomes rapidly unpractical as the dimensi
[42]. There is also evidence that activity-dependent siioapof the state-action space increases. Finally, during legrn
plasticity is modulated by the reward-dependent dopamitgere is the problem of the amount of experience (i.e., time)
signal [43]-[46]. This raises the possibility that gradieased one needs in order to achieve a reliable estimate of the value
algorithms operates already at the level of synapses. ler otfunction. A standard solution consists in resorting to some
words, that thetunable parametersn Equation 7 are the form of approximation to represent the value function (ligua
synaptic efficacies. Note, however, that it is possible that the form of some parametric family denoted ‘function
gradient learning is a good description of operant learibimg approximation’). In these cases, however, value-baseHadst
that its implementation in the nervous system is not througite not guaranteed to converge and may even dramatically
synaptic modifications but at a more macroscopic level (Fighisbehave (e.g., value function updates diverge with fanct
1(c)). approximation) [6], [55] (but see [56], [57]). Policy-gliedt
Policy-gradient learning may be achieved by exploiting th@ethods, instead, are well-behaved with function appraxim
network internal stochasticity or variability. Roughlyesiking, tion, and they can usually be shown to converge under mild
the idea is that neural variability results in policy vail&y  regularity conditions.
which in turn results in variability in the rate of delivered Another important real-world situation is the case of
reward. Policy-gradient learning is achieved if on averagpOMDPs. As we have already noted, in POMDPs value-based
synaptic efficacies are changed so as to increase the bkelih methods have no convergence guarantees and can even return
of those patterns of network activity that were correlatestrongly sub-optimal solutions. Partial information, dmet
with an increased rate of rewards. There have been sevesler hand, has less severe effects on policy-gradientadsth
proposals that implement variants of the REINFORCE family
of algorithms that are based on this idea, where the negessar
neural variability results from the stochastic release efrn-
transmitter [47], from the irregularity of the spiking pesses ~ While RL methods provide a framework to study operant
[48], [49] or even from the purposeful injection of synaptidearning in arbitrarily complex settings, most researchhan
noise from other brain areas [50]. mans and animals’ operant learning has focused on rehativel
REINFORCE algorithms, when implemented at the micrasimple repeated-choice experiments. In this paradignjestsh
scopic synaptic level, are a special case of a more genaepeatedly choose among different alternatives (typidaib)
class of synaptic plasticity rules, where changes in theglyn and are rewarded according to some schedule unknown to
efficacies are driven by the covariance of reward and neutaém. There are two basic settings for repeated-choicerexpe
activity [51], [52]. Covariance-driven synaptic plasticiis iments: discrete-trials and free operant. In the disciédés
relatively easy to implement in the biological 'hardware’setting, the experiment is divided into temporally sepadat
and in many cases converges to the gradient solution [5fi]Jals and the subject makes a single choice every trial, e.g
[52]. Remarkably, it has been proven that operant matchingy pressing one of several buttons. By contrast, in the free
which describes the behavior in many operant learning tasigerant setting, the subject can respond repeatedly withou
is a generic and robust outcome of covariance-driven si;mapny constraints.

I1l. BEHAVIORAL EXPERIMENTS



The discrete-trials setting is widely used in conjunctiathw in rational choice theory: We have here an experimental
electrophysiological recordings or functional imagingéese situation which is essentially of an economic nature in the
this setting allows the experimentalist to finely controk thsense of seeking to achieve a maximum of expected reward,
choice time as well as all the preceding behavior in thend yet the individual does not in fact, at any point, even in
trial, which is important in order to correlate brain adyvi a limit, reach the optimal behaviér(K. J. Arrow — excerpt
with behavior. The free operant setting, on the other harfdpm [59]). Therefore, this pattern of choice behavior has
represents a more ecologically relevant condition. In,fikéé been studied extensively, yielding contradictory resulise
often considered that choice behavior in free operantnggtti unpleasant truth is that after more than half of a century
can be likened to foraging behavior of animals in the wildhf experiments, whether or not probability matching is an
where they must make choices about foraging locations asymptotically stable behavior (i.e., maintained afteéeegive
well as about the amount of time to spend in them. practice) is still a matter of debate. Gallistel has arguet,t

We consider below the behavioral results in repeated-ehoiwhether or not participants match, depends on the feedback
learning experiments in both discrete-trials and free apier available [25]. Full feedback about both the reward assedia
settings. We discuss the ability of the RL models describedth the chosen actionoptainedreward) and that associated
above to account for the observed patterns of behavior wWith the non-chosen actioriofegonereward), leads to proba-
these experiments, and whether the observed behavior bdity matching whereas participants maximize if the feach
differentiate between alternative models. they receive is restricted to the obtained reward [25],,[f81)].
There are claims that, at least in humans, probability niagch
is not a robust phenomenon and that participants choose the
more rewarding alternative more frequently than expected b

A popular discrete-trials task utilizes tio-armed bandit probability matching [62]. Moreover, it has been argued tha
reward schedule. The participant, human or animal, regbatethe larger are the rewards, the stronger is the tendency to
chooses between two actions which are rewarded, typicathaximize [63]. By contrast, there are numerous accounts of
in a binary way (i.e., reward or no reward), with constargrobability matching, not only in laboratory settings bilgca
probabilities that depend on the actions. The name two-éirmghen humans gamble substantial amounts of money on the
bandit reflects the resemblance of these tasks to the praiflenoutcome of real-life situations [64].
choosing between two slot machines in a casino. As predictedt is instructive to consider the asymptotic behavior pre-
by the Law of Effect, with practice, the participants shifeir dicted by the different RL algorithms in the two-armed bandi
preference in favor of the alternative associated with thkdr task. Let us first consider the SARSA algorithm (Section )I-A
reward probability (see [5] and references therein). In ohe for an MDP with a single state and two actions, and as,
the earlier studies, Grawt al. [58] instructed human partici- randomly rewarded (either = 0 or r = 1) with constant
pants to repeatedly predict whether a lamp would turn on probabilitiesq; and g2, respectively. This is aninimal MDP
not. There were 5 groups of participants, and the probwgbilitlescription for the two-armed bandit task (see more on this
that the light would turn on for the different groups was0, below). For a sufficiently small learning rate, the values of
0.25, 0.5, 0.75 or 1. In other words, participants chose eetw the two actions will converge to the probabilities of reward
two actions,a;="predict ON and a,="predict OFF and the associated with the two action§(a;) — ¢1 andQ(az) — q2
probability of reward associated with the two actions washere we have dropped the dependence ¢see Eq. 2Y. If
¢1 and g2 = 1 — ¢y, respectively. Granet al. recorded the the actions are selected according to the soft-max function
fraction of trials, in which the participants predicted ttitae (Eqg. 3), then the (asymptotic) probability of choosing,
lamp would turn on. The fraction of trials (computed over thg = 7 (a;), is given by
last 5 trials of an experiment composed of 60 trials) in which
the participants predicted that the lamp would turn on was p= 1 (8)
roughly equal to the probabilities that the lamp would irtlee 1+ eflaz—a)
turn on: 0, 0.25, 0.53, 0.77 and 1, respectively. Formallyhus, the higher the probability of reward associated to an
denoting N; the number of times alternative was chosen, action, the more often that action will be chosen (e 0.5
N1/N2 ~ q1/q2. This pattern of choice behavior is commonlyfor ¢; > ¢,, andp < 0.5 for ¢; < ¢2). Nevertheless, as can be
referred to agprobability matching(not to be confused with seen from Eq. 8, the less-rewarding alternative will be ehos
operant matching mentioned above) because the particip@ith non-zero probability, even after a large number oflsria
matches her probability of choosing an alternative to th@as long ass > 0 and finite). This behavior is qualitatively
probability that this alternative would be rewarded. consistent with probability matching, but not quantitatyv In

Note that probability matching deviates from tbgtimal fact, according to Eq. 8 it will be
policy — the one that maximizes the total number of correct
answers. For example, i§;=0.75 then responding; on N ePn a ©
every trial would result in 75% success, on average. By Ny  efez’ g
contrast, probability matching would yield the correct\aes
on average i.75-0.75+0.25-0.25 = 0.625 of the trials. The 2_More precisely, the dynamics will converge to those values plconstant

h o which represents the amount of future rewards. However, enntiodel, this
observation that people probability match rather than ma

! ¢ ’ ‘ Xlill not effect behaviour because only the difference betvéhe@ values
mize has attracted the attention of many theorists intedests used in the action selection rule.

A. Discrete-trials operant learning




If the actions are selected according to thgreedy function, of averaging over the (substantial) session-to-sessioabih
the asymptotic behavior remains qualitatively the same Thy in the ability to learn to identify and choose the more
less-rewarding alternative will be chosen withi2 > 0 rewarding alternative. Interestingly, that study alsontifeed
probability, but the pattern of choices will still be quaatively a neural correlate of this session-to-session variabilitye
inconsistent with probability matching. In fact, it will behigher the neural activity in a brain region known as the dors
N;1/Ny = 2/e — 1, assuming that; is the most-rewarding putamen (which is part of the basal ganglia) at the beginning
action. It should be noted that there are other value-basatthe session, the higher is the performance at the end of the
algorithms not discussed here, such as actor-critic, whasession [70].
asymptotic behavior in the two-armed bandit will converge In the framework of value-based MDPs, such a sensitivity
to exclusive choosing of the most rewarding alternativd.[650f the behavior to computationally immaterial variatioms i
For comparison, we consider now the asymptotic behavititte experimental setting could be understood asramneous
that would result from policy-gradient learning (SectittB). modeling of the task by the subject. While from the experi-
Let the policy be parametrized by the probabifitgf choosing mentalist point of view, the two-armed bandit task is a sngl

ay. The average reward as a functionpois given by R(p) = state MDP with two actions, from the participants’ point of

p-q1 +(1—p)- g2, and thegradientwith respect to is given view it could be a POMDP of arbitrarily complex structure

by [71]. For example, the state could depend on the history
IR of actions [72]. Even the number of possible actions, from
i (10) the participants’ point of view, could be different. In fact

humans and animals are known to develop idiosyncratic and

Thus, performing gradient ascent with respectpt@n the stereotyped superstitious behaviors even in simple labgra
average reward (see Eq. 5) will converge to choosing the marettings, highlighting the difficulty in utilizing the cact
rewarding alternative exclusively (i.e., to the optimalipg. model of states and actions in operant learning [73], [74].
The maximum ofR(p) is achieved fop* = 1 wheng; > go,
and forp* = 0 wheng; < ¢o. Similarly, performing gradient
ascent on any tunable paramefemwith p = p(0), that allows
saturation of the probability of choice will converge to the In the previous section we described operant learning in a
same behavior. Similarly to the pattern of asymptotic choidiscrete-trial design, in which the decision time is diethby
behavior predicted by SARSA, this behavior also is in caitrathe experimentalist. Indeed, there is a long tradition ekfr
with probability matching behavior. operant experiments that are devoid of discrete trialshése

As mentioned above, thsimple two-armed bandit task experiments, the animal freely move back and forth between
elicits quite different patterns of choice behavior depegdn two targets, harvesting rewards that are delivered acegrdi
the details of the experimental settings. According to tiheoto a predefined stochastic schedule. Often, the concurrent
these details are predicted to be computationally benigthdé variable-interval (VI) schedule is used and we will focus
sense that they should have little or no effect in the resgiltion these experiments. The concurrent VI schedule is more
asymptotic behavior. One possibility is that the details a@omplicated than the two-armed bandit schedule described
the experimental setting strongly affect the subjeaigérnal above because the choices that the subject makes change the
modelof the task, thereby producing significant differences iprobability of reward. Specifically, a target in this schiedean
the resulting behavior [66], [67]. Several studies lendpsup be either baited or empty. When the subject chooses a baited
to this hypothesis. For example, one study has demonstraterjet, the subject is rewarded immediately and the target
that human participants probability match when instrudted becomes empty. An empty target is re-baited probabiliégica
repeatedly predict whether a lamp will light on. By contrassuch that the time to re-bait is drawn from an exponential
they tend towards maximizing when presented with the sardistribution. Once baited, a target remained baited uhii i
sequence of random binary events if they fully understard thhosen. The experimentalist controls the means of the two ex
stochastic mechanism that maps actions to rewards (but ponential distributions, thus determining whether a tavgé
its parameters) [68]. These results indicate that pagitp be “rich” or “poor”. The more time the subject spends in one
probability match because they suspect that the sequencdaoget, the higher is the probability of obtaining a rewardhe
events may be non-random. Along the same lines, anotli¢her target. As a result, animals have an incentive to switch
interesting observation is that 3-4 years old children skdbe between the two targets, which indeed they do. However,
most rewarding alternative more often than college stigjentvhile the policy that maximizes the average reward predicts
who instead tend to probability match [69]. Again, youngegularalternations between the targets [75], the actual pattern
children may do better than students because they may be leis<hoice behavior isirregular, even asymptotically. This
suspicious. More recently, Laquitaieéal.[70] studied choice irregularity manifests in the distributions of stay duoas in
behavior of monkeys in a two-armed bandit schedule. @he targets, which are approximately exponential [54]]{76
average, animals approximately probability-match. Havev [78].
probability matching is not theypical behavior. In some  This result also highlights an important difference betmvee
sessions animals maximized whereas in others they chaeeisions that are made in discrete time, as in the previ-
the two alternatives with an equal probability. Thus, insthe ous section, and decisions in free operant experiments. An
experiments approximate probability matching is the omeo exponential-like distribution of stay times implies thathile

B. Free operant learning



the subject is at one of the target, the probability of swiitgh emerges from covariance-based synaptic plasticity [Shickv
must be infinitesimally small (more precisely, in each smal closely related to policy-gradient RL. The same framéwor
time interval At it must be of the order ofAt). Thus, the can also naturally explain under-matching, as resultignfr
subject is continuously choosing between actistay, which  mistuning of the parameters of the covariance-based pitgsti
has a finite probability (i.e.] — O(At)) to be selected, and [53].
action leave, which has instead arO(At) probability of A recent study has investigated the pattern of choice behav-
being selected. In the framework of value-based learnimg, tior resulting from a network model composed of two compet-
could be achieved if the parameter that controls explamatilng neuronal sub-populations (corresponding to the clsoice
in the action selection function (see Section II-A) is of thef the two targets, see above) in the presence covariance-
order of At. An alternative possibility is to assume that théased synaptic plasticity. The pattern of choice behavfor o
actions correspond to choosing the time at which to leave. ttie model reproduces in detail many of the characteristics o
this case, the set of possible actions becomes infinite. the experimentally observed behavior, such as the exponen-
Another interesting observation reported in these expetial distribution of stay durations and the operant matghin
ments is that the fraction of the total time subjects spemehavior. It also quantitatively accounts for the dynami€s
in a target matches the fraction of rewards harvested frdearning in response to changes in the parameters of thedewa
that target, a behavior known as Herrnstein’s matching lasehedule [54].
or operant matching [54], [79]-[81]. Despite the similgriih
the name (which led to a lot of confusion over the years),
probability matching and Herrnstein’'s matching law are not
the same phenomena. In fact, they are inconsistent. To see
that, we reconsider the case of the two-armed bandit schedul The RL framework discussed in Section Il makes explicit
in which targets 1 and 2 yield a binary reward with (fixedgassumption about the algorithms used by the brain in order to
probabilitiesq; and ¢», respectively. The average number ofelate the history of choices and rewards to the probability
rewards harvested from targgtl;, also known as the income,of choosing an action. However, these approaches may be
is given by I; = ¢; - N;. According to probability matching, too restrictive. An alternative approach is to determine th
Ni/No = q1/q2 = (11/12)%. By contrast, according to mapping of that history to actions directly from the data,
Herrnstein's matching lawN; /N, = I,/I,. It should also without assuming any particular model. In two noteworthy
be noted that in the case of a two-armed bandit schedule witkamples of this approach [85], [86], monkeys were trained
fixed probabilities of reward, becaugg= ¢;- N;, Herrnstein’s in the concurrent variable-interval (V1) schedule to rapdly
matching law equation can only be satisfiedVif- N = 0. In  choose between two targets for a liquid reward. Studying
other words, in the case of fixed probabilities of reward, theany tens of thousands of choices made by each monkey over
only behavior that is consistent with Herrnstein’s matghinmany days, the two groups of researchers constructed dinear
law is choosing one of the alternatives exclusively. Thanef nonlinear probabilistic models [37] of the monkeys’ beloavi
maximizing behavior, but not probability matching, obsstv In both studies, it was found that the probability of chogsin
in some of the discrete-time two-armed bandit experimests,an alternative action is well approximated by a function of
consistent with Herrnstein's matching law [72]. the difference between the rates of reward associated to the
Operant matching has been repeatedly demonstrated et alternatives [85], [86]. It is not clear how to interpret
only in free operant tasks [54], [78], [81] but also in digere these results in view of value-based RL. If the participant’
trial tasks [81], [82], not only in the laboratory but also irinternal model of the task is a single-state two-action MDP,
free ranging animals [83]. Nevertheless, deviations frbie t and the actions’ values are learned by SARSA, then one would
rule have also been observed [80]. Baum [84] has proposegiradict that the probability of choice would depend on the
generalized form of the matching law. In its symmetricahfipr difference in the averageeturns (rate of rewards divided by
the generalized matching law predicts thgt/ N, ~ (I, /I,)* rate of choices) associated with the two targets and not on
where o is a parameter. Typically, when estimated from behe difference in the rate of rewards. However, concurrent
havioral datag < 1, which corresponds to a pattern of choic&/| schedule is a rather complicated POMDP and therefore it
behavior called under-matching [80]. Note that both operais difficult to draw concrete conclusions to the applicapili
matching and probability matching adhere to the genemlizef value-based RL to this problem. One important issue
matching law, witha = 1 in the former andv = 1/2 for the worthwhile considering when attempting to construct such
latter. phenomenological models of behavior is that these models
Compared with discrete-time operant learning, continuousequire a considerable number of trials, which are coltkcte
time operant learning has received little theoreticalraitte, over many days. However, if the behavior is not stationasrov
in particular in view of standard RL algorithms. This may b¢he period in which the data was collected then the resultant
due to the difficulty in accounting for behavior in free opgra model will necessarily be inaccurate. Indeed, a recentystud
experiments using value-based RL, as mentioned above. Hhws reanalyzed the behavior of the monkeys in one of the
ever, it turns out that the pattern of choice behavior olesrvstudies described above [86] and demonstrated substaatial
in free operant experiments is readily explainable in thgationarity over multiple time-scales [87].
framework of covariance-based synaptic plasticity, dised  Another approach is to consider simple, biologically and
in Section II-B. It turns out that operant matching natyrallcomputationally plausibléheuristicsto account for patterns

IV. PHENOMENOLOGICAL MODELS OF OPERANT
LEARNING



of behavior observed during operant learning. For exanmgpleattention recently is Hierarchical RL. This method bredies t
recent study has found that the predictive power of the mpéarning task into a hierarchy of simpler learning problems
win-stay/lose-shift, in which a participant tends to repefter [92]. There is even some neuroimaging evidence suggesting
a positive reward and tends to switch after a negative rewattht, in fact, the brain may utilize a similar approach [93].
in a four-armed bandit schedule is comparable to that of RLAn important issue to consider in applying RL models to
models [88]. In a comprehensive study of a very large numbexplain behavior (which is instead often neglected) is that
of human participants in different operant tasks, Erev amd identifying the states and the actions which are relevant
Haruvy have proposed a complex phenomenological model the task. Models of operant learning typically take as
that accounts for many different characteristics of batvawvi  given that the subjedtnowswhat are the relevant states and
these experiments [89]. actions. However, identifying the states is a difficult task
In contrast to the success of phenomenological models ovke laboratory, and to a larger extent in real-life [94]. Ado
RL models, a study of a very large data set of 200 human péhnese lines, it has been suggested that operant learning is
ticipants making 240,000 two-armed bandit choices hasdest two-step process. In the first step, a low dimensional set
the power of SARSA-like algorithms to describe and predicf states is identified in an unsupervised way, based on the
human operant learning. As a first step, the action-selectistatistical properties of the inputs. The second stepzesli
function used by humans was characterized non-paranibtricdRL algorithms to find the optimal policy given the set of state
and was shown to be well approximated by a combination 80 extracted [95]. A plausible alternative is that the rafgv
e-greedy and soft-max. That study demonstrated that SARS#ate-action sets and the policy are learned in paralldl [96
like algorithms describe the behavior better than competin Over the past few years, there has been a shift in emphasis
heuristics, if the model assumes that first experience seskbm value-dependent reinforcement learning to more gener
the initial conditions in Eqg. 2 that describes the dynamits dormulations of inference. This is reflected in severalrafits
learning the values and if the experimentally-measureidract to cast RL and optimal control in terms of (Bayes) optimal
selection function is used [90]. Nevertheless, this modelsd inference [97]-[100]. Perhaps the best example of thisés th
not explain all aspects of behavior. For example, it has beeration of active inference, in which rewards are absorbed
demonstrated that surprising positive payoffs reducedteaf into the problem of inferring hidden states of the world .(c.f
repeating the previous choice and surprising negativejpfim POMDP) by associating them with prior beliefs about the
increase it, both in the stock market and in simple repeatetiites an agent should occupy [98]. By converting the RL
two-alternative force choice tasks (two-armed bandit)].[91problem into an inference problem, one can then call upon
This result does not seem to be explainable by standard RLplethora of neuronally plausible schemes for approximate
algorithms, and is even a challenge to the Law of Effect. Bayesian inference [99]. This may be an important devel-
opment from the current perspective, because active percep
tual inference - and its neuronal implementation - can be
formulated using the same sort of gradient descent schemes
In this review we considered two families of RL modelsthat we have discussed in the context of RL. As such, they
Value-based learning that is well-suited to learn the ogtimprovide a direct link to cognitive dynamics - a link noted by
policy in MDPs and policy-gradient learning (which is &alman a half century ago, when he emphasised the formal
direct policy search method) that is more flexible, bein@ alequivalence between optimal control, Kalman filtering and,
applicable to POMDPs. The attempt to apply these modelsipiplicitly, Bayesian belief updating. Furthermore, tiagtRL
learning to explain patterns of choice behavior in repeateds an inference problem allows one to cast 'heuristics’ &s pr
choice experiments yields mixed results. beliefs, placing them in a formal and normative framework.
Value-based learning accounts for some aspects of behaviowe believe that part of the failure of RL models stems from
and neural activity in discrete-time operant learning lealves a more fundamental reason. The RL stance is essentially a
other unexplained. Policy-gradient learning, implemdnis- behaviorist one, in that it depicts the organism as a general
ing covariance-based synaptic plasticity, can be usedesgec purpose learning system whose behavior canatdgtrarily
fully to explain behavior in free operant learning in somsghaped via stimulus-response-reward associations. thsee
experiments, but does not fully account for the behavior wifficult to account for the strong sensitivity of behaviar t
others. The phenomenological models we discussed fare ggonputationally immaterial details in the experimentaiisgs
better. Similarly to RL models, they account for some aspeaising such a general-purpose learning model (as discussed i
of behavior and fail at explaining others. We are forced tio-coSection Ill). Stating the obvious, humans and animals do not
clude that, after almost a century of intense experimemtdl aapproach the learning problem as blank slates. Millions of
theoretical investigations, we are still far from undemsliag, years of evolution have favored the formation of particular
both computationally and at the level of neurons and syrsapsassociations and not others [101]. One striking example-man
learning behavior in simple (apparently simple, one woudd hfests in a phenomenon commonly known as taste aversion
tempted to say) situations as the repeated-choice expesm¢g102]. This phenomenon is studied in experiments in which
discussed above. animals are presented with a novel food and, hours later, are
Additional advancements in RL theory will most certainlyexposed to gastrointestinal distress (e.g., as a reswtiation
further our understanding of the computations underlyirend other illness-inducing agents, such as lithium ch&rid
operant learning. One interesting example that has reteiv@onsequently, the animal will avoid the new food when is

V. CONCLUDING REMARKS



10

presented to it again. This form of learning is extremel\{13] K. Doya, “Reinforcement learning: Computational thearyd biolog-
powerful and learning to avoid the new food is achieved after

a single trial. By contrast, it is impossible to teach an alim

[14]

to avoid a lever press by associating it with a malaise houngs)
later or to teach the animal to avoid ingesting a particular

food by associating it with an electric shock delivered Isour

later 3. If food and tones are considered simply as different
observations, and the electric shock and the gastroinggsti [16]

distress as negative reinforcers then RL models do not giredi

these peculiarities. Rather, a model that explains this\deh
should assume that the two negative reinforcers curali-

tatively different, allowing only the latter to be associated 18

(17]

with food consumption hours earlier. It is easy to envision

how evolutionary pressure resulted in such a specific legrni
mechanism that can help animals learn to avoid poisono
food. There are numerous other such peculiarities of lagrni
A particularly amusing one is the failure of birds in the

(o)

following task. Food-deprived cockerel chicks were treine [20]
in a straight runway, in which the food cup moved when thqzu
chicks moved, in the same direction at double the speedidn th

“looking glass” setting, the appropriate behavior to oftiie

food is to moveawayfrom it. The animals were unable to learn

(22]

the task [103]. Other similar examples have been reported k3]

animal trainers [104].

The results discussed in this review highlight the power, ol

well as the limitations of relating RL to operant learning.

is our opinion that addressing these limitations will requi [25]

incorporating into RL ecologically and biologically infoed
models of the learning organism.
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