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The Misbehavior of Reinforcement Learning
Gianluigi Mongillo, Hanan Shteingart and Yonatan Loewenstein

Abstract—Organisms modify their behavior in response to its
consequences, a phenomenon referred to as operant learning.
The computational principles and neural mechanisms underlying
operant learning are a subject of extensive experimental and
theoretical investigations. Theoretical approaches largely rely
on concepts and algorithms from Reinforcement Learning. The
dominant view is that organisms maintain a value function,
that is a set of estimates of the cumulative future rewards
associated with the different behavioral options. These values are
then used to select actions. Learning in this framework results
from the update of these values depending on experience of the
consequences of past actions. An alternative view questions the
applicability of such a computational scheme to many real-life
situations. Instead, it posits that organisms exploit the intrinsic
variability in their action selection mechanism(s) to modify
their behavior, e.g., via stochastic gradient ascent, without the
need of an explicit representation of values. In this review, we
compare these two approaches in terms of their computational
power and flexibility, their putative neural correlates and, finally,
in terms of their ability to account for behavior as observed
in repeated-choice experiments. We discuss the successes and
failures of these alternative approaches in explaining the observed
patterns of choice behavior. We conclude by identifying some of
the important challenges to a comprehensive theory of operant
learning.

I. I NTRODUCTION

He who spares the rod hates his son, but he who loves
him is careful to discipline him.

(Proverbs 13:24)

Operant learning refers to a process of behavior modifica-
tion in which the likelihood of a specific behavior is increased
or decreased through positive or negative reinforcement, each
time the behavior is exhibited. Operant learning has been
practiced for millennia. Animals have been trained to assist
humans in work and war for many centuries, indicating that
the use ofcarrots and sticksto shape behavior is certainly not
new [1]. These insights were not restricted to animal training.
Assyrian parents, more than 2,500 years ago, were encouraged
to use canning as means of educating children, i.e., of inducing
long-term changes in their behavior: “Spare the rod, spoil the
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child” (Ahiqar 6:81) [2], a practice which is today both illegal
in many countries and is strongly discouraged [3].

By contrast,quantitativestudies on how rewards and pun-
ishments shape behavior have awaited the seminal work of the
American psychologist Edward Thorndike at the end of 19th

century. Thorndike placed cats in small cages and measured
the time it took the animals to open the cage, a feat requiring
a particular action from the animal such as a lever press. The
study of how the escape time decreased with practice in dif-
ferent conditions, as well as other experiments, led Thorndike
to formulate theLaw of Effect: “Of several responses made to
the same situation, those which are accompanied or closely
followed by satisfaction to the animal will be more firmly
connected with the situation, so that, when it recurs, they will
be more likely to recur” [4].

The theoretical foundations to the understanding of operant
learning were laid in the middle of the 20th century in three
lines of research. First, simple quantitative operant learning
experiments in humans and animals have motivated mathemat-
ical psychologists to construct quantitative phenomenological
models of operant learning in these experiments [5]. At the
same time, the pioneers of artificial intelligence began to
explore trial-and-error learning as an engineering principle.
Finally, developments in the field of optimal control, most
notably the development of dynamic programming by Richard
Bellman, enabled the later development of what is today
standard reinforcement learning (RL) techniques [6].

In this review we examine some of the different models for
operant learning in view of the observed behavior of animals
and humans and briefly discuss the neural correlates of this
learning behavior. The review is organized in the following
way. In Section II we discuss alternative models for operant
learning that are motivated by normative considerations. We
also discuss their putative or plausible neural basis. In Section
III-A we discuss the results of discrete-trials operant learning
experiments and relate them to the existing models. In Section
III-B we discuss free-operant learning experiments and the
difficulty of relating them to existing models. In Section
IV we discuss phenomenological models. In Section V we
conclude by identifying some of the important challenges to
a comprehensive theory of operant learning.

II. REINFORCEMENTLEARNING

In this section, we give a short, and incomplete, overview on
RL. Its aim is to introduce some basic concepts and learning
algorithms which will provide a framework for the discussion
of behavioral experiments in Section III. The interested reader
is referred to [6], [7] for a more general and comprehensive
treatment of these topics. We also shortly survey the literature
about putative neuronal substrates of these RL algorithms.
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The RL problem can be formulated as follows. Consider
an agent interacting with an environment through consecutive
perception-actioncycles. In each cycle, the agent gathers infor-
mation about the environment (referred to as anobservation)
and performs an action. The action can have both immediate
and long-term consequences. The immediate consequence is
that following the action, the agent receives a reward (a scalar
signal). However, the action can also affect the environment,
and thus affect future observations, actions and rewards. The
goal of the agent is to choose actions so as to maximize
some measure of the overall collected rewards, for instance
the average future reward per action.

RL is a collection of methods devised to find the optimal
policy – a (possibly stochastic) mapping from observationsto
actions – that realizes the goal of the agent. The applicability
and/or the effectiveness of the different methods depend on
the complexity of the agent-environment interaction. Roughly
speaking, this complexity depends on how well the agent can
predict (in a statistical sense) the effects of its actions on the
environment given the observations.

In some RL problems, the next state of the environment and
the reward obtained is a (possibly stochastic) function ofonly
the current state and action. An RL problem which satisfies the
aboveMarkov propertyis called a Markov decision process
(MDP) (Fig. 1(a)). If the agent has access to this state
(e.g., the current observation reveals the current state ofthe
environment) then the agent can select actions optimally by
considering only the current state.

By contrast, there are situations where the observations fail
to disclose the true (hidden) states of the environment. For
instance, this could happen because the agent receives only
partial information about the current state of the environment.
The information is partial in the sense that it does not allow
the agent to unambiguously distinguish among different states.
This, in general, severely complicates the learning and control
problems, as described below. A simple model for this kind
of situations is obtained by assuming that the probability of
a given observation depends on the current (hidden) state
of the environment. Such an RL problem is called partially
observable MDP (POMDP).

A. Value-based learning

In the case of finite MDPs (i.e., with a finite number of states
and actions), one can univocally associate to each state-action
pair a value. The value of a state-action pair, under a given
policy, is a prediction about the future cumulative reward the
agent will obtain by taking that action in that state. To improve
the policy, the agent can then search for actions that increase
the value function. Hereafter, we refer to RL methods that
search the policy space via the value function as value-based
methods.

Learning algorithms in this class determine the optimal
policy by computing the values of the different actions for each
possible state. LetQ(a, s) be the future cumulative reward
the agent will obtain by taking actiona in states, and then
following the current policy. Because of the Markov property,
i.e., the probability of reaching a given state depends onlyon

Q(a0, s0) Q(a1, s0)
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Figure 1. (a) Markov Decision Process: For clarity only some of the
possible transitions and reward contingencies are represented.(b) Value-Based
Learning: TheQ’s are an estimate of the average future cumulative reward
obtained by choosing a given action in a given state.(c) Policy-Gradient
Learning: Policy parameters are adjusted by gradient ascentso as to maximize
the average reward. See main text for details.

the current state and on the action taken, theQ’s satisfy the
following consistency conditions

Q(s, a) = r(a, s) + γ
∑

s′,a′

T (s′, a, s)π(a′, s′)Q(s′, a′) (1)

wherer(a, s) is the average reward from actiona in states,
T (s′, a, s) is the probability that the next state will bes′ after
taking actiona in states, andπ(a′, s′), which describes the
policy, is the probability of taking actiona′ in states′. The
parameterγ denotes the discounting of future rewards. For
simplicity we assume that there is no temporal discounting
and γ = 11. To improve the policy, the agent can choose
in each state the action which maximizes the right hand side
of Eq. 1. This operation is calledpolicy improvement. The
policy improvement theorem guarantees that the new policy
is not worse than the old one, and it is better unless the
old policy is the optimal one [6]. This changing the policy,
however, will change the values of the states which have
to be recomputed under the new policy. This operation is
called policy evaluation. By interleaving improvement and
evaluation, which is calledpolicy iteration, one is guaranteed
to find the optimal policy in a finite number of iterations.

Policy evaluation using Eq. 1 requires the knowledge of
the transition probabilitiesT (s′, a, s) and of the rewards
contingenciesr(a, s). Thus, one possibility for the agent is to
learn the transition probabilities and the reward contingencies
(i.e., learn the model of the environment), and then to use
the model tocomputethe optimal policy as described above.
Methods of solution that explicitly learn the contingencies of
the environment, that is the parameters of the MDP model,
are referred to as model-based methods, and are discussed
at length in this issue. Alternatively, the agent candirectly
estimate the state-action values (theQ’s in Eq. 1; Fig. 1(b)),

1γ < 1 is needed to guarantee the existence of the value function inthe
case of continuing tasks.
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and use these values for action selection. Methods of solution
that do not require learning a model of the environment (e.g.,
in terms of state transition probabilities) are referred toas
model-free methods. Here, we focus on model-free methods
as these dominate the field of operant learning.

The basic idea behind model-free RL is to solve Eq. 1
by stochastic approximation, while using estimates of the
values to choose actions. In this section we describe a popular
algorithm, called SARSA, that achieves this objective [6].We
consider the sequence of states, actions and rewards of an
agent interacting with an environment. In each cycle, the agent
being in states and taking actiona, updates its estimate of the
corresponding state-action value functionQ(a, s) according to

Q(a, s) ← Q(a, s) + ηδ (2)

whereη > 0 is the learning rate, andδ ≡ r(a, s)+Q(a′, s′)−
Q(a, s) is the reward prediction error(RPE), witha′ and s′

being the next action and the next state, respectively. The RPE
is a basic quantity that plays a central role in all value-based
methods. Roughly speaking, it is a measure of how good
the agent is at predicting the consequences of its behavior.
A positive RPE is agood surprisefor it indicates that, as a
consequence of taking actiona in states, the agent received a
larger-than-expected reward and/or reached a state with larger-
than-expected value. That is, the agent wasunderestimating
the value of taking actiona in states. Similarly, a negative
RPE is abad surprisefor lower-than-expected reward has
been received and/or a state with lower-than-expected value
has been reached, indicating that the agent wasoverestimating
the value of taking actiona in states.

Note that the update in Eq. 2 requires information about
the state in the beginning of the cycles, the action takena,
the immediate rewardr, the next states′ and the next action
a′ (s → a → r → s′ → a′), giving this algorithm its name,
SARSA. If the policy is kept fixed whileη is properly decayed
to 0 (see [8] for a more precise statement) and each state-
action pair is sampled infinitely often, then Eq. 2 is bound to
converge to the solution of Eq. 1 with probability 1.

The policy can be improved concurrently with the estima-
tion of theQ function by making action selection dependent
on the current estimate of theQ’s. Typically this is achieved
by utilizing a stochastic policy that balancesexploitationand
exploration. Exploitation corresponds to choosing the action
associated with the highest value with the rationale that ifthe
values are accurate, then agreedy policy (always choosing
actions associated with the highest value) will maximize the
average cumulative reward. By contrast, when the values
are not accurate, exploration, which corresponds to choosing
actions that are currently sub-optimal, is useful for improving
the current estimates. The most widely used action selection
functions, both in applications and when explaining operant
learning, are theǫ−greedyand thesoft-maxaction selection
functions. In ǫ-greedy, the agent chooses the actiona asso-
ciated with the higher value (i.e. thea for which Q(a, s) is
maximal) with a probability1− ǫ and chooses randomly and
uniformly between all actions with a probabilityǫ. In soft-
max, the probability of selecting actiona in states is given

by

π(a, s) =
exp [βQ(a, s)]∑
a′ exp [βQ(a′, s)]

(3)

where the sum is over all actiona′ available in states,
and β > 0 is a parameter controlling the stochasticity of
action selection. The parametersǫ and1/β control the trade-
off between exploration and exploitation. The smaller these
parameters are the more dominant is exploitation.

Compared to MDPs, POMDPs are computationally more
difficult to solve. Even if the agent has a complete knowledge
of the dynamics of the POMDP, finding the optimal policy in
the general case is actually impossible – a completely general
exact algorithm could be used to solve the halting problem
[9]. One solution is to use SARSA or SARSA-like algorithms
treating the observations as if they were states (i.e., as ifthey
satisfied the Markov property). However, this algorithm may
converge to a solution that is far from optimality or may fail
to converge altogether [10], [11]. For a survey of POMDPs
solution techniques see [12] and references therein.

Putative neural correlates:The largely dominant hypothesis
within the fields of neuroscience and neuroeconomics is that
the implementation of value-based algorithms by the brain
underlies much of operant learning. It has been suggested
that different brain regions support the different computations
required for value-based learning [13]. The cerebral cortex,
and more specifically the prefrontal regions, learn and rep-
resent the ‘states of the world’ which are task-relevant [14],
[15]. The values of the states, or of the state-action, pairs
are learned and represented in the basal ganglia, which is a
sub-cortical structure known to be involved in action selection
[16]. Different proposals further partition the basal ganglia into
different functional components. According to one proposal,
the values are coded in the striatum (the input structure of
the basal ganglia) and are directly used to select the actions
[17], [18]. Another proposal suggests, instead, that the values
coded in the striatum are used to update the policy which
would be maintained in the nucleus accumbens (which is a
subdivision of the striatum) and in the pallidum (which is the
output structure of the basal ganglia) [19], [20]. The evidence
supporting these hypotheses is largely based on experiments
demonstrating that the neural activity in these brain regions
is correlated with some of the variables of the value-based
RL model, as computed by fitting the RL model to the
experimentally measured behavior. For a detailed discussion
of this methodology see [21]

However, the most influential support to the hypothesis that
the brain implements value-based RL stems from a series
of beautiful experiments suggesting that a particular group
of neurons, the dopamine neurons located in the midbrain,
encodes the RPE (for review see [22]–[24]). In these ex-
periments, monkeys were trained in a classical conditioning
paradigm, in which repeatedly, visual or auditory cues were
followed by a reward, e.g. a drop of juice. Note that in classical
conditioning, unlike operant conditioning, the reward is contin-
gent upon the stimulus rather than upon the response [25]. In
the näıve animals, dopamine neurons respond with a transient
increase of their firing rates to reward delivery but not to cue
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presentation. By contrast, in the trained animals, they respond
to the cue but not to the reward. Remarkably, in the trained
animal, dopamine neurons respond with a transient decreasein
their firing rate to reward omission after the cue. Theoretical
modeling reveals that this pattern of activity is to be expected
if the activity of these neurons represents the RPE [22]. A
more recent study has demonstrated a causal link between
the dopamine signal and operant learning by replacing reward
delivery with optogenetic activation of dopamine neurons in
mice. The results of this study provide a strong support for
the role of dopamine neurons in driving operant learning [26]

The pattern of dopamine neurons activity, in the specific
experimental conditions described above, does undeniably
mimic the behavior of a signal putatively related to RPE [22]–
[24]. However, in other respects, that same pattern of activity
seems inconsistent with abona fideRPE signal. One evident
problem with the hypothesis of a one-to-one relation between
the (phasic) activity of dopamine neurons and the RPE is
the asymmetrywith which positive and negative errors can
be signaled. The ability to signal negative errors (througha
transient decrease of the firing rates) is significantly lower than
the ability to signal positive errors (through a transient increase
of the firing rates), due to the low baseline firing rates of
dopamine neurons (∼ 3-5 Hz) [27], [28]. Two workarounds to
this problem have been suggested. One is that the relationship
between dopamine firing rate and RPE is strongly non-linear
(however see [29]), and the other is that a different system is in
charge of signaling negative RPE, with the dopamine system
primarily signalingonly positive RPE [30].

Another experimental result that appears inconsistent with
the dopamine-RPE hypothesis is the finding that dopamine
neurons also respond with a transient activity increase to
salient stimuli not associated with reward as well as to
stimuli predicting negative reward [27], [31]. These, and the
short latency in dopamine response suggest that dopamine
neurons activity might be instrumental in discovering stimuli
and/or motor responses that could be task-relevant, ratherthan
encoding the RPE [27], [32]. Finally, given the substantial
heterogeneity in the responses of dopamine neurons, it is
unclear how such a diverse neural population could broadcast
a global signal as the RPE [28].

B. Policy-gradient learning

One alternative approach for finding the optimal policy
for an MDP is by searching the policy space without the
intermediatestep of computing the value function. A widely
used and effective way to perform such a search is to consider
a suitable parametric family of policies, and then find the
optimal parameters by gradient ascent (see [33], [34] and
references therein). Hereafter, we refer to RL methods that
directly search the policy space by gradient ascent as policy-
gradient methods. An important advantage of policy-gradient
methods over value-based methods is that they retain their
convergence guarantees under very general conditions when
applied to POMPDs [12].

For purpose of illustration, we consider below the appli-
cation of policy-gradient methods to a simplified problem, in

which the reward depends only on the most recent observation
and action, and the observations are temporally independent
and generated according to some time- and action-independent
distribution [35]. There are generalizations to the policy-
gradient approach that relax these assumptions. They are,
however, beyond the scope of this paper. The interested reader
is again referred to [33], [34] and references therein.

Let πθ(a, o) – the probability of taking actiona upon
observationo – be a suitable policy parametrization, andθ
be the vector of free parameters to be optimized. The average
reward per action obtained by following policyπθ is given by

R(θ) =
∑

o,a

p(o)πθ(a, o)r(a, o) (4)

wherep(o) is the probability of observingo, andr(a, o) is the
average reward obtained by taking actiona upon observation
o. Performance can be improved by iterating

θ ← θ + η∇θR(θ) (5)

whereη > 0 is the learning rate. If the learning rate converges
to zero slowly enough [8] then such learning is guaranteed to
converge to a local maximum of the average reward. There
are different approaches to estimate the gradient ofR(θ). One
approach consists in making small perturbations to the param-
eters and estimating the average reward obtained by following
the corresponding policy over a suitably long time interval.
From the average reward estimates so obtained, one can
then compute an estimate of the gradient∇θR(θ) by finite-
difference methods. This is equivalent tobatchlearning, where
parameters are changed only after a large amounttraining
data (i.e., consecutive observation-action-reward triplets)has
been experienced. An alternative approach, which is also more
biologically plausible, consists in changing the parameters as
soon as new experience is acquired. This is equivalent toon-
line learning, where parameters of the policy are changed after
each observation-action-reward triplets.

A class of on-line algorithms can be derived by noting that

∇θR(θ) =
∑

o,a

p(o)r(a, o)πθ(a, o)∇θ log πθ(a, o) (6)

Therefore, if one changesθ according to

θ ← θ + ηr(a, o)∇θ log πθ(a, o) (7)

every time that actiona is taken upon observationo, then the
average change in the parameters is proportional to∇θR(θ)
(see Eq. 6). Equation 7 is a special form of a general class of
on-line learning rules called REINFORCE algorithms [35].

Putative neural correlates:The use of gradient-based tech-
niques for learning in artificial systems, and particularlyin
artificial neuronal networks, has a long and successful history
[36], [37]. It is unclear, however, whether biological systems
implement this kind of learning and, if that is the case, through
which mechanisms. In order to gain insight into potential
mechanisms, we focus first on the process of action selection.

It is generally believed, that action selection emerges from
competition between different neural populations, each coding
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for a different motor response. As a result of this competition,
the neurons of thewinning population become active, firing
at high rates, while the neurons corresponding to thelosing
populations are quiescent. Consequently, the action associated
with the winning population is executed [38]. The substantial
neural variability plays an important role in this competition
process [39]. This variability manifests itself as variability
in the outcome of the competition, naturally implementing a
stochastic policy. The outcome of the competition is influenced
by the inputs to the different populations. These inputs may
carry sensory and memory information about the current
state of the world and thus enable the system to respond
differently in different circumstances. Finally, the properties of
the competing networks, e.g., the relative strengths of theintra-
population (positive) and inter-population (negative) feedbacks
can bias the network in favor and against different populations.

In this framework, any physiological mechanism that modu-
lates the winner-take-all dynamics underlying the action selec-
tion process would result in a change in the policy of the agent,
thus affecting the likelihood that a given action is selected
in a specific situation. One plausible candidate mechanism
is synaptic plasticity. It is well-established that the efficacies
of synapses change as a function of the activities of the
corresponding presynaptic and/or postsynaptic neurons [40]–
[42]. There is also evidence that activity-dependent synaptic
plasticity is modulated by the reward-dependent dopamine
signal [43]–[46]. This raises the possibility that gradient-based
algorithms operates already at the level of synapses. In other
words, that thetunable parametersin Equation 7 are the
synaptic efficacies. Note, however, that it is possible that
gradient learning is a good description of operant learningbut
that its implementation in the nervous system is not through
synaptic modifications but at a more macroscopic level (Fig.
1(c)).

Policy-gradient learning may be achieved by exploiting the
network internal stochasticity or variability. Roughly speaking,
the idea is that neural variability results in policy variability,
which in turn results in variability in the rate of delivered
reward. Policy-gradient learning is achieved if on average,
synaptic efficacies are changed so as to increase the likelihood
of those patterns of network activity that were correlated
with an increased rate of rewards. There have been several
proposals that implement variants of the REINFORCE family
of algorithms that are based on this idea, where the necessary
neural variability results from the stochastic release of neuro-
transmitter [47], from the irregularity of the spiking processes
[48], [49] or even from the purposeful injection of synaptic
noise from other brain areas [50].

REINFORCE algorithms, when implemented at the micro-
scopic synaptic level, are a special case of a more general
class of synaptic plasticity rules, where changes in the synaptic
efficacies are driven by the covariance of reward and neural
activity [51], [52]. Covariance-driven synaptic plasticity is
relatively easy to implement in the biological ’hardware’,
and in many cases converges to the gradient solution [51],
[52]. Remarkably, it has been proven that operant matching,
which describes the behavior in many operant learning tasks
is a generic and robust outcome of covariance-driven synaptic

plasticity (see Sec. III-B below) [51], [53], [54].
To test directly whether policy-gradient learning is indeed

implemented by synaptic modifications requires quantitative
measurements of thesynaptic plasticity rulesin the living
brain. However, such experiments are currently technically too
demanding and therefore await future research.

C. Further considerations

For finite MDPs, value-based methods are guaranteed to
find the optimal policy while policy-gradient methods are only
guaranteed to find a local maximum which may correspond
to a sub-optimal policy. However, it is important to consider
how the qualities of the solutions degrade in face of the
’practicalities’ required for real-world applications, or when
the assumptions about the dynamics of the agent-environment
interactions are relaxed.

It is often the case for real-world problems that the
observation-action space is very large. This poses severalprob-
lems to value-based methods. One is the amount of memory
one needs in order to store the value function. Another is
that, albeit policy iteration allows one to effectively search the
policy space for the optimal policy, it is computationally ex-
pensive and thus becomes rapidly unpractical as the dimension
of the state-action space increases. Finally, during learning,
there is the problem of the amount of experience (i.e., time)
one needs in order to achieve a reliable estimate of the value
function. A standard solution consists in resorting to some
form of approximation to represent the value function (usually
in the form of some parametric family denoted ’function
approximation’). In these cases, however, value-based methods
are not guaranteed to converge and may even dramatically
misbehave (e.g., value function updates diverge with function
approximation) [6], [55] (but see [56], [57]). Policy-gradient
methods, instead, are well-behaved with function approxima-
tion, and they can usually be shown to converge under mild
regularity conditions.

Another important real-world situation is the case of
POMDPs. As we have already noted, in POMDPs value-based
methods have no convergence guarantees and can even return
strongly sub-optimal solutions. Partial information, on the
other hand, has less severe effects on policy-gradient methods.

III. B EHAVIORAL EXPERIMENTS

While RL methods provide a framework to study operant
learning in arbitrarily complex settings, most research onhu-
mans and animals’ operant learning has focused on relatively
simple repeated-choice experiments. In this paradigm, subjects
repeatedly choose among different alternatives (typically two)
and are rewarded according to some schedule unknown to
them. There are two basic settings for repeated-choice exper-
iments: discrete-trials and free operant. In the discrete-trials
setting, the experiment is divided into temporally separated
trials and the subject makes a single choice every trial, e.g.,
by pressing one of several buttons. By contrast, in the free
operant setting, the subject can respond repeatedly without
any constraints.
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The discrete-trials setting is widely used in conjunction with
electrophysiological recordings or functional imaging because
this setting allows the experimentalist to finely control the
choice time as well as all the preceding behavior in the
trial, which is important in order to correlate brain activity
with behavior. The free operant setting, on the other hand,
represents a more ecologically relevant condition. In fact, it is
often considered that choice behavior in free operant settings
can be likened to foraging behavior of animals in the wild,
where they must make choices about foraging locations as
well as about the amount of time to spend in them.

We consider below the behavioral results in repeated-choice
learning experiments in both discrete-trials and free operant
settings. We discuss the ability of the RL models described
above to account for the observed patterns of behavior in
these experiments, and whether the observed behavior can
differentiate between alternative models.

A. Discrete-trials operant learning

A popular discrete-trials task utilizes thetwo-armed bandit
reward schedule. The participant, human or animal, repeatedly
chooses between two actions which are rewarded, typically
in a binary way (i.e., reward or no reward), with constant
probabilities that depend on the actions. The name two-armed
bandit reflects the resemblance of these tasks to the problemof
choosing between two slot machines in a casino. As predicted
by the Law of Effect, with practice, the participants shift their
preference in favor of the alternative associated with the higher
reward probability (see [5] and references therein). In oneof
the earlier studies, Grantet al. [58] instructed human partici-
pants to repeatedly predict whether a lamp would turn on or
not. There were 5 groups of participants, and the probability
that the light would turn on for the different groups wasq1=0,
0.25, 0.5, 0.75 or 1. In other words, participants chose between
two actions,a1=’predict ON’ and a2=’predict OFF’ and the
probability of reward associated with the two actions was
q1 and q2 = 1 − q1, respectively. Grantet al. recorded the
fraction of trials, in which the participants predicted that the
lamp would turn on. The fraction of trials (computed over the
last 5 trials of an experiment composed of 60 trials) in which
the participants predicted that the lamp would turn on was
roughly equal to the probabilities that the lamp would indeed
turn on: 0, 0.25, 0.53, 0.77 and 1, respectively. Formally,
denotingNi the number of times alternativei was chosen,
N1/N2 ≃ q1/q2. This pattern of choice behavior is commonly
referred to asprobability matching(not to be confused with
operant matching mentioned above) because the participant
matches her probability of choosing an alternative to the
probability that this alternative would be rewarded.

Note that probability matching deviates from theoptimal
policy – the one that maximizes the total number of correct
answers. For example, ifq1=0.75 then respondinga1 on
every trial would result in 75% success, on average. By
contrast, probability matching would yield the correct answer
on average in0.75 ·0.75+0.25 ·0.25 = 0.625 of the trials. The
observation that people probability match rather than maxi-
mize has attracted the attention of many theorists interested

in rational choice theory: “We have here an experimental
situation which is essentially of an economic nature in the
sense of seeking to achieve a maximum of expected reward,
and yet the individual does not in fact, at any point, even in
a limit, reach the optimal behavior.” (K. J. Arrow – excerpt
from [59]). Therefore, this pattern of choice behavior has
been studied extensively, yielding contradictory results. The
unpleasant truth is that after more than half of a century
of experiments, whether or not probability matching is an
asymptotically stable behavior (i.e., maintained after extensive
practice) is still a matter of debate. Gallistel has argued that,
whether or not participants match, depends on the feedback
available [25]. Full feedback about both the reward associated
with the chosen action (obtainedreward) and that associated
with the non-chosen action (foregonereward), leads to proba-
bility matching whereas participants maximize if the feedback
they receive is restricted to the obtained reward [25], [60], [61].
There are claims that, at least in humans, probability matching
is not a robust phenomenon and that participants choose the
more rewarding alternative more frequently than expected by
probability matching [62]. Moreover, it has been argued that
the larger are the rewards, the stronger is the tendency to
maximize [63]. By contrast, there are numerous accounts of
probability matching, not only in laboratory settings but also
when humans gamble substantial amounts of money on the
outcome of real-life situations [64].

It is instructive to consider the asymptotic behavior pre-
dicted by the different RL algorithms in the two-armed bandit
task. Let us first consider the SARSA algorithm (Section II-A)
for an MDP with a single state and two actions,a1 and a2,
randomly rewarded (eitherr = 0 or r = 1) with constant
probabilitiesq1 and q2, respectively. This is aminimal MDP
description for the two-armed bandit task (see more on this
below). For a sufficiently small learning rate, the values of
the two actions will converge to the probabilities of reward
associated with the two actions,Q(a1) → q1 andQ(a2) → q2
where we have dropped the dependence ons (see Eq. 2)2. If
the actions are selected according to the soft-max function
(Eq. 3), then the (asymptotic) probability of choosinga1,
p ≡ π(a1), is given by

p =
1

1 + eβ(q2−q1)
(8)

Thus, the higher the probability of reward associated to an
action, the more often that action will be chosen (i.e.,p > 0.5
for q1 > q2, andp < 0.5 for q1 < q2). Nevertheless, as can be
seen from Eq. 8, the less-rewarding alternative will be chosen
with non-zero probability, even after a large number of trials
(as long asβ > 0 and finite). This behavior is qualitatively
consistent with probability matching, but not quantitatively. In
fact, according to Eq. 8 it will be

N1

N2
=

eβq1

eβq2
6= q1

q2
(9)

2 More precisely, the dynamics will converge to those values plus a constant
which represents the amount of future rewards. However, in the model, this
will not effect behaviour because only the difference between theQ values
is used in the action selection rule.
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If the actions are selected according to theǫ-greedy function,
the asymptotic behavior remains qualitatively the same. The
less-rewarding alternative will be chosen withǫ/2 > 0
probability, but the pattern of choices will still be quantitatively
inconsistent with probability matching. In fact, it will be
N1/N2 = 2/ǫ − 1, assuming thata1 is the most-rewarding
action. It should be noted that there are other value-based
algorithms not discussed here, such as actor-critic, whose
asymptotic behavior in the two-armed bandit will converge
to exclusive choosing of the most rewarding alternative [65].

For comparison, we consider now the asymptotic behavior
that would result from policy-gradient learning (Section II-B).
Let the policy be parametrized by the probabilityp of choosing
a1. The average reward as a function ofp is given byR(p) =
p · q1+(1−p) · q2, and thegradientwith respect top is given
by

dR

dp
= q1 − q2 (10)

Thus, performing gradient ascent with respect top on the
average reward (see Eq. 5) will converge to choosing the more
rewarding alternative exclusively (i.e., to the optimal policy).
The maximum ofR(p) is achieved forp∗ = 1 whenq1 > q2,
and forp∗ = 0 when q1 < q2. Similarly, performing gradient
ascent on any tunable parameterθ, with p ≡ p(θ), that allows
saturation of the probability of choice will converge to the
same behavior. Similarly to the pattern of asymptotic choice
behavior predicted by SARSA, this behavior also is in contrast
with probability matching behavior.

As mentioned above, thesimple two-armed bandit task
elicits quite different patterns of choice behavior depending on
the details of the experimental settings. According to theory,
these details are predicted to be computationally benign, in the
sense that they should have little or no effect in the resulting
asymptotic behavior. One possibility is that the details of
the experimental setting strongly affect the subjects’internal
modelof the task, thereby producing significant differences in
the resulting behavior [66], [67]. Several studies lend support
to this hypothesis. For example, one study has demonstrated
that human participants probability match when instructedto
repeatedly predict whether a lamp will light on. By contrast,
they tend towards maximizing when presented with the same
sequence of random binary events if they fully understand the
stochastic mechanism that maps actions to rewards (but not
its parameters) [68]. These results indicate that participants
probability match because they suspect that the sequence of
events may be non-random. Along the same lines, another
interesting observation is that 3-4 years old children choose the
most rewarding alternative more often than college students,
who instead tend to probability match [69]. Again, young
children may do better than students because they may be less
suspicious. More recently, Laquitaineet al. [70] studied choice
behavior of monkeys in a two-armed bandit schedule. On
average, animals approximately probability-match. However,
probability matching is not thetypical behavior. In some
sessions animals maximized whereas in others they chose
the two alternatives with an equal probability. Thus, in these
experiments approximate probability matching is the outcome

of averaging over the (substantial) session-to-session variabil-
ity in the ability to learn to identify and choose the more
rewarding alternative. Interestingly, that study also identified
a neural correlate of this session-to-session variability. The
higher the neural activity in a brain region known as the dorsal
putamen (which is part of the basal ganglia) at the beginning
of the session, the higher is the performance at the end of the
session [70].

In the framework of value-based MDPs, such a sensitivity
of the behavior to computationally immaterial variations in
the experimental setting could be understood as anerroneous
modeling of the task by the subject. While from the experi-
mentalist point of view, the two-armed bandit task is a single-
state MDP with two actions, from the participants’ point of
view it could be a POMDP of arbitrarily complex structure
[71]. For example, the state could depend on the history
of actions [72]. Even the number of possible actions, from
the participants’ point of view, could be different. In fact,
humans and animals are known to develop idiosyncratic and
stereotyped superstitious behaviors even in simple laboratory
settings, highlighting the difficulty in utilizing the correct
model of states and actions in operant learning [73], [74].

B. Free operant learning

In the previous section we described operant learning in a
discrete-trial design, in which the decision time is dictated by
the experimentalist. Indeed, there is a long tradition of free
operant experiments that are devoid of discrete trials. In these
experiments, the animal freely move back and forth between
two targets, harvesting rewards that are delivered according
to a predefined stochastic schedule. Often, the concurrent
variable-interval (VI) schedule is used and we will focus
on these experiments. The concurrent VI schedule is more
complicated than the two-armed bandit schedule described
above because the choices that the subject makes change the
probability of reward. Specifically, a target in this schedule can
be either baited or empty. When the subject chooses a baited
target, the subject is rewarded immediately and the target
becomes empty. An empty target is re-baited probabilistically
such that the time to re-bait is drawn from an exponential
distribution. Once baited, a target remained baited until it is
chosen. The experimentalist controls the means of the two ex-
ponential distributions, thus determining whether a target will
be “rich” or “poor”. The more time the subject spends in one
target, the higher is the probability of obtaining a reward in the
other target. As a result, animals have an incentive to switch
between the two targets, which indeed they do. However,
while the policy that maximizes the average reward predicts
regular alternations between the targets [75], the actual pattern
of choice behavior isirregular, even asymptotically. This
irregularity manifests in the distributions of stay durations in
the targets, which are approximately exponential [54], [76]–
[78].

This result also highlights an important difference between
decisions that are made in discrete time, as in the previ-
ous section, and decisions in free operant experiments. An
exponential-like distribution of stay times implies that,while
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the subject is at one of the target, the probability of switching
must be infinitesimally small (more precisely, in each small
time interval∆t it must be of the order of∆t). Thus, the
subject is continuously choosing between action ‘stay’, which
has a finite probability (i.e.,1 − O(∆t)) to be selected, and
action ‘leave’, which has instead anO(∆t) probability of
being selected. In the framework of value-based learning, this
could be achieved if the parameter that controls exploration
in the action selection function (see Section II-A) is of the
order of∆t. An alternative possibility is to assume that the
actions correspond to choosing the time at which to leave. In
this case, the set of possible actions becomes infinite.

Another interesting observation reported in these experi-
ments is that the fraction of the total time subjects spend
in a target matches the fraction of rewards harvested from
that target, a behavior known as Herrnstein’s matching law
or operant matching [54], [79]–[81]. Despite the similarity in
the name (which led to a lot of confusion over the years),
probability matching and Herrnstein’s matching law are not
the same phenomena. In fact, they are inconsistent. To see
that, we reconsider the case of the two-armed bandit schedule
in which targets 1 and 2 yield a binary reward with (fixed)
probabilitiesq1 and q2, respectively. The average number of
rewards harvested from targeti, Ii, also known as the income,
is given byIi = qi · Ni. According to probability matching,
N1/N2 = q1/q2 = (I1/I2)

1
2 . By contrast, according to

Herrnstein’s matching law,N1/N2 = I1/I2. It should also
be noted that in the case of a two-armed bandit schedule with
fixed probabilities of reward, becauseIi = qi ·Ni, Herrnstein’s
matching law equation can only be satisfied ifN1 ·N2 = 0. In
other words, in the case of fixed probabilities of reward, the
only behavior that is consistent with Herrnstein’s matching
law is choosing one of the alternatives exclusively. Therefore,
maximizing behavior, but not probability matching, observed
in some of the discrete-time two-armed bandit experiments,is
consistent with Herrnstein’s matching law [72].

Operant matching has been repeatedly demonstrated not
only in free operant tasks [54], [78], [81] but also in discrete-
trial tasks [81], [82], not only in the laboratory but also in
free ranging animals [83]. Nevertheless, deviations from this
rule have also been observed [80]. Baum [84] has proposed a
generalized form of the matching law. In its symmetrical form,
the generalized matching law predicts thatN1/N2 ≃ (I1/I2)

α

whereα is a parameter. Typically, when estimated from be-
havioral data,α < 1, which corresponds to a pattern of choice
behavior called under-matching [80]. Note that both operant
matching and probability matching adhere to the generalized
matching law, withα = 1 in the former andα = 1/2 for the
latter.

Compared with discrete-time operant learning, continuous-
time operant learning has received little theoretical attention,
in particular in view of standard RL algorithms. This may be
due to the difficulty in accounting for behavior in free operant
experiments using value-based RL, as mentioned above. How-
ever, it turns out that the pattern of choice behavior observed
in free operant experiments is readily explainable in the
framework of covariance-based synaptic plasticity, discussed
in Section II-B. It turns out that operant matching naturally

emerges from covariance-based synaptic plasticity [51], which
is closely related to policy-gradient RL. The same framework
can also naturally explain under-matching, as resulting from
mistuning of the parameters of the covariance-based plasticity
[53].

A recent study has investigated the pattern of choice behav-
ior resulting from a network model composed of two compet-
ing neuronal sub-populations (corresponding to the choices
of the two targets, see above) in the presence covariance-
based synaptic plasticity. The pattern of choice behavior of
the model reproduces in detail many of the characteristics of
the experimentally observed behavior, such as the exponen-
tial distribution of stay durations and the operant matching
behavior. It also quantitatively accounts for the dynamicsof
learning in response to changes in the parameters of the reward
schedule [54].

IV. PHENOMENOLOGICAL MODELS OF OPERANT

LEARNING

The RL framework discussed in Section II makes explicit
assumption about the algorithms used by the brain in order to
relate the history of choices and rewards to the probability
of choosing an action. However, these approaches may be
too restrictive. An alternative approach is to determine the
mapping of that history to actions directly from the data,
without assuming any particular model. In two noteworthy
examples of this approach [85], [86], monkeys were trained
in the concurrent variable-interval (VI) schedule to repeatedly
choose between two targets for a liquid reward. Studying
many tens of thousands of choices made by each monkey over
many days, the two groups of researchers constructed linear-
nonlinear probabilistic models [37] of the monkeys’ behavior.
In both studies, it was found that the probability of choosing
an alternative action is well approximated by a function of
the difference between the rates of reward associated to the
two alternatives [85], [86]. It is not clear how to interpret
these results in view of value-based RL. If the participant’s
internal model of the task is a single-state two-action MDP,
and the actions’ values are learned by SARSA, then one would
predict that the probability of choice would depend on the
difference in the averagereturns (rate of rewards divided by
rate of choices) associated with the two targets and not on
the difference in the rate of rewards. However, concurrent
VI schedule is a rather complicated POMDP and therefore it
is difficult to draw concrete conclusions to the applicability
of value-based RL to this problem. One important issue
worthwhile considering when attempting to construct such
phenomenological models of behavior is that these models
require a considerable number of trials, which are collected
over many days. However, if the behavior is not stationary over
the period in which the data was collected then the resultant
model will necessarily be inaccurate. Indeed, a recent study
has reanalyzed the behavior of the monkeys in one of the
studies described above [86] and demonstrated substantialnon-
stationarity over multiple time-scales [87].

Another approach is to consider simple, biologically and
computationally plausibleheuristics to account for patterns
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of behavior observed during operant learning. For example,a
recent study has found that the predictive power of the simple
win-stay/lose-shift, in which a participant tends to repeat after
a positive reward and tends to switch after a negative reward
in a four-armed bandit schedule is comparable to that of RL
models [88]. In a comprehensive study of a very large number
of human participants in different operant tasks, Erev and
Haruvy have proposed a complex phenomenological model
that accounts for many different characteristics of behavior in
these experiments [89].

In contrast to the success of phenomenological models over
RL models, a study of a very large data set of 200 human par-
ticipants making 240,000 two-armed bandit choices has tested
the power of SARSA-like algorithms to describe and predict
human operant learning. As a first step, the action-selection
function used by humans was characterized non-parametrically
and was shown to be well approximated by a combination of
ǫ-greedy and soft-max. That study demonstrated that SARSA-
like algorithms describe the behavior better than competing
heuristics, if the model assumes that first experience resets
the initial conditions in Eq. 2 that describes the dynamics of
learning the values and if the experimentally-measured action-
selection function is used [90]. Nevertheless, this model does
not explain all aspects of behavior. For example, it has been
demonstrated that surprising positive payoffs reduce the rate of
repeating the previous choice and surprising negatively payoffs
increase it, both in the stock market and in simple repeated
two-alternative force choice tasks (two-armed bandit) [91].
This result does not seem to be explainable by standard RL
algorithms, and is even a challenge to the Law of Effect.

V. CONCLUDING REMARKS

In this review we considered two families of RL models.
Value-based learning that is well-suited to learn the optimal
policy in MDPs and policy-gradient learning (which is a
direct policy search method) that is more flexible, being also
applicable to POMDPs. The attempt to apply these models of
learning to explain patterns of choice behavior in repeated-
choice experiments yields mixed results.

Value-based learning accounts for some aspects of behavior
and neural activity in discrete-time operant learning but leaves
other unexplained. Policy-gradient learning, implemented us-
ing covariance-based synaptic plasticity, can be used success-
fully to explain behavior in free operant learning in some
experiments, but does not fully account for the behavior in
others. The phenomenological models we discussed fare no
better. Similarly to RL models, they account for some aspects
of behavior and fail at explaining others. We are forced to con-
clude that, after almost a century of intense experimental and
theoretical investigations, we are still far from understanding,
both computationally and at the level of neurons and synapses,
learning behavior in simple (apparently simple, one would be
tempted to say) situations as the repeated-choice experiments
discussed above.

Additional advancements in RL theory will most certainly
further our understanding of the computations underlying
operant learning. One interesting example that has received

attention recently is Hierarchical RL. This method breaks the
learning task into a hierarchy of simpler learning problems
[92]. There is even some neuroimaging evidence suggesting
that, in fact, the brain may utilize a similar approach [93].

An important issue to consider in applying RL models to
explain behavior (which is instead often neglected) is that
of identifying the states and the actions which are relevant
to the task. Models of operant learning typically take as
given that the subjectknowswhat are the relevant states and
actions. However, identifying the states is a difficult taskin
the laboratory, and to a larger extent in real-life [94]. Along
these lines, it has been suggested that operant learning is
a two-step process. In the first step, a low dimensional set
of states is identified in an unsupervised way, based on the
statistical properties of the inputs. The second step utilizes
RL algorithms to find the optimal policy given the set of states
so extracted [95]. A plausible alternative is that the relevant
state-action sets and the policy are learned in parallel [96].

Over the past few years, there has been a shift in emphasis
from value-dependent reinforcement learning to more generic
formulations of inference. This is reflected in several attempts
to cast RL and optimal control in terms of (Bayes) optimal
inference [97]–[100]. Perhaps the best example of this is the
notion of active inference, in which rewards are absorbed
into the problem of inferring hidden states of the world (c.f.,
POMDP) by associating them with prior beliefs about the
states an agent should occupy [98]. By converting the RL
problem into an inference problem, one can then call upon
a plethora of neuronally plausible schemes for approximate
Bayesian inference [99]. This may be an important devel-
opment from the current perspective, because active percep-
tual inference - and its neuronal implementation - can be
formulated using the same sort of gradient descent schemes
that we have discussed in the context of RL. As such, they
provide a direct link to cognitive dynamics - a link noted by
Kalman a half century ago, when he emphasised the formal
equivalence between optimal control, Kalman filtering and,
implicitly, Bayesian belief updating. Furthermore, treating RL
as an inference problem allows one to cast ’heuristics’ as prior
beliefs, placing them in a formal and normative framework.

We believe that part of the failure of RL models stems from
a more fundamental reason. The RL stance is essentially a
behaviorist one, in that it depicts the organism as a general-
purpose learning system whose behavior can bearbitrarily
shaped via stimulus-response-reward associations. It seems
difficult to account for the strong sensitivity of behavior to
computationally immaterial details in the experimental settings
using such a general-purpose learning model (as discussed in
Section III). Stating the obvious, humans and animals do not
approach the learning problem as blank slates. Millions of
years of evolution have favored the formation of particular
associations and not others [101]. One striking example man-
ifests in a phenomenon commonly known as taste aversion
[102]. This phenomenon is studied in experiments in which
animals are presented with a novel food and, hours later, are
exposed to gastrointestinal distress (e.g., as a result of radiation
and other illness-inducing agents, such as lithium chloride).
Consequently, the animal will avoid the new food when is
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presented to it again. This form of learning is extremely
powerful and learning to avoid the new food is achieved after
a single trial. By contrast, it is impossible to teach an animal
to avoid a lever press by associating it with a malaise hours
later or to teach the animal to avoid ingesting a particular
food by associating it with an electric shock delivered hours
later 3. If food and tones are considered simply as different
observations, and the electric shock and the gastrointestinal
distress as negative reinforcers then RL models do not predict
these peculiarities. Rather, a model that explains this behavior
should assume that the two negative reinforcers arequali-
tatively different, allowing only the latter to be associated
with food consumption hours earlier. It is easy to envision
how evolutionary pressure resulted in such a specific learning
mechanism that can help animals learn to avoid poisonous
food. There are numerous other such peculiarities of learning.
A particularly amusing one is the failure of birds in the
following task. Food-deprived cockerel chicks were trained
in a straight runway, in which the food cup moved when the
chicks moved, in the same direction at double the speed. In this
“looking glass” setting, the appropriate behavior to obtain the
food is to moveawayfrom it. The animals were unable to learn
the task [103]. Other similar examples have been reported by
animal trainers [104].

The results discussed in this review highlight the power, as
well as the limitations of relating RL to operant learning. It
is our opinion that addressing these limitations will require
incorporating into RL ecologically and biologically informed
models of the learning organism.
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