



Abstract—Program comprehension is essential for code

maintenance and evolution activities. It saves time and efforts of

developers who want to perform any code changes. It also

minimizes the chances of introducing bugs. Textual summaries

for source code provide great help to code understanding

activities. This paper presents an approach to automatically

generate textual summaries for services implemented in java

packages. The summary is generated by analyzing the source

code of methods defined the package. Each method represents

a service provide by the package. Each service is summarized

as a natural language textual description. The generated

summary for a method mainly includes the used data and the

names of invoked methods. Summaries of all methods defined

in a package are refined and integrated to be reported as a

comprehensive summary for the services provided by the

package. The generated summaries are useful in different ways.

They can be used by developers in their maintenance activities.

They also can be useful for the documentation purposes.

Index Terms—Program comprehension, software

maintenance, source code summarization.

I. INTRODUCTION

Program comprehension is essential to software

maintenance. Understanding the current structure of the

source code, its design and its behavior is the key to

performing corrective, adaptive and/or corrective

maintenance. The most important part of program

comprehension is to understand the source code. Developers

who understand the source code can perform maintenance

tasks in less time and efforts. Source code may not be clearly

written, organized or commented. In the worst case, the code

is understandable only by the developer who wrote it.

Another issue that affects program comprehension is the lack

of documentations. Many software projects don’t have a well

written documentation or sometimes there is no

documentation at all.

The problem under consideration in this paper is how to

support program understanding efforts for the source code of

java services. Services are mainly implemented by the

methods of packages. Understanding the service helps

developers in their maintenance tasks, especially perfective

maintenance. To update or add new services to a subsystem,

it is necessary to understand the current services of the

subsystem under consideration.

Source code of projects, that have with no or weak

documentation, need to be examined by developers to

understand it. Manual browsing and analyzing the source

Manuscript received November 12, 2014; revised February 5, 2015.

The authors are with the Department of Software Engineering, The

Hashemite University, Zarqa, Jordan (e-mail: mhammad@hu.edu.jo,

abuljadyel1990@gmail.com, hamoodnooman@gmail.com).

code of methods, to understand the services they provide,

takes lot of time and efforts. A solution that may be very

useful for developers is to provide them with textual

summaries for the source code of services. Reading a textual

description about the structure and the behavior of the

services of subsystems saves developers’ time and efforts.

Another benefit from textual summaries for java services

can be utilized for educational purposes. One possible

application is to hide the source code of services and show

the summaries for students. Then, students are asked to

implement the main structure of services based on the textual

summaries. In this case, students can practice how to

implement the functional requirements of the system.

Recently, there are some proposed approaches on

automatically generate summary comments for source code

artifacts such as java methods [1], parameters [2] and java

classes [3]. These approaches helped in simplifying the

source code to those developers who didn’t wrote it by

generating these summary comments. In this paper, we

present an approach to automatically summarizing the

services of java packages from the source code of methods.

The generated summary is a natural language textual

description about the services of a java package. The

approach examines the source code of classes and methods to

extract useful information that are used in the summary.

Names of methods, used data and invocations are the main

components of the generated summaries. So, the final result

is a descriptive summary for the package that includes the

main services provided by the package.

The proposed approach automatically analyzes the source

code of a specific package to generate the summary. It is a

light weight approach and can be realized as a plug-in tool to

automatically document the services of java packages. In this

paper, we illustrate the idea and detail the proposed approach.

The paper is organized as follows. Section II discusses the

related work in the area. Section III presents the proposed

approach followed by our conclusions and future work in

Section IV.

II. RELATED WORK

The closest related work to our approach is the work done

by Sridhara et al. [1]. They presented a text generation

technique that takes a java methods signature and body as an

input and outputs a natural language text that summarizes

what actions are done by the method. Our approach is a light

weight approach that is focused on the group of methods

defined in the package. In [2], Sirdhara et al. presented a

technique to generate comments that provide an overview of

the role of a parameter inside a method, and connect that

parameter with the methods main intent so that it gives a

description of the methods functionality and the parameter

Summarizing Services of Java Packages

Maen Hammad, Anas Abuljadayel, and Mohammad Khalaf

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

129DOI: 10.7763/LNSE.2016.V4.237

mailto:abuljadyel1990@gmail.com

role in fulfilling that functionality.

Moreno et al. [3] proposed a technique to automatically

generate natural language descriptions for java classes,

presuming no documentation of the code exists. The tool

determines the class and method stereotype and uses them in

conjunction with heuristics to select which information to be

included in the summary. The tool takes a Java project as

input, and for each class, it outputs a natural-language

summary.

A review research in automatic summarizing in the last

decade is presented in [4] which concludes that automatic

summarization techniques has made steady progress, with

better evaluation and better tools & applications, but their

research stated the poor motivation of summarizing systems

in relation to the factors affecting them.

Moreno et al. [5] considered that summary is based on the

stereotype of the class; they proposed J Summarizer, which is

an Eclipse plug-in that automatically generates natural

language descriptions of Java classes. The tool takes as input

a Java class and produces a short, text-based description of

that class, which is inserted as a Java doc comment into the

class.

Haiduc et al. [6] mentioned that a combination of

automated text summarization techniques is more reliable for

source code and helps in better program comprehension.

They focused on investigating the suitability of several

summarization techniques, mostly based on text retrieval

methods, to capture source code semantics in a way similar to

how developers understand it.

Dragan et al. [7] presented an approach to automatically

determine a class stereotype; this stereotype is based on the

frequency and distribution of method stereotype in the class.

They implemented a tool that automatically reverse engineers

a class’s stereotype and re-documents the class. The tool can

analyze an entire system and re-document it efficiently.

Hill et al. [8] presented a novel approach that

automatically extracts natural language phrases from source

code identifiers and organizes them in a hierarchy. They

proposed an algorithm to automatically extract and generate

noun, verb, and prepositional phrases from method and field

signatures, capturing word context of natural language

queries. These phrases naturally form a hierarchy that allows

the developer to quickly identify relevant program elements

by reducing the number of relevance judgments, while the

phrases help the developer to formulate effective queries.

Sridhara et al. [9] presented an automatic technique for

identifying code fragment that implement high level

abstraction of actions and expressing them as natural

language description, their approach was the first for

identifying code fragments of statement sequences,

conditionals and loops that can be abstracted as a high level

action. There are also other approaches that are based on

modeling for automatic summarization of source code as in

[10].

III. THE APPROACH

Java projects consist of a set of packages. Each source

package mainly contains a set of classes and/or interfaces that

have related or similar functionalities. In software design,

each package is considered as a subsystem that has related set

of services or functions provided to the users.

In a general view, the proposed approach automatically

extracts a textual summary for the services provided by a java

package. Services are mainly realized by the methods that

are implemented in the package. So, the source code of each

method is analyzed to extract a textual summary about the

service it provides.

The automatic identification of services is based on

extracting and processing the methods of classes defined in

the package. The source code of each method is extracted

and analyzed. The summary of a method is generated from its

contents. The contents include local variables, reference

types, and methods’ invocations. The generated summaries

of methods are integrated and refined to provide a complete

summary for the services of the package.

The process of generating the textual summary for a

specific package is detailed as follows and summarized in Fig.

1:

1) The input is the source code of a java package.

2) The source code is transformed into the XML markup

format srcML.

3) The names of classes defined in the package are

extracted by parsing srcML.

4) The data fields and the methods of each class identified

in Step 1 are extracted.

5) For each method identified in Step 2, the following

information are extracted:

 Defined local variables.

 Used and defined references.

 Names of invoked methods.

6) A textual summary is generated from the extracted

information for each method.

7) The generated summaries for each package are

integrated and refined.

The process starts by reading the source code of a java

package. In the first step, the source code is transformed into

the srcML [11] format. srcML is parsed to extracted all

syntactic information about the source code. It is parsed to

extract names of classes, methods, data fields, invoked

methods…etc. Then, a summary is generated for each

method. Finally, all summaries of a specific package are

refined and integrated as one summary for the services

provided by that package.

The following subsections detail the proposed approach

and illustrate the idea with examples.

Fig. 1. Process steps of the proposed approach.

A. The Input

The process starts with a complete java package that

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

130

contains the java source files. The source code of each java

file is analyzed to generate the summaries for package. To

ease the process of extracting information from source code,

it is converted to the XML representation srcML [11]. srcML

is a XML representation in which each code element is

tagged with its syntactic information. Once the code is

presented in srcML, we can parse it to extract all information

needed about classes and methods. More about srcML

representation is detailed in [11] and the supporting tools can

be freely downloaded from the URL

(http://www.srcml.org/).

B. Identification of Classes and Methods

Classes and methods are extracted by parsing the srcML

representation of the source code.

The parsing process is applied by using a set of XPath

queries that parse the XML representation of the source code.

In the first step, classes are identified and extracted. Then for

each identified class, all its data fields and methods are

extracted. For each method, all its defined local variables and

used references are identified by parsing the srcML

representation for each method. The names of invoked

methods are also extracted for each method.

All extracted information from the source code is used in

the process of summary generation. The proposed process is

detailed in the following section.

C. Generating a Summary for a Method

First of all, the names of methods, classes and reference

types are split using camel case as in [12]. For any method, a

summary is generated from its name, local variables, used

reference types and invoked methods. Then, all summaries

for a specific package are integrated.

Fig. 2 shows a snapshot from class SpacerPanel that is part

of the ArgoUML open source project. The class is defined in

the package org.argouml.swingext.

As shown in the figure, the class contains two methods.

This means that it provides two different services in the

package. The first method getMinimumSize is split into

“getMinimumSize” and the second method is split into

“getPreferredSize”. Both methods, in the figure, use data

fields from the class with no local variables. The two

methods also do not invoke any other methods.

public class SpacerPanel extends JPanel {

privateint w = 10, h = 10;

public Dimension getMinimumSize() {

return new Dimension(w, h);

}

public Dimension getPreferredSize(){

return new Dimension(w, h);

}

}

Fig. 2. A snapshot from SpacePanel class.

For each method, its local variables and method

invocations are included in the generated text for the service.

The generated summaries for the two methods in Fig. 2 are:

 The service is: getMinimumSizeforSpacer Panel. The

service uses the attributes of Spacer Panel: w and h.

The servicereturnsDimension.

 The service is:get Preferred SizeforSpacer Panel. The

serviceuses the attributes of Spacer Panel: w and h.

The service returnsDimension.

The bold texts are templates that included in all generated

summaries. The name of the service is the words of the

method’s name followed by the words of the class. The

names of used data fields and local variables are also

included in the summary. The data fields used in the method

are preceded with “the attributes of” in the summary

followed by the class name.

The class name is also split into words based on camel case

naming convention. On the other hand, local variables are

preceded with “local data” in the summary and reference

types are preceded with the word “types”.

public class LeftArrowIcon implements Icon {

public void paintIcon(Component c,

Graphics g, int x, int y) {

intw=getIconWidth(),h=getIconHeight();

g.setColor(Color.black);

Polygon p = new Polygon();

p.addPoint(x + 1, y + h / 2 + 1);

p.addPoint(x + w, y);

p.addPoint(x + w, y + h);

g.fillPolygon(p);

}

}

Fig. 3. Source code for paintIcon method.

Fig. 3 shows another example for method paintIcon that is

defined in class LeftArrowIconin the package

org.argouml.swingext. The method uses local variables,

references and invokes some other methods. The generated

summary for the method, based on the proposed approach,

will be as follows:

 The service is: paint IconforLeftArrowIcon. The

service uses local data: w, h, x and y. The service

uses types: Icon, Component, Graphics, Colorand

Polygon. The serviceget Icon Width, get Icon Height,

set Color, add Point andfill Polygon.

The summary includes the name of the method at the

beginning. It also lists both local variables (w, h, and y) and

used reference types (Icon, Component, Graphics, and

Polygon). Local variables are distinguished by the words

“localvariable”. Finally, the names of invoked methods are

included after the words “The service”. Including invoked

methods enhance the generated summary and make it more

meaningful. Actually, invoked methods participate in

shaping the behavior of the service.

D. Integration and Refinement

After all methods that are defined in a package are

summarized, the generated summaries are refined and then

integrated. The refinement includes the followings:

 Summaries for abstract methods are ignored because

they have no implementation and they will be

overridden in some subclass. The same is applied on

the methods of interfaces.

 Summaries of overloaded methods are grouped in one

summary as one big service.

 Summaries for constructors are ignored because

constructors are mainly used for initializing data fields.

Finally, all summaries for the package are integrated and

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

131

reported as one big summary for the services provided by the

package. The final summary also includes the following

information about the package:

 The number of abstract, final and concrete classes

 The total number of interfaces.

 The total number of methods.

The paper proposed an approach to automatically generate

summaries for services of java packages implemented by

methods. The approach automatically parses the source code

of classes and methods inside the package. Then it extracts

useful information from the parsed code and used them to

generate natural language summary for the given package.

The summary is focused on the services provided by the

package. The approach is a light weight approach in which to

complex processing is needed to generate the summary.

The proposed approach helps in program comprehension

tasks. It helps developers to get a brief description about the

service provided by the method before examining its

implementation. Another benefit is the automatic

documentation of the source code, especially the behavior of

methods. The summaries can be useful for educational

purposes to help students in implementing functional

requirements.

We are currently working on realizing the approach as an

Eclipse plug-in tool. We are also working on improving the

generated summary by including more descriptive

information about the importance of the service, how it is

connected to other services and its impact on external

services.

REFERENCES

[1] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Shanker,

“Towards automatically generating summary comments for java

methods,” in Proc. the IEEE/ACM International Conference on

Automated Software Engineering, 2010, pp. 43-52.

[2] G. Sridhara, L. Pollock, and K. Shanker, “Generating parameter

comments and integrating with method summaries,” in Proc. the 19th

IEEE International Conference on Program Comprehension

(ICPC’11), 2011, pp. 71-80.

[3] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K.

Shanker, “Automatic generation of natural language summaries for

java classes,” in Proc. the 21st IEEE International Conference on

Program Comprehension (ICPC’13), 2013, pp. 23–32.

[4] K. Sparck-Jones, “Automatic summarising: The state of the art,”

Information Processing and Management: An International Journal

vol. 43, issue 6, November 2007, pp. 1449-1481.

[5] L. Moreno, A. Marcus, L. Pollock, and K. Shanker, “J summarizer: An

automatic generator of natural language summaries for java classes,” in

Proc. the 21st IEEE International Conference on Program

Comprehension, 2013, pp. 230-232..

[6] S. Haiduc, J. Aponte, L. Moreno and A. Marcus, “On the use of

automated text summarization techniques for summarizing source

code,” in Proc. the 17th Working Conference on Reverse Engineering,

2010, pp. 35-44.

[7] N. Dragan, M. Collard, and J. Maletic, “Automatic identification of

class stereotypes,” in Proc. 26th IEEE International Conference on

Software Maintenance (ICSM'10), 2010, pp. 1-10.

[8] E. Hill, L. Pollock and K. Shanker, “Automatically capturing source

code context of nl-queries for software maintenance and reuse,” in

Proc. the 31st IEEE International Conference on Software

Engineering (ICSE’09), 2009, pp. 232–242.

[9] G. Sridhara, L. Pollock, and K. Shanker, “Automatically detecting and

describing high level actions within methods,” in Proc. the 33rd IEEE

International Conference on Software Engineering (ICSE’11), 2011,

pp. 101–110.

[10] P. Eddy, A. Robinson, A. Kraft, and C. Carver, “Evaluating source

code summarization techniques: replication and expansion,” in Proc.

the 21st IEEE International Conference on Program Comprehension

(ICPC’13), 2013, pp. 13–22.

[11] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An XML based

lightweight C++ fact extractor,” in Proc. the 11th IEEE International

Workshop on Program Comprehension (IWPC'03), 2003, pp. 134-143.

[12] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pollock, and K.

Vijay-Shanker, “AMAP: Automatically mining abbreviation

expansions in programs to enhance software maintenance tools,” in

Proc. the 2008IEEE International Working Conference on Mining

Software Repositories (MSR), 2008.

Maen Hammad is an assistant professor in the Software Engineering

Department at the Hashemite University, Jordan. He completed his Ph.D. in

computer science from Kent State University, USA in 2010. He received his

master degree in computer science from Al-Yarmouk University, Jordan and

his B.S. in computer science from the Hashemite University, Jordan. His

research interest is software engineering with focus on software evolution

and maintenance, program comprehension and mining software repositories.

Anas Abuljadayel is a master student in the Software Engineering

Department at the Hashemite University, Jordan. He completed his B.S. in

software engineering from the Hashemite University, Jordan in 2012. His

research interest is software engineering with focus on software testing and

software maintenance.

Mohammad Khalaf is a master student in the Software Engineering

Department at the Hashemite University, Jordan. He completed his B.S. in

software engineering from the Hashemite University, Jordan in 2013. His

research interest is software engineering with focus on software maintenance

and cloud computing.

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

132

IV. CONCLUSIONS AND FUTURE WORK

