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Computation of viscous incompressible flow using pressure
correction method on unstructured Chimera grid

XING ZHANG*

The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P. R. China

(Received 15 February 2005; revised in final form 11 June 2006)

In this paper, a pressure correction algorithm for computing incompressible flows is modified and
implemented on unstructured Chimera grid. Schwarz method is used to couple the solutions of different
sub-domains. A new interpolation to ensure consistency between primary variables and auxiliary
variables is proposed. Other important issues such as global mass conservation and order of accuracy in
the interpolations are also discussed. Two numerical simulations are successfully performed. They
include one steady case, the lid-driven cavity and one unsteady case, the flow around a circular cylinder.
The results demonstrate a very good performance of the proposed scheme on unstructured Chimera
grids. It prevents the decoupling of pressure field in the overlapping region and requires only little
modification to the existing unstructured Navier–Stokes (NS) solver. The numerical experiments show
the reliability and potential of this method in applying to practical problems.
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1. Introduction

Flows around complex geometry and around multiple

bodies with relative motions are two major challenges in

computational fluid dynamics (CFD). To tackle theses

problems, unstructured grid methods have attracted more

attention in the past 20 years. Unstructured grids facilitate

easy automatic grid generation in complex domain and

allow for easy implementation of solution-adaptive

algorithms. Such methods however can be memory and

computational time intensive and less amenable (compare

with structured mesh) in implementing a high order

discretization. In problems that involve relative motion, an

automatic mesh-moving technique is needed in the

framework of unstructured grid. To prevent the mesh

quality from deteriorating, some measures have to be

taken, such as mesh smoothing, swapping or even partial

re-meshing. These make it more computational intensive

and sometime also very tedious to realize. A comprehen-

sive review on the development of unstructured grid

techniques is presented in Mavriplis (1997). More detailed

information on mathematical formulations and implemen-

tation are given in Barth (1994). For dynamic unstructured

mesh method, please refer to Slone et al. (2002) and Perot

and Nallapati (2003).

One alternative to the unstructured grid method is the

Chimera (or overset) grid method. It was originally

designed for use in structured mesh with curvilinear

coordinates. In this method, the computational domain is

divided into sub-domains that overlap each other. Grids

for each sub-domain can be generated separately. This

makes the mesh generation less time-consuming and

much simpler. Governing equations can also be solved

independently and information is transferred across the

interior boundaries to couple the solutions of each sub-

domain. Compared with the unstructured grid counterpart,

it has several advantages: (1) keeping structured data

structure makes it easy to implement a high order scheme;

(2) the treatment of body motion is straightforward and

of very little computational burden. The major difficulty

for Chimera grid algorithm is the specification of

boundary conditions on the interior boundaries. Especially

for unsteady flows, such information transferring must

ensure the vortices to cross the overlapping region with

minimum distortion. Abundant literatures have been

published recently in the study of this method, e.g. Pan

and Damodaran (2002) and Tang et al. (2003).
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It seems that the concept of combining unstructured

grid with Chimera grid is very counter-intuitive. A first

impression is that this combination at least cannot

incorporate the best aspects of both methods. First,

unstructured grid makes it difficult to enhance accuracy by

increasing the order of discretization. Second, having one

capability (either Chimera or unstructured grid) is enough

for handling complex geometries; having both of them

within one grid is only a waste. However, after deep

investigations one may find that it is not necessarily true.

An unstructured Chimera grid is not only possible but also

of great potential in tackling practical problems. If relative

motion is in presence and at the same time, the geometry

of the computational model is very complex, the number

of grids required in a traditional (structured) Chimera

method will become fairly large. The use of unstructured

Chimera grid reduces the number of sub-domains

significantly. It can also greatly extend the capability of

an existing unstructured solver to solve moving body

problems with very little code-developing efforts. A

successful example is presented in Nakahashi et al. (2000)

and Togashi et al. (2001), in which a realistic CFD

simulation is performed of an insect in flight. In their

simulation, the unstructured grid allows a precise

representation of an insect including antennas, legs and

a sting. The Chimera grid method is used to treat the

flapping wing motion including translation and rotation.

Generally speaking however, the use of Chimera grid in

the framework of unstructured grid is relatively unex-

plored. Only few literatures are found in this area. In the

work aforementioned, the authors solve compressible NS

equation by finite volume method (FVM). In another

example Maruoka (2003), incompressible NS equation is

solved to compute flow around a rotating body using

unstructured Chimera grid. Their computation is based on

Finite Element Method (FEM). Similar study is also

reported in Houzeaux and Codina (2004), which is also

based on FEM.

In the CFD community, finite volume based pressure

correction scheme has become a mature method for

solving incompressible flow for a long time. The core of

many widely used packages (both commercial and in-

house) that targets at industrial applications is an

unstructured solver utilizing this technique. However,

the details in implementing the Chimera method on such a

solver are rarely reported in academic papers at least to the

knowledge of this author.

In this paper, a well known pressure correction scheme—

SIMPLEC, is modified and implemented on an unstruc-

tured Chimera mesh. The primary purpose of this paper is

not to simulate realistic flow around complex geometry

with motions. On the contrary, only stationary and simple

geometries are chosen for the numerical tests. One

objective of this paper is to clarify some implementation

issues, such as the specification of boundary conditions on

the interior boundaries, global mass conservation and order

of accuracy regarding the interpolation. Another purpose of

this study is to demonstrate the credibility and potential

of this method in conducting both steady and unsteady

CFD simulations. In our future plan, this method is to be

used to study more complex problems such as flapping

wing, rotating machinery, etc.

This paper is organized into four sections. In section 2,

a summary of the pressure correction method on

unstructured grid is presented. The topics of temporal and

spatial discretization and velocity–pressure coupling will

be covered. It is then followed by some implementation

issues on unstructured Chimera grids. Two numerical

examples are presented in section 3 to demonstrate the

potential of this method as a powerful tool to solve real

problems. Conclusions are given in the last section.

2. Numerical methodologies

2.1 Navier–Stokes equations in an integral form

We consider a two-dimensional unsteady laminar flow in

this study. The continuity and momentum equations

used in the simulations can be written in an integral

form as: ð
S

v·n dS ¼ 0 ð1Þ

›

›t

ð
V

v dV þ

ð
S

vðv·nÞ2
1

Re

›v

›n

� �� �
dS ¼ 2

ð
›S

pn dS

ð2Þ

where t is time; v is the velocity vector and p is the

pressure. dS and dV are the surface area and volume of

a control volume (CV), respectively. n denotes an unit

out-normal vector on the surface CVs.

Variables in equations (1) and (2) are non-dimensional-

ized by a characteristic length L, a characteristic velocity

U1 and the fluid density r1, i.e.

x ¼ x*=L; t ¼ t*U1=L; v ¼ v*=U1;

p ¼ p*=ðr1U
2
1Þ

ð3Þ

where the variables with an asterisk denote the original

(dimensional) variables. The Reynolds number in

equation (2) is defined as,

Re ¼
U1L

n
ð4Þ

where n is the kinetic viscosity of the fluid.

2.2 Temporal and spatial discretization

To solve the Navier–stokes (NS) equation numerically,

the method described in Demirdzic and Muzaferija (1995)

and Demirdzic et al. (1997) is followed with some

modifications. This method was originally implemented

on a block-structured mesh and later generalized to

X. Zhang638
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unstructured mesh. The discretization procedure will only

be summarized briefly here; for the details, please refer to

those papers. In the current implementation, a SIMPLEC

algorithm is used to couple the pressure with the velocity.

A second-order upwind scheme is used for the discretiza-

tion of convective term and the Crank–Nicholson scheme

(second order in time) is used for the temporal

advancement.

In order to obtain a discrete solution of equations (1)

and (2), the computational domain is discretized into finite

number of contiguous CVs or cells. Cells with arbitrary

shapes are permitted in this method. Triangular mesh or

hybrid mesh that consists of triangular and quadrilateral

cells will be used in this study. All dependent variables

are stored at the centroid of cells, i.e. a collocated

arrangement is adopted.

To explain the discretization procedure of the

momentum equation (2) term by term, we first re-

formulate it into a transport equation for an arbitrary

variable f.

›

›t

ð
V

f dV

Transient term

þ

ð
S

½fv2 Gf7f�·n dS

Convective term Diffusive term

¼

ð
S

Qf dS

Surface source

ð5Þ

where f represents the velocity components vi (i ¼ 1, 2)

and Gf is the coefficient of diffusivity (1/Re).

This time-dependent equation is discretized by the

Crank–Nicholson scheme (second order in time).

›

›t

ð
V

f dV <
1

Dt
½ðfVÞnþ1 2 ðfVÞn� ¼ hðfnþð1=2ÞÞ

<
1

2
½hðfnþ1Þ þ hðfnÞ� ð6Þ

where “n” and “n 2 1” are the time step counters; h

denotes the summation of all terms in equation (5)

excluding the transient term.

The convective term is discretized asð
S

fv·n dS <
X
j

_mj
~fj ð7Þ

where mj is the volume flux across face j. It is computed by

_mj ¼ Aj ~vj·nj ð8Þ

where Aj is the area of face j; ~vj is the face velocity; ~fj is

the variable interpolated to face j by using a blended

scheme,

~fj ¼ f
ð1Þ
j þ gf f

ð2Þ
j 2 f

ð1Þ
j

� �
ð9Þ

where the superscript “(1)” and “(2)” denote first order and

second order interpolation, respectively. The first order

interpolation is just a simple “upwind” scheme. In the

second order scheme, we first use the gradient of variable

f and Taylor expansion to evaluate the value of f on

the face centers from either side, then the one from the

“upwind” direction is chosen as the value for that

particular face. The gradient of f is constructed using

a linear least square approach. gf in equation (9) is

a blending factor which is set to 1.0 in this paper, i.e. a

second order upwind scheme is implemented through

a “deferred correction” in all numerical examples of this

paper.

The diffusive term is discretized asð
Sj

2Gf7f·n dS <
X
j

2 Gfj

Aj

Lj
ðfPj

2 fP0
Þ

�

þ½ð7fÞPj
·t1 2 ð7fÞP0

·t2�
�

ð10Þ

where Lj is the distance from the center of cell P0 to that

of cell Pj projected to the normal direction of face j. t1 and

t2 are two vectors in the tangential direction of face

j (figure 1). The first term on the RHS of equation (10)

is the “normal diffusion” and the second term is the

“cross diffusion” which is a correction for non-orthogonal

meshes.

The pressure gradient term is treated as a surface

source. ð
S

Qf dS <
X
j

2 pfAf ð11Þ

A linear system is obtained as a result of the

discretization of the momentum equation.

acP0fp0 ¼
Xnb_cells

j

a
j
P0f

j
P0 þ bp0 ð12Þ

where superscript “C ” denotes the diagonal elements of

the coefficient matrix (related to cell P0) and “j ” denotes

the non-diagonal elements of the matrix (related to

the neighboring cells of P0). “nb_cells” denotes that the

summation is done on all neighboring cells of P0. The

contributions to the coefficient matrix are: the mass

matrix, “upwind” part of the convective term and the

Figure 1. Stencil used in the discretization. The dashed line is
perpendicular to the cell face. It is not necessarily parallel to the line
connecting cell P0 and cell P1.

Computation of flow on Chimera grid 639
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“normal diffusion”. The source term bp0 in equation (12)

has four contributions, the pressure gradient, the “cross

diffusion” and the departures of the convective flux from

the upwind differencing (deferred correction).

In the SIMPLEC algorithm, the pressure correction

equation is derived from the continuity equation (1).

Xcell_faces

j

1

a0CP0

 !
j

ð7p0Þj·Ajnj ¼
Xcell_faces

j

_mj ð13Þ

where p 0 is the pressure correction; “—” stands for the

arithmetic averaging from cell to face. “cell_faces”

indicates that the summation is done on all faces that

belong to cell P0. The coefficient on the left-hand side of

equation (13) is defined as

a0
C
P0 ¼ aCP0 2

Xnb_cells

j

a
j
P0 ð14Þ

where the summation is done on all neighboring cells.

A fully discretized form of equation of equation (13) can

be written in a generic form very similar to equation (12).

The Laplacian operator on the left-hand side of equation

(13) is also treated similarly as that in the diffusive term of

the momentum equation. Correction for the mesh non-

orthogonality is also considered.

After the pressure correction p0 obtained from equation

(13), the pressure and velocity are corrected by

pm ¼ pm21 þ p0m

vm ¼ vm21 2
1

a0CP0

Xcell_faces

j

p0jAjnj

ð15Þ

where m is the pressure correction loop counter at time

step n. After this correction, the coefficient matrix and

source term in equation (12) are computed using the

updated p and v. A new velocity is then obtained by

solving equation (12) again. This velocity is substituted

into equation (13) to compute a new pressure correction.

The pressure correction procedure is repeated until the

convergence criterion is satisfied. For the momentum

equation (12) which can be expressed in a matrix form as

Ax ¼ b, the convergence criterion is,

kb2 Axk

maxðkv1k; kv2kÞ
# 1028 ð16Þ

For the pressure correction equation, the convergence

criterion is,

1

Vcell

Xcell_faces

j

_mj

�����
�����

 !
max

# 1024 ð17Þ

The selection of criteria equations (16) and (17) is based

on experiences and parameters found in published

literatures. Actually, they are tight enough to ensure a

converged solution.

Attention should be paid to the face velocity ~vj that is

used to calculate the volume flux. This velocity is not

approximated by an arithmetic average of the values in the

neighboring cells. Instead, a Rhie–Chow interpolation,

which introduces some dependency on the pressure, is

used. More details of this interpolation can be found in

Demirdzic and Muzaferija (1995).

Iterative methods are implemented to solve the

algebraic equation results from the discretization. For

the momentum equation, a generalized conjugate residue

(GCR) solver is used whereas for the pressure correction

equation, a conjugate gradient (CG) solver is used.

A Jacobi pre-conditioner is applied in both solvers to

speed up the convergence rate.

The audience has to be very careful about the

aforementioned order of accuracy in the discretization.

The so called “second order” in space (as in the convective

term) is only valid on a uniformed mesh (equilateral

triangles), which is not realistic in practical problems.

Furthermore, non-uniform and non-orthogonal mesh will

also reduce the order of accuracy in diffusive term (which

is also second order on equilateral triangles). The resulting

property of the numerical scheme is more complicated in

terms of order of accuracy because the split error in the

pressure correction method will also come into the picture.

This author believes that (but with no rigorous proof) for

the velocity field, the spatial accuracy is between first and

second order and temporal accuracy is of second order.

As to the conservation property, FVM is built to conserve

mass and momentum. However, in reality, mass and

momentum are only conserved approximately (and not to

machine precision). The reason behind this is that for

the pressure correction method such as SIMPLEC, it is

very hard to satisfy the divergence free condition exactly

(to machine precision).

2.3 Boundary conditions

To solve the NS equation, boundary and initial conditions

have to be provided. Initial conditions are easy to specify.

For incompressible fluid, divergence free condition is the

only constraint. In this paper, a const velocity and pressure

field is used as the initial condition. Boundary conditions

are more complicated and sometimes can be the key factor

to an accurate numerical simulation. Some commonly

used boundary conditions are summarized as follows.

These conditions only include the ones specified on a

physical or computationally truncated boundary, whereas

those on the interior boundary that are created by the use

of Chimera grid will be discussed in the next section.

a. Boundary where velocity is prescribed

On this type of boundary, the normal velocity

component is specified. One could either specify the

tangential component of velocity, or its gradient

(figure 2). The normal gradient of pressure correction

X. Zhang640
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is set to zero. This condition is often used on inlets,

solid walls or symmetric centerlines. It can be

expressed in a formula as,

vn ¼ f ðx; yÞ vyy ¼ gðx; yÞ or

›vyy
›n

¼ hðx; yÞ
›p0

›n
¼ 0

ð18Þ

b. Boundary where pressure is prescribed

On this type of boundary, pressure is set to a constant

(usually zero). In order to satisfy the continuity

constraint, the velocity is corrected using the gradient

of pressure correction p0 in a manner similar to equation

(15). The implementation of this boundary condition

is addressed in detail in Ferziger and Peric (1996). It is

appropriate to apply such condition on an outlet that

is sufficiently far from the inlet. Since the pressure

is never corrected on this boundary, the following

condition is specified for pressure correction.

p0 ¼ 0 ð19Þ

c. Convective boundary

This type of condition is exclusively designed for

outlets. The purpose of this boundary condition is to

minimize the distortion of vortices when passing

through such boundaries. Usually, velocity com-

ponents are obtained by a simplified one-dimensional

NS equation. Pressure gradient is also set to zero on this

type of boundary, same as on the boundary of the first

category. Since global mass conservation is not

necessarily guaranteed by applying such condition,

usually the velocities are scaled to satisfy the

conservation law globally. The convective boundary

condition can be expressed in a mathematical formula

as,

›f

›t
þ Uconv

›f

›n
¼ 0

›p0

›n
¼ 0 ð20Þ

where f represents the velocity components vi (i ¼ 1,

2); Uconv is the convective velocity at the outlet. The

details in the implementation of such boundary

condition including the choice of convective velocity

can be found in Ferziger and Peric (1996).

2.4 Implementation on unstructured Chimera grid

2.4.1 Building inter-grid links. In order to implement

the pressure correction scheme on a Chimera grid,

information transfer is needed between sub-domains. To

establish the communications between them, inter-grid

links has to be built after the grids are generated

separately. The “link building” is to identify the donor cell

for each ghost cell on the interior boundaries. The donor

cells and the ghost cells are from different component grid

(figure 3). Since no mesh motion is involved in this paper,

a repetitive “hole cutting” procedure is not needed. In this

paper, a “neighbor to neighbor” searching scheme is used

to build the inter-grid links. This algorithm is very

efficient compared with a complete search. For the details

of this method, please refer to Nakahashi et al. (2000).

2.4.2 Data transfer on the interior boundaries. The key

step in implementing the pressure correction scheme on a

Chimera grid is the treatment of interior boundaries. These

boundaries are neither physical ones nor artificially

truncated for computational purpose, thus the boundary

condition on them is quite different from that described in

section 2.3. A Schwarz alternating procedure is followed

to couple the solutions from individual component grids.

The Schwarz method states that the information between

sub-domains that overlapping each other are exchanged in

the form of Dirichlet condition on the interior boundaries.

The data are obtained through an interpolation from the

solution of the sub-domain that contains these boundaries.

For one PDE, the implementation of Schwarz procedure

is straightforward. However, the incompressible NS is a

system of PDEs that consists of momentum and continuity

equation. Moreover, the pressure correction algorithm

Figure 2. The boundary where velocity is prescribed.

Figure 3. The interior boundary where data is transferred. C0: donor
cell of mesh 2; C1: ghost cell of mesh 1.

Computation of flow on Chimera grid 641
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described in section 2.2 has introduced more auxiliary

variables besides the primary ones (velocity and pressure),

such as the pressure correction p0 and mass flux _mf , etc.

This makes the situation more complicated. In order to do

it in a consistent manner, one has to be very careful while

interpolating auxiliary variables. Auxiliary variables are

interpolated and exchanged between sub-domains when

necessary, but these exchanges of information could lead

to the decoupling of primary variables (velocity and

pressure).

Since the data transfer between sub-domains are done

iteratively within one time step. This iterative procedure

can be united with the SIMPLEC iteration where the

velocity–pressure coupling is done. The major steps in

this algorithm are summarized as follows.

(1) Read mesh connectivity, compute geometry and

inter-grid links for later use.

(2) Start the computing from an initial guess of pressure

and velocity.

(3) Solve the momentum equation based on the guessed

pressure field.

The velocity values on the interior boundary

(ghost cells) are obtained by interpolating from their

donor cells. This interpolation can be expressed in a

mathematical formula as (figure 3),

f*
i

��
C1
¼ fijC0

þ ð7fiÞjC0
·~r01 ð21Þ

where i ¼ 1, 2 and fi denotes the two velocity

components. The variable with an asterisk denotes

the one that is updated for use in the next iteration.

(4) Solve the pressure correction equation.

The pressure correction values on the interior

boundary (ghost cells) are determined by the

following two-steps.

a. A temporary pressure values on these cells are

obtained by interpolating from their donor cells.

b. Subtract the values of current pressure from the

temporary pressure and the result is treated as a

Dirichlet condition prescribed on the ghost cells

for the pressure correction equation.

This interpolation can be expressed in a mathematical

formula as,

p tempjC1
¼ pjC0

þ ð7pÞC0
·~r01

p0*
��
C1
¼ p temp

��
C1
2pjC1

ð22Þ

where the variable with an asterisk denotes the one

which has been updated for use in the next iteration.

(5) Correct velocity and pressure, respectively.

(6) Check if the convergence criteria are met. If not,

replace the initial value of pressure and velocity with

the current one and go to (3); if yes, then exit from

this iteration and advance to the next time step.

(7) Repeat (1)–(6) until the terminating time is

reached.

In step (4), the transfer of velocity v between sub-

domains is done by using a direct interpolation. However,

the situation is more complicated as to the transfer of

pressure correction p0. Through numerical test, it is found

that such interpolation only works well for steady flows

(such as the lid-driven cavity). It will lead to a decoupling

of pressure in the overlapping region when unsteady flows

(such as the vortex shedding) are computed. A detailed

discussion concerning this phenomenon will be presented

in the next section.

A remedy to this is proposed in step (4) and is verified in

the numerical examples. The philosophy behind this

method is to “hook” the pressures of different sub-

domains to each other more tightly. A pressure correction

value is assigned to the interior boundary (on ghost cells)

such that after this correction, the pressure on that

boundary will reach the value that is obtained by

interpolation (using the current pressure and pressure

gradient value) from its donor cell.

For Chimera grid method, global conservation is an

important issue that attracts some attentions. Especially

for incompressible flows, global mass conservation is a

necessary condition for the existence and uniqueness of a

smooth pressure field. Thus it is crucial for the design of

any numerical schemes in solving incompressible NS

equations. Since the treatment of the interior boundary

condition by using interpolations is non-conservative in

nature, it seems that some corrections are needed.

However, after further investigation, it is found that such

correction is not necessary in the modified pressure

correction algorithm proposed in this paper. Our treatment

of the interior boundary is very similar to the boundaries

where pressure is prescribed (category b in section 2.3).

The only difference is that pressure correction is not zero

on them; instead pressure correction is set to some value in

order for the pressure to “hook” to the solution of the sub-

main in which this boundary is located. On these

boundaries, the mass flux _mf is corrected iteratively until

the convergence criterion is met. It is seen that in this

algorithm mass conservation is satisfied approximately

both locally and globally on these boundaries (if the

convergence criterion is stringent enough). The only

remaining issue is that whether the velocity computed by

interpolating is compatible with this mass flux. From our

experiences in the numerical test conducted, the answer is

yes. Nonphysical “boundary layers” are not observed near

these interior boundaries.

The order of accuracy in the interpolation is another

important issue for any numerical methods on Chimera

grid. For the traditional Chimera methods (such as those in

Pan and Damodaran 2002, Tang et al. 2003), it is very

common in these literatures where the order of accuracy in

the interpolation is chosen to be of one order higher than

that in spatial discretization of the flow solver. In this paper,

however, these two are of the same order (second order).
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There are several reasons for our choice. First, the cost of

quadratic construction is much higher in terms of CPU time

and memory. In the framework of FVM, it requires the

connectivity information of “second-level” neighbors. The

matrix which is inverted on each cell has a larger size (3 by

3 for linear and 5 by 5 for quadratic construction in two-

dimensional problems). Second, for unstructured mesh, it is

very easy to refine the mesh locally near the overlapping

region with only a minor increase in cell number. Third,

through numerical tests, it is shown that no significant

improvement on the quality of solution in the overlapping

region is observed by simply replacing the linear

reconstruction with a quadratic reconstruction in the

interpolation of velocity and pressure correction (equations

(21) and (22)).

3. Numerical experiments

3.1 Two-dimensional lid-driven cavity

The first numerical example is a two-dimensional lid-

driven cavity. The Reynolds number for this flow is based

on the lid width and lid driven velocity. Simulation is

performed at Re ¼ 100. A square domain of dimension

1 £ 1 is decomposed into two overlapping rectangular

sub-domains (V1 and V2) each with the dimensions of

1 £ 0.625 (figure 4). These two domains are meshed with

triangular cells independently with cell number of 2244

and 2250, respectively. The longer side of the rectangular

domain is partitioned into 40 cells. The two overlapping

meshes are placed together and presented in figure 5(a).

It is seen from the figure that there are 10 grid points

across the overlapping region.

On the topside of the domain V1, velocity of v ¼ (1,0)

is prescribed, whereas on other boundaries (excluding the

two interior boundaries G21 and G12) of domain V1 and

V2, no-slip condition with velocity v ¼ (0,0) is pre-

scribed. As that mentioned in section 2.3, a zero gradient

condition is applied to pressure correction p0 on all

boundaries (excluding G21 and G12).

A steady solution is achieved by a time advancing

procedure. When the location of the prime vortex ceases to

move any more, the flow field is considered to have

reached the steady state. For this mesh resolution,

approximately 10 dimensionless time units are needed to

obtain a steady solution if the computation is started from

scratch (i.e. v ¼ (1, 0) and p ¼ 0 everywhere).

For the purpose of comparison, a single triangular mesh

consists of 3602 cells is generated. The partitions on each

side of the cavity is also 40, thus the resolution of this

mesh is very close to the Chimera mesh (figure 5(b)). The

same driven cavity problem is also computed on this mesh.

3.1.1 Pressure field. The pressure contours are plotted in

figure 6. Figure 6(a) is the pressure computed using theFigure 4. Domain decomposition for the simulation of lid-driven cavity.

Figure 5. Grids used in the lid-driven cavity problem. (a) Chimera grid;
(b) single grid.
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Chimera grid and figure 6(b) is the one computed using

the single grid. It is seen that on the one using the

Chimera grid, no spurious oscillation has occurred in

the overlapping region and there is a good collapse of

contours from V1 and V2. The nearly smooth pressure

field is also in good agreement with the one computed

using a single grid.

Our modified interpolation scheme (22) is used in the

simulation. However, further experiments show that for a

steady flow like the lid-driven cavity, identical and correct

answer can also be achieved even a direct interpolation of

pressure correction is used.

3.1.2 Streamlines, velocity and vorticity. The

streamlines are plotted in figure 7. Figure 7(a) is the

result using the Chimera grid and figure 7(b) is the result

using the single grid. It is seen that they are almost

identical. Three vortices are visible in the figures; one

primary vortex in the middle and two smaller ones at the

bottom corners. The location of the primary vortex is at

(0.62, 0.74) in our computation. It is in good agreement

with the prediction of (0.62, 0.73) by Ghia et al. (1982).

The contours of horizontal and vertical velocity

component and vorticity are presented in figures 8–10,

respectively. It is seen that almost identical results have

been obtained by using the Chimera grid and the single

grid. For the results of the Chimera grid, all contours in the

overlapping region are quite smooth.

3.1.3 Velocity profiles. Two velocity profiles are

presented in figure 11. Figure 11(a) is the x-component

of velocity on the vertical centerline and figure 11(b) is the

y-component of velocity on the horizontal centerline. For

comparison, the data from Ghia et al. (1982) is also plotted

together with the result using the single grid. It is seen that

the prediction of the Chimera grid agrees well with that of

the single grid and both results (Chimera and single grid)

match well with that from Ghia et al. (1982).

Figure 6. Pressure contours in the lid-driven cavity at Re ¼ 100. (a)
Chimera grid; (b) single grid.

Figure 7. Streamlines in the lid-driven cavity at Re ¼ 100. (a) Chimera
grid; (b) single grid.

X. Zhang644



D
ow

nl
oa

de
d 

By
: [

Zh
an

g,
 X

in
g]

 A
t: 

01
:4

8 
27

 M
ar

ch
 2

00
7 

3.1.4 Global mass conservation on the interior
boundaries. The total mass fluxes on the two interior

boundaries are computed to monitor the global mass

conservation in our numerical scheme. The total mass

fluxes are defines as,

M12 ¼
X
i[G12

ð _mfÞi M21 ¼
X
i[G21

ð _mfÞi ð23Þ

It is found that when the steady state is reached, the

recorded M12 and M21 are sufficiently small

(jM12j # 2:0 £ 1026 and jM21j # 2:0 £ 1026). They

are very close to machine zero in a computer code of

single precision.

It seems that the total mass flux defined in equation (23)

is a simple and good “indicator” to the convergence

behavior of a Chimer grid method. We consider the

Chimera method to have “converged” if the convergence

criteria in each sub-domain (such as equations (16) and

(17)) are satisfied and the global mass conservation

“indicator” defined in equation (23) is sufficiently small.

3.2 Flow over a circular cylinder

The second example is laminar flow around a two-

dimensional circular cylinder. The Reynolds number of

this simulation is based on the diameter of the cylinder and

the inlet velocity. This problem is inherently unsteady

when the Reynolds number is larger than a critical value of

approximately 40. For simulations at a Re number higher

than the critical one, unsteady vortex shedding can be

triggered by machine error alone even if the boundary

conditions seems to be perfectly symmetric and no

artificial perturbation is imposed on the initial condition.

Simulations are performed at Re ¼ 100 and 200. Vortices

that shed periodically from the cylinder have to pass

through the interior boundaries of the Chimera grids. This

makes it a very good test to our numerical scheme.

The computational domain consists of two overlapping

sub-domains are shown in figure 12. The larger domain V1

is a 30 £ 20 rectangle with a “hole”. This hole is of

circular shape with the radius of 2. The smaller one V2 is a

circular domain with the radius of 2.45 subtracting the

circular cylinder with the radius of 0.5. The three circles

aforementioned share a common center at (10, 0).

Sub-domain V1 is meshed with 12,586 triangular cells.

Sub-domain V2 is meshed with 1260 rectangular cells and

Figure 8. Vorticity contours in the lid-driven cavity at Re ¼ 100. (a)
Chimera grid; (b) single grid.

Figure 9. Velocity profiles on the vertical and horizontal centerlines of
the lid-driven cavity at Re ¼ 100. (a) x-component of velocity against y;
(b) y-component of velocity against x.
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4830 triangular cells. The reason for using a hybrid mesh

is to resolve the boundary layer properly. The grids of the

two sub-domains are presented in figure 13.

For the purpose of comparison, a single hybrid mesh

(see figure 14(b)) that consists of 1260 rectangular cells

and 18,722 triangular cells is generated. The same vortex

shedding problem is also computed on this mesh. The

resolution of this mesh is very close to the composite

(Chimera) mesh (figure 14(a)).

These highly inhomogeneous and anisotropic meshes

are pre-processed by a spring-analogy smoothing before

they are actually used in the code. Mesh quality has been

greatly improved after such treatment.

3.2.1 Pressure contours. An instantaneous pressure field

(which is recorded after the period pattern has been

established) is plotted in figure 15(a). It is seen that the

solution in the overlapping region is of satisfactory

quality. As the steady case in the previous section, this

result is also obtained by using the modified interpolation

scheme (22). Further investigation is conducted on the use

of a direct interpolation of pressure correction. For an

unsteady problem like this, such interpolation could

also result in a solution eventually, but with de-coupled

Figure 10. Contours of the x-component of velocity in the lid-driven
cavity at Re ¼ 100. (a) Chimera grid; (b) single grid.

Figure 11. Contours of the y-component of velocity in the lid-driven
cavity at Re ¼ 100. (a) Chimera grid; (b) single grid.

Figure 12. Domain decomposition for the simulation of the flow over a
circular cylinder.
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pressure field in the overlapping region. Such a pressure

field is presented in figure 15(b) for comparison.

The reason behind this phenomenon is still not very

clear. Our conjecture is that it is probably related to the

method we use to solve the pressure correction equation.

This Poisson-typed equation is solved by an iterative

method (CG). Every time when the algebraic equation is

solved, the iteration in the CG solver is stopped if it has

reduced the residual by one order or the iteration number

has reached 10 (depending on which comes first). It is

believed that under certain circumstance, this type of error

can be accumulated through repeatedly interpolations on

the interior boundaries.

3.2.2 Drag and lift coefficients and Strouhal number.
The drag and lift coefficients are computed by the

integration of the forces along the surface of the cylinder.

The definitions of drag and lift coefficients are,

Cd ¼
Fx

1
2
r0U

2
1

Cl ¼
Fy

1
2
r0U

2
1

ð24Þ

where Fx and Fy are the x- and y-components of the force

exerted on the cylinder respectively.

The variations of Cd and Cl with time for Re ¼ 100 and

200 are presented in figure 16. The frequency of vortex

shedding is determined by taking the FFT of the time

series of the lift coefficient. The Strouhal number based

Figure 13. Sub-grids for the computation of flow over a circular
cylinder. (a) background grid; (b) grid around the circular cylinder.

Figure 14. Grids used in the flow over a circular cylinder. (a) Composite
(Chimera) grid; (b) single grid.

Figure 15. Instantaneous pressure field of the flow over a cylinder at
Re ¼ 100. (a) using the proposed interpolation scheme for pressure
correction; (b) using a direction interpolation of pressure correction.
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on this frequency is defined as,

St ¼
fD

U1

ð25Þ

where f is the shedding frequency and D is the diameter of

the cylinder.

The drag and lift coefficients and Strouhal number are

computed and reported in table 1. For the purpose of

comparison, data from some other references are also

included in the table. From this table, it is clearly seen that

our result using a Chimera grid matches well with both the

one using the single grid and also those from other

literatures.

3.2.3 Velocity, streamline and vorticity. Instantaneous

velocity-magnitude contours, streamlines and vorticity

contours are plotted in figures 17–19, respectively. It is

seen from these figures that the contours in the

overlapping region are fairly smooth although the

quality of the vorticity contours is slightly worse.

Together with the evidence shown in table 1, it is

confirmed that vortices pass the two interior boundaries

with only minor disturbances. This example demonstrates

the excellent performance of this numerical scheme in

handling unsteadiness and vortex crossing.

3.2.4 Global mass conservation on the interior

boundaries. The total mass fluxes on the two interior

boundaries are also computed in this numerical test.

jM12j # 1:0 £ 1024 and jM21j # 5:0 £ 1025 are

recorded after the periodic pattern has been established.

They are of one or two orders larger than machine zero in a

single precision code. However if one considers the inlet

mass flux in this test is much larger (20.0 comparing with

zero in the lid-driven cavity) and the total areas (lengths)

are much larger (15.39 and 12.57 comparing to 1.0 in the

lid-driven cavity), they are also sufficiently small.

3.2.5 Influence of accuracy in the interpolation. In all

computations of this paper, the gradient of pressure is

re-constructed using a Gauss–Green method whereas the

gradient of velocity is re-constructed using a linear least-

square approach. To exam the influence of accuracy in

the interpolation to the final solution, the gradients used in

the interpolations are re-constructed using a quadratic

least-square procedure (see Barth 1994 for the details). It

should be noted that these high order gradients (including

first and second order derivatives) are only used in the

interpolations of data that are transferred between

individual sub-domains and not used in the NS solver.

Numerical experiments using the high-order inter-

polation have results in almost identical lift and drag

coefficients and shedding frequency. No significant

improvement of solution quality has been observed in

the overlapping region. This observation will favor a linear

interpolation plus local mesh refinement over the

utilization of higher order interpolation. However, since

no tests on grids with different resolution are performed, it

is hard to compare the efficacy of these two approaches

quantitatively.

4. Conclusions

We have modified the pressure correction algorithm to

compute viscous incompressible flow on an unstructured

Chimera grid. A new interpolation method is proposed

to transfer pressure correction between sub-domains.

Compared with the method of directly interpolating

pressure correction, this algorithm prevents the unphysical

Table 1. Drag and lift coefficients and Strouhal number of the flow over a circular cylinder at Reynolds number 100 and 200.

Re ¼ 100 Re ¼ 200

Cd Cl St Cd Cl St

Chimera grid 1.36 ^ 0.01 ^ 0.34 0.168 1.33 ^ 0.03 ^ 0.63 0.196
Single grid 1.36 ^ 0.01 ^ 0.33 0.168 1.33 ^ 0.04 ^ 0.65 0.198
Braza et al. (1986) 1.36 ^ 0.015 ^ 0.25 – – – –
Calhoun (2002) 1.33 ^ 0.01 ^ 0.30 0.175 – – –
Liu et al. (2000) 1.36 ^ 0.01 ^ 0.34 0.164 – – –
Pan and Damodaran (2002) – – – 1.37 ^ 0.04 ^ 0.63 0.192
Rogers and Kwak (1990) – – – 1.23 ^ 0.05 ^ 0.65 0.185
Rosenfeld et al. (1991) – – – 1.46 ^ 0.05 ^ 0.69 0.211
Wille (1960) – – – – – 0.190

Figure 16. Variation of drag and lift coefficients with time for the flow
over a cylinder at Re ¼ 100 and 200.

X. Zhang648



D
ow

nl
oa

de
d 

By
: [

Zh
an

g,
 X

in
g]

 A
t: 

01
:4

8 
27

 M
ar

ch
 2

00
7 

decoupling of the pressure field from occurring in the

overlapping region and gives better results.

From the two numerical examples, one steady and one

unsteady case, it is shown that this algorithm does not

necessitate corrections for global mass conservation. It is

also observed that on an unstructured Chimera gird, the

improvement of solution quality in the overlapping region

due to a higher order interpolation alone is quite limited.

If one takes the complexity and cost of such schemes into

consideration, an easy way in practice is a local mesh

refinement near the overlapping boundaries. The only

drawback of this method is minor increase in the total

number of grid points.

Our numerical examples have demonstrated the

credibility of this method in computing both steady and

unsteady flows. Although only two-dimensional simu-

lations are conducted in this paper, the extension of this

method to three-dimensional geometry is straightforward.

This method has great potential in the study of moving

body with complex geometry. Future work will focus on

moving boundary problems such as flapping wing and

rotating machinery.
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