

659

International Journal of Computer and Communication Engineering, Vol. 2, No. 6, November 2013

Abstract—Weinvestigate the use of multiword features to

improve Arabic document classification. The Arabic language
is both morphologically rich and highly inflected. Accordingly it
presents more challenges when enhancing Arabic information
retrieval to a level comparable to English. The multiword
features are modeled as a combination of words appearing
within windows of varying sizes. Our experiments show
multiword features combined with dice similarity distance
outperform the cosine similarity function and produce results
that are comparable to TF-IDF representation. Multiword
features are under-explored and we believe they have the
potential to improve Arabic information retrieval and, in
particular, Arabic document classification.

Index Terms—Information retrieval, TF-IDF, arabic
document classification, multiword features, dice similarity
function

I. INTRODUCTION
With the explosive growth of documentation on the web,

information retrieval plays a crucial role for many users and
vendors dealing with large datasets. In recent years there has
been rapid growth in the creation of Arabic documents.
Unlike English, not much research has been done regarding
information retrieval of Arabic documents [16], [12]. Arabic
is a morphologically rich and highly inflected language and
consequently the algorithms that were developed for English
perform poorly for Arabic.

Document classification is an important dimension of
information retrieval. It assigns each document to a category
from a predefined list of categories. Several well-known
machine learning algorithms have been used to classify
documents [4], [15]. The popular TF-IDF (term
frequency-inverse document frequency) representation is
used in several algorithms. In this method the input document
is converted to a bag-of-words where the frequencies of terms
are considered and the relative positions of terms in the text
are ignored. This dramatically simplifies the computational
complexities of the accompanying algorithms and is widely
used by researchers at academic institutions and incorporated
in several industry products [4], [18], [19], [20].

As opposed to the TF-IDF weighting scheme, a multiword
features approach considers the appearance of combinations
of words within windows of varying sizes. Proximity is also
another form of using multiword features which is a
weighting scheme used to factor in the nearness of the terms
in the text. The closer the terms are to each other in the text,

Manuscript received March 7, 2013; revised July 12, 2013.
D. Abuaiadah (Abuaiadh) is with the Centre for Business, Information

Technology & Enterprise, Wintec, New Zealand (e-mail:
Diab.Abuaiadah@Wintec.ac.nz).

the higher the score is. Several published papers suggested
that proximity improves English information retrieval [22],
[17].

Arabic is a morphologically rich and a highly inflected
language, and because of this, Arabic stemmers suffer from
high stemming error ratios [3]. We predict the use of
multiword features could mitigate the negative impact
presented by high stemming error ratios and consequently
improve Arabic information retrieval. For example ط الاوس
رق is composed of two terms that together (Middle East) الش
refer to a geographical place whereas each word taken
separately refers to another unrelated concept. After
stemming, we have two words: ط رق and (Middle) وس ش
(East). In Arabic, there are more terms unrelated to “Middle
East” whose stem is رق ط or ش than terms in English وس
whose stem is “Middle” or “East”. To illustrate this, consider
the concept “sunrise” (مس روق الش روق The stem of .(ش ش
(rising) is رق Consequently, for Arabic, the TF-IDF .(East) ش
approach may link the query “sunrise” to documents that
include the “Middle East” where, for English, this is unlikely
to happen. Furthermore, separate documents that contain
“sunrise” and “Middle East” respectively may appear more
similar in Arabic than in English. This example suggests that
it is reasonable to assume that the potential of multiword
features for improving Arabic information retrieval is greater
than that for English.

In this work we conduct several experiments to explore the
impact of multiword features on Arabic document
classification. Our results show that for multiword features,
the dice similarity function outperforms the cosine similarity
function and is comparable to the TF-IDF representation
joined with the cosine function. Unfortunately, we were
unable to compare our findings with the published results of
the best well-known algorithms as all published papers used
different in-house datasets which are not publicly available.
For our experiments we used the dataset appearing in [1]
which contains nine categories, each of which contains 300
documents, which is freely available for downloading.

This rest of this paper is organized as follows: In Section II
we present a summary of related work, Section III covers
testing methodology and the result of our experiments, and in
Section IV we summarize our findings and present
opportunities for future work.

II. RELATED WORK
Several studies and experiments have used

proximity-based functions to enhance information retrieval.
For example, they have been embodied in document ranking,
passage retrieval and other information retrieval models [4],
[18]. Nevertheless, Tao and Zhai [22] indicate that the use of

Arabic Document Classification Using Multiword
Features

Diab Abuaiadah

DOI: 10.7763/IJCCE.2013.V2.269

660

International Journal of Computer and Communication Engineering, Vol. 2, No. 6, November 2013

proximity and multiword features in information retrieval is
underexplored. They used five TREC test collections and
showed one of the proximity measures to be highly correlated
with document relevance and to significantly improve
retrieval effectiveness. In addition, they suggested that
performance is sensitive to the parameter used in the engaged
proximity function. However, finding such a function could
be a challenge. Yuanhua and el. [24] proposed a positioning
language model where this model incorporated several
proximity-based functions. Their experiments using TREC
test collection suggest the Gaussian density function
performs the best.

For the English language, only a handful of published
papers discussed the use of multiword features for document
classification [17], [23] and [27]. For Arabic, to the best of
our knowledge, no published work has investigated the use of
multiword features for classifying documents. The closest
work on the use of proximity functions in Arabic document
classification is [26]. In this work Zaki, Mammas, Ennaji and
Nouboudused fuzzy entropy and taxonomy to improve the
accuracies of document classification.

Several published papers used variations of well-known
algorithms to classify Arabic documents. Elkourdi, Bensaid,
andRachidi [6] implemented Naïve Bayes algorithms in
classifying Arabic documents and reported 68.8% accuracy.
The algorithm was applied after the words were stemmed to
their rootSyiam, Fayed, and Habib [21] used TF-IDF
weighting with several feature selections and achieved 98%
accuracy. Khreisat [10] used N-gram (N=3) frequency to
illustrate that Dice measure outperforms Manhattan measure.
In her work, Khreisat removed stop words, punctuation and
diacritics; in some categories, the accuracy (recall) was
below 50% for both Dice and Manhattan measures. Using
maximum entropy, El-Halees [7] evidenced accuracy of
74.48%. Prior to application of the algorithm, the data was
preprocessed using natural language techniques. The results
were then compared to other existing systems. Mesleh [14]
used the support vector machine algorithm combined with six
commonly used feature selection methods. He reported that
stemming is of no benefit to classification. Zahran and
Kanaan [25] investigated feature selection using a Particle
Swarm Optimization algorithm. They showed that this
feature selection used with TF-IDF outperforms TF-IDF with
the chi-square statistic algorithm. Al-Saleem [2] showed that
the Associative Classification algorithm outperformed the
Support Vector Machine and the Naïve Bayes algorithms.
The average accuracy for Associative Classification was
80.7%, while the accuracy for SVM and Naïve Bayes were
77.8% and 74% respectively. Hattab and Hussein [8] used
Syntactical approach to improve the performance of several
well-known classification algorithms.

For the English language, the Reuters-21578 text
categorization test collection [13] is used to compare results
between the different algorithms. For Arabic, all the above
published algorithms for classification used different
in-house datasets with different numbers and types of
categories and other varied characteristics. Consequently,
any comparison between the published results is difficult.

III. TESTING METHODOLOGY, EXPERIMENTS AND RESULTS
Giving the lack of a standard dataset that is publicly and

freely available, we used an in-house dataset composed of

nine categories, each of which contains 300 documents. The
dataset was built manually by collecting documents from
well-known Arabic websites, and documents were manually
assigned to an appropriate category. This dataset is freely
available for downloading. More details are provided in [1].

For implementing the several variations of the multiword
features, and for implementing the classification algorithm,
we employed an in-house implementation using the Java
programming language within the Netbeans environment,
running under the Microsoft Windows operating system with
two gigabytes memory.

The results are presented as a measurement of recall
(accuracy). Recall is the percentage of documents
successfully classified. For precision, we look at all
documents assigned to a given category and take the
percentage of documents that have been correctly classified
as belonging to this category. Precision enables us to
understand which category attracts the misclassified
documents. To explain these measurements, suppose that
there are 100 documents included in the testing belonging to
a given category. During the classification, 120 documents
were assigned to this category, 80 of which are correctly
assigned to this category and the remaining 40 documents are
incorrectly assigned to this category. In this case the accuracy
(recall) is 80% (ratio between 80 and 100) and precision is
66.6% (ratio between 80 and 120). The number of documents
in the training set is equal for each category and consequently
the number of documents in the testing set is equal for all
categories. In our calculations, accuracy is the average
accuracy of all categories. Under these conditions, the
average precision would be equal to the average recall and
therefore was ignored in the experiments for this paper.

The training set for each category is chosen randomly.
Each document that is not in the training set is used in the
testing set. As with other supervised machine learning
algorithms, the training set is used to profile each category
and the testing set is used to measure the performance. In this
paper, the training set size refers to the training set size for
each category.

In our explorations we use two similarity functions: the
cosine similarity function and the dice similarity function.
With the dice similarity function, the frequencies of the
features in the document are ignored and only their existence
is acknowledged. Thus, a combination of words adjacent to
each other in a window would have the same weight as if they
were apart. With the cosine similarity function, we apply IDF
(inverse document frequency) to prevent frequent terms from
dominating the value of the function.

To assign a category to a document in the testing set, we
calculate the similarities between the document and the
profile of each category (viewed as the sum of all documents
in the training set for the specific category) and assign the
document to the category with maximum similarity. In more
detail, for multiword combinations, we sum all the
combinations in all the windows in the given document. A
multiword features may appear several times in adjacent
windows. With dice function, this has no effect on the
classification.

661

International Journal of Computer and Communication Engineering, Vol. 2, No. 6, November 2013

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

Run1

Run2

Run3

Run4

Run5

Fig. 1. Accuracies for the cosine function with TF-IDF of the single term as a function of the training set sizes.

0

0.05

0.1

0.15

0.2

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

Run

Run

Run

Run4

Run

0.4

0.5

0.6

0.7

0.8

0.9

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

Run

Run

Run

Run

Run

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

Run

Run

Run

Run

Run

Fig. 2. Accuracies for the dice function with TF-IDF of the single term as a function of the training set sizes

Fig. 3. Accuracies for the cosine function for ordered adjacent terms as a function of the training set sizes.

Fig. 4. Accuracies for the dice function for ordered adjacent terms as a function of the training set sizes.

662

International Journal of Computer and Communication Engineering, Vol. 2, No. 6, November 2013

If not explicitly stated otherwise, the training set size for
each category is 100 documents and version 3 of the dataset is
used. This version represents the original documents
modified by the removal of stop words and application of the
light10 stemmer [11], considered by many researchers to be
the best stemmer for the Arabic language. The accuracies
presented in the graphs below are always the average of five
independent runs, unless the accuracies of all five runs are
plotted in the associated graph. In the latter case we use the
labels Run1…Run5.

Our experiments analyse the use of multiword features and
can be grouped into three different groups: the First group
(sub section III.A) shows the impact of the training set sizes;
the second group (sub section III.B) the impact of different
stemmers; and the third group (sub section III.C) ordered and
unordered term combinations in different window sizes.

A. Training Set Sizes
Fig. 1 and Fig. 2 show the accuracies for the cosine

similarity function and the dice similarity functions
respectively where the single term frequency, TF-IDF, is
applied. As mentioned, the dice function does not capture the
frequency of each term and only records the existence of the
term in the document. For the dice function, it is interesting to
see the accuracies significantly deteriorate when the size of
the training set increases. This could be explained as the
appearance of more terms in more categories diminishing the
uniqueness of the profile of each category. As we will see in
the following graphs, dramatic improvement results when
using multiword features. With the cosine similarity function
(Fig. 1), the accuracy stabilizes when the training set size is
above 20 documents and the deviation between the different
runs is minimal.

Fig. 3 and 4 introduce the finding of our first choice of
multiword features. In these experiments, each two ordered
adjacent terms are used as a feature (the size of the window is
two). Fig. 3 shows that the TF-IDF with the cosine function
(TF indicates the frequency of the ordered pair) performs
very poorly and the accuracy is only slightly better than a
random choice (one out of nine). Increasing the size of the
training set brings insignificant improvement. Fig. 4
represents the accuracies for the dice function. We reach over
90% accuracy when the training set size is above 30
documents. The other interesting finding is that the deviation
between the different runs is minimal given the fact the
documents in the training set are chosen randomly.

B. Stemmers
In this sub section we test the behavior of different

versions of the dataset (created with different stemmers) on
multiword features. Version 1 is the original text documents,
version 2 is version 1 after removing stop words, punctuation
and diacritics, version 3 is version 2 after applying the light10
stemmer, version 4 is version 2 after applying the Chen
stemmer [5] and version 5 is version 2 after applying Khoja
and Garside root-based stemmer [9].

For multiword features we choose two ordered adjacent
terms in window size equal to two (ordered pairs) and each
three ordered adjacent terms (ordered triples) in window size
equal to three. Obviously, the dice function is used and the
training set size is 100 documents for each category.

The accuracies for the triples are lower than the accuracies
for pairs but this could be attributed to the training set size.
There is a drop in the accuracy when removing stop words,
punctuation and diacritics (version 2). This is interesting as
with several algorithms using TF-IDF, experiments show a
gain in accuracy. For pairs, the three stemmers produce a 1%
improvement in accuracy compared to the original dataset
(version 1). The accuracies for triples are relatively low but
this could change for larger training set sizes.

Fig. 5.Accuracies for the five versions of the dataset.

Light stemmers strip off a predefined list of suffixes and

prefixes from each term while root-based stemmers attempt
to extract the linguistic root of each term. Version 3 and
version 4 correspond to light stemmers while version 5
corresponds to a root-based stemmer. Our exercises show
minor differences in accuracy between the different
stemmers. Arabic is a highly inflected language and on
average the term length after a root-based stemmer has been
applied, is significantly lower than after light stemmers. The
average term lengths for version 1, version 2, version 3,
version 4 and version 5 are 4.86, 5.49, 4.09, 3.85 and 3.23
respectively [1].

C. Ordered and Unordered Multiword Combinations in
Different Window Sizes
In this subsection we conduct experiments to find the

combination of multiword and window sizes that gives the
best accuracy. Fig. 6 show the impact of increasing window
sizes for ordered and unordered pairs. To explain this,
consider the window is }31|),,,{(321 −≤≤+++ nitttt iiii , the

size of this window is four and the combinations of ordered pairs are:
),(),,(),,(),,(),,(),,(313232211 +++++++++ iiiiiiiiiiii tttttttttttt .The

number of ordered pairs in a window of size nis . For the
unordered pairs, we add the reverse of each ordered pair to
the set of combinations. For each document, and for a given
window size, we sum all combinations (multiword features)
for all windows in the document. The experiments show
unordered pairs perform better than ordered pairs and the
accuracies improve when increasing the window size.
However, the improvement in accuracy from window size 3
to window size 9 is less than 2%. Unfortunately, our Java
implementation runs out of memory when the window size is
greater than nine. If the window size is 10, each window may
create 45 different combinations for ordered pairs, and 90
different combinations for unordered pairs. Fig. 7 shows the
effectiveness of multiword features when using ordered
triples, when using several window sizes. It is interesting to
see the dramatic improvement in accuracy when increasing

0.5

0.6

0.7

0.8

0.9

1

Pairs

Triples

663

International Journal of Computer and Communication Engineering, Vol. 2, No. 6, November 2013

the window sizes. Triplesas multiword features
presentcomputational challenges for larger window sizes and
our implementation of Java runs out of memory at window
size seven. In this scenario, each window may create
combinations which are equal to 35.

Fig. 6. Accuracies for ordered and unordered pairs as a function of window

sizes.

Fig. 7. Accuracies for ordered triples as a function of window sizes.

IV. CONCLUSION AND FUTURE WORK
Several interesting conclusions can be drawn from the

experiments: The dice similarity function outperforms the
cosine similarity function; unordered pairs produce 2%
improvement compared to ordered pairs; ordered triples
produce poor results, but this could be attributed to a small
training set size, and multiword features introduce
computational challenges for large window sizes.

The multiword technique is under-explored, and with
further research, this could improve information retrieval for
Arabic and other highly inflected languages. One way of
improving this technique is to employ proximity functions.
Such functions measure the closeness of terms in a given
window. However, in this case, the dice function does not
factor in the different scores. With proximity functions, there
is a need to find an appropriate similarity function. Thus, we
believe there are several opportunities to investigate
multiword features and proximity to enhance Arabic
information retrieval and in particular Arabic document
classification.

ACKNOWLEDGMENT
I would like to thank Professor Jeffery H. Kingston and

Professor Lim Chia Sien for reviewing the paper and for their

valuable comments.

REFERENCES
[1] D. Abuaiadh and W. Abusalah, “On the impact of dataset

characteristics on arabic document classification,” March 2013.
[2] S. M. A. Saleem, “Associative classification to categorize arabicdata

sets,” The International Journal of ACM Jordan, vol. 1, no. 3, pp.
118-127,September, 2010.

[3] E. T. A. shammari and J. Lin, “Towards an error-free Arabic
stemming,” in Proc. of the 2nd ACM workshop on Improving Non
English Web Searching, iNEWS 2008, Napa Valley, California, USA,
Oct 30, 2008.

[4] R. B. Yates and B. Ribeiro-Neto, Modern Information Retrieval, ACM
Press/Addison-Wesley.

[5] C. F. Gey, “Building an arabic stemmer for information retrieval,” in
Proc. the Eleventh Text REtrieval Conf., National Institute of
Standards and Technology, Nov, 2002.

[6] M. Elkourdi, A. Bensaid, A., and T. Rachidi, “Automatic
arabicdocument categorization based on the naïve bayesalgorithm,” in
Proc. Coling 20th Workshop on Computational Approaches to Arabic
Script-based Languages, Geneva, August 23-27, 2004.

[7] E. Halees, “Arabic text classification using maximum entropy,”The
Islamic University Journal of Series of Natural Studies and
Engineering, pp. 157-167, 2007.

[8] M. Hattab A.K. Hussein, “Arabic content classification system using
statistical bayes classifier with words detection and correction,” World
of Computer Science and Information Technology Journal, vol. 2, no. 6,
2012.

[10] L. Khreisat, “Arabic text classification using N-Gram frequency
statistics - A comparative study,” in Proc. the 2006 International
Conference on Data Mining, Las Vegas, Nevada, USA, June 26-29,
2006.

[11] L. S. Larkey, L. Ballesterosand, and M. E. Connell, “Light Stemming
for Arabic Information Retrieval,” Speech and Language Technology,
Springer Netherlands, 2007, vol. 38, pp. 221-243.

[12] L. S. Larkey and M. E. Connell, “Structured queries, language
modeling, and relevance modeling in cross language information
retrieval,”Information Processing and Management Special Issue on
Cross Language Information Retrieval, vol. 41, no. 3, pp. 457-473,
2005.

[13] D. Lewis. D. Reuters-21578 text categorization test collection.
[Online]. Available:
http://kdd.ics.uci.edu/databases/reuters21578/README.txt.

[14] A. A. Mesleh, “Chi square feature extraction based
svmsarabiclanguage text categorization system,”Journal of Computer
Science, vol. 3, no. 6, pp. 430-435.

[15] M. W. Berry, Survey of text mining: Clustering, classification, and
retrieval, Springer, September, 2003.

[16] A. F. A. Newsri, “Effective retrieval techniques for arabictext,” Ph.D.
dissertation, RMIT University, Melbourne, Australia, 2008.

[17] P. J. Allan, “Document classification using multiword Features,” in
Proc. ACM International Conference on Information and Knowledge
Management, 1998, pp. 124-131.

[18] Y. Rasolofo and J. Savoy, “Term proximity scoring for
Keyword-Based retrieval systems,” in Proc. the 25th European
Conference on IR Research, 2003, pp. 207–218.

[19] J. Rocchio, “Relevant feedback in information retrieval”in the SMART
Retrieval System: Experiments in Automatic Document Processing,
Ed., Englewood Cliffs, NJ: Prentice-Hall, pp. 313-323.

[20] G. Salton and C. Buckley, “Term weighting approaches in automatic
text retrieval,”Information Processing and Management, vol. 24, no. 5,
pp. 513-523.

[21] M. Syiam, Z. Fayed, and M. Habib, “An intelligent system
forarabictext categorization,” International Journal of Intelligent
Computing and Information Sciences,vol. 6, no. 1, pp. 1-19.

[22] T. Tao and C. Zhai, “An exploration of proximity measures in
information retrieval,” in Proc. the 30th annual international ACM
SIGIR conf. on Research and development in information retrieval,
New York, USA, 2007, pp. 295–302.

[23] E. M. Voorhees, “Overview of TREC 2001,” in Proc. the Tenth Text
Retrieval Conference, Gaithersburg, Maryland, 13-16 Nov, 2001,pp
1-15.

[24] L.V. Yuanhua, H. E. Jing, V. G. Vydiswaran, K. Ganesan, and Z. X.
Cheng, “A study of term proximity and document weighting
normalization in pseudo relevance feedback - UIUC at TREC 2009,”
Million Query Track, 2009.

0.92
0.925

0.93
0.935

0.94
0.945

0.95
0.955

2 3 4 5 6 7 8 9

Ordered
Pairs
Unordere
d Pairs

0.65

0.7

0.75

0.8

0.85

0.9

3 4 5 6

Ordered
Triples

[9] S. Khoja and R. Garside, “Stemming arabic text,” Technical report,
Computing Department, Lancaster University, Lancaster, September
1999.

664

International Journal of Computer and Communication Engineering, Vol. 2, No. 6, November 2013

[25] B. M. Zahran and G. Kanaan, “Text feature selection using particle
swarm optimization algorithm,”World Applied Sciences Journal, vol. 7,
pp. 69-74.

[26] T. Zaki, D. Mammas, A. Ennaji and F. Nouboud,“Classification of
Arabic Documents by a Model of Fuzzy Proximity with a Radial Basis
Function,” International Journal of Future Generation,
Communication and Networking, vol. 3, no. 4, Dec., 2010.

[27] W. Zhang, T. Yoshida, and X. J. Tang, “Text classification based on
Multi-Word with support vector machine,” Knowledge-Based Systems,
vol. 21, no. 8, pp. 879–886, 2008.

Diab Abuaiadah (Abuaiadh) holds bachelor’s,
master’s and doctoral degrees in computer science.
He earned his doctoral degree from the University of
Sydney, graduating in 1996. In addition, he has 14
years of industry experience in developing software
products and inventing new algorithms.
Abuaiadahworked at IBM research lab for about 10
years and received the highly regarded OIA award
from IBM for inventing several algorithms that
improved the performance of many widely used IBM

products. Since February 2011, Abuaiadah has been employed at the
Waikato Institute of Technology (New Zealand) as a principal academic staff
member.

