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This study aims to propose an improved modelling framework for high frequency volatitliy in financial stock market. 

Extended heterogeneous autoregressive (HAR) and fractionally integrated autoregressive moving average (ARFIMA) 

models are introduced to model the S&P500 index using various realized volatility measures that are robust to jumps.  These 

measures are the tripower variation volatility, and the realized volatities integrated with the nearest neighbor truncation 

(NNT) approach, namely the minimum and the median realized volatilities.  In order to capture volatility clustering and the 

asymmetric property of various realized volatilities, the HAR and ARFIMA models are extended with asymmetric GARCH 

threshold specification.  In addition, the asymmetric innovations of various realized volatilities are characterized by a 

skewed student-t distribution.  The empirical findings show that the extended model returns the best performance in the in-

sample and out-of-sample forecast evaluations.  The forecasted results are used in the determination of value-at-risk for 

S&P500 market. 
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Introduction 
 

The availability of high frequency data in financial time 

series has great contribution to the accuracy of volatility 

estimations especially in the application of portfolio 

investment (Cervello-Royo et al., 2015; Goumatianos et al., 

2013; Vella & Ng, 2014) and risk management (Dionne et al., 

2015; Liu & Tse, 2015; Louzis et al., 2014).  One of the 

immediate applications of estimated volatility is the 

determination of market risk using the value-at-risk.  In recent 

years, many stock market investment institutes have added 

risk management units to identify risks and implement 

strategies to overcome the potential risks in the globalized 

financial stock markets. Thus, financial risk management 

(Hammoudeh & McAleer, 2015) has become a crucial 

component in the stock market investments where failure to 

manage the market risks may result in severe losses to their 

investments. Owing to that, a reliable and accurate risk 

management analysis is highly desired to measure the 

potential market risk in the current stock market investment 

strategies. In general, the types of data and statistical models 

have direct impact on the accuracy of market risk 

management.  It is well-known that the stock market related 

industries are highly driven by data.  The information of inter-

daily data is no longer able to accommodate the massive 

amount of large-scale trading activities.   

One of the important early studies of high frequency 

data was conducted by Andersen and Bollerslev (1998) 

which is commonly known as the realized volatility (RV).  

The theoretical properties of RV can be found in Andersen 

et al. (2003) and Barndorff-Nielsen and Shephard (2002). 

Although RV is an error free measure of volatility, it is 

susceptible to microstructure bias (Hansen & Lunde, 2006, 

Andersen et al., 2011) as well as abrupt jumps in financial 

markets (Barndorff-Nielsen and Shephard 2004; Andersen 

et al., 2012) To untangle the impact of the presence of rare 

jumps, Barndorff-Nielsen and Shephard (2004)   introduced 

a bipower variation (BV) estimator which takes the form of 

cumulating product of adjacent absolute returns. 

Nonetheless, BV is sensitive to the presence of very small 

returns. Alternatively, based on the nearest neighbor 

truncation approach, Andersen et al., (2012) proposed two 

jump-robust estimators, namely the minimum realized 

volatility (minRV) and the median realized volatility 

(medRV) to eliminate the noise in the volatility.   

Apart from the volatility measures, an appropriate 

volatility model is crucial to ascertain the accuracy of the 

volatility forecast.  Beforehand it is important to know the 

financial background that is embraced in the statistical 

models.  For the past several decades, the informationally 

efficient market hypothesis (EMH) has been intensively 

studied theoretically and empirically (Fama, 1998; Malkiel, 

2003) using financial markets data.  An ideal efficient 
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market suggests that all the relevant market information is 

reflected by the market price. As such, no investors are able 

to beat the markets via any asset selections or market timing 

strategies. There are two major approaches used to improve 

the analysis of EMH, namely the empirical methodology, 

and the theoretical framework that gives rise to the new 

definitions of EMH. The new definitions that complement 

the classical EMH are fractal market hypothesis (Peters, 

1994), heterogeneous market hypothesis (Muller et al., 

1993; Dacorogna, 1998) and adaptive market hypothesis 

(Lo, 2005). Heterogeneous market hypothesis (HMH) is 

among the new ideas that are recommended in the market 

efficiency literature. This concept has been introduced by 

Muller et al. (1993) and Dacorogna et al. (2001) in the 

foreign exchange and the stock markets. HMH suggests that 

the market participants are heterogeneous; thus, the same 

market information can be interpreted differently based on 

one’s trading preference and opportunity. As such, under 

fluctuating price movements, volatility cascades ranging 

from low to high frequencies are created due to the diverse 

reactions from the heterogeneous market participants.  The 

combination of these dissimilar volatilities (due to reaction 

times) is believed to produce a slow decaying 

autocorrelation function or long memory dependence 

property in financial markets. The long memory trait is 

commonly analyzed via the autoregressive fractionally 

integrated moving average models, ARFIMA (Andersen et 

al., 2003; Barunik & Krehlik, 2016; Yap & Cheong, 2016). 

To give a comprehensive comparison, this study includes 

the discussion on the extension of ARFIMA to form the 

volatility model. Based on the HMH structure, the cascading 

volatility can be easily constructed using an additive 

hierarchical structure on the realized volatilities of various 

time horizons. The HMH heterogeneity has been studied with 

different approaches by researchers such as (Lux & Marchesi, 

1999; Andersen & Bollerslev, 1997; Muller et al., 1997; 

Cheong et al., 2007; Cheong et al., 2013; Corsi et al., 2008; 

Corsi, 2009). Most of the aforementioned studies are 

conducted using high-frequency data (or intraday data) which 

are collected minutely from the daily trading activities in a 

specific financial market. With the information technology 

resources, the intraday data that reflect the heavy trading 

activities are readily available. Coupled with the concrete 

theoretical foundations on realized volatility (Andersen & 

Bollerslev, 1998; Blair et al., 2001) the handiness of intraday 

data fuels the research interest on the use of high frequency 

data to improve the forecast performance in foreign exchange 

and the stock markets. 

In this study, we attempt to use the extension of HAR 

and ARFIMA models to accommodate for the asymmetry 

volatility clustering as well as the asymmetric relationship 

between RV and the volatility of RV. The extended models 

are named as asymmetric skewed HARX (RV)-GJR-

GARCH and ARFIMAX (RV)-GJR-GARCH which will be 

demonstrated using the S&P500 index. Besides using RV, 

we also include other alternatives such as tripower RV, 

minRV and medRV in both of the extended models. In 

addition, the RV’s errors are considered as leptokurtic and 

asymmetrically distributed which follow a skewed student-

t distribution. Comparing to the original models, the 

proposed model provides better in-sample as well as out-of-

sample forecast evaluations. To complete this study, we 

illustrate a one-day-ahead value-at-risk determination using 

the estimated results. The remaining of this study is 

organized as follows: Section 2 provides the description of 

RV, tripower RV, minRV and medRV of volatility 

estimations and the volatility models; Section 3 discusses 

the empirical data and results and finally, Section 4 

concludes the findings of the study. 

 

Methodology 
 

Integrated volatility estimation based on high- frequency 

data is used to measure the unobservable latent volatility. Let 

us consider a stochastic volatility process for the logarithmic 

prices, 𝑝(𝑡) = 𝑙𝑛𝑃(𝑡)  of an asset, 𝑑𝑝(𝑡) = 𝜇(𝑡)𝑑𝑡 +
𝜎(𝑡)𝑑𝑊(𝑡) , where 𝜇(𝑡), 𝜎(𝑡) and 𝑊(𝑡)  are the drift, 

volatility and standard Brownian motion respectively. The 

𝜇(𝑡) and 𝜎(𝑡) may be time-varying, but they are assumed to 

be independent of 𝑑𝑊(𝑡). The continuously compounded 

intraday return of day 𝑡 with sampling frequency of 𝑁 per 

day is 𝑟𝑡,𝑗 = 100 (ln𝑃𝑡,𝑗 − ln𝑃𝑡,𝑗−1), 𝑗 =  1, … ,𝑁,

𝑡 =  1, … , 𝑇 For an increasing sequence of 𝑚  random 

partitions 𝜏0 = 0 ≤ 𝜏1 ≤ ⋯ ≤ 𝜏𝑚 = 𝑡 , the quadratic 

variation is equivalent to the integrated variance, that is, 

lim
𝑚→∞

∑ (𝑝𝜏𝑖+1 − 𝑝𝜏𝑖)
2𝑚−1

𝑖=0 = ∫ 𝜎2(𝑡)𝑑𝑡.
𝑡

0
 Under this 

condition, the integrated variance can be estimated 

consistently by the RV, (Andersen & Bollerslev, 

1998)   𝜎𝐴𝐵,𝑡
2 = ∑ 𝑟𝑡,𝑗

2𝑁
𝑗=1 .  However, with the presence of 

abrupt jumps, the RV is no longer a consistent estimate for 

the integrated variance.  

 
Jump-Robust Volatility Estimators 
 

In order to overcome the noisiness of the volatility, we 

adopt the tripower variation estimator (Barndorff-Nielsen 

and Shephard, 2002) as follows:  

𝑇𝑉𝑡 = 𝑀𝑃𝑉3,𝑡(𝑖 = 3, 𝑞 = 2) =

𝜇2/3
−3 𝑡

𝑡−2
∑ |𝑟𝑗|

2/3
|𝑟𝑗+1|

2/3
|𝑟𝑗+2|

2/3𝑡−2
𝑗=1                         (1)        

where i and q are positive integers with the relationship i > 

q/2 with a finite sample correction of (
𝑡

𝑡−𝑖+1
). In general, the 

tripower variations smoothen out the abrupt jumps by 

averaging the adjacent returns. The term i represents the 

window size of return blocks and q indicates the desired 

power variation of volatility. For i.i.d price changes, 𝜇𝑞/𝑖 =

2
𝑞

2𝑖Γ[(𝑞/𝑖 + 1)/2]/Γ[1/2], where Γ[. ]  is a gamma 

function.  It is worth noting that although TV is able to 

smooth the impact of a jump by multiplying two or more 

consecutive returns, it is not able to reduce the magnitude of 

two or more consecutive jumps.  In addition, it is also 

sensitive to the very small returns, which subsequently leads 

to bias. Alternatively, Andersen et al., (2012) proposed two 

estimators based on the minimum (minRV) and median 

(medRV) operators using the nearest neighbor truncation 

(NTT) approach, stated as follows:     

𝑚𝑖𝑛𝑅𝑉𝑡

=
𝜋

𝜋 − 2

𝑡

𝑡 − 1
∑[min (|𝑟𝑡,𝑗|, |𝑟𝑡,𝑗+1|)]

2
                                          (2)

𝑡−1

𝑗=1
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𝑚𝑒𝑑𝑅𝑉𝑡

=
𝜋

6 − 4√3 + 𝜋

𝑡

𝑡 − 1
∑[𝑚𝑒𝑑(|𝑟𝑡,𝑗−1|, |𝑟𝑡,𝑗|, |𝑟𝑡,𝑗+1|)]

2
              (3)  

𝑡−1

𝑗=2

 

The minimum realized volatility (minRV) eliminates a 

jump for a given block of two consecutive returns and it is 

computed based on the adjacent diffusive returns, whereas 

the median realized volatility (medRV) uses the median 

operator to square the median of three consecutive absolute 

returns. As a comparison, TV smoothen a possible jump 

whereas NTT estimators eliminate it from the block of 

returns. Andersen et al. (2012) showed that the NTT 

estimators are more efficient and robust under the presence 

of jumps.      

 

The Volatility Models 
 

The asymmetric skewed HARX (RV)-GJR-GARCH 

model 

Specifically, the asymmetric skewed HARX (RV)-

GJR-GARCH (1,1) model can be written as 

ln (𝑅𝑉𝑖,𝑡
𝑑 ) = 𝜃𝑖,0+𝜃𝑖,1𝑟𝑡 + 𝜃𝑖,𝑑ln (𝑅𝑉𝑖,𝑡−1

𝑑𝑎𝑦
) +

𝜃𝑖,𝑤 ln(𝑅𝑉𝑖,𝑡−1
𝑤𝑒𝑒𝑘) + 𝜃𝑖,𝑚ln (𝑅𝑉𝑖,𝑡−1

𝑚𝑜𝑛𝑡ℎ) + 𝑎𝑖,𝑡  𝑎𝑖,𝑡 = 𝜎𝑖,𝑡𝜀𝑖,𝑡  , 

𝜀𝑖,𝑡~𝑠𝑘𝑒𝑤𝑒𝑑 − 𝑡  𝜎𝑖,𝑡
2 = 𝛼𝑖,0 + 𝛼𝑖,1𝑎𝑖,𝑡−1

2 +𝛼𝑖,2|𝑎𝑖,𝑡
2 |𝐼𝑡 +

𝛼𝑖,3𝜎𝑖,𝑡−1
2                                                                            (4) 

where RV represents the type of RV with 𝑅𝑉𝑡
𝑤𝑒𝑒𝑘 =

1

5
∑ 𝑅𝑉𝑡−𝑗

𝑑𝑎𝑦5
𝑗=1  and 𝑅𝑉𝑡

𝑚𝑜𝑛𝑡ℎ =
1

22
∑ 𝑅𝑉𝑡−𝑗

𝑑𝑎𝑦22
𝑗=1 .  Subscripts i 

= 1, 2, 3 and 4 indicates the standard RV, tripower variation 

(TV), minRV and medRV respectively. The 𝜎𝑖,𝑡
2  is 

interpreted as the volatility of RV and 𝐼𝑡(∙) is an dummy 

variable for 𝑎𝑖,𝑡 < 0. For instance, when 𝛼2 > 0, negative 

(or positive) news contribute to greater (or smaller) 

magnitude of RV. The original asymmetric GJR threshold 

(Glosten et. al., 1993) specification is meant to capture the 

leverage effect in financial market. However in this study, 

this specification is used to explore the relationship between 

various RVs and their volatilities. For the next financial 

stylized fact, the X in the model indicates whether the risk-

premium (risk-return tradeoff) exists in the time series under 

study. The returns are expected to have a positive 

correlation to the intensity of market volatility or risk. In 

other words, higher risk asset should offer higher returns in 

order to attract investors to hold it.  

The asymmetric skewed ARFIMAX (RV)-GJR-GARCH 

model. 

For asymmetric skewed ARFIMAX (RV)-GJR-GARCH 

model, the specifications are as follow: 

𝜑(𝐵)(1 − 𝐵)𝑑(𝑙𝑛𝑅𝑉𝑖,𝑡 − 𝜇𝑖) = 𝜓(𝐵)𝑎𝑖,𝑡𝑎𝑖,𝑡 = 𝜎𝑖,𝑡𝜀𝑖,𝑡 , 

𝜀𝑖,𝑡~𝑠𝑘𝑒𝑤𝑒𝑑 − 𝑡  𝜎𝑖,𝑡
2 = 𝛽𝑖,0 + 𝛽𝑖,1𝑎𝑖,𝑡−1

2 +𝛽𝑖,2|𝑎𝑖,𝑡
2 |𝐼𝑡 +

𝛽𝑖,3𝜎𝑖,𝑡−1
2                                                                   (5) 

where (1 − 𝐵)𝑑  denotes the fractional differencing 

operator, 𝜑(𝐵)  and 𝜓(𝐵)  are backshift polynomials with 

respect to the autoregressive and moving average operators. 

The asymmetric GJR-GARCH specifications are able to 

capture all the financial stylized facts as the aforementioned 

HARX model.  

For both the models, the volatility innovations are 

assumed to be leptokurtic and asymmetrically distributed 

under a skewed student-t distribution (Lambert & Laurent, 

2001), 𝜀𝑖,𝑡|Ωt−1~skew − 𝑡(0,1; 𝑣, 𝑘.  The skewed student-t 

density function can be written as 

𝑓(𝜀𝑖,𝑡; 𝑣, 𝑘) =

{
 
 

 
 Γ[

𝑣+1

2
]

Γ[
𝑣

2
]√π(𝑣−2)

(
2𝑠

𝑘+𝑘−1
) (1 +

𝑠𝜀𝑖,𝑡+𝑚

𝑣−2
𝑘)

−(
𝑣+1

2
)

Γ[
𝑣+1

2
]

Γ[
𝑣

2
]√π(𝑣−2)

(
2𝑠

𝑘+𝑘−1
) (1 +

𝑠𝜀𝑖,𝑡+𝑚

𝑣−2
𝑘)

−(
𝑣+1

2
)

   if 𝜀𝑖,𝑡<−𝑚𝑠
−1

 
if 𝜀𝑖,𝑡≥−𝑚𝑠

−1

   (6) 

with v and k are the tail and asymmetry parameters 

respectively where  𝑠 = √𝑘2+𝑘−2 −𝑚2 − 1  and 𝑚 =
𝑘−𝑘−1

Γ{[(
𝑣−1

2
)]√𝑣−2Γ[

v

2
]√π}

.  Overall, the estimated parameter vector 

for HARX is Θ̂(𝜽, 𝜶, 𝑣, 𝑘)  where 𝜽 = (𝜃0, 𝜃1,
𝜃𝑑 ,  𝜃𝑤 ,  𝜃𝑚)  and 𝜶 = (𝛼0, 𝛼1, 𝛼2, 𝛼3).  Assuming 

ARFIMA (1, 𝑑, 0),   the estimated parameter vector is Φ̂(𝝋,
𝜷, 𝑣, 𝑘)  with 𝝋 = (𝜑0, 𝜑1, 𝑑)  and 𝜷 = (𝛽0,  𝛽1, 𝛽2,
𝛽3). Using the Ox-G@RCH, the estimations are conducted 

using the simulated annealing maximum likelihood 

(MaxSA) as there may be possibly more than one local 

extrema which may not be smoothen. 

For model diagnostic, the Ljung-Box serial correlations 

are used to examine the standardized and squared 

standardized residuals under the null hypothesis of 

uncorrelated series. Next, the model selections are based on 

three information criteria namely the Akaike, Schwarz and 

Hannan-Quinn that are evaluated from the adjusted average 

log likelihood function.   

After the in-sample forecast evaluation, the out-of-

sample forecast evaluations are conducted based on a rolling 

fixed sample size of T=1623 for h one-day ahead forecast 

where ℎ = 1, 2, … , 𝐻  and 𝐻  is fixed at 120.  The various 

one-day-ahead logarithmic RV forecasts for HARX and 

ARFIMAX models are computed based on the parameter 

vector Θ̂(𝑡)(𝜽(𝒕), 𝜶(𝒕), 𝑣(𝑡), 𝑘(𝑡)) and 

 Φ̂(𝑡)(𝝋(𝒕), 𝜷(𝒕), 𝑣(𝑡), 𝑘(𝑡)),  which are re-estimated 

every day for t = T+1, …, T+120. 

In order to evaluate the best out-of-sample forecast, we 

have selected root mean squared error (RMSE =

 





Ht

th

hForecasthActual
H 1

22

,

2

,

1


), mean absolute error 

(MAE= 





Ht

th

hForecasthActual
H 1

2

,

2

,

1
 ) and Mincer, Zarnowitz 

(MZ) regression, 
hhForecasthActual u 2

,10

2

,   to 

indicate the power of predictability. The MAE is better than 

RMSE due to its mild responses to large errors whereas the 

MZ is also robust (Meddahi, 2001) to noise in the forecasted 

volatility. This study follows the robustness definition by 

Patton (2011) where the models ranking should be 

consistent no matter what types of proxies are being used as 

true values in the forecast evaluations. Although there are 

other more advanced forecast evaluation methods (Diebold 

& Mariano, 1995; White, 2000; Hansen, 2005), we focus on 

the aforementioned measurements which evaluate the 

deviation between forecasts and realizations. In order to 

provide a fair and objective forecast evaluation, the 

performance of the models are examined using RV, TV, 

minRV and medRV as the proxy of the actual volatility. A 

simple scoring scheme is used to facilitate the ranking of the 

forecast performance amongst these models. 
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Empirical Study  

In this specific study, we are interested to explore the 

volatility behavior of the U.S. stock market during the 

subprime mortgage crisis.  For empirical study, we use the 

U.S. S&P500 index from the Bloomberg database spanning 

from 1st Feb 2008 to 27th February 2015 with a total of 1768 

observations.  This includes the out-of-sample forecast 

evaluations data from 31st July 2014 to 27th February 2015. It 

is noted that we have included the subprime mortgage crisis 

period started from early 2008 to ensure that the empirical 

data is highly volatile for possible jumps in the series. 

In order to uncover this crisis, we conduct a dynamic 

long memory evaluation of S&P500 RV starting from the 

year 2007. The long memory parameter is estimated using the 

rolling fixed window wavelet maximum likelihood 

estimation approach by Jensen (2000), with the indicator of 

the fractional integrated differencing parameter, d.  The fixed 

time window is set to 1024 observations with four year data 

(2003-2007) as an initiation. The d is interpreted as stationary 

long memory for 𝑑 ∈  (0 , 0.5)  and nonstationary for 𝑑 ∈
(0.5 , 1.0).   

 

 
Note: The fixed time window is set at 1024 observations 

 

Figure 1. Rolling estimated d   
 

Figure 1 shows that the values of d are within the range 

0.4 to 0.5. It is found that, there is a drastic drop of d in 

September of 2008 when the Lehman Brothers filing for 

U.S. Federal government bailout. This is the moment when 

the short horizon investors are dominating the market 

whereas the long horizon investors are either withdrawn 

from the markets or participating in the short horizon trading 

activities. In other words, the liquidity of the trading 

interactions amongst different horizon investors is lost, thus 

the heterogeneity of investors is also removed under severe 

selling pressure.   
Table 1 

Descriptive statistics for various logarithmic RVs 
 

statistics LOG(RV) LOG(TV) LOG(minRV) LOG(medRV) 

 Mean -0.258622 -0.703513 -0.752105 -0.731071 

 Median -0.328343 -0.817589 -0.879647 -0.852047 

 Std. Dev.  1.212779  1.184659  1.189649  1.186975 

 Skewness  0.544305  0.670947  0.672256  0.671845 

 Kurtosis  3.363573  3.670900  3.631880  3.679232 

 Jarque-Bera  89.02456*  152.1157*  149.1553*  153.2020* 
 

Note: Jarque-Bera statistic =  
𝑇

6
(𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 +

(𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠−3)2

4
) 

 * indicates 5 % level of significance. 

Table 1 gives a quick glance at the descriptive statistics 

of all the logarithm RVs.  It is found that the expected value 

of RVs are non-zero, slightly positively skewed to right with 

kurtosis larger than three as compared to a standardized 

normal distribution. A normality test using Jarque-Bera test 

found that all the series are statistically deviated from the 

normal distribution at 5 % level of significance. As a 

summary, the logarithmic RV series are fat-tailed, slightly 

skewed to the right compared to a normal distribution. These 

statistical behaviors should be included in the model 

specifications.              

 

Estimation Results 
 

Table 2 and 3 report a total of 8 ARFIMAX and HARX 

models based on Eqs. (4) and (5). The errors are assumed to 

follow a skewed student-t distribution, as the preliminary 

analysis indicates the presence of heavy-tailed and positive 

skewness in the volatility.  
Table 2 

Estimation for ARFIMAX (1,𝒅,0)-GJR-GARCH(1,1) 

Skewed-t  

 

* and ** indicate 5 % and 1 % level of significance respectively 

(  ) represents the standard error of the estimated parameter 

[  ] represents the p-value 
 

The estimation of asymmetric skewed HARX-GARCH 

models show that the heterogeneous autoregressive 

components (d w and m) for the past daily, weekly and 

monthly volatilities are all different from zero at 5 % level 

of significance. This supports the heterogeneous market 

hypothesis where the markets consist of heterogeneous 

market participants with different time horizon investment 

preferences. 

 

 

ARFIMA: RV TV minRV medRV 

0 
0.645870** 

(0.24181) 

0.309088 

(0.25322) 

0.189198 

(0.28684) 

0.181611 

(0.21582) 

Risk 

premium, 

1 

-4.894126** 

(0.86311 ) 
-3.195552** 

(0.59343) 
-3.510232  ** 

(0.66058) 
-3.231450** 

(0.59656) 

Long 

memory, d 

0.555783** 

(0.023108 ) 

0.602821** 

(0.023819) 

0.580117** 

(0.022687) 

0.591062** 

(0.024674) 

Lag return, 

2 

-0.271834** 
(0.031961) 

-0.107700** 

(0.032981) 
-0.117337 ** 
(0.031505 ) 

-0.103338** 
(0.033149 ) 

GARCH:     

0 
0.116370 ** 

(0.048529) 

0.022834** 

(0.0091010) 

0.024547 ** 

(0.010941) 

0.018891** 

(0.0095447) 

ARCH 

effect, 1 

0.157004** 

(0.042488) 

0.095153** 

(0.022609 ) 

0.094465  ** 

(0.023431) 

0.085920** 

(0.025173) 

GJR 

effect, 2 

-0.083022** 

(0.044010) 

-0.087156 ** 

(0.036880 ) 
-0.099270 ** 

(0.037163) 

-0.076540 ** 

(0.036693) 

GARCH 

effect, 3 

0.639050** 

(0.12722) 

0.869764 

** 

(0.033606) 

0.880009** 

0.035856) 

0.889406 ** 

(0.038465) 

Tail effect     

Positive 

skewed, k 

0.220577* 

(0.039876) 

0.146946 ** 

(0.037063) 

0.101912 ** 

(0.039241) 

0.132979 ** 

(0.039928) 

Heavy tail, 

v 

10.790454** 

(3.3572) 

9.961764** 

(2.2595) 

12.057063** 

(3.4116) 

11.187558** 

(2.8920) 

Selection:     

AIC 1.992949 1.511084 1.634400 1.548037 

SIC 2.026189 1.544323 1.667639 1.581276 

HIC 1.992874 1.511009 1.634324 1.547961 

Diagnose:     

Q(10) on  

Std Res 

6.35580 

[0.7038473] 

13.7781 

[0.1304392] 

18.8531 

[0.0264715]* 

15.8333 

[0.0704461] 

Q(10) on 
Squared  

Std Res 

3.22014 
[0.9197926] 

10.2456 
[0.2482117] 

13.0025 
[0.1117648] 

8.51526 
[0.3848210] 
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Table 3 

Estimation for HARX-GJR-GARCH(1,1) Skewed-t 
 

HARX RV TV minRV medRV 

𝜃0 
-0.166106** 

(0.026439) 

-0.074069** 

(0.015601) 

-0.085501** 

(0.017246) 

-0.074733** 

(0.018125) 

Risk 

premium, 𝜃1 

-5.731659 ** 

(0.97988) 

-4.753559 ** 

(0.67091) 

-5.211187** 

(0.69947) 

-4.767024** 

(0.65210) 

Lagged one 

Daily effect, 

𝜃𝑑−1 

0.161962** 
(0.036788) 

0.430673** 
(0.029338) 

0.385727** 
(0.028690) 

0.421489 ** 
(0.028682) 

Lagged two 

Daily 

effect,𝜃𝑑−2 

0.157122** 

(0.033903) 
   

Lagged one 

Weekly 

effect, 𝜃𝑤−1 

0.443923 ** 

(0.084823) 

0.346255 ** 

(0.039757) 

0.381244  ** 

(0.040508) 

0.347867 ** 

(0.040319) 

Lagged one 
Monthly 

effect, 𝜃𝑚−1 

0.489938** 

(0.086112) 

0.203454** 

(0.029031) 

0.210315** 

(0.030910) 

0.214368** 

(0.030181) 

GARCH     

𝛼0 
0.074653 

(0.069306) 

0.011817 ** 

(0.0074767) 

0.011142 

(0.0071771) 

0.007775 

(0.0074251) 

ARCH 

effect, 𝛼1 
0.156181** 

(0.063363) 

0.082213** 

(0.022998) 

0.080794** 

(0.022790) 

0.073186 ** 

(0.027142) 

GJR effect , 

𝛼2 
-0.041194 

(0.042117) 

-0.062108** 

(0.029357) 

-0.070183** 

(0.025805) 

-0.061248** 

(0.027722) 

GARCH 

effect, 𝛼3 
0.715157** 

(0.19896) 

0.907050** 

(0.037445 

0.919537 ** 

(0.033410) 

0.931037** 

(0.044926) 

Tail effect     

Positive 

skewed, k 

0.219119 ** 

(0.040801) 

0.142711** 

(0.042693) 

0.089598** 

(0.040763) 

0.131946** 

(0.043622) 

Heavy tail, v 
10.600026  ** 

(3.1635) 

9.461295** 

(2.0816) 

11.260353** 

(3.0831) 

10.721542** 

(2.7170) 

Selection     

AIC 2.015484 1.504473 1.624983 1.540621 

SIC 2.055371 1.541036 1.661547 1.577185 

HIC 2.015376 1.504382 1.624892 1.540530 

Diagnose     

Q(10) on 

Std Res 

8.73434 

[0.3652005] 

16.2113 

[0.0937408] 

10.8918 

[0.3660074] 

14.3535 

[0.1574690] 

Q(10) on 

Squared Std 

Res  

3.84489 

[0.8708394] 

8.75900 

[0.3630326] 

9.30398 

[0.3173055] 

9.79238 

[0.2799015] 

 

* and ** indicate 5% and 1% level of significance respectively 

(  ) represents the standard error of the estimated parameter 

[  ] represents the p-value 
 

Interestingly, it is noted that HARX models with 

realized volatility represented by TV, minRV and medRV 

show that the past daily volatility contributes the strongest 

impact to the logarithmic realized daily volatility, followed 

by the weekly and monthly volatility. This is in line with the 

widely acceptable notion that the most recent past volatility 

should have the largest impact on the current volatility. 

However, HARX model with the standard RV volatility 

representation (RV) shows the reverse impact, which may 

be caused by the un-smoothen noisy RV. For the risk 

premium coefficient, 1, all of the HARX models indicate 

positive correlation between the volatility and the negatively 

expected return (logarithmic volatility is in negative value). 

This is rather reasonable as the asset with a higher risk 

should offer a higher return in order to encourage the 

investors to own it.  In the asymmetric GJR-GARCH 

components, the coefficient 𝛼2 for the models with realized 

volatility represented by TV, minRV and medRV are 

significant at 5 %. This shows that there is a significant impact 

due to the asymmetric volatility, and therefore, it is necessary 

to consider the asymmetric GJR-GARCH component. For 

skewness of the various RV innovations, the coefficient k’s 

are all positively skewed and all the tail parameters, v’s 

exhibit fatter tails than normal distribution with the values 

around 10 degrees of freedom. In other words, the 

innovations are heavy-tailed and positively skewed.  

For the asymmetric skewed ARFIMAX-GJR-GARCH 

model, the fractional difference parameter, d’s are all 

significantly different from zero, which indicate the 

presence of long memory volatility. Apart from this, the risk 

premium coefficient 2, the coefficients related to the 

volatility of RV  ’𝑠, and the skewed-t distribution indicate 

similar results as the HARX models. 

For the model diagnostic, all the models under skewed-

t innovations failed to reject the Ljung-Box serial 

correlations for standardized squared innovations.  However 

for standardized innovation of ARFIMAX (minRV), the test 

is rejected at 1 % level of significance.  This finding 

indicates that the minRV representation does not 

statistically fit well in the ARFIMAX model. The model 

selections are based on AIC, BIC and HIC.  According to 

these information criteria, the models under the assumption 

of skewed-t distributed innovation outperform the normally 

distributed innovation models. Also, all the asymmetric 

skewed HARX models perform better than the asymmetric 

skewed ARFIMAX models. As a summary, the asymmetric 

skewed HARX is the most preferable model compared to 

the others in the estimation. However, there is no guarantee 

that this result will persist in the out-of-sample forecast 

evaluations due to other factors such as over-

parameterization issue and unforeseen structural changes in 

the series (Hong et al., 2004).    
 

 Forecast evaluations 

 

  
 

 
 

 
Figure 2.  Out-of-sample forecasts for the asymmetric skewed 

HARX-GJR-GARCH 



Wen Cheong Chin, Min Cherng Lee, Grace Lee Ching Yap. Modelling Financial Market Volatility Using Asymmetric… 

- 378 - 

In order to provide reliable out-of-sample forecast 

evaluations, the actual volatility is alternately represented 

by the proxies of RV, TV, minRV and medRV. For each of 

these proxies, a simple scoring rule is applied to rate the 

forecast performance amongst the competing models. Under 

this rule, the best model will be given 8 points. The mark 

reduces point by point, and eventually the worst model is 

given 1 point. The scores under the eight models with 

different volatility proxies will be added to a final score for 

the ranking purposes. Table 4 and Figure 2 report the forecast 

evaluations for RMSE, MAE and MZ test for all the models. 

Table 4  

Forecast evaluations using MAE, RMSE and MZ regression 

test 
 

MAE Actual volatility proxy 

Model RV TV minRV medRV rank 

ARFIM

AX  

– RV 

0.83492 0.93059 0.95904 0.94392 8 

-TV 0.88964 0.86509 0.87844 0.86136 6 

- 
minRV) 

0.89288 0.86449 0.87696 0.85995 5 

- medRV 0.89531 0.86595 0.87801 0.86096 7 

HARX-

RV 
0.70273 0.84172 0.88048 0.85646 4 

-TV 0.61875 0.57111 0.59585 0.57244 1 

- 
minRV) 

0.64290 0.57399 0.59718 0.57499 3 

- medRV 0.63243 0.56652 0.59604 0.56900 1 

RMSE Actual volatility proxy 

Model RV TV minRV medRV rank 

ARFIM

AX  
– RV 

1.00015 1.13628 1.16986 1.14898 8 

-TV 1.10320 1.04030 1.05685 1.03898 5 

- 

minRV) 
1.10721 1.03915 1.05517 1.03745 4 

- medRV 1.11069 1.04051 1.05627 1.03863 6 

HARX-

RV 
0.87754 1.06303 1.10554 1.08465 7 

-TV 0.77161 0.70561 0.74263 0.71675 3 

- 
minRV) 

0.79922 0.70379 0.73798 0.71220 1 

- medRV 0.78940 0.70265 0.73918 0.71302 1 

MZ test 

(R2) 
Actual volatility proxy 

Model RV TV minRV medRV rank 

ARFIM
AX  

- RV 

0.0873 0.1147 0.1134 0.1161 5 

-TV 0.0638 0.0884 0.0866 0.0906 8 

- 

minRV) 
0.0678 0.0935 0.0917 0.0956 6 

- medRV 0.0664 0.0916 0.0898 0.0937 7 

HARX-
RV 

0.2669 0.2459 0.2317 0.2358 4 

-TV 0.5759 0.5560 0.5277 0.5444 3 

- 

minRV) 
0.5651 0.5566 0.5290 0.5462 1 

- medRV 0.5756 0.5582 0.5279 0.5455 1 

 

 

MZ test: adjusted R2 under simple linear regression. 

Overall, the jump-robust volatilities (TV, minRV and 

medRV) show better scores than RV in all the evaluations. 

This is an expected outcome because RV is nosier than the 

other volatility proxies. The HARX models outperform the 

ARFIMAX models under the similar volatility proxies. In 

other words, the HARX specifications under the 

heterogeneous market hypothesis are better at explaining the 

fluctuation of market prices.  Overall, the first three best 

ranked models are consistent under the evaluations of MSE, 

MAE and MZ tests.  The HARX model based on medRV is 

ranked as the best, followed by the minRV and TV. This is 

parallel to the definition of robustness by Patton (2011) 

whereby the forecast performance ranking is consistent 

regardless of the proxy used in the evaluations.  It is worth 

to note that the determination of MZ test improves to 

approximately 0.5600 under the representation of TV, 

minRV and medRV for the HARX models.  In other words, 

the forecasted volatility is able to explain approximately 56 

% of the variation in the actual volatility.  The ARFIMAX 

models on the other hand, only explain around 10 % of the 

variation in the actual volatility. 

Market Risk Determination Using Value-At-Risk 
 

For market risk determination, we compute the value-

at-risk using both the HARX and ARFIMAX models based 

on RV, TV, minRV and medRV models. The value-at-risk 

(VaR) is one of the famous market risk indicators (Jorion, 

2006) in the actuarial industries. Following the  probabilistic 

framework by Tsay (2010), let r() be the change in value 

of the returns in stocks market from time t to t+ for a 

market.  Denote the cumulative distribution function (CDF) 

of r() by F(x), the individual VaR  of a long position over 

the time horizon  with probability  is defined as 

Flong(VaR i)= P[r i ()  VaR i]= .                 (7)

 For example, under the asymmetric skewed 

HARX-GARCH estimation, the long financial position of 

single market q% quantile is written as 

       𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑘) = 𝑟(𝑘) + (𝐷𝑞% × �̂�(𝑘))                   (8) 

where �̂�(𝑘) represents the conditional volatility forecast for 

k-day ahead.  The 𝑟  can be forecasted using the ARIMA 

model under the assumption of 𝐷 distribution.  The 𝐷 can be 

assumed to be a normal or a student-t distribution in this 

specific illustration. Finally, the VaR can be quantified as a 

product of the capital of investment and the quantile at a 

specific level of confidence within a predefined time horizon. 

Under a long position trading, an investor buys a stock, 

holds it while it appreciates, and eventually sells it for profit. 

He encounters risk when the price of the stock plunges, 

which occurs at the left tail of the return distribution. 

Suppose that an investor holds a long financial position of 

the S&P500 stock market with a capital of $1 million.  The 

5% quantile for one-day ahead asymmetric skewed HARX 

(TV)-GJR-GARCH for the returns with normal and student-

𝑡 distributions are Normal return:  
𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(1)𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑟(1) + 𝑧0.05 × �̂�𝑇𝑉(1)   
0.002568 + (−1.64485) × (0.595386)  =  −0.97675 

Student-t return:   𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(1)𝑠𝑡𝑢𝑑𝑒𝑛𝑡−𝑡 
= 𝑟(1) + 𝑡𝑣=4.861553 × �̂�𝑇𝑉(1). 
 = 0.003073 + (−2.13185) × (0.595386) = −1.26620 
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It is understood that the negative sign in 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(1) 
indicates a loss, which is located at the left tail distribution. 

The normal VaR with probability 0.05 is 

0.97675$1000000 = $9767.5 whereas the student-t VaR is 

$12662.0. These results show that with probability 95%, the 

potential loss of holding this position for the next day (1 day 

horizon) is $9767.5 and $12662 respectively for these return 

distributions. The student-𝑡 assumption indicates a higher 

VaR compared to the normal assumption. In other words, 

making an inappropriate parametric distribution assumption 

against the empirical student-t distribution often faces the 

underestimation issue in VaR determination. Similarly, the 

VaR with probability 0.01 can be computed using the same 

procedures. Table 5 shows the overall results of VaR 

evaluations for all the volatility models. 
 

Table 5 

Value-at-risk for various types of RV 
 

 Type of RV 

Value-at-risk  RV TV minRV medRV 

VaR 5% - Normal $12366.8 $9767.5 $9787.4 $9588.4 

VaR 5% - Student-t $16030.8 $12662.0 $12687.8 $12429.8 

          

VaR 1% - Normal $17501.2 $13825.1 $13853.2 $13571.7 

VaR 1% - Student-t $28199.1 $22278.1 $22323.4 $21870.0 

Conclusion 
 

This study introduces the asymmetric skewed 

ARFIMAX and HARX-GJR-GARCH models in the S&P 

500 index.  Besides the standard realized volatility, we 

examine these models with the jump-robust volatilities such 

as tripower realized volatility and the nearest neighbor 

truncation realized volatility. The extended HARX-GJR-

GARCH models are capable to capture the risk premium, 

asymmetric volatility of the realized volatility, skewed and 

heavy-tailed innovations. They perform better in the 

estimation and the out-of-sample forecast evaluations 

compared to their counterpart, the ARFIMAX-GJR-

GARCH models. The empirical study shows that the jump-

robust realized volatilities outperform the standard realized 

volatility in the forecast evaluations. As a conclusion, this 

study provides alternative models that are able to deal with 

high volatile market condition. In addition, the extended 

HARX-GJR-GARCH models are also in line with the 

financial framework of the heterogeneous market 

hypothesis. An illustration of value-at-risk shows that the 

forecasted results can be easily used in the market risk 

determination which provides very useful information for 

portfolio investments and risk management

.
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