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• Thermography was explored as a means for the detection of micro defects.
• We developed a system capable of finding cracks in metal parts using thermography.
• The system is very robust thanks to the complete knowledge of the imaging process.
• The system is able to deal with parts of very complex geometry.
• The proposed inspection method is cleaner than other alternatives currently in use, and does not use polluting substances.
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a b s t r a c t

Cracks are themain source of failure in the production ofmetal parts: systems for checking their presence
are therefore crucial for defect-free production. In this paper, an autonomous system for performing this
quality control is presented. The system is equipped with a heating tool, a thermocamera, and a robot
to handle the part. The inspection process is based on the observation of the propagation of thermal
waves through the inspected part, a method that can highlight very small cracks with high reliability.
A knowledge-based approach to visual inspection is exploited for detecting the cracks: all the system
parameters are known by means of an accurate calibration of the workcell. The system was tested on
a large dataset and demonstrated its capability of detecting tiny production defects, that can lead to
dangerous failures when the metal components are put under strong mechanical stress.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Visual inspection is the key to defect-free manufacturing. A
vision system that checks the parts along the production line
offers multiple advantages, first of all the capability of analyzing
each produced piece, that is a crucial requirement to satisfy the
highest quality standards. Systems employed for visual inspection
need to adapt to the parts to be checked: the complexity of
such systems therefore ranges from light units, running on rather
simple embedded hardware, to complex combinations of cameras,
lighting, and robotics [1–3].

Focusing on the production ofmetal parts for high-performance
components, like crankshafts for combustion engines, one of the
main source of failure is represented by the presence of cracks:
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even very small fractures of the metal structure can break the
part when it is subject to strong mechanical stress. Currently, the
presence of cracks is performed usingMagnetic Particle Inspection
(MPI): the part to be analyzed is first washed, then put into a
magnetic field and finally covered with magnetic particles, either
in the form of a dry powder, or, more frequently, in a wet
suspension. Cracks are detected because they cause leaks in the
magnetic flux; such leaks are highlighted by the particles, which
can be inspected by means of a UV light. The whole process is
very complex and needs to be done manually; it is also extremely
time-consuming, because parts need to be cleaned, magnetized,
covered with magnetic particles, inspected, de-magnetized and
cleaned again. Moreover, magnetic particles and their carrier are
a source of pollution, and should be properly processed after use,
with high costs.

Even thoughMPI is still used in industry, current technology of-
fers a large set of tools that enables the introduction of alternative
inspection methods, that offer the advantage of being green, fast,
and automatic. Investigating how it is possible to replace MPI with
more modern technology was the goal of the ThermoBot project
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(www.thermobot.eu) funded by the European Commission in the
Factory of the Future research program. A major advantage of vi-
sual inspection systems is that they are able to analyze parts ex-
ploiting not only cameras working in the visible domain, but also
in different ones, like near infrared [4], far infrared [5,6] and X-
rays [7]. This opportunity is exploited in the project, as its driving
idea is to exploit thermography to replaceMPI. The project goes be-
yond crack detection in metal parts: analysis of non-metallic ma-
terials, like carbon fiber, are also faced.

The two inspection systems developed in the project share the
feature that inspection is performed bymeans a thermal excitation
method (e.g. a laser or a high-power lamp) and a far infrared (FIR)
camera, that observes how the heat diffuses inside the part: since
defects cause alterations on the heat flux, such alterations can be
exploited to inspect the part. This enables the system to detect not
only cracks in metal parts, but also inspect inner defects in CFRP
(Carbon Fiber Reinforced Plastic) parts.

This paper describes the system developed for detecting
cracks in metal parts [8,9]. The paper is structured as follows:
in Section 2 the state of the art is revised, while the system
structure is explained in Section 3. The core of the visual inspection
system, including the knowledge-based approach, that enables the
inspection of very small defects, is detailed in Section 4, and the
results obtained during the experiments are described in Section 5.
Section 6 reports the final remarks.

2. State of the art

The topic of crack detection has been tackled in a number of
different ways in the literature, given the strong importance of this
type of quality check. A variety of approaches have been used, like
the propagation of ultrasounds that is used in [10] to detect cracks
and lamination defects in metallic pipes, or Eddy currents [11–13].
Other methods exploit magnetic cameras to detect cracks in parts
that are at high temperature [14], or magnetic flux leakage [15],
while the method described in [16] studies the heat produced by
the Joule effect.

Methods based on image analysis have also been exploited
in the literature, ranging from detection of welding defects in
pipelines [17] to concrete surface analysis [18] and the pro-
tection of cultural heritage [19]. Thermographic image analy-
sis systems have recently been proposed for performing in-situ
non-destructive inspections during thermomechanical fatigue
tests [20]; the system showed a high sensitivity, being able to de-
tect cracks smaller than 500 µm. The system proposed in [21] is
slightly different from the others discussed above as it is meant to
inspect different types of materials during fatigue tests, and detect
the cracks as soon as they appear.

Thermography-based crack detection is often coupled with
excitation methods like eddy currents [22] or laser beams;
in particular, lasers provide the inspection process with high
flexibility, as it is possible to concentrate the heat on a small spot,
and enabling and disabling the heat source can be done instantly,
generating pulses at high frequency. This last characteristic is
exploited in pulse thermography and techniques that are derived
from it [23]. Another technique based on laser technology is the
‘‘flying spot active thermography’’ [24], that refers to a laser spot
that causes a local excitation on the part under inspection. This is
similar to the analysismethod employed in the ThermoBot project,
and was chosen in [24] to inspect high pressure turbine blades.

3. A visual inspection system for crack detection

The inspection process described in this paper is based on the
analysis of how thermal waves propagate through a metal part.
Fig. 1. The sample part used for the experiments: a metal crankshaft.

The inspection cell is composed by a laser, a thermocamera, and
a robot. The laser is exploited to generate the thermal excitation
and the robot is used to move the part, in order heat and inspect
different regions of the part. The thermal waves are acquired by
the thermocamera and automatically processed. To obtain highly
detailed images and enhance the sensitivity of the system, the FOV
(Field Of View) of the camera is narrow, therefore only a small
region of the inspected part can be viewed. This does not limit the
system, because only a small area around the laser spot is affected
by the thermal waves.

The introduction of the robot in the inspection cell is needed
because the thermal waves are generated by moving the heat
source over the part. Moreover, the capability of moving the
sample is crucial for inspecting parts of complex shape that
causes a large number of self-occlusions, i.e. some sections of the
inspected part hide other sections, depending on the perspective
under which the item is framed. The robot is able to change such
perspective, letting the system analyze the whole surface. Thanks
to the robot, the visual inspection system offers a high level of
flexibility, that enables it to inspect parts of very different size and
shape.

3.1. Test samples

The system described above is meant for analyzing metal parts,
that require a powerful heat source. The sample parts exploited in
the experiments are heavy metal crankshafts, shown in Fig. 1.

To perform the analysis, the part is first fixed to the robot,whose
movements determine which regions are thermally excited by the
laser and framed by the camera. The robot path is automatically
generated, based on the part geometry (provided as CAD data).
The inspection process requires the laser to go over every area
that should be checked: this leads to a long processing time for
parts that are rather large, and have a complex geometry, as for
the crankshaft of Fig. 1. To reduce the time needed, a set of regions
where cracks are more critical was defined, and the analysis is
restricted to those areas only.

3.2. Inspection system workcell

The scheme of the inspection system workcell is shown in
Fig. 2(a). In (b) it is possible to see the components of the workcell:
the yellow robot is clearly visible, the laser is the metal box on the
top, while the thermocamera is the red box on the top right corner.
During the inspection process, the robot places the part in a zone in
which the camera FOV and the laser beam intersect: the crankshaft
in Fig. 2(b) is in that area.

As said above, the workcell hosts a powerful laser source: when
it comes to heavy metal parts, the amount of energy needed for
generating a heat wave that is visible with a thermocamera is
rather high: a source reaching a power level of 7 W was chosen in
our case. The speed at which the laser spot runs over the inspected
part (called ‘‘laser speed’’) is an important system parameter.

The robot path planning is performed in order to guarantee a
laser speed which is almost constant, that should be related with
the time needed for the heat to diffuse through the metal. For
example, a low laser speed leads to a diffusedheat thatwouldmake

http://www.thermobot.eu
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Fig. 2. Scheme (a) and picture (b) of the workcell for inspecting metal parts. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
it impossible to detect cracks. On the other hand, a very high speed
strongly reduces the energy going into the part, and leads to weak
thermal waves. The best choice for this parameter, which is the
value we used for the experiments, is 100 mm/s.

3.3. Knowledge-based inspection process

The main feature of the inspection system is the high level of
knowledge of all the elements that influence the scene framed
by the camera and the image formation. There are three types
of information that are needed. The first is about the physical
structure of the system, that includes the knowledge of the
camera parameters and of the reciprocal position and orientation
of the three elements building the system. This is recovered by
performing a workcell calibration, that is done considering the
camera as the reference: both a laser-camera and a robot-camera
calibration are run. This calibration needs to be performed only
once, and data provided by such process is valid until one of the
three elements of the system is moved.

The second type of information needed is given by the CAD
model of the inspected part, and the geometry of the gripper used
for moving the part. This information needs to be provided for
every new part that is inspected by the system. As mentioned
above, the CAD data may contain critical areas to which the
inspection shall be restricted in order to speed up the process.

The third type of information exploited by the system is the
current status of the robot, that is the only element that changes
its geometry during the inspection. The software framework
controlling the workcell needs to guarantee a very accurate
synchronization between robot and camera, in order to associate
the correct robot position to each image acquired. This is needed
in order to recover the position of the inspected part in a given
image, which has an impact on the projection modules that will
be described in Section 3.4.

The information mentioned above is the key to the knowledge-
based approach exploited for performing image segmentation. This
expression is commonly used in the literature to indicate that a
priori information is available about the observed phenomenon,
e.g. the shape of the object to be detected [25,26]. In the context
of the Thermobot project, the inspection is said to be knowledge-
based because several modules of the system exploit information
about the workcell: this applies, for example, to the image
segmentation described in Section 4.1 and to the analysis on
thermal persistence, discussed in Section 4.3.

The choice of developing a knowledge-based approach is crucial
to enhance the detection performance and to filter out several
noise factors that affect the imaging process. The thermal waves
generated by the laser source need to be distinguished from
other phenomena that generate similar patterns on the image, e.g.
reflections caused by the shiny surfaces of the metal parts.
a b

Fig. 3. Different accuracy in mesh generation: a mesh can be generated using a
lower number of larger elements (a) or a higher number of smaller elements (b).

3.4. Forward and backward projections

The module that most deeply exploits the available system
knowledge is in charge of evaluating forward and backward
projections, that is, projecting points from 3D world coordinates
to 2D image coordinates, and vice-versa. More specifically:

• given a point on the 3D CAD model of the inspected part,
determine in which point of the image it is projected in the
current configuration of the acquisition system;

• given a pixel (or a group of pixels), determine which area of the
inspected part was projected on such pixels.

The projection module is exploited for evaluating the laser
spot center on the image and to measure the thermal persistence
described in Section 4.3. This transformation requires an extremely
high accuracy for the synchronization between camera and robot.
The 3DCADmodel is represented in terms of amesh, that is, a set of
triangles and vertices. This representation is a common choice, and
can be derived from multiple CAD file formats—the Open Cascade
Technology (OCCT)1 was used in our system. The mesh can be
generated using different accuracy levels, that lead to larger or
smaller mesh elements, as it can be seen in Fig. 3.

An example of projection is shown in Fig. 4. In the lower half of
the image a portion of the CADmodel is visible, that corresponds to
the region framed by the camera. In the upper half of the image it is
possible to see the result of the projectionmodule, that substituted
the points on the mesh surface with pixels coming from the input
image, and projected onto the CAD model.

In the following, the three elements building the projection
module will be detailed.

3.4.1. Laser-mesh projection
This sub-module finds the projection point of the laser onto the

piece mesh, in particular it retrieves the point over the first mesh
triangle hit by the laser ray. In order to avoid unnecessary com-
putation, a Z-buffering algorithm has been used to sort triangles

1 http://www.opencascade.org/.

http://www.opencascade.org/
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Fig. 4. Example of projection results. In the lower part of the image, the portion
of the CAD model corresponding to the region framed by the camera is visible. In
the upper part of the image, the same region of the inspected part is obtained by
projecting the 2D image pixels onto the CAD model.

with respect to their distance to the laser origin and direction. The
ray-triangle intersection test has been implemented following the
procedure proposed by Möller et al. [27]. Fig. 5(a) shows the pro-
jection point Pw of the laser ray onto the piece the mesh.

3.4.2. Mesh-camera projection
This componentmakes use of the camera intrinsic and extrinsic

parameters to compute the projection of a 3D point on the camera
projection plane (1). Intrinsic parameters are expressed as a
camera calibrationmatrixKwhile the extrinsic parameters consist
of the camera translation C and orientation R with respect to the
world origin. Using the homogeneous coordinates convention,2 the
2D projection point PI of the 3D point Pw is given by:

λPI = [KC |03]

R −RC
0T
3 1


Pw, (1)

where λ is the homogeneous scaling factor. Fig. 5(b) shows the
projection of the point Pw to PI on the camera image plane.

3.4.3. Camera back-projection
The camera back-projection component finds the ray corre-

sponding to the back-projection of a 2D point on the camera image
plane back to the 3Dworld. Given a 2D point PI = (x, y, 1)T on the
image plane, there exists a set of 3D points that are projected to PI .
This set of points is distributed along the ray P(λ) connecting the
camera center C and the 3D point corresponding to PI , given by:

P(λ) = C + λR−1K−1PI . (2)
Fig. 5(c) shows the back-projection of the point PI to a 3D ray P(λ).

4. Image processing for crack detection

The core of the crack detection system is the image processing
module, whose task is to analyze the acquired images, in which it
is possible to see the heat diffusion. The crack detection algorithm

2 For an exhaustive introduction to the computer vision concepts used here,
please refer to [28].
focuses on the heat source, namely the laser spot, and analyzes its
shape and deformations. The main blocks of the image processing
module are summarized in Fig. 6: the spot contour is extracted, and
its shape measured by means of features, that are in turn used to
feed a classifier.

4.1. Laser spot segmentation

The first step of the image processing is the segmentation of
the laser spot. This task follows the knowledge-based approach,
since the center of the spot is provided by the system, as explained
in Section 3.3: the system knows the location of the inspected
part, and the direction of the laser beam; it is therefore possible to
calculate the point in which the beam hits the part. Such 3D point
is then projected onto the image exploiting the projection module
described in Section 3.4. Knowing the location of the laser spot in
the image is particularly helpfulwhen reflections are present in the
image, as they show up as saturated areas, similarly to the laser
spot.

The laser beam is modeled as a line: the system therefore
provides just a point on the image, that represents the spot center.
However, the crack detection algorithm is based on the analysis
of the contour of the spot: this needs to be segmented analyzing
the image. The algorithm for segmenting the image is based on the
following steps:
• adaptive thresholding, for isolating the bright area around the

given spot center;
• application of morphological operators for reducing noise;
• extraction of the spot contour.

The adaptive thresholding is exploited to binarize the input
image depending on the image contrast and brightness, that can
change depending on the camera automatic gain level. The mor-
phological operators help to smooth the noise affecting the con-
tour: the binarization often provides a rather irregular shape, that
is a strong noise source affecting the evaluation of the feature. The
third step mentioned above is the contour extraction, that trans-
forms a group of pixels into the higher-level contour representa-
tion.

In Fig. 7 some results of the hotspot extraction algorithm are
represented: the spot is correctly segmented when its shape is
deformed and the center of the laser beam is far from the center
of the hot region (a) and (d). The algorithm provides good results
also when the hot spot location is close to the image edge (c), and
other spots are in the image, because of a crack (b) and (c).

4.2. Spot shape measurement

The shape of the contour extracted from the hotspot is
measured by means of features, as summarized in Fig. 6. Each
feature is evaluated around the hotspot contour, that is, in a small
crop of the original image, that includes the hot spot. Several
features were exploited in this work, in order to gather a high
level of detail: the best results were achieved using Radial Density
Profile (RDP),Weber’s LawDescriptor (WLD), Pyramid Local Binary
Pattern (PLBP) and Morphological Features (MF), that are detailed
in the following.

4.2.1. Radial density profile
The RDP method [29] is a general-purpose feature for mea-

suring texture. Since pixels composing the texture are considered
along circular patterns, this method is effective when patterns to
be considered have a circular or quasi-circular shape. The RDP was
used to characterizemedical images containing viruses: suchmed-
ical images are rather similar to the case of laser spot analysis as in
both cases it is important to study the circular shape of an object.

The RDP is exploited to analyze the area around the laser spot
and possible deformations of the heat flow, or of the laser spot
itself. The RDP is evaluated on the area around the laser spot: a
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(a) Laser-mesh. (b) Point-image. (c) Backprojection.

Fig. 5. Working principle of the projection module: projection point Pw of the laser onto the piece mesh (a), projection of the point Pw to PI on the camera image plane (b),
and back-projection of the point PI to a 3D ray P(λ) (c).
Fig. 6. Scheme of the image processing system for crack detection. The laser spot is segmented in the image, and its shape is measured by means of features, which are in
turn used to feed a classifier.
a b

c d

Fig. 7. Examples of hot spot extraction: in (a) the laser spot deformation is caused by the hot region corresponding to the previously heated positions. In (b), a crack prevents
the heat to uniformly diffuse through the metal; this appears as two hot spots that are jointly segmented. In (c), the real hot spot is correctly distinguished from the one
generated by the crack. Finally in (d) is shown an example of correct separation between the real laser spots and other hot regions caused by cracks.
crucial part of this method is the reliable extraction of the spot
itself, and of the surrounding area. In principle, identifying the
laser spot is an easy task, because it is the lightest part of the
image. However, several noise factors might arise, like reflections
on shiny parts, and deformations caused by previous positions of
the laser spot, that still have a high temperature. Substantial work
was devoted to increase both reliability (i.e., the correct hot spot is
filtered from reflections and other hot areas) and accuracy (i.e., the
right shape is extracted) of this low-level algorithm.

4.2.2. Weber’s law descriptor
Weber’s law descriptor (WLD) [30], is a descriptor based on

Weber’s law. Developed in the field of experimental psychology,
it describes the relationship between the increment threshold 1I ,
i.e. the minimum noticeable difference in a stimulus intensity that
can be detected by a humanbeing, and the initial stimulus intensity
I . The relationship states that:

1I
I

= k, (3)

where k is a constant. If the change is less than this constant
ratio then it is considered background noise. The ratio 1I/I is also
known as the Weber’s fraction. In other words, the Weber’s law
states that when a human being is subject to a given stimulus, the
lower the level of such stimulus, the smaller the variation he can
notice. In the evaluation of WLD, the concept of salient variation
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is applied to the difference in gray level between neighboring
pixels.

4.2.3. Pyramid local binary pattern
Pyramid Local binary pattern (PLBP) [31] is a variant of

Local Binary Pattern (LBP) [32] based on the Gaussian Pyramid
Decomposition of the original image. Standard LBP labels each
pixel xof a given imagewith a binary label based on the comparison
of the intensity of the pixel itself and P surrounding pixels located
at distance R from x. Differently, in PLBP each level l = (0, . . . , Lev)
of the Gaussian pyramid is built by blurring and downsampling the
previously computed level; LBP is then applied to each of the Lev
levels. We considered Lev = 2 including level 0, i.e. the original
image. Blurring and downsampling were performed respectively
by applying a 5 × 5 lowpass kernel and a downsampling ratio
Rx = Ry = 2. The chosen LBP operator is the uniform bins with
(P = 8, R = 1) and (P = 16, R = 2).

4.2.4. Morphological features
Morphological features (MF) is a technique originally developed

for analyzing Indirect Immunofluorescence (IIF) images, a tech-
nique used in medical imaging for analyzing cells and tissues [33].
Using the maximum and the minimum intensity values of the im-
age, a set of 20 equally spaced thresholds is evaluated: each one is
then used for generating a binary image. For each of the binary im-
ages 6 features are extracted: (i) number of objects, (ii) total area,
(iii) area of the convex hull, (iv) eccentricity, (v) Euler number and
(vi) perimeter. Each binary image is also used to create 20 cut-outs
from the original image for extracting features based on intensity
and entropy.

The procedure described above is applied three times: the
first time to the acquired image, the second and third times to
the smoothed copies of the original image, using two different
Gaussian kernels. The final feature vector is obtained by combining
the features obtained this way; such combination leads to a rather
large feature vector, containing 966 elements.

4.3. Analysis of thermal persistence

In addition to the hotspot analysis described in Section 4.2,
a further inspection method was developed, that is called ATP
(Analysis of Thermal Persistence). This method is based on the
observation that a crack prevents or at least limits the heat
diffusion through the part, which possibly causes some energy to
accumulate in some regions. This gives rise to a sort of secondary
hotspot, as it is the case of Fig. 7(b). The ATP is capable of detecting
this effect, that is always connected with the presence of a crack.

Analyzing the available dataset it was observed that a crack
does not always cause a heat accumulation: this happens in half
of the cracks. This means that this method alone cannot be the
core of a crack detection system; however, the detection of heat
accumulation is an important complementary module to the spot
shape analysis, because it can observe an effect that happens at a
distance from themainhotspot, andwhich is therefore not possible
to detect by looking at the laser spot neighborhood.

The ATP works by recording the 3D coordinate of the point
in which the laser beam hits the inspected part, exploiting the
projection module described in Section 3.4. Such coordinate is
saved for each image, which means that the laser trajectory on the
part is sampled at the camera acquisition frequency, namely 80 Hz,
which ensures a very accurate description. The locations on which
the laser hits the part in the past are obviously constant in 3Dworld
coordinates. However, they change from frame to frame in the 2D
image domain, because the perspective from which the camera
frames the part changes continuously, driven by the robot motion.
Since theATPneeds to analyze the image in those regions thatwere
heated in the past, the hit locations in 3D need to be projected onto
the 2D image domain at each new frame that is processed.

Once the locations of the previously heated positions are
available in the current image, the ATP checks the thermal status
of the regions corresponding to such positions; regions are defined
considering a circular shape around each heated position and
sampling some points inside such circle. Points selected this way
are analyzed by considering the gray level of the thermal image:
such level is considered together with time instant in which that
region was heated. Regions that show a high energy level after a
long time reveal the presence of a crack.

5. Experimental results

The system described so far was tested using the crankshafts
described in Section 3.1, that are produced by BRP Powertrain, one
of the partners of the Thermobot project. As it can be seen from
Fig. 1, the geometry is extremely complex, and fully exploits the
flexibility provided by the articulated robot. Cracks affecting the
sample parts are extremely small: the length is in the order of
1–2 mm, while the thickness is in the order of 50 µm.

5.1. Types of surface of the metal parts

In Fig. 1, it is possible to see that the part shows two different
types of surfaces, that are either rugged or polished. While in
the former case it is rather easy to heat the part and perform
the inspection, the latter surface is extremely difficult to analyze,
because almost all the energy of the laser beam is reflected. The
way surfaces are finished is the main aspect influencing the visual
inspection process; other factors, for example the non-uniform
metallographic structure due to the forging process, do not cause
any visible influence on the heat transfer.

The analysis of polished area turned out to be unfeasible using
the laser as a heat source, even by applying a graphite coating
on the part: the resulting images are like the one shown in
Fig. 8. Looking at the image it is possible to see that the laser
spot, in the red box, is very hard to see, while reflections (in the
green boxes) create stronger patterns. Even though the projection
module described in Section 3.4 provides information about the
right location of the spot, the spot in the red box is nevertheless
too weak to be effectively analyzed using the techniques reported
in Section 4.2; the ATP is also ineffective: there is no persistence,
since even the main spot is not clearly visible.

Even though alternative heating methods exist, e.g. induction
heating, the laser beam is the only method that can be applied to
parts of complex shape: for example, induction works effectively
only if the inductor (the element used for inducing currents in the
part to be heated) has a shape similar to the part to be inspected.
This means that a different inductor would be necessary for each
type of curvature to be analyzed. The laser was therefore chosen
because it is the only way to analyze parts of any shape, even
though not all surfaces can be inspected.

5.2. Laser spot classification

The features described in Section 4.2 are used as input to
a classifier, that was chosen to be a Support Vector Machine
(SVM) [34]. SVMs are general purpose binary classifiers which
learn the boundary between samples of two different populations,
projecting the samples into a multidimensional feature space and
drawing a separating hyperplane. An SVM is a maximum margin
classifier: it finds a decision surface that maximizes the distance
of the closest points in the training set to the decision boundary.
Several kernel functions (e.g. linear, polynomial, and radial basis
functions) can be used as approximating functions.
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Fig. 8. Image acquired when the laser hits a polished part of the crankshaft. The
pattern generated by the laser beam (red box) is very weak, and it is not suitable for
being analyzed. The green boxes highlight the reflections. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

In this study, radial basis function kernel was employed, as it
better adapts to the characteristics of the available dataset, which
is composed by a large number of images that were extracted
by a reduced number of sample parts. Usually, hundreds or even
thousands of samples are used to train a classifier, but this was not
possible in our case, since parts that can be used for training are
crankshafts with production defects, that are not very common.
No parameter optimization was performed, in order to avoid
overfitting. The parameter setting exploited for the experiments
is rather common: γ = 0.1; cost = 1000.

An important characteristic of the SVM is that it requires a
fixed number of input data. This means that the length of the
feature vectors used as input to the SVM needs to be constant.
However, the feature length depends on the size of the hot spot,
and is generally different for each input image that is analyzed. To
cope with this issue, it is necessary to resize every blob found in
the image to a fixed-length window prior to evaluate the features
described above. The size of such window was chosen to be close
to the typical dimension of a hot spot, in order to limit the loss of
detail caused by the resize operation.

The dataset used for the tests is made of the acquisitions of
9 different parts, for a total of more than 6000 frames. All the
parts used in the experiments show a crack in the rugged part,
for what was previously said. Since the dataset contains data
from 9 different sequences, the ‘‘leave-one-out-sequence’’ testing
protocol was adopted, with a 9-fold cross validation: in each fold
the data from 8 sequences are used to train the SVM, and the
patterns of the remaining sequence are used for testing the system.
This procedure is performed 9 times, in this way each pattern is
used once as test pattern.

The area under the ROC curve (AUC) [35] is exploited as a
performance indicator, and is reported for all the features used in
the system. The AUC can be interpreted as the probability that SVM
will assign a higher score to a randomly picked positive pattern
than to a randomly picked negative one. The AUC evaluated for
the approaches employed in the system are reported in Table 1:
besides the different approaches discussed, the best-performing
combinations of more than one approach are also mentioned. The
combination is performed employing the sum rule.

The reported detection performance is frame-based, i.e. every
frame was separately classified and compared with the ground
truth. Thismakes it possible to understand the detection capability
of each method. However, the inspection system needs to provide
a feedback on the whole part, not on the single frames. Therefore,
the results on the single frames are combined to provide a
Table 1
AUC of the crack detection algorithm using the different features employed by
the system. Such features are RDP (Radial Density Profile), WLP (Weber’s Law
Descriptor), PLBP (Pyramid Local Binary Pattern), andMF (Morphological Features).
The ‘+’ sign indicates fusion of two or more methods, combined by sum rule.

RDP WLP PLBP MF PLBP + MF WLP+ PLBP+MF

68.8 73.9 77.08 77.47 81.47 83.30

per-part classification, rather than a per-frame outcome. It was
experimentally observed that the best choice in this case is to
declare that a part includes a crack if it is found in two consecutive
frames: this is enough to reject the spurious false positives.

5.3. Thermal persistence

The ATP was tested independently from the laser spot
classification, because the two systems run in parallel. During the
tests, the ATP showed very strong performance, since it provided
no false positives nor false negatives. Unfortunately, the thermal
persistence can be observed only in 56% of the sequence acquired.
In Fig. 9 it is possible to see the result of this kind of analysis: in
(a) is represented the normal working condition when no thermal
persistence is detected; the points corresponding to the previously
heated regions are drawn in the image—the darker the color, the
colder the region. In (b) the reaction of the algorithm when some
thermal persistence is found is shown: some of the sampled points
become lighter. The image in (c) represents the same scene once
the thermal persistence faded out: the algorithm nevertheless
tracks the persistence that was observed, which is indicated by the
red dots (now superimposed to a rather cold region). In (d) it can
be seen that the ATP works also when the thermal persistence is
joint to the laser blob.

The decision rule for merging the laser spot classification and
the ATP into an overall classification result is an or-condition: the
part is considered to include a crack if at least one of the two
systems finds it. This reflects the fact that the two systems look at
two different effects, each one being capable of detecting a crack.

6. Conclusions

In this paper a system for automatic crack detection in metal
parts was described. The system is based on a workcell composed
of a robot, a thermocamera and a laser source: such elements are
able to create thermal waves traveling through the inspected parts
and to observe their propagation. The system is equipped with
a computer vision software module that is able to automatically
detect the thermal waves and detect cracks by observing the
deformation of the laser spot and the persistence of thermal energy
in the part.

The strong point of the system is the high level of knowledge
of the imaging system, which is exploited to drive the computer
vision algorithms that perform the low- and mid-level image
processing. The introduction of high-level information to help
image segmentation is crucial to provide good performance
in the considered scenario: heat sources used when acquiring
thermographic images of metal parts typically generate a huge
number of reflections and artifacts, that could lead to a large
number of wrong detections and classifications.

Several tests were run employing very complex test parts,
namely crankshafts, showing extremely small cracks. Experiments
assessed the very goodperformance of the system, achieved thanks
to the knowledge-based approach presented in the paper.
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Fig. 9. Results of the ATP algorithm. When no thermal persistence is detected, the dots representing the past laser positions are drawn in a dark color (a). The color of the
dots becomes lighter in (b), when some energy is trapped by a crack and its fade-out phase is slower than in normal conditions. The ATP tracks the regions where thermal
persistence was found, even after the end of the persistence (c). In (d) the algorithm works even when the persistence is fused together with the main laser spot in a single
blob. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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