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ABSTRACT

Biplane X-ray angiography is currently the gold standard for
navigational guidance during percutaneous interventions in
vascular structures; but it remains limited to 2D projections.
In this study, we propose a novel graph-based voxel color-
ing method for 3D reconstruction of vascular structures from
biplane X-ray angiography sequences. The reconstruction is
obtained by using the random walks algorithm on a graph-
based representation of a discretized visual hull, to obtain the
probability of belonging to the vascular structure. A multi-
scale scheme is introduced to reconstruct at a finer level, while
being computationally efficient. The proposed method was
validated using the XCAT motion simulator and on calibrated
clinical data.

Index Terms— X-ray angiography, 3D reconstruction,
Random walks, vascular structures, biplane reconstruction.

1. INTRODUCTION

X-ray angiography is still considered the gold standard for
navigation during percutaneous interventions. To visualize
soft tissues, the cardiologist must inject a contrast agent in the
targeted vessels. As a 2D representation of a 3D object, X-ray
angiography suffers from foreshortening and requires expert
cardiologists to mentally reconstruct both views in the pa-
tient’s reference frame. Providing an online 3D model with-
out requiring more images than those already obtained dur-
ing intervention would provide cardiologists with a useful and
convenient view of the patient’s anatomy.

Using only two views for 3D reconstruction is a challeng-
ing problem that requires solving more ambiguities than in
three or more views, especially where overlapping can oc-
cur. Hadida et al. have proposed a stochastic motion com-
pensation scheme using a single view with a preoperative CT
[1]. The use of the fewer possible views to perform the re-
construction is a great benefit considering the exposition of
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the patients to X-rays and contrast agents. Obtaining a 3D
reconstruction directly with biplane X-ray angiography used
routinely during the intervention might contribute to reduce
the amount of exposition to radiation and contrast agent com-
pared to, for instance, a single-plane rotational acquisition.
Moreover, the reconstructed anatomical structure will be in
the same reference than the patient.

Multiview voxel-based 3D reconstruction has been a pro-
lific field of study [2]. Popular approaches such as voxel
coloring [3], space carving and volume intersection were
proposed to solve this problem. However, since vascular
structures are elongated and nearly cylindrical in nature,
those techniques may not produce a clinically useful recon-
struction. Most studies about 3D reconstruction, such as [4],
assume that vascular structures are of an ellipsoidal form, but
irregularities of vascular structures like stenosis or aneurysm
may not be fully represented. Multiview reconstruction meth-
ods, such as shape from silhouette, were proposed for the 3D
reconstruction of coronary arteries for such difficult cases
[5]. Random walks are widely popular for image segmen-
tation [6], in 2D as well as in 3D, for volumetric image
segmentation in CT and MRI. To our knowledge, this is the
first study to solve the voxel coloring problem using Random
Walks and to perform a 3D reconstruction of a biplane X-ray
angiography sequence. Hence, the contributions of this study
are as follows: 1) to reconstruct large vascular structures
in 3D, such as the aorta or pulmonary artery,S 2) to intro-
duce a random walks formulation to solve the voxel coloring
problem, 3) to validate on simulated and patient data.

2. METHOD

The proposed approach is divided in four major steps: pre-
processing of the images, graph construction, volume recon-
struction and finally, multiscale refinement. This process is
repeated for each image in the sequence to achieve a 3D re-
construction at each pair of biplane image of the X-ray an-
giography sequence.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Although, even if it is well known that both projections
in biplane angiography systems are not precisely acquired at
the same time, we consider that it is negligible in the method
below. Views were calibrated using the parameters contained
in the DICOM headers, and with a calibration procedure using
the guide wire, as presented by Vachon et al. [7].

2.1. Graph construction

The first step of our methodology is to segment the artery in
both images used for the 3D reconstruction. This step is per-
formed using multiscale vesselness filtering [8] and manual
editing to refine the resulting segmentation that might not be
good enough on large vascular structures. Second, the voxel-
based reconstruction is conducted by defining an energy func-
tion over a 3D discrete lattice and by optimizing it. A vertex
7 in our graph corresponds to a voxel and is connected to the
vertices in its neighborhood N;. For the vertices that are not
located at the boundary of the volume, the size of N; is 26.
Let e; ; denote the edge between vertices ¢ and j. We asso-
ciate a weight w; ; to the edge e; ; defined as:

wi; = exp(—a(bi - b;)?) M
where « is used to penalize small differences. We also
consider that for a vertex :

b; = bPi,l + bPi,,Q (2)
2
Where P; j,; represents the projection of the vertex i on the
plane pl € {1,2}. Binary values bp, , are computed using
the segmentation of the images.
We also consider d; to represent the ratio between the
minimal 3D distance and the minimal 2D distance of the ver-

tex ¢ and the centerline, both in mm, as follows:

,pl
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The 2D distance, dap ;, is obtained by calculating the 2D
distance of the projection of a vertex ¢ with the centerline on
each view and by selecting the maximum among those two.
The 3D centerline of the artery is calculated using the epipo-
lar geometry [9]. Using the two views, the manually iden-
tified correspondences between the pre-extracted centerlines
are known. Then, a triangulation is performed using the pair
of 2D points to obtain the 3D points composing the 3D center-
line. Using a manual pairing of the points in correspondence
allows us to solve any ambiguity that might occur using the
epipolar geometry.

2.2. Volume reconstruction

The voxel value, b;, of each vertex provides a first estimate
of the 3D model that contains the final volume. This infor-
mation, on its own, is not sufficient to outline the vascular
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Fig. 1. Voxel coloring using random walks. A visual hull
is extracted from 3D space. A graph is constructed from the
convex hull. Each voxel is modeled as a node in a graph.

structure. A spatial constraint such as the distance to the 3D
centerline is introduced to ensure that the voxels closer to the
centerline will be favored over voxels farther to the vascular
structure.

Once all the weights w; ; are computed, a mapping func-
tion f is defined to identify all the vertices that belong to
the artery and exclude those that compose the background.
This function assigns a probability value to each vertex of the
graph. If the i —th vertex of the graph is part of the artery then
fi = 1 otherwise f; = 0. We aim to minimize the following
energy function:
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The first term of the equation is used to link together sec-
tions of the same vascular structure by minimizing the weight
of the edges at the boundary of the artery (i.e. cut edges). The
second one minimizes the distance ratio of the vertices of the
background, while the third one maximizes the distance ratio
of the artery. By using the distance ratio we ensure a certain
coherence between what is seen on the 2D images and the fi-
nal model. In other terms, if the 2D and 3D distances differ
greatly, then the corresponding voxel is not selected. In or-
der to obtain the values of f, we define the energy function
in a matrix form. We denote L,, as the Laplacian matrix of
the weights of our graph, I as the identity matrix and D the



diagonal matrix of d such that D;; = d;.

E(f) = fT(Ly+BI+ (y— B)D)f — 2vd" f +vd"1 (5)

By differentiating the previous equation with respect to f
and by setting v = /3, in a similar manner to [10], we obtain:

f=B(Ly+BI)d ©)

The constant /3 can be used to alter the weight between the
binary value and the distance ratio.

2.3. Multiscale volume refinement

The reconstruction process described above, provides a
coarse volumetric model of the vascular structure. To en-
hance the accuracy of the result, we perform a multi-scale
refinement. This step consists in dividing the size of the ver-
tices of low probability. The idea is to prevent re-running the
entire algorithm with the new divided vertices and to just cal-
culate the binary value of newly created vertices. A threshold
is applied and the vertices with a binary value greater than a
constant, A, will be added to the final volume. The vertices
smaller are divided again until a pre-defined number of steps
for the multi-scale is reached.
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(a) Simulated image - LAT (b) Simulated image - PA
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Fig. 2. 3D model of the reconstructed aorta along with the
images used to perform the reconstruction.
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Fig. 3. Evolution of DICE coefficient and execution time with
the vertex size and the number of multiscale iterations.

DICE | Pulmonary | Aorta
min 0.8569 0.9393
mean 0.8671 0.9585
max 0.8751 0.9707

Table 1. DICE similarity coefficents for the simulations.

3. RESULTS AND DISCUSSION

3.1. Simulated dataset

Simulated X-ray angiography images were generated using
the XCAT motion simulator, which reproduces realistically
both cardiac and respiratory motion. Those images, unlike
clinical images, are perfectly calibrated and can only contain
the desired vessel structure to ease the segmentation. Two
sequences have been generated for validation purposes (77
pairs, 53 of pulmonary arteries and 24 of aortic arch). Results
are obtained using a 3 value of 1.

As it is shown in figure 3, the accuracy and the execution
time of our method are highly dependent on the initial size of
the vertices and the number of multi-scale iterations. The size
of the structure to reconstruct, as well as the resolution of the
images are factors that also influence the choice of the size of
the vertices and the number of multi-scale iterations. Initial
size of 3mm and two iterations of multiscale refinement was
found to be a fair compromise between execution time and ac-
curacy. Table 1 regroups the results of the method on our two
generated sequences. Some false positives (i.e. vertices that
should not be in the final reconstruction) are eliminated be-
cause of the distance ratio. However, some are still remaining
due to overlapping. The results shown in figure 4 are a per-



a single pair of angiographic views. Further works will con-
sider incorporating shape prior to the reconstruction and car-
diorespiratory motion compensation.

(a) LAT view (b) Third view

Fig. 4. Reprojection of the volume. White, light gray and dark
gray pixels represent, respectively, the initial segmentation,
the accurate reprojection and the false positives.

(a) PA view (b) 3D reconstruction

Fig. 5. 3D reconstruction of a part of a pulmonary artery from
our clinical dataset.

fect illustration of the remaining false positives. In this third
view, located between the two used for the 3D reconstruction,
the DICE similarity measure is lower. Indeed, limited struc-
tural information lies in only two views. To obtain a volume
closer to the reality, additional views must be used. Figure 2
presents graphical results of the reconstruction of an aorta.

3.2. Clinical dataset

Concerning the clinical validation, a small dataset of three
pairs of images, taken from the same patient, has been used.
Graphical results are shown in figure 5. A mean DICE sim-
ilarity coefficient of 0.84 has been obtained, which promises
for clinical data. These results are consistent with simulated
results. This can be explained by the nature of the images
used for the reconstruction. Indeed by using segmentation
masks, we consider that the prior segmentation is accurate
enough, which tends to make our method unaffected by noise
and poor contrast.

4. CONCLUSION

We have proposed a novel graph-based voxel coloring ap-
proach for 3D reconstruction of vascular structures from only
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