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Abstract—We define a metric, mutual information in fre-
quency (MI-in-frequency), to detect and quantify the statistical
dependence between different frequency components in the data,
referred to as cross-frequency coupling and apply it to electro-
physiological recordings from the brain to infer cross-frequency
coupling. The current metrics used to quantify the cross-frequency
coupling in neuroscience cannot detect if two frequency com-
ponents in non-Gaussian brain recordings are statistically
independent or not. Our MI-in-frequency metric, based on Shan-
non’s mutual information between the Cramér’s representation of
stochastic processes, overcomes this shortcoming and can detect
statistical dependence in frequency between non-Gaussian signals.
We then describe two data-driven estimators of MI-in-frequency:
One based on kernel density estimation and the other based on the
nearest neighbor algorithm and validate their performance on sim-
ulated data. We then use MI-in-frequency to estimate mutual infor-
mation between two data streams that are dependent across time,
without making any parametric model assumptions. Finally, we
use the MI-in-frequency metric to investigate the cross-frequency
coupling in seizure onset zone from electrocorticographic record-
ings during seizures. The inferred cross-frequency coupling
characteristics are essential to optimize the spatial and spectral
parameters of electrical stimulation based treatments of epilepsy.

Index Terms—Mutual information in frequency, dependent
data, Cramér’s spectral representation, cross-frequency coupling,
epilepsy, seizure onset zone.

I. INTRODUCTION

E PILEPSY is a very common neurological disorder af-
fecting nearly 1% of the world’s population. Epilepsy is
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characterized by repeated, unprovoked seizures. Nearly a third
of all epilepsy patients have medically refractory epilepsy (med-
ication is not effective in these patients). For these patients, sur-
gical resection of the seizure onset zone (SOZ) (the regions of
the brain responsible for generating and sustaining seizure activ-
ity [3]) or electrical stimulation are possible treatment options.
However, the efficacy of these treatments is variable and almost
always never results in a cure [4], [5]. There is tremendous in-
terest in leveraging the recent advances in electrical stimulation
[6] and optogenetics [7] to develop spatiotemporally specific
approaches to treat epilepsy. A crucial step in this endeavor is
to develop an understanding of the coupling between neuronal
oscillations in different frequency bands during seizures. This
coupling or statistical dependence across frequency components
between signals is referred to as cross-frequency coupling (CFC)
[8], [9]. Our main objective is to learn the dynamics of cross-
frequency coupling during seizures in epilepsy patients from the
electrocorticographic (ECoG) data.

Elaborating the characteristics of epileptic seizures using
cross-frequency coupling between ECoG data has been the fo-
cus of many papers. CFC has been used to predict the onset of
seizure in [10] and detect epileptic seizures in [11]. CFC has also
been used to localize the area for surgical resection in epilepsy
patients [12]–[14]. Variations in CFC from preictal (before a
seizure) to ictal (during a seizure) to postictal (after a seizures)
in epilepsy patients have been analyzed in [15], [16]. In addi-
tion, the CFC in interictal stages is compared with that around
seizures in [11], [17]–[19]. In this paper, we study CFC within
and between various regions inside the seizure onset zone to
determine the dominant frequencies involved in seizures and to
learn the variations in coupling strength between various spatial
regions inside SOZ. The results from this study are crucial to
optimize the spectral and spatial parameters of next generation
epilepsy treatments.

Cross-frequency coupling or dependence across frequencies
in the data could be in a single recording or between recordings,
not necessarily at the same frequency. Coherence can identify
if two frequency components are statistically independent or
not and quantify the dependence for linear, Gaussian processes
[20]. There is no such equivalent metric for non-Gaussian sig-
nals. Since the time-series data recorded from the brain are
neither linearly related nor Gaussian, neuroscientists typically
use heuristic metrics that cannot identify if two frequency com-
ponents are statistically independent or not and can only cap-
ture second-order dependencies. Some of the popular heuristics
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estimate the phase-amplitude, amplitude-amplitude, phase-
phase coupling between the low and high frequency components
in the electrophysiological recordings from brain [8], [21]–[23].
In fact, a recent review article on CFC metrics suggests the
use of cross-frequency “correlation” instead of “coupling” to
describe these heuristic CFC metrics [22]. Furthermore, a list
of confounds affecting the current CFC metrics is provided in
[22]. A more comprehensive metric that detects statistical in-
dependence and thereby, capture both linear and nonlinear de-
pendencies, would be invaluable in determining how neuronal
oscillations at various frequencies are involved in the computa-
tion, communication, and learning in the brain. Here we propose
a new methodology or metric to estimate the cross-frequency
coupling (CFC) in neuroscience that overcomes the challenges
of the existing approaches and as a proof-of-concept, we infer
CFC characteristics of epileptic seizures using our metric.

Mutual information in frequency (MI-in-frequency), defined
for linear Gaussian processes using coherence in [24], [25],
can indeed be further developed into a general technique to
estimate CFC. Inspired by prior work [26], we define MI-in-
frequency between two frequencies in a signal (or two signals)
as the Shannon’s mutual information (MI) between the Cramér’s
spectral representations [27], [28] of the two signals at the cor-
responding frequencies. Cramér’s spectral representation trans-
forms a time-domain stochastic process into a stochastic process
in the frequency domain, the samples of which can be estimated
at each frequency from the time-domain data samples [29].
MI-in-frequency metric is equivalent to coherence measures for
linear, Gaussian signals and can be thought of as “coherence”
for non-Gaussian signals. The MI-in-frequency metric is one
of the three mutual information based metrics used in [26] to
analyze linear relationships between seismic data and [26] is not
focussed on defining a single metric to capture the statistical de-
pendence across frequency. We extend this approach to define a
single metric, MI-in-frequency, to capture statistical dependen-
cies across frequency for both linear and nonlinear data and use
it measure CFC in the brain. We then describe two data-driven
algorithms – one based on kernel density estimation (KDMIF)
and the other based on nearest neighbor estimation (NNMIF) –
to estimate MI-in-frequency without assuming any parametric
model of the data. We considered these two approaches since
they outperformed other approaches in estimating MI from i.i.d.
data and there is no clear winner between them [30], [31]. We
also demonstrate the superiority of MI-in-frequency over exist-
ing CFC metrics by comparing against modulation index [8],
[21], a commonly used CFC metric, on simulated data.

In addition to estimating CFC between ECoG data, we use
MI-in-frequency to develop a data-driven estimator for mutual
information (MI). Note that MI estimation is a solved problem
if the data samples are i.i.d. [32] or are sampled from linear,
Gaussian processes [24], [25], [33], [34]. As mentioned earlier,
real-world data is neither independent across time nor Gaussian
and the underlying model is often unknown. Our data-driven MI
estimation algorithm applies to dependent data, without making
any parametric model assumptions. The key idea is to make
the problem computationally tractable by focussing only on
those frequencies in the two data streams that are statistically

dependent, which are identified by MI-in-frequency metric. Our
MI estimator converges to the true value for Gaussian models
and we validate its performance on nonlinear models.

Finally, we apply the MI-in-frequency estimators to infer the
cross-frequency coupling in the seizure onset zone (SOZ), by
analyzing electrocorticographic (ECoG) data from the SOZ of
9 patients with medial temporal lobe epilepsy in whom a to-
tal of 25 seizures were recorded. We investigate the dynamics
of CFC in preictal, ictal and postictal periods within one SOZ
electrode and between electrodes in different regions in the
SOZ. We observe an increase in coupling in gamma and rip-
ple high-frequency oscillations during seizures, with the largest
increase within a SOZ electrode and a very small increase be-
tween electrodes in different regions inside SOZ. In addition,
low-frequency coupling and linear interactions between SOZ
electrodes also increase during the postictal state.

II. CRAMÉR’S SPECTRAL REPRESENTATION OF

STOCHASTIC PROCESSES

Consider a stochastic processesX (t) , t ∈ R. Let SX (ν) for
ν ∈ R be the spectral distribution function of X and sX (ν), its
power spectral density, if it exists. Two basic spectral represen-
tations are associated with the stochastic process X (t) - power
spectral distribution and Cramér’s representation [27], [28]. The
Cramér’s representation ofX (t) and its key properties are stated
in the following theorem.

Theorem 1: (page 380 in [28]) Let X (t) be a second order
stationary, mean-square continuous and zero mean stochastic
process. Then there exists a complex-valued, finite-variance,
orthogonal increment process ˜X (ν) in the frequency domain
ν ∈ R, such that

X (t) =
∫ ∞

−∞
ej2πν td ˜X (ν) ,

with E
[

d ˜X (ν)
]

= 0, and E
[

|d ˜X (ν) |2
]

= dSX (ν) .

The process ˜X (ν) = ˜XR (ν) + j ˜XI (ν) satisfying the above
theorem is the spectral process or the Cramér’s representa-
tion of X (t). d ˜X (ν) is the complex random variable rep-
resenting the amplitude of oscillation in the interval from ν
to ν + dν in X (t). The integral in Theorem 1 is a Fourier-
Stieltjes integral. Intuitively, Theorem 1 decomposes X (t)
into an orthogonal increment complex process in the fre-
quency domain. Furthermore, if the X (t) is real-valued, then
˜X
( − ν

)

= ˜X�
(

ν
)

,E
[

d ˜XR

(

ν
)

d ˜XI

(

ν
)]

= 0, and

E
[(

d ˜XR (ν)
)2] = E

[(

d ˜XI (ν)
)2] =

1
2
dSX (ν) . (1)

We have the following theorem for the special case of a real-
valued Gaussian process X (t).

Theorem 2: (page 385 in [28]) Let X (t) be a real-valued
stationary, mean-square continuous Gaussian process with zero
mean and power spectral distribution function SX (ν) , ν ∈ R.
Then the real and imaginary parts of its spectral process ˜XR (ν)
and ˜XI (ν) are zero mean, mutually independent, identically
distributed Gaussian processes satisfying (1).
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Example: Consider the zero mean stationary Gaussian pro-
cess X (t) = A cos (2πν0t+ Θ), where A is Rayleigh random
variable with parameter σA that is independent of Θ, which is
uniform in [0, 2π). The increments of the spectral process of
X (t) are all zero, except at ν = ±ν0 , where the increment is
A
2 exp (±jΘ) [28]. This implies that the sample path of the real

part of spectral process ˜X (ν) has two jumps of same magnitude
and direction at frequencies ±ν0 , while that of the imaginary
part has two jumps of same magnitude, but opposite directions
at ±ν0 . The magnitude of the jump at ν0 in the real and imag-
inary parts is A

2 cos Θ and A
2 sin Θ respectively, both of which

are Gaussian random variables with mean zero and variance
1
2σ

2
A . This spectral process is intuitive because we know X (t)

has all its energy only at frequencies ±ν0 and the variance of
the increments of the spectral process d ˜X (ν) is equal to the dif-
ferential power spectral distribution of X (t) which is nonzero
only at ±ν0 . We therefore expect all sample paths of the random
process ˜X (ν) with non-zero probability to be constant, except
for jumps at ±ν0 .

Note that if the process is wide sense-stationary and Gaussian,
then power spectral distribution would have all the information
about the process and its relationship with Cramér’s representa-
tion is given by Theorem 2. Otherwise, power spectral distribu-
tion only captures the second-order dependencies in the process.
Since ECoG signals are not Gaussian, we use Cramér’s repre-
sentation to transform a time-domain stochastic process into a
stochastic process in the frequency domain.

III. MUTUAL INFORMATION IN FREQUENCY

We first define MI between frequencies within a pro-
cess and between two processes in continuous time. We
then extend this definition to discrete-time stochastic pro-
cesses. Consider d ˜X (νi) and d˜Y (νj ), the increments of spec-
tral processes or the Cramér’s representation of X(t) and
Y (t) at frequencies νi and νj respectively. Let the joint
probability density of the four dimensional random vector
of the real and imaginary parts of d ˜X (νi) and d˜Y (νj )
be denoted by P

(

d ˜XR (νi) , d ˜XI (νi) , d˜YR (νj ) , d˜YI (νj )
)

.
The corresponding two-dimensional marginal densities are
P

(

d ˜XR (νi) , d ˜XI (νi)
)

, P
(

d˜YR (νj ) , d˜YI (νj )
)

. The MI-in-
frequency between X (t) at νi and Y (t) at νj is defined as

MIXY (νi, νj )

= I
({

d ˜XR (νi), d ˜XI (νi)
}

;
{

d˜YR (νj ), d˜YI (νj )
})

,

= E

{

log
P

(

d ˜XR (νi), d ˜XI (νi), d˜YR (νj ), d˜YI (νj )
)

P
(

d ˜XR (νi), d ˜XI (νi)
)

P
(

d˜YR (νj ), d˜YI (νj )
)

}

,

(2)

where I ({·, ·} ; {·, ·}) is the standard mutual information be-
tween two pairs of two dimensional real-valued random vectors
[34]. The MI between two different frequencies νi , νj in the
same process Y (t) is similarly defined as

MIY Y
(

νi, νj
)

=I
({

d˜YR
(

νi
)

,d˜YI
(

νi
)}

;
{

d˜YR
(

νj
)

,d˜YI
(

νj
)})

. (3)

The MI between the components of Y at frequencies νi =
νj = ν, MIY Y (ν, ν), is ∞, a consequence of the fact that
[

d˜YR (ν) , d˜YI (ν)
]

is a continuous-valued random vector
whose conditional differential entropy is not lower bounded.
MI-in-frequency defined in (2), (3) is a non-negative number.
If MI-in-frequency between two frequencies is zero, then they
are independent and if not, MI-in-frequency is a measure of the
statistical dependence between the two frequency components.
MI-in-frequency between two processes is not symmet-
ric in general, i.e., MIXY (νi, νj ) �= MIXY (νj , νi). How-
ever, it is symmetric within a process, i.e., MIY Y (νi, νj ) =
MIY Y (νj , νi).

Example: Continuing with our example in Section II, let
X (t) = A cos (2πν0t+ Θ) and Y (t) = X (t)2 . Then d˜Y (ν)
is zero except at ν = 0, where the spectral increment is A 2

2 ,

and at ν = ±2ν0 , where the increment is A 2

4 exp (±j2Θ). As
a result, the frequency components at ±ν0 in X and at fre-
quencies {0,±2ν0} in Y are statistically dependent and hence
the MI-in-frequency obtained from (2) at these frequency pairs
will be positive. In addition, the frequency components in Y
at ν ∈ {0,±2ν0} are dependent and hence the MI-in-frequency
within Y at these frequencies will also be positive.

A. Gaussian Inputs to LTI Filters

Let’s now consider the special case where X (t), a Gaussian
process with power spectral density sX (ν) serves as the input to
a linear, time-invariant (LTI) filter with transfer functionH1 (ν)
and Y (t) is output observed in additive colored noise (white
noise W (t) passed through a LTI filter with transfer function
H2 (ν)). The processes X (t) and Y (t) are related by

y (t) = h1 (t) ∗ x (t) + h2 (t) ∗ w (t) , (4)

where ∗ denotes convolution operation, x(t), y(t) and w(t) are
sample paths of X (t), Y (t) and W (t) respectively. W is a
Gaussian process with power spectral density sW (ν) and in-
dependent of X . h1(t) and h2(t) are continuous-time impulse
responses of LTI filters, whose transfer functions are H1 (ν)
andH2 (ν) respectively. Let d ˜X (ν), d˜W (ν) and d˜Y (ν) be the
spectral process increments of the Gaussian processes X , W
and Y . We have from Theorem 2,

[

d ˜XR (ν) , d ˜XI (ν)
]∼N

(

0,
1
2
sX (ν) I

)

,

[

d˜WR (ν) , d˜WI (ν)
]∼N

(

0,
1
2
sW (ν) I

)

, (5)

where N (μ,Σ) represents Gaussian distribution with mean μ
and covariance Σ, 0 is the two element zero vector and I is the
2 × 2 identity matrix. In addition, we can show for the model in
(4) that

d˜Y (ν) = H1 (ν) d ˜X (ν) +H2 (ν) d˜W (ν) . (6)

The proof of (6) is in the appendix. The MI-in-frequency defined
in (2) is further simplified for the model in (4) using (5), (6) and
stated in the following theorem.
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Theorem 3: For the model given in (4), the MI betweenX (t)
at frequency νi and Y (t) at frequency νj is zero, when νi �= νj
and the MI between X (t) and Y (t) at frequency νi = νj =
ν �= 0 is

MIXY (ν, ν) = 2 × I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

= log
(

1 +
|H1 (ν) |2sX (ν)
|H2 (ν) |2sW (ν)

)

. (7)

The proof of the above theorem is in the appendix. Note
that at ν = 0, the MI-in-frequency between X and Y is equal
to I

({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

, which is just half of the
right hand side of (7). We intuitively expect different frequency
components in the Gaussian input and its output from a lin-
ear system to be independent and Theorem 3 confirms that
the proposed definition of MI-in-frequency agrees with this
intuition. In addition, the MI between X and Y is ∞ when
|H2 (ν) | = 0, since the components of X and Y at such ν
are linearly related. The MI between two different frequen-
cies in Y (t), generated from (4), is zero due to the linearity
of the filters and Gaussian inputs. Furthermore, we can also
show for the Gaussian processes X and Y related by (4) that
MI-in-frequency is related to coherence CXY (ν) ∈ [0, 1], by
MIXY (ν, ν) = − log (1 − CXY (ν)). The proof is in the ap-
pendix. This result implies MI-in-frequency between Gaussian
processes related by (4) can be estimated with the coherence. In
addition, Theorem 3 also shows that MI-in-frequency between
Gaussian processes related by (4) can be estimated by estimat-
ing the mutual information between

[

d ˜XR (νi) , d ˜XI (νi)
]

and

d˜YR (νj ), a three dimensional estimate as opposed to a four
dimensional estimate in general.

B. Discrete-Time Stochastic Processes

We now extend the definition of MI-in-frequency between
continuous-time stochastic processes in (2), (3) to discrete-time
stochastic processes. In practice, we only have access to data
samples from a real-valued, discrete-time stochastic process,
sampled at a given Nyquist sampling frequency Fs . Sampled
signals have periodic spectra, with a period equalling Fs . In ad-
dition, components in the process with frequencies in the range
[Fs/2, Fs ] correspond to negative frequencies [35]. Therefore,
the actual frequency content in the signal is confined to [0, Fs/2].
We use normalized frequency λ = ν

Fs
∈ [0, 0.5] to describe the

frequency axis in case of discrete-time stochastic processes,
instead of ν which was used for continuous-time stochastic pro-
cesses. The MI-in-frequency between discrete-time processes
is therefore obtained by replacing νi, νj by the normalized fre-
quenciesλ1 , λ2 ∈ [0, 0.5] in (2), (3). Multivariate autoregressive
models, commonly used to model electro-physiological signals
recorded from brain [20], [36], are a special case of the discrete-
time equivalent of (4). The analytic expression for MI at fre-
quency λ for such discrete-time Gaussian processes is therefore
similarly obtained by replacing the frequencies ν by λ in (7),
which is also equal to − log (1 − CXY (λ)). This shows that
for the special case of discrete-time Gaussian processes, MI-in-

frequency metric is equivalent to coherence and the definitions
in [24], [25].

IV. DATA-DRIVEN ESTIMATION OF MI-IN-FREQUENCY

We describe two data-driven estimators–a kernel density
based (KDMIF) and a nearest neighbor based (NNMIF) esti-
mator to estimate MI-in-frequency, ̂MIXY (λi, λj ), between λi
component of X and λj component of Y . The input to both
these algorithms are the N samples of X and Y . The first step
in both KDMIF and NNMIF estimators involves estimating the
samples of spectral process increments d ˜X (λi) and d˜Y (λj ),
of X at λi and of Y at λj respectively. In the second step, the
KDMIF estimator uses the kernel density based MI estima-
tor [32], [37], whereas NNMIF estimator uses the k-nearest
neighbor based MI estimator [32], [38] to estimate MI from the
samples of spectral process increments, d ˜X (λi) and d˜Y (λj ).

A. Kernel Density Based MI-in-Frequency (KDMIF)
Estimator

1) Estimation of Samples of Spectral Process Increments:
The first step of the algorithm is estimating the samples of spec-
tral process increments of X and Y from N dependent data
samples. We assume there is a finite memory in both these pro-
cesses and choose a value for a parameter Nf , which is much
larger than the length of dependence or memory in the data and
determines the frequency resolution of our MI-in-frequency es-
timates. We assume data in different windows are independent
of each other. Ideally, consecutive windows should be sepa-
rated to ensure no dependence across windows and avoid the
dependence across the window boundaries, but our simulation
results demonstrate that not separating the windows doesn’t af-
fect performance significantly. N samples of X are split into
Ns non-overlapping windows withNf = N

Ns
data points in each

window. Let us denote the samples in lth window of X and Y
respectively by two Nf element one-dimensional vectors, xl

and yl , for l = 1, 2, . . . , Ns .
Let us now focus on estimating samples of the random

variable d ˜X (λi). Let F {

xl
}

(α) denote the discrete-time
Fourier transform (DTFT) of xl at normalized frequency α.
For λi = i

Nf
∈ [0, 1] and i ∈ [0, Nf − 1], let us define dx̃l (λi)

and integrated Fourier spectrum, x̃l (λi), by

dx̃l (λi) = F {

xl
}

(λi) and x̃l (λi) =
i

∑

m=0

F {

xl
}

(λm ) . (8)

It is stated in [29] that the random variable for which x̃l (λi) is
just one realization, tends to the spectral process of X at λi in
mean of order γ, for any γ > 0, as the number of samples goes
to infinity and assuming the underlying distribution is stationary
and satisfies a mixing assumption. Also, dx̃l (λi), which is the
increment in x̃l (λi) betweenλi andλi + dλ, is just the DTFT of
the samples in window l. Calculating the DTFT with the FFT for
each of the Ns windows separately yields an Nf ×Ns matrix,
whose ith row, dx̃ (λi) =

[

dx̃1 (λi) , dx̃2 (λi) , . . . , dx̃Ns (λi)
]

is the complex-valued vector containingNs samples of d ˜X (λi),
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the spectral process increments of X at λi = i
Nf

. The lth el-

ement of dx̃ (λi), dx̃l (λi) = dx̃lR (λi) + idx̃lI (λi), is a par-
ticular realization of d ˜X (λi). A similar procedure is used to
obtain the Ns samples of the spectral process increments of
Y at λj = j

Nf
, j ∈ [0, Nf − 1] and the resulting samples are

denoted by dỹ (λj ) =
[

dỹ1 (λj ) , dỹ2 (λj ) , . . . , dỹNs (λj )
]

.
2) Estimating MI-in-Frequency: The MI-in-frequency esti-

mate is now obtained from theNs samples,
(

dx̃lR
(

λi
)

, dx̃lI
(

λi
))

and
(

dỹlR
(

λj
)

, dỹlI
(

λj
))

, for l = 1, 2, . . . , Ns , using a kernel
density based plug-in nonparametric estimator [32]. TheNs data
samples are split into Ntr training and Nts test samples. The
training data is used to estimate the four-dimensional joint prob-
ability density P

(

d ˜XR (λi) , d ˜XI (λi) , d˜YR (λj ) , d˜YI (λj )
)

.
The density is estimated using a kernel density estimator with
Gaussian kernels, the optimal bandwidth matrix selected using
smoothed cross-validation criterion [37] and implemented using
“ks” package in R [39]. The joint density is marginalized to es-
timate the two-dimensional densities, P

(

d ˜XR (λi) , d ˜XI (λi)
)

and P
(

d˜YR (λj ) , d˜YI (λj )
)

, by recognizing that the bandwidth
matrix for the two-dimensional marginal is the appropriate 2 × 2
sub-matrix from the 4 × 4 bandwidth matrix of the joint den-
sity. The estimates of the joint and the marginal densities at the
Nts test samples are plugged into the following equation (9) to
estimate MI-in-frequency.

̂MIXY (λi, λj )

=
1
Nts

∑

l

log
̂P
(

dx̃lR (λi) , dx̃lI (λi) , dỹlR (λj ) , dỹlI (λj )
)

̂P
(

dx̃lR (λi) , dx̃lI (λi)
)

̂P
(

dỹlR (λj) , dỹlI (λj )
) .

(9)

B. Nearest Neighbor Based MI-in-Frequency (NNMIF)
Estimator

1) Estimation of Samples of Spectral Process Increments:
The first step in the nearest neighbor based MI-in-frequency
estimator is exactly same as that of KDMIF estimator. Following
the steps described in Section IV-A1, we estimate dx̃l (λi) and
dỹl (λj ), for l = 1, 2, . . . , Ns , the Ns samples of the spectral
process increments of X at λi and Y at λj respectively.

2) Estimating MI-in-Frequency: MIXY (λi, λj ) is now es-
timated from dx̃l (λi) ∈ R2 and dỹl (λj ) ∈ R2 , for l =
1, 2, . . . , Ns using nearest neighbor based MI estimator
[38]. We apply the first version of the algorithm in [38]
to two-dimensional random variables d ˜X (λi) and d˜Y (λj )
to compute ̂MIXY (λi, λj ). Consider the joint four dimen-
sional space

(

d ˜X (λi) , d˜Y (λj )
) ∈ R4 . The distance be-

tween two data points with indices l1 , l2 ∈ [1, Ns ] is calcu-
lated using the infinity norm, according to max{‖dx̃l1 (λi)
− dx̃l2 (λi) ‖, ‖dỹl1 (λj ) − dỹl2 (λj ) ‖}. Let εl denote the dis-
tance between the data sample

(

dx̃l (λi) , dỹi (λj )
)

and itsKth
nearest neighbor, for l = 1, 2, . . . , Ns . We used K = 3 in this
paper [30]. Let nlx and nly denote the number of samples of

d ˜X (λi) and d˜Y (λj ) within an infinity norm ball of radius less
than εl centered at dx̃l (λi) and dỹi (λj ) respectively. From
[38], the MI-in-frequency between X and Y at normalized

Algorithm 1: Mutual Information Estimator.

Data: (x [n] , y [n]), for x [n] , y [n] ∈ R, n ∈ [0, N − 1].
Result: Î (X;Y )
Algorithm:

A) Estimate ̂MIXY (λi, λj ) at all possible pairs
(λi, λj ), using either the KDMIF or the NN-
MIF estimator. Identify the sets Λx ,Λy , such that
for each λip ∈ Λx there exists a λjq ∈ Λy such

that ̂MIXY

(

λip , λjq
)

is statistically significant and
vice-versa. Let P,Q respectively denote the cardi-
nality of Λx ,Λy .

B) Let d ˜X (Λx)=
[

d ˜X (λi1 ) , . . . , d ˜X (λiP )
]∈R2P ,

d˜Y (Λy )=
[

d˜Y (λj1 ) , . . . , d˜Y
(

λjQ
) ]∈R2Q . The

mutual information between X and Y is given by

Î (X;Y ) =
1

max(P,Q)
Î
(

d ˜X (Λx) ; d˜Y (Λy )
)

,

where the right hand side is estimated fromNs i.i.d.
samples using any nonparametric MI estimator [32].

frequencies λi and λj is given by

̂MIXY (λi, λj ) = ψ (K) + ψ (Ns)

− 1
Ns

Ns
∑

l=1

(

ψ
(

nlx + 1
)

+ ψ
(

nly + 1
))

,

(10)

where ψ (·) is the Digamma function.

C. Significance Testing

The statistical significance of the MI-in-frequency estimates
obtained from both KDMIF and NNMIF estimators is now
tested using the following procedure. We permute the samples in
the vector dx̃ (λi) randomly and estimate the MI-in-frequency
between the permuted vector and the Ns samples of d˜Y (λj ).
Instead of adding random phase or permuting the phase time
series, which are typically used to test the statistical signifi-
cance of phase-amplitude coupling metrics [40], we permute
the samples of spectral process increments since our metric can
detect coupling across phase and amplitude jointly. This process
is repeated Np times to obtain Np permuted MI-in-frequency
estimates, under the null hypothesis of independence. The per-
muted MI estimates will be almost zero since the permutations
make the spectral processes almost independent. If the actual MI
estimate, ̂MIXY (λi, λj ), is judged larger than all the permuted
Np estimates, then there is a statistically significant dependence
between the processes at these frequencies.

V. MI BETWEEN DATA WITH TEMPORAL DEPENDENCIES

We now use MI-in-frequency to estimate mutual information
between dependent data. The data-driven MI estimator, sum-
marized in Algorithm 1, takes in N samples of X and Y as
input and outputs the mutual information between X and Y ,
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Î (X;Y ), by estimating ̂MIXY (λi, λj ), where λi = i
Nf
, λj =

j
Nf

, ∀ (i, j) such that i, j ∈ [0, Nf − 1].

A. Identifying Coupled Frequencies

The first step in our MI estimator involves estimating
the MI-in-frequency, ̂MIXY (λi, λj ), between λi = i

Nf
fre-

quency component in X and λj = j
Nf

component in Y , for

all (i, j) such that i, j ∈ [0, Nf − 1] using either the KDMIF
(Section IV-A) or the NNMIF (Section IV-B) algorithms. Sta-
tistical significance of the resulting estimates is assessed using
the procedure described in Section IV-C. The resultant MI-in-
frequency estimates across all frequency pairs can be graphi-
cally visualized by plotting the statistically significant MI-in-
frequency estimates on a two-dimensional image grid, whose
rows and columns correspond to frequencies of X and Y re-
spectively. Let Λx and Λy respectively denote the set of fre-
quency components of X and Y , such that for each λip ∈ Λx ,

there exists at least one λjq ∈ Λy for which ̂MIXY

(

λip , λjq
)

is
statistically significant and vice-versa.

B. Estimating Mutual Information

The final step in our algorithm estimates MI between the spec-
tral process increments of X and Y at frequencies in Λx and
Λy respectively. With P,Q denoting the cardinality of Λx ,Λy

respectively, let d ˜X (Λx) and d˜Y (Λy ) denote the 2P and 2Q-
dimensional random vector comprising the spectral process in-
crements of X , Y at all frequencies in Λx and Λy respectively.
We already computed Ns i.i.d. samples of these two random
vectors to estimate MI-in-frequency estimates in the previous
step of this algorithm. The desired MI estimate is computed
from the mutual information between d ˜X (Λx) and d˜Y (Λy ),
which is estimated using the k-nearest neighbor based estimator
developed in [38], according to

Î (X;Y ) =
1

max (P,Q)
Î
(

d ˜X (Λx) ; d˜Y (Λy )
)

. (11)

The MI estimator in (11) can be further simplified for discrete-
time Gaussian processes. Without loss of generality, consider
two Gaussian processes X and Y , related by

y[n] = h1 [n] ∗ x[n] + h2 [n] ∗ w[n], (12)

where h1 [n], h2 [n] are linear time-invariant (LTI) filters and
W is white Gaussian noise independent of X . For the model in
(12), which is the discrete-time equivalent of (4), the data-driven
estimation in (11) can be further simplified to

Î (X;Y ) =
1
Nf

Nf /2
∑

i=0

̂MIXY (λi ;λi) , where λi =
i

Nf
. (13)

This result is obtained because linear models do not introduce
cross-frequency dependencies and because negative frequencies
do not carry any extra information. Furthermore, the relation-
ship between the MI and the MI-in-frequency for two processes
related by (12) is stated in the following theorem.

Theorem 4: Consider two discrete-time Gaussian stochastic
processes X and Y related by (12). The mutual information
between these processes, a scalar, is given by

I (X;Y ) =
∫ 0.5

0
MIXY (λ, λ) dλ. (14)

The proof of the above theorem is in the appendix. This
theorem means that MI between two Gaussian processes over
the entire time can be obtained by integrating the contribution
from each frequency component. It is easy to see that the right
hand side of (13) is just the Riemann sum of the integral on the
right hand side of (14), which converges to the true value as Nf

tends to infinity. This implies our MI estimator converges to the
true value for discrete-time Gaussian processes.

Note that the MI estimation algorithm does not make any
parametric assumptions on the underlying model between X
and Y . The computation of MI via (11) can be greatly simplified
by clustering the frequencies in Λx and Λy into groups such that
there are no significant dependencies across groups and using the
chain rule of mutual information. In addition, if we observe after
the first step that significant MI-in-frequency estimates occur
only at (λi, λi) ,∀i∈

[

0, Nf − 1
]

, then the MI can be estimated
using (13).

Finally, as we mentioned earlier, MI estimation between
Gaussian processes is a solved problem in the sense that we
can analytically compute it if the covariance of the Gaussian
processes is known [3] and there are several estimators whose
performance is thoroughly analyzed [4]. MI in frequency for
Gaussian processes is analyzed by Brillinger [24]. In this paper,
we extended Brillinger’s work to define MI-in-frequency for
any process. In the following section, we use simulated data to
validate that the extensions we proposed to any process in this
paper are still in agreement with the prior work on Gaussian
processes and also work for non-Gaussian processes.

VI. PERFORMANCE EVALUATION ON SIMULATED DATA

The performance of the data-driven MI-in-frequency and mu-
tual information estimators described in Sections IV and V re-
spectively is validated on simulated data. The statistical sig-
nificance of the estimates was assessed using the procedure
described in Section IV-C. In addition, we compare the per-
formance of the MI-in-frequency estimators against modulation
index [8], [9], [22], a commonly used phase-amplitude coupling
metric in neuroscience.

A. Comparing the KDMIF and NNMIF Estimators

Consider two stochastic processes X and Y , where X is a
white Gaussian process with standard deviation σx and Y is
obtained by

y[n] = h[n] ∗ x[n] + w[n], (15)

where W is a white Gaussian process with standard deviation
σw that is independent of X and h[n] is a linear time-invariant
filter. We compared the performance of the kernel density based
and nearest neighbor based estimators by benchmarking the es-
timates against the true value of MI-in-frequency and the mutual
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Fig. 1. Comparing the performance of the kernel density based and nearest neighbor based estimators, KDMIF and NNMIF respectively, on simulated generated
from (15) using a two-tap lowpass filter. (a) MI-in-frequency estimates obtained from KDMIF and NNMIF estimators along with the true value of MI-in-frequency
are plotted against the normalized frequency λ for β = 0.5. (b) Plots the bias (mean of the ratio of the estimate and the true value in the filter passband) against the
number of data samples used for estimation for β = 0.5. (c) Plots the MI estimate betweenX and Y obtained from kernel density and nearest neighbor algorithms
along with the true value of MI for β ∈ [0, 1].

Fig. 2. Comparing the performance of the kernel density based and nearest neighbor based estimators, KDMIF and NNMIF respectively, on simulated generated
from (15) using a 33-tap bandpass filter with passband in [0.15, 0.35] normalized frequency. (a) MI-in-frequency estimates obtained from KDMIF and NNMIF
estimators along with the true value of MI-in-frequency are plotted against the normalized frequency λ for σw = 1. (b) Plots the bias (mean of the ratio of the
estimate and the true value in the filter passband) against the number of data samples used for estimation for σw = 1. (c) Plots the MI estimate between X and Y
from kernel density and nearest neighbor algorithms along with the true value of MI for different values of σw ∈ [0.5, 2].

information between X and Y for the model in (15). We used
two different filers: a two-tap low pass filter, h[n] = [β, 1 − β] ,
for β ∈ [0, 1] and a 33-tap bandpass filter with passband in
[0.15, 0.35] normalized frequency range. We observed that mod-
ulation index, a popular CFC metric, was unable to correctly
detect and quantify the strength of cross-frequency coupling for
both these models.

1) Lowpass Filter: The samples of X and Y are generated
from (15) with σx = σw = 1 and a lowpass filter with unit-
impulse response [β, 1 − β], for various values of β ∈ [0, 1].
The true value of MI-in-frequency at normalized frequency λ ∈
[0, 0.5] is obtained substituting the parameters of this model in
(7) and is plotted in Fig. 1(a) for β = 0.5. In addition, the MI-
in-frequency estimated by the KDMIF and NNMIF algorithms
from N = 64 × 104 data samples, with Nf = 64, Ns = 104 is
also plotted in Fig. 1(a). It is seen that the estimates from both
algorithms follow the true value closely, without the knowledge
of the underlying model. In addition, we evaluate the bias and
the rate of convergence of both these algorithms as a function
of Ns , with Nf = 64 in Fig. 1(b). The bias is defined as the
average value of the ratio of MI-in-frequency estimate and its
true value in the passband of the lowpass filter. We observe
that the NNMIF algorithm converges faster and has lower bias
than the KDMIF algorithm. We now use both these algorithms to
estimate the mutual information betweenX andY forβ ∈ [0, 1].

The analytical expression for the true value of MI1 for this
model is derived in [41]. It is evident from Fig. 1(c) that the MI
estimates obtained from the nearest neighbor based estimator is
closer to the true value than those from the kernel density based
estimator.

2) Bandpass Filter: The samples of X are generated from a
standard white Gaussian random process with σx = 1 and those
of Y are generated from (15) using a 33-tap finite-impulse-
response bandpass filter with passband in [0.15, 0.35] normal-
ized frequency range for different values of noise standard devi-
ation, σw ∈ [0.5, 2]. We used the kernel density and the nearest
neighbor based algorithms to estimate the MI-in-frequency and
the mutual information betweenX and Y . The true value of MI-
in-frequency is obtained from (7) and of mutual information is
numerically calculated using power spectral density (chapter
10 in [34]). It is clear from Fig. 2(b) that the nearest neighbor
based algorithm converges to the true value faster than the kernel
density based algorithm. The nearest neighbor based algorithm
also provides more accurate estimates of both MI-in-frequency
and mutual information between X and Y , as evident from
Fig. 2(a), (c) respectively. In addition, nearest neighbor based
MI-in-frequency algorithm runs faster than kernel density based

1Note that for this particular model, mutual information is equal to the directed
information from X to Y and the analytical expression is given in (18) in [41].
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Fig. 3. Comparing the performance of MI-in-frequency against modulation index in detecting cross-frequency coupling in data generated from (16). (a) and
(b) MI-in-frequency estimates obtained from nearest neighbor algorithm and modulation index are plotted respectively, when fl = 5 Hz and fh = 60 Hz in (16).
Panels (c) and (d) respectively plot the MI-in-frequency estimates and modulation index estimates, when fl = 15 Hz and fh = 60 Hz in (16).

algorithm. We, therefore, conclude that the nearest neighbor
based MI-in-frequency algorithm outperforms kernel density
based algorithms and only depict the results obtained from near-
est neighbor based algorithm in the remainder of the paper.

B. Comparison With Modulation Index

We now compare the effectiveness of MI-in-frequency against
modulation index in detecting cross-frequency coupling, using
the simulated model commonly used to validate CFC metrics
[21], [22], [42]. Modulation index quantifies the relationship
between the phase and amplitude envelopes extracted by the
Hilbert transform [8]. Consider two random cosine waves, sl [n]
and sh [n], at frequencies fl and fh respectively. Let fs denote
the sampling frequency. The samples of time-series X and Y
are generated from the following model:

sl [n] = A cos
(

2π
fl
fs
n+ θ

)

, sh [n] = A cos
(

2π
fh
fs
n+ θ

)

x[n] = sl [n] + w1 [n], y[n] = (1 + sl [n]) sh [n] + w2 [n],
(16)

where A is a Rayleigh random variable with parameter 1 and
θ is a uniformly distributed random variable between 0 and 2π
that is independent ofA. w1 [n], w2 [n] are samples of i.i.d white
Gaussian noise process with standard deviation 1. We gener-
ated samples from this model with fl = 5 Hz, fh = 60 Hz and
fs = 200 Hz. MI-in-frequency between X and Y is estimated
using the nearest neighbor based algorithm fromN = 40 × 104

samples with Ns = 104 and plotted in Fig. 3(a). Modulation
index between X and Y estimated by using the Matlab tool-
box [21], with the amplitude envelope estimated by the Hilbert
transform and is plotted in Fig. 3(b). It is clear that both
MI-in-frequency and modulation index successfully detect the
cross-frequency coupling between 5 Hz component of X and
{55, 60, 65} Hz components of Y for these parameter values.
We then generated X and Y from (16) with fl = 15 Hz and
all other parameter values unchanged. Fig. 3(c) plots the MI-
in-frequency estimates obtained via NNMIF algorithm and as
expected, we detect the CFC between 15 Hz component of X
and {45, 60, 75} Hz components of Y . However, modulation
index, depicted in Fig. 3(d), was not able to correctly detect the
CFC between X and Y for these parameter values. In addition,
the strength of the modulation index decreased from around
0.5 when fl = 5 Hz in Fig. 3(b) to 0.05 when fl = 15 Hz in
Fig. 3(d). This is because metrics like modulation index can only

detect the CFC correctly with good frequency resolution only
when one of the frequencies involved is very small compared
to the other frequency. Otherwise, the bandwidth of the filter
used to extract the phase and the amplitude envelope should be
larger, which will reduce the frequency resolution in the esti-
mated CFC (note the smearing in Fig. 3(d), when compared to
Fig. 3(b)) [22], [42]. In addition, we tested modulation index
on data generated from (15) and (17) and found that modula-
tion index is unable to detect the cross-frequency coupling for
these relationships. This is not surprising since the modulation
index like metrics are tuned to detect CFC when the underlying
coupling is of the form in (16), whereas the MI-in-frequency
defined in this paper overcomes this shortcoming, as evident
from its performance on various simulated models.

C. Nonlinear Models

We now consider square nonlinearity, where the random pro-
cesses X and Y are related by

y[n] = x[n]2 + w[n], (17)

where w[n] is white Gaussian noise with standard deviation
σw . Modulation index was not able to detect and quantify
the cross-frequency coupling for this model. We estimated
the MI-in-frequency between frequency components within Y ,
̂MIY Y (λi, λj ), between the frequency components of X and
Y , ̂MIXY (λi, λj ), and the mutual information between X

and Y , Î (X;Y ), from N = 32 × 104 samples of X and Y
withNs = 104 , for different values of noise standard deviation,
σw ∈ [0, 10]. Computing the true value of MI-in-frequency and
mutual information is nontrivial because of the nonlinearity.
The performance of the algorithms is assessed by checking if
they detect the cross-frequency coupling at expected frequency
pairs and by checking if the mutual information estimates
decrease with increasing noise power as expected. We con-
sidered two different models for the stochastic process X , such
that its samples are dependent across time.

1) Random Cosine With Squared Nonlinearity: The samples
of X are generated from a random cosine wave,

x[n] = A cos (2πλ0n+ θ) , (18)

where A is a Rayleigh random variable with parameter 1, θ is a
uniform random variable between 0 and 2π that is independent
of A and λ0 = 4

32 . It is easy to see that frequency components
of X are statistically independent and this is confirmed by the
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Fig. 4. (a) MI-in-frequency estimates from the nearest neighbor based algorithm between the frequency components within the random processes Y , obtained
from the single cosine data-generation model, (18) with σw = 1. Note that the MI-in-frequency estimates along the principal diagonal are not plotted, since they
are equal to ∞. (b) MI-in-frequency estimates between random processes X and Y related by the single cosine data-generation model with σw = 1. It is clear

that MI-in-frequency estimator correctly identifies the pairwise frequency dependencies. (c) MI-in-frequency betweenX atλ0 and Y at 2λ0 , ̂MIX Y

(

λ0 , 2λ0
)

,

obtained from (10) along with the MI estimate between X and Y , Î (X ; Y ), obtained from Algorithm 1 for various values of the noise standard deviation, σw .

Fig. 5. (a) MI-in-frequency estimates from the nearest neighbor based algorithm between the frequency components within the random processes Y , ob-
tained from the two cosine data-generation model, (19). The MI-in-frequency estimates are not plotted along the diagonal, since they are equal to ∞.
(b) MI-in-frequency estimates between random processes X and Y related by the two cosine data-generation model. It is clear that MI-in-frequency esti-
mator correctly identifies the pairwise frequency dependencies between X and Y . (c) Î(X ; Y ), the MI estimate between X and Y obtained from Algorithm 1 for
various values of the noise standard deviation, σw .

NNMIF estimator. However, because of the square nonlinearity
in (17), the DC component of Y and the 2λ0 component of Y
will be statistically dependent and this is confirmed by Fig. 4(a),
which plots the MI-in-frequency between components ofY gen-
erated with σw = 1 using the NNMIF algorithm. The common
information between these two processes will be present be-
tween λ0 component of X and the {0, 2λ0} components of
Y . This cross-frequency dependence is confirmed by Fig. 4(b),
which plots the estimates of MI-in-frequency betweenX and Y
obtained by the NNMIF algorithm from (10): we observe that
significant dependencies occur only at (λ0 , 0) and (λ0 , 2λ0) fre-
quency pairs. As a result, P = 1, Q = 2. The MI estimate from

Algorithm 1, Î (X;Y ) = 1
2 Î

(

d ˜X(λ0);
{

d˜Y (0), d˜Y (2λ0)
}

)

is

plotted in Fig. 4(c). The MI estimate decreases with increas-
ing σw as expected. In addition, we note for this model that
the DC component of Y does not contain any extra informa-
tion about X , given the 2λ0 component of Y . Therefore, we
expect 1

2 Î(d ˜X(λ0); {d˜Y (0), d˜Y (2λ0)}) = 1
2
̂MIXY (λ0 ; 2λ0), a

result verified in Fig. 4(c), since the two curves are very
close.

2) Two Random Cosines With Squared Nonlinearity: The
samples of random process X are generated according to

x[n] = A1 cos (2πλ1n+ θ1) +A2 cos (2πλ2n+ θ2) , (19)

where A1 , A2 are independent Rayleigh random variables with
parameter 1, θ1 , θ2 are independent uniformly distributed ran-
dom variables between 0 and 2π that are independent ofA1 ,A2 ,
and λ1 = 4

32 , λ2 = 6
32 . As before, the frequency components of

X are statistically independent. However, after some basic al-
gebra, it is easy to see that the all possible pairs of frequency
components of Y in {0, λ2 − λ1 , 2λ1 , λ2 + λ1 , 2λ2} are sta-
tistically dependent, except for (2λ1 , 2λ2) frequency pair, and
we expect to see statistically significant MI-in-frequency esti-
mates between these frequency components. This is confirmed
by Fig. 5(a), which plots the MI-in-frequency estimates within
Y , generated with σw = 1 and obtained by the NNMIF algo-
rithm. The pairwise frequency dependencies between X and
Y occur at (λ1 , 0), (λ1 , λ2 − λ1), (λ1 , 2λ1), (λ1 , λ2 + λ1),
(λ2 , 0), (λ2 , λ2 − λ1), (λ2 , λ2 + λ1) and (λ2 , 2λ2). Fig. 5(b)
plots the estimates of pairwise MI-in-frequency between X
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TABLE I
CLINICAL DETAILS OF THE PATIENTS ANALYZED

The full forms of the electrodes in seizure onset zone column in Table I: RAH - right anterior hippocampus, RPH - right posterior
hippocampus, RAMY - right amygdala, PD - posterior hippocampal depth, MST - mid-subtemporal lobe, TP - temporopolar, HD -
hippocampal depth and AST - anterior sub-temporal lobe, LMH - left mid hippocampus, AH - anterior hippocampus, PH - posterior
hippocampus, AMY - amygdala, TOP - temporo-occipito-parietal. The outcomes are in Engel epilepsy surgery outcome scale [43],
[44]: “Class IA - completely seizure free since surgery, class IB - non disabling simple partial seizures only since surgery, class IIB
- rare disabling seizures since surgery (“almost seizure-free”), class IIIA - worthwhile seizure reduction, class IV - no worthwhile
improvement”.

and Y generated with σw = 1 and obtained by the data-driven
NNMIF algorithm using (10). The algorithm correctly identi-
fies all the dependent frequency pairs and P = 2, Q = 5. We
then apply the algorithm described in Section V and plot the
estimates the MI for different values of noise standard devia-
tion σw in Fig. 5(c). Again, the MI decreases with increasing
noise power, as expected. These different models validate the
superiority of MI-in-frequency over other existing metrics to
detect cross-frequency coupling and also demonstrate the per-
formance and accuracy of the data-driven MI-in-frequency and
MI estimators.

VII. CFC IN SEIZURE ONSET ZONE

Epilepsy is a common neurological disorder characterized by
repeated, unprovoked seizures. The seizure onset zone (SOZ)
comprises regions of the brain that are responsible for gen-
erating and sustaining seizures [3]. Surgical resection of the
seizure onset zone is the prescribed treatment for a large portion
of medically refractory epilepsy patients with focal epilepsy.
However, surgical resection risks damage to critical functional
zones that are frequently adjacent or even overlapping with the
seizure focus, depending on location of the focus [45]. An ideal
solution might be a closed-loop neuromodulation strategy that
stimulates the epileptic [41], [46] and other networks [47] at the
optimal frequency with spatial and temporal specificity [6], [7].
In this paper, we focus on learning more about the characteris-
tic frequencies and the spatial specificity of epileptic networks.
Specifically, we investigate cross-frequency coupling between
various regions in the seizure onset zone during the evolution of

seizures and identify the frequencies with strong coupling. We
estimate the cross-frequency coupling (CFC) from ECoG data
recorded from the SOZ electrodes using our nearest neighbor
based MI-in-frequency estimator. We infer the characteristics
of CFC within and between various regions inside the seizure
onset zone.

We analyzed ECoG data, sampled atFs = 1 kHz, from a total
of 25 seizures recorded from nine patients with medial temporal
lobe epilepsy. Clinical details of the patients, along with the
seizure onset zone identified from ECoG data [41], are summa-
rized in Table I. The seizure start and end time were marked
by the neurologist. We analyzed ECoG recordings from SOZ
electrodes during preictal (window spanning up to 3 minutes
immediately before the seizure starts), ictal (during seizures)
and postictal (window spanning up to 3 minutes immediately
after the seizure ends) periods. We only focussed on the os-
cillations in alpha (7.5–12.5 Hz), beta (12.5–30 Hz), gamma
(30–80 Hz) and ripples (80–200 Hz), excluding 60 Hz line
noise and its harmonics. The CFC oscillations are analyzed at
spectral resolution of 10 Hz by choosing Nf = 100, and the
exact frequencies considered are {10, 20, . . . , 200} Hz, exclud-
ing {60, 120, 180} Hz. The resulting 17 × 17 CFC matrix from
each ECoG electrode and between all pairs of ECoG electrodes
in the SOZ is estimated using nearest neighbor based estimator
(Section IV-B) during preictal, ictal and postictal periods during
all the twenty five seizures.

We then grouped the ECoG electrodes into distinct anatomi-
cal regions based on their label and analyzed the average CFC
within a SOZ electrode, between two electrodes in the same
anatomical region and between electrodes in different anatomi-
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Fig. 6. Binary mask plotting the frequency pairs with statistically significant
differences across all the hypotheses tested after applying false discovery rate
correction. White and black colored regions represent frequency pairs with and
without statistically significant variation respectively.

cal regions. For instance, consider patient P1. ECoG electrodes
in the SOZ of patient P1 are grouped into three different anatom-
ical regions–RAH, RPH, and RAMY (Table I). We estimated
5 CFC matrices, one per SOZ electrode, to infer the average
CFC within an electrode in SOZ in this patient. We estimated
20 CFC matrices between all pairs of electrodes in the SOZ.
Of these, 4 CFC matrices (2 to learn the CFC between the 2
SOZ electrodes in RAH and 2 to learn the CFC between the 2
SOZ electrodes in RAMY regions) are grouped to learn the av-
erage CFC between electrodes in the same anatomical region in
SOZ. The remaining 16 CFC matrices are grouped to learn the
CFC between different regions inside the SOZ. The estimated
CFC matrices are grouped into these three spatial categories for
all the nine patients during preictal, ictal and postictal periods.
We only presented the results for CFC within a SOZ electrode
and between electrodes in different SOZ regions during preictal,
ictal and postictal periods.

We used the permutation procedure outlined in Section IV-C
to estimate the CFC under the null hypothesis and assess the
significance of the estimated CFC values across the six con-
ditions considered (CFC during preictal, ictal, postictal periods
within a SOZ electrode and between electrodes in different SOZ
regions) using Wilcoxon signed-rank test [48]. We also used the
Wilcoxon signed-rank test to identify the frequency pairs with
significant variation in CFC between preictal and ictal periods
and between ictal and postictal periods, both within a SOZ elec-
trode and between electrodes in different SOZ regions (four
hypotheses in total). In addition, we used the Mann-Whitney
U-test [48] to identify frequency pairs with significant changes
in CFC within a SOZ electrode and between electrodes in dif-
ferent SOZ regions across preictal, ictal and postictal periods
(three hypotheses in total). We estimated 3621 p-values in total
(13 × 17 × 16 + 5 × 17) and applied false discovery rate cor-
rection at a significance level of 0.01 to account for multiple
comparisons [49]. The frequency pairs with significant statisti-
cal variation across all the hypotheses considered are depicted
using a binary mask in Fig. 6, in which black and white col-
ored regions respectively represent frequency pairs without sta-
tistically significant variation and with statistically significant
variation. Lack of statistical significance at the black regions in

Fig. 6 could be because of insufficient data or could be due to
a neuronal transition mechanism as the brain moves from pre-
ictal to ictal to postictal state. It is important to note that if we
tested only a subset of the thirteen hypotheses, then some of the
frequency pairs in black colored regions in Fig. 6 could become
statistically significant.

The median CFC within an electrode in SOZ during preictal,
ictal and postictal periods grouped across all twenty five seizures
in nine patients analyzed is plotted in Fig. 7. In Fig. 7(a), me-
dian CFC in the preictal period is plotted, while the difference
between median CFC in the ictal and preictal period, and be-
tween postictal and ictal period is plotted in Fig. 7(b) and (c)
respectively. We need to multiply the binary mask in Fig. 6
with the plots in Fig. 7 to obtain frequency pairs with signif-
icant statistical variation. The (i, j)th element in the matrix in
Fig. 7(a) is the median MI-in-frequency between the 10i and
10j Hz frequency components during preictal period across all
SOZ electrodes in the twenty five seizures analyzed. The prin-
cipal diagonal in the three CFC matrices is not plotted since
MI-in-frequency between same frequencies in a signal is infin-
ity. It is clear from this figure that ripple frequencies are heavily
synchronized during preictal stage within an electrode in SOZ.
The synchronization between all frequency pairs, particularly in
gamma and ripples, seemed to increase during the seizure when
compared to just before the seizure. And finally, the synchro-
nization between high-frequency bands decreased, and low fre-
quencies become more synchronized amongst themselves and
with high-frequencies in the postictal period compared to the
ictal period within an electrode in SOZ.

The median CFC between electrodes in different SOZ regions
grouped across all twenty five seizures in nine patients analyzed
is plotted in Fig. 8. We need to multiply the binary mask in
Fig. 6 with the plots in Fig. 8 to obtain frequency pairs with
significant statistical variation. The median CFC during the pre-
ictal period is plotted in Fig. 8(a). It is clear from the principal
diagonal that neighboring regions in SOZ have weak linear in-
teractions (possibly due to their spatial proximity) just before
a seizure starts. From Figs. 7(a) and 8(a), it is clear that the
CFC strength is much lower between regions when compared
to within an electrode. From Fig. 8(b), we observe a small in-
crease in CFC between regions as the brain transitions to seizure
state. However, the increase is much smaller between regions
when compared to the increase observed in Fig. 7(b), which sug-
gests that different SOZ regions potentially drive the rest of the
brain into a seizure state independently, which implies any non-
surgical treatment should target these different regions simulta-
neously to disrupt the epileptic network. As the brain transitions
to postictal state, we observe a sharp increase in linear coupling
between electrodes in different SOZ regions, which suggests
that postictal periods, unlike ictal periods, are characterized by
an increase in linear interactions. These results highlight the
role of gamma and ripple high-frequency oscillations (HFOs)
during seizures and the dynamic reorganization of synchroniza-
tion between neuronal oscillations inside the seizure onset zone
during the course of a seizure. These results also suggest that
multiple regions inside the seizure onset zone might have to be
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Fig. 7. Cross-frequency coupling within an electrode inside the seizure onset zone. (a) MI-in-frequency estimates over the frequencies {10, 20, . . . , 200} Hz
excluding {60, 120, 180} Hz are obtained from each electrode in SOZ during preictal period and the median of the resulting CFC estimates from all the SOZ
electrodes in the twenty five seizures from the nine temporal lobe epilepsy patients analyzed is plotted. (b) MI-in-frequency estimates are obtained from each
electrode in SOZ in the ictal period and the difference between the median CFC estimate in ictal and preictal period is plotted. Similarly, (c) plots the difference in
the median CFC between postictal and ictal periods.

Fig. 8. Cross-frequency coupling between electrodes in different regions inside the seizure onset zone. (a) MI-in-frequency estimates over the frequencies
{10, 20, . . . , 200} Hz excluding {60, 120, 180} Hz are obtained between electrodes in different SOZ regions during the preictal period and the median of the
resulting CFC estimates from the twenty five seizures in the nine temporal lobe epilepsy patients analyzed is plotted. (b) MI-in-frequency estimates are obtained
between electrodes in different SOZ regions from the ictal period and the difference between the median CFC estimate from the ictal and preictal period is plotted.
Similarly, (c) plots the difference in the median CFC between postictal and ictal periods.

targeted simultaneously using neuromodulation techniques to
control seizure activity.

VIII. DISCUSSION AND CONCLUSION

Detecting and quantifying relationships between multiple
data streams recorded from a physical system is of interest
in many science and engineering disciplines. However, since
the underlying model is often unknown and nonlinear, detect-
ing and quantifying the relationships in data is very challenging
in most real-world applications. Brownian distance covariance
[50], maximal information coefficient [51] are some of the re-
cent works that attempt to overcome this challenge in the most
general case. Furthermore, in neuroscience, we are also inter-
ested in decomposing the relationships in frequency domain and
estimating cross-frequency coupling (CFC) from electrophysio-
logical recordings. Motivated to understand nonlinear frequency
coupling in electrophysiological recordings from the brain and
inspired by [26], we defined MI-in-frequency between stochas-
tic processes that are not necessarily Gaussian and estimated it
using data-driven estimators. We found that the nearest neighbor
based MI-in-frequency estimator outperforms the kernel-based
MI-in-frequency estimator. MI-in-frequency can be thought of
as “coherence” for non-Gaussian signals. At a first glance, CFC

could be estimated by first filtering the data into appropriate
frequency bands and then applying the techniques in [21], [50],
[51]. However, [22] summarizes all the caveats and confounds
in estimating CFC using this approach. In contrast, the MI-in-
frequency metric estimates CFC without explicitly band-pass
filtering the data into appropriate frequency bands.

We then compared the performance of MI-in-frequency
against modulation index [8], [21], a popular CFC metric used
to measure phase-amplitude coupling that involves bandpass
filtering, on simulated data and observed that MI-in-frequency
outperforms the existing metrics used to estimate CFC. The
main advantages of the MI-in-frequency approach over existing
methods to estimate CFC are that it detects statistical indepen-
dence, detects dependencies across phase and amplitude jointly,
applies to linear and nonlinear dependencies, and is not de-
pendent on parameters like the filter bandwidth. Our approach
will need more data when compared with coherence since
MI-in-frequency detects both linear and nonlinear dependen-
cies in frequency. From the simulation results on linear models,
we need about 103 samples to be within 10% of the true value.
For the ECoG data sampled at 1 kHz and a desired spectral res-
olution of 10 Hz, this implies the total number of data samples
is of the order of 100 seconds or a couple of minutes, which is
roughly the size of preictal, ictal and postictal windows used in
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Section VII. In summary, we developed a metric to detect sta-
tistical independence in frequency which outperforms existing
CFC metrics and for the first time, utilized frequency domain to
estimate mutual information over time between dependent data.

The MI-in-frequency metric can be further extended along
several directions and some of them are outlined here. We can
move to wavelet based analysis to improve the fixed time-
frequency resolution of our Fourier-based approach in future
work. The assumption of data stationarity in observation win-
dow (also assumed by most CFC metrics) can be potentially
relaxed by utilizing time-frequency distributions and develop-
ing heuristics to measure the dependencies across frequency.
However, the inherent trade-off involved is that we are not guar-
anteed to detect statistical independence. It is also possible to
define and estimate conditional MI-in-frequency to eliminate
indirect coupling estimated between two signals because of a
third signal which is coupled to both.

We then apply the MI-in-frequency estimators to infer the
coupling between neuronal oscillations before, during and af-
ter seizures in the seizure onset zone. Spatially, we used the
electrode labels to identify the different regions in the SOZ.
This is just one possible way to analyze the spatial variation
in CFC. Some of the other possible options include using the
distance between electrodes or using the underlying neuronal
cell types to split the electrodes into different regions in SOZ.
Our MI-in-frequency metric provides a framework that can be
utilized to learn the CFC characteristics for any desired spatial
grouping. In addition, the frequency resolution of our estimated
CFC was constant and wavelet transform, instead of Fourier
transform, can be utilized to provide greater resolution at lower
frequencies.

We observed that the high-frequency synchronization within
an ECoG electrode in SOZ increases during seizures and de-
creases immediately after the seizure, which is accompanied by
an increase in low-frequency coupling. However, the coupling
between different anatomical regions in SOZ does not increase
noticeably during seizures and is also followed by a large in-
crease in linear interactions immediately after a seizure. These
observations suggest that seizure activity is characterized by
nonlinear interactions and is potentially due to the independent
efforts by various regions within SOZ, which implies that all
these regions are potential spatial targets for electrical stimula-
tion. Furthermore, we did a preliminary investigation to learn
if there are the differences in CFC between interictal periods
and seizure periods. Fig. 9 plots the CFC within an ECoG elec-
trode and between ECoG electrodes in different regions in SOZ
during interictal period in two patients (P1 and P2). Comparing
Fig. 9 with Figs. 7(a) and 8(a), it looks like the CFC within a
SOZ electrodes at higher frequencies slightly increases, while
CFC between electrodes in different regions across the diagonal
(or equivalently, linear interactions) slightly decreases as the
brain transitions from interictal to preitctal periods. We plan to
extend this analysis to a larger patient cohort. Building a real-
time seizure prediction system utilizing the variations in CFC
between interictal and seizure periods is the focus of our cur-
rent [52] and future work. In addition, the CFC characteristics
were patient-specific and we presented the median CFC across

Fig. 9. Cross-frequency coupling during interictal periods. (a) MI-in-
frequency estimates over the frequencies {10, 20, . . . , 200} Hz excluding
{60, 120, 180} Hz are obtained from each electrode in SOZ during interictal
period and the median of the resulting CFC estimates from all the SOZ elec-
trodes in patients P1 and P2 is plotted. (b) MI-in-frequency estimates over the
frequencies {10, 20, . . . , 200} Hz excluding {60, 120, 180} Hz are obtained
between electrodes in different SOZ regions during the interictal period and the
median of the resulting CFC estimates in patients P1 and P2 is plotted.

all the patients considered. Going forward, the MI-in-frequency
metric should be applied to infer the CFC between channels
in SOZ and outside SOZ to learn how SOZ drives the rest of
the brain into a seizure state in each epilepsy patient. The re-
sults from such an analysis will improve our understanding of
the CFC mechanisms underlying seizure activity and will serve
as the first step towards the development of a patient-specific,
closed-loop, non-surgical treatment for epilepsy.

APPENDIX

a) Proof of (6)

We have from (4),

y(t) =
∫ ∞

−∞
h1(t− τ)x(τ)dτ+

∫ ∞

−∞
h2(t− τ)w(τ)dτ (20)

⇒
∫ ∞

−∞
ej2πν td˜Y (ν) =

∫ ∞

−∞
h1(t− τ)

∫ ∞

−∞
ej2πν τ d ˜X (ν) dτ

+
∫ ∞

−∞
h2(t− τ)

∫ ∞

−∞
ej2πν τ d˜W (ν) dτ (from Theorem 1)

=
∫ ∞

−∞
ej2πν t

∫ ∞

−∞
h1(t− τ)e−j2πν (t−τ )dτd ˜X (ν)

+
∫ ∞

−∞
ej2πν t

∫ ∞

−∞
h2(t− τ)e−j2πν (t−τ )dτd˜W (ν) (21)

=
∫ ∞

−∞
ej2πν t

{

H1 (ν) d ˜X (ν) +H2 (ν) d˜W (ν)
}

.

⇒ d˜Y (ν) = H1 (ν) d ˜X (ν) +H2 (ν) d˜W (ν) . (22)

b) Proof of Theorem 3

We will first prove that MIXY (ν1 , ν2) is zero, when X
and Y are related by (4) and ν1 �= ν2 . Since the processes
X (t) and W (t) are independent, their spectral processes are
also independent. In addition, we also know from Theorem 2
that the spectral increments of the Gaussian process X (t)
are independent. It is clear from (6) that given H1 (ν) and
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H2 (ν),
[

d˜YR (ν2) , d˜YI (ν2)
]

is completely determined by the

two-dimensional random vectors
[

d ˜XR (ν2) , d ˜XI (ν2)
]

and
[

d˜WR (ν2) , d˜WI (ν2)
]

, both of which are independent of the

two-dimensional random vector
[

d ˜XR (ν1) , d ˜XI (ν1)
]

when

ν1 �= ν2 . This implies the MI between
[

d˜YR (ν2) , d˜YI (ν2)
]

and
[

d ˜XR (ν1) , d ˜XI (ν1)
]

, which is defined as MIXY (ν1 , ν2),
is zero.

We will now derive the analytical expression for MIXY (ν,ν),
for ν �= 0. Let H1(ν)=H1R (ν) + jH1I (ν) and H2(ν)=
H2R (ν) + jH2I (ν). We can see from (5), (6) that

[

d˜YR (ν) , d˜YI (ν)
]∼N

(

0,
(

1
2
sX (ν) |H1 (ν) |2

+
1
2
sW (ν) |H2 (ν) |2

)

I
)

, (23)

where N represents Gaussian distribution, 0 is a two element
zero vector and I is the 2 × 2 identity matrix. In addition,

[

d ˜XR (ν), d ˜XI (ν), d˜YR (ν), d˜YI (ν)
]∼N

(

0,
[

Σ11 Σ12
Σ21 Σ22

])

,

(24)

where Σ11 = 1
2 sX (ν) I, Σ22 = 1

2σ
2
˜Y

(ν) I, σ2
˜Y

(ν) = (sX (ν)
|H1 (ν) |2 + sW (ν) |H2 (ν) |2), I is the 2 × 2 identity matrix
and 0 is a four element zero vector. In addition,

Σ12 = ΣT
21 =

[

1
2 sX (ν)H1R (ν) 1

2 sX (ν)H1I (ν)

− 1
2 sX (ν)H1I (ν) 1

2 sX (ν)H1R (ν)

]

.

Now, the MI between X and Y at frequency ν is given by

MIXY (ν, ν) = I
({

d ˜XR (ν) , d ˜XI (ν)
}

;
{

d˜YR (ν) , d˜YI (ν)
})

= I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

+ I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YI (ν) |d˜YR (ν)
)

(25)

= I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

+ I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YI (ν)
)

,
(26)

where (25) follows from the chain rule of mutual information
[34] and (26) follows because the real and imaginary parts
of the spectral process of a Gaussian process are independent
from Theorem 2. In addition,

[

d ˜XR (ν) , d ˜XI (ν) , d˜YR (ν)
]

is
a Gaussian distributed random vector with zero mean and co-
variance matrix Σ′, which is easily obtained from (24). Since the
mutual information between components of a Gaussian random
vector depends only on the determinants of the joint distribu-
tion’s covariance matrices and that of marginals [34], we can
easily show that

I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

=
1
2

log
|Σ11 |

(

1
2σ

2
˜Y

)

|Σ′|

=
1
2

log
(

1 +
|H1 (ν) |2sX (ν)
|H2 (ν) |2sW (ν)

)

.

(27)

Similarly, we can also show that

I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YI (ν)
)

=

1
2

log
(

1 +
|H1 (ν) |2sX (ν)
|H2 (ν) |2sW (ν)

)

.

(28)

From (26), (27) and (28), we have

MIXY (ν, ν) = 2 × I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

= log
(

1 +
|H1 (ν) |2sX (ν)
|H2 (ν) |2sW (ν)

)

. (29)

At ν = 0, MI-in-frequency between X and Y is equal to
I
({

d ˜XR (ν) , d ˜XI (ν)
}

; d˜YR (ν)
)

, since the imaginary part of
Y is zero.

c) Relationship Between MI in Frequency and Coherence

The coherence CXY (ν) ∈ [0, 1] between two processes X
and Y related by (4) is given by

CXY (ν) =
|sXY (ν) |2
sX (ν) sY (ν)

=
|H1 (ν) |2sX (ν)

sX (ν) |H1 (ν) |2 + sW (ν) |H2 (ν) |2 .

⇒ − log (1 − CXY (ν)) = log
(

1 +
|H1 (ν) |2sX (ν)
|H2 (ν) |2sW (ν)

)

= MIXY (ν, ν) . (30)

d) Proof of Theorem 4

Now we consider two discrete-time Gaussian stochastic pro-
cesses X [n] and Y [n] that are related by

y[n] = h1 [n] ∗ x[n] + h2 [n] ∗ w[n], (31)

whereh1 [n] andh2 [n] are the impulse responses of two discrete-
time linear, time-invariant filters. (31) is the discrete-time equiv-
alent of (4). It was shown in chapter 10 in [33] that mutual infor-
mation between the discrete-time Gaussian stochastic processes
X [n] and Y [n] is related to coherence according to

I (X;Y ) = −
∫ 0.5

0
log (1 − CXY (λ)) dλ. (32)

From (30) and (32), we have

I (X;Y ) =
∫ 0.5

0
MIXY (λ, λ) dλ. (33)
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