
Citation: Fielding, Ben and Zhang, Li (2018) Evolving Image Classification Architectures with
Enhanced Particle Swarm Optimisation. IEEE Access, 6. pp. 68560-68575. ISSN 2169-3536

Published by: IEEE

URL: http://dx.doi.org/10.1109/ACCESS.2018.2880416
<http://dx.doi.org/10.1109/ACCESS.2018.2880416>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/36965/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

http://nrl.northumbria.ac.uk/policies.html

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

Evolving Image Classification
Architectures with Enhanced Particle
Swarm Optimisation
BEN FIELDING, AND LI ZHANG, (Member, IEEE)
Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK, NE1 8ST
Email: {ben.fielding; li.zhang}@northumbria.ac.uk

Corresponding author: Li Zhang (email: li.zhang@northumbria.ac.uk).

The authors would like to thank RPPtv Ltd and Northumbria University for their funding support towards this work.

ABSTRACT Convolutional Neural Networks (CNNs) have become the de facto technique for image
feature extraction in recent years, however their design and construction remains a complicated task. As
more developments are made in progressing the internal components of CNNs, the task of assembling them
effectively from core components becomes even more arduous. To overcome these barriers, we propose
Swarm Optimised Block Architecture (SOBA), combined with an enhanced adaptive Particle Swarm
Optimisation (PSO) algorithm for deep CNN model evolution. The enhanced PSO model employs adaptive
acceleration coefficients generated using several cosine annealing mechanisms to overcome stagnation.
Specifically, we propose a combined training and structure optimisation process for deep CNN model
generation, where the proposed PSO model is utilised to explore a bespoke search space defined by a
simplified block-based structure. The proposed PSO model not only devises deep networks specifically
for image classification, but also builds and pre-trains models for transfer learning tasks. To significantly
reduce the hardware and computational cost of the search, the devised CNN model is optimised and trained
simultaneously, using a weight sharing mechanism and a final fine-tuning process. Our system compares
favourably with related research for optimised deep network generation. It achieves an error rate of 4.78%
on the CIFAR-10 image classification task, with 34 hours of combined optimisation and training, and an
error rate of 25.42% on the CIFAR-100 image data set in 36 hours. All experiments were performed on a
single NVIDIA GTX 1080Ti consumer GPU.

INDEX TERMS Computer Vision, Convolutional Neural Networks, Deep Learning, Evolutionary Com-
putation, Image Classification, Particle Swarm Optimisation

I. INTRODUCTION

DESPITE being a relatively mature concept, Convolu-
tional Neural Networks (CNNs) have proven to be in-

credibly effective feature extractors in recent computer vision
research. They were originally proposed and proven effective
by LeCun et al. [1] in 1989 for classifying handwritten
numerical digits from a dataset now commonly known as
MNIST, but subsequently fell out of favour for a number
of years. Since then, CNNs have experienced a large resur-
gence in popularity, particularly for challenging computer
vision tasks requiring effective feature extraction. This rise
in popularity has been motivated largely by the increases
in performance demonstrated by CNNs on challenging tasks
such as the ImageNet Large-Scale Visual Recognition Chal-

lenge (ILSVRC) [2]. The ILSVRC has been running annual
competitions since 2010, backed by the ImageNet dataset
which contains over 14 million images with various asso-
ciated metadata, organised to follow the paradigms of the
popular WordNet dataset [3]. Since 2015, all of the winners,
and a majority of the entrants, have each been some variation
of a deep CNN, with a newly proposed architecture being
the improving factor for a number of the entrants. Often
these new architectures are then used by subsequent works in
relevant sub-fields by exploiting the pre-trained networks as
essentially pre-created feature extractors and using transfer-
learning techniques to apply them to the new tasks. Since this
widespread adoption of deep convolutional networks as the
go-to technique for image feature extraction, it has become

VOLUME 4, 2016 1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Fig. 1: The proposed Swarm Optimised Block Architecture
where each particle represents a full, discrete convolutional
architecture for image classification.

necessary for many researchers to integrate these pre-trained
networks into their own models, where previously they would
have used a hand-designed feature extractor such as SIFT
[4] or HOG [5]. Currently, the choice of pre-trained network
comes from the few existing, well-known architectures that
have been proposed and validated in deep learning literature,
but modifying these architectures to better suit a particular
task requires deep domain knowledge that is often unavail-
able to researchers or end-users in many sub-fields.

In this research, we refer to the specific combination of
layers and parameters that make up the structure of a CNN as
the ‘architecture’ of the network. This combination of design
choices rapidly becomes larger as the intended depth of a net-
work increases. The architectures of the networks described
above have largely been designed by hand, using expert
knowledge in order to tweak parameters and hyperparameters
to achieve the best possible results. This has unfortunately
resulted in a high barrier-to-entry for the field, as this expert
knowledge must be acquired before one can design effective
networks. The process can be seen as a sort-of human-led
stochastic optimisation, whereby human agents iteratively
design and test new architectures, using knowledge gained
through previous experiments or from others’ experimental
results. When applying to sub-field tasks, transfer learning
implementations rely on existing pre-trained models due to
the time/hardware constraints, difficulty in designing and
training a new model, and the potential pitfalls in this process.
This does, however, mean that the pool of available networks
is very small, as one must rely solely on the published
architectures. Therefore an automatic architecture optimisa-
tion process is required to allow these researchers to design
architectures specific to the task at hand without needing a
deep background knowledge in the area. The process must
also be fast and usable on commodity hardware, in order to
be available to those who need it the most.

In this work, we propose Swarm Optimised Block Ar-
chitecture (SOBA), a system to perform evolutionary deep
CNN model generation using an enhanced Particle Swarm
Optimisation (PSO) model. The proposed model is able to
conduct concurrent architecture optimisation and end-to-end
training for the task of image classification. In other words,
the proposed method both optimises and trains model archi-
tectures at the same time, allowing a ‘one-click’ approach

to creating an effective model from a block-based skeleton
architecture. Using this approach, we provide an effective
way to optimise the architecture of CNNs for image classi-
fication through the formation of the optimisation problem
within a constrained search space. We employ a skeleton
architecture that is used as a minimal starting point by
our optimisation system, which loosely follows the VGG
architecture [6]. A modified PSO model with adaptive ac-
celeration coefficients is used to perform the evolving deep
CNN generation, with parameter sharing used to alleviate the
enormous computational cost of fully training and evaluating
each new architecture. The newly proposed cosine annealing
mechanisms for adaptive search weight generation in the
enhanced PSO model enable the search to balance between
local exploitation and global exploration to carefully direct
the architecture generation around the additional constraints
introduced by the parameter sharing strategy. The nature of
the search process in combination with the training of the
network blocks themselves ensures that each block becomes
much more robust, as it is trained and optimised to its best
performance level, regardless of the structure of the rest of
the network. Specifically, each block will be trained using
backpropagation independent of the specific configurations
of the other layers, with the weights shared between differ-
ent model configurations. This strategy is contrary to hand-
designed models which are wholly trained with the same
model configuration. Fig.1 represents the proposed Swarm
Optimised Block Architecture (SOBA) model.

The research contributions are as follows:

1) We formulate the optimisation problem within a con-
strained search space through the creation of a bespoke
objective function.

2) We employ a continual training method using a weight
lookup table to alleviate the enormous computational
cost of fully training and evaluating each new architec-
ture.

3) An enhanced PSO model is proposed to perform the
minimisation of our objective function with acceleration
coefficients determined by a shifted cosine function to
address the added constraints from our continual train-
ing method.

4) We apply a combined optimisation and training strategy
to provide single-run, end-to-end optimisation with a
final fine-tuning step.

5) Evaluated on the CIFAR-10 and CIFAR-100 image
datasets, the proposed model shows superior classifica-
tion performance on consumer hardware in reasonable
time, over other related methods reported in the litera-
ture.

The proposed SOBA model allows for fast, effective de-
sign & training of simple VGG-style image classification
models up to a high level of accuracy through stochastic
exploration of a constrained euclidean search space, inspired
by the simple and popular VGG architecture model. SOBA
is designed and tested using consumer-level hardware with

2 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

reasonable runtimes, providing an accessible method of ar-
chitecture optimisation with huge potential for other complex
computer vision tasks.

The rest of this paper is organised as follows. We discuss
the background theory and related work in Section II, and
present the proposed SOBA optimisation model for evolving
deep CNN generation with adaptive PSO and weight sharing
in Section III. We then provide system evaluation and exper-
imental results in Section IV. Finally, we provide concluding
remarks and discuss further directions in Section V.

II. BACKGROUND & RELATED WORK
A. ARCHITECTURE OPTIMISATION
Evidenced by recent research [7], [6], [8], [9], CNNs have
become exceedingly popular for solving computer vision
problems owing to their ability to learn task-specific filters to
extract the key information in an image. CNNs are usually
comprised of multiple layers of computation that function
together to form a network. When designing a CNN for
classification, the typical goal is to embed the information
found in the image into a fixed length vector, which can then
be passed through fully-connected (linear) layers, or even
another classifier, to finally output class probabilities. This
is performed by cascading layers of convolutional operations
with learned filters. There are a number of design and param-
eter choices that can be made for each layer, as well as for the
connections between the layers. The traditional approach is a
purely hierarchical model, where each layer feeds its output
feature maps into the next layer sequentially until the final
layer is reached. Recent works have, however, explored the
possibility of considering the connections between the layers
as a Directed Acyclic Graph (DAG), whereby each layer can
connect to any number of subsequent layers. This approach
is motivated by the success of residual or skip-connections
[9], which proved effective at maintaining global features
throughout the network by directly passing earlier feature
maps to later layers in a hierarchical network. Besides the
connections between the layers in the network, each layer
itself requires a number of choices to be made pertaining
to its parameters and functionality. As previously mentioned,
these choices have traditionally been made based on prior
knowledge and intuition, with many combinations being
thoroughly tested before an optimal architecture is found.
There has been a large amount of recent interest in the task
of designing architecture search strategies to replace this
human-led trial and error process and provide an effective
method to automatically design optimal architectures and
associated hyper-parameters. As an example, Stanley and
Miikulainen [10], [11], [12] explored various methods for
automating the process of designing neural network architec-
tures. Their method, called NeuroEvolution of Augmenting
Topologies (NEAT), took the form of a Genetic Algorithm
(GA) which could ‘grow’ architectures from a simple start-
ing point. Stanley et al. [13] also explored training neural
networks via similar evolutionary methods, although this has
thus far not proved to outperform backpropagation. There has

been some recent work to extend the NEAT methodology to
build deep learning architectures, as the size and complexity
of CNN models present further challenges [14], [15], [16],
[17]. More recently there have been a number of experiments
using reinforcement learning (RL) for automated architecture
design [18], [19], [20], [21], [22], although these techniques
have very recently been surpassed by relatively more simple
evolutionary methods [23], [24], [25], [26].

In [25], Real et al. demonstrate evolution of image clas-
sifiers using relatively few constraints. They inherit weights
between evolutionary generations for more effective training
with less wasted processing time for re-training layers of
the same shape/depth in the architecture. Their model uses a
form of tournament selection whereby an initial population
of models is trained, then individual pairs are compared
and the weaker of the pair is terminated. On the contrary,
the fitter solution of the pair is selected for reproduction to
yield an offspring solution via a mutation operation. This
offspring model is then trained and evaluated and becomes
a member of the overall population and the above process is
repeated. Mutations are chosen from a population of eleven
hand-picked operations (such as Insert-convolution, Alter-
learning-rate, and Alter-filter-size) intended to mimic the
steps a human would take when attempting to improve the
architecture. Their work could also be extended to yield
“hybrid evolutionary–hand-design methods” in the future.

Brock et al. [27] train a ‘hypernetwork’ model to gener-
ate weights for a given architecture, in order to effectively
evaluate an architecture’s validation performance. They can
then sample architectures to obtain validation performance
estimates using the weights generated by the hypernetwork.
Once a number of architectures are generated and sampled,
they take the architecture with the best estimated validation
performance and fully train it in the usual way, in order to
test its performance on the test set.

Zoph and Le [19] use a recurrent neural network (RNN)
as a controller network to generate potential network archi-
tectures. These architectures are trained for a large num-
ber of epochs and then evaluated on a validation set to
determine a score for the child architecture. The controller
architecture is trained using policy gradients, particularly the
REINFORCE algorithm [28]. Owing to the enormous cost
of training for evaluating each child architecture, an asyn-
chronous, distributed training process is used whereby many
child architectures are trained concurrently using multiple
workers. This approach is common for current architecture
optimisation works, although it does require huge resources
not commonly available to research teams.

Negrino and Gordon [29] propose a method that allows
researchers to describe search spaces, which can then be ef-
fectively explored using a tree-search strategy. They demon-
strate the effectiveness of Monte Carlo tree search (MCTS)
and sequential model-based optimisation (SMBO) over ran-
dom search when traversing their defined search spaces.

Baker et al. [18] use Q-Learning to maximise the overall
expected reward by modelling architecture optimisation as

VOLUME 4, 2016 3

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

a Markov Decision Process (MDP). Their agent iteratively
selects layers to add to the architecture, until it reaches a stop-
state. Initially the agent is allowed to sample architectures
with a random walk, giving the opportunity to explore the
search space before targeted optimisation. They allow the
agent to continue this random behaviour to a certain extent,
until the end of the process, producing a number of different
models which can then be evaluated as an ensemble in order
to improve final performance.

Besides the above, Real et al. [30] perform the first con-
trolled comparison of reinforcement learning and evolution-
ary methods for architecture optimisation and found that
“regularized evolution consistently produces models with
similar or higher accuracy across a variety of contexts with-
out need for re-tuning parameters”.

Wang et al. [31] proposed a method using the PSO model
to optimise architecture, with an embedding scheme derived
from IP address allocation. Unfortunately, their proposed
system was unable to effectively deal with the issue of
function-evaluation cost, whereby each particle evaluation is
prohibitively time and resource expensive when performed
as a full training-evaluation process. They implemented early
evaluation, where each individual was partially trained on the
training dataset and then evaluated on the validation set for
each fitness function evaluation. This is effective at reducing
the time required for each function evaluation, but results in
unreliable fitness scores due to the fact that each architecture
has not been trained to its full extent when evaluating and it is
impossible to know when its performance will plateau. Their
work thus showed limited capabilities to be tested on any
datasets other than the decidedly small MNIST dataset. Their
system performed favourably in comparison with the other
methods, although it is notable that they did not compare
against any key deep learning architectures, or indeed any
systems proposed in recent years.

The drawbacks of the vast majority of these works are that
they focus on the optimisation of the architecture as a distinct
search problem, and separate it from the actual training of
the model for the specific task. This results in these methods
having two distinct steps, i.e. resource-heavy optimisation,
followed by lengthy training in order to generate the model
with the most promising performance. This motivates the
proposed work in this research to jointly optimise and train
an identified deep learning model to enhance both system
performance and computational efficiency. The proposed
SOBA optimisation model also employs a weight sharing
mechanism to overcome the function-evaluation cost issue
encountered by [31] and discussed above.

B. PARTICLE SWARM OPTIMISATION
Particle Swarm Optimisation (PSO) [32] is a stochastic op-
timisation technique that relies on a population X of m
individuals, each with a specific position in the search space
defined by a fixed-length vector Rn. Each position in the
search space represents a distinct set of parameters to an
objective function f . The fitness of an individual particle

1: X ← U(bl, bu)
2: P ← X
3: G← Xargmin(f(X))

4: Vmax ← λ(bu − bl)
5: Vmin ← −Vmax
6: V ← U(Vmin, Vmax)
7: for t← 0, . . . , T do
8: for i← 0, . . . ,m do
9: Vi ← wVi + c1r1(Pi −Xi) + c2r2(G−Xi)

10: Xi ← Xi + Vi
11: if f(Xi) < f(Pi) then
12: Pi ← Xi

13: if f(Xi) < f(G) then
14: G← Xi

Fig. 2: The original PSO algorithm

represents the result of evaluating the objective function f
with the position of the particle as parameters. The goal of
PSO is to minimise or maximise the objective evaluation
by finding the best overall particle position argminx f(x)
or argmaxx f(x). The individual particles in the population
are initialised with random positions in the search space,
usually by drawing their values from a uniform distribution
U , bounded by defined upper (bu) and lower (bl) bounds. The
particles are then iteratively evaluated and conduct the search
process by following personal and global best solutions in
order to attain global optimality. Specifically, as the particles
are moved around the search space, the best positions found
so far, along with their fitness scores, are stored for each
individual particle. These are referred to as the ‘local best’
solutions. The best solution of the overall swarm is referred
to as the ‘global best’ solution and indicates the best set
of parameters that the algorithm has as-yet found for the
objective function. (1) & (2) denote the velocity and position
updating operations for each particle respectively.

V ti = wV t−1
i + c1r1(Pi −Xt−1

i) + c2r2(Pg −Xt−1
i) (1)

Xt
i = Xt−1

i + V ti (2)

where c1 and c2 denote acceleration coefficients, and r1

and r2 are random vectors drawn from U(0, 1) to introduce
stochasticity.Pi andPg represent the personal and global best
solutions respectively, with w as the inertia weight. Xt−1

i

and V t−1
i represent the position and velocity of the particle i

from the previous (t− 1) iteration, respectively. The process
is repeated over a defined number of iterations, or until a
stop criterion is met. The pseudo-code of the PSO model is
provided in Fig.2.

The velocities of the particles are updated by using three
components, i.e. the existing velocity, the distance between
the current position and the best position of this particle so
far (local best), and the distance between the current position
and the swarm leader (global best). Each of the three main
components thus described is weighted to control the effect
it has on the resulting velocity and position updates. These

4 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

search weights take the form of w, c1, and c2, where w
controls the impact of the previous velocity, c1 controls the
effect of the local best, and c2 controls the effect of the global
best. The standard PSO model employs pre-determined, fixed
search weights, thereby defining the magnitude of the effect
of the previous velocity, and the local and global bests on the
resultant velocity.

The ‘No Free Lunch’ theorems [33] suggest that “if an
algorithm performs well on a certain class of problems then
it necessarily pays for that with degraded performance on the
set of all remaining problems”. This is widely considered
to suggest that optimisation algorithms can be necessarily
tuned towards a specific problem, without the burden of being
required to prove their general (or average) performance over
the set of all problems. Following this paradigm, many works
[34], [35] successfully focus on improving the performance
of PSO for their own specific optimisation tasks by address-
ing their unique constraints through modification of the PSO
algorithm. For example, in order to overcome premature
convergence of the original PSO model, Mirjalili et al. [35]
proposed and tested a number of ‘adaptive’ acceleration
coefficients, whereby the acceleration coefficients become a
function of the current iteration and the overall number of
iterations, resulting in search weights that change throughout
the course of the optimisation process. Intuitively, they found
that allowing the individual and social behaviours of the
particles to change, as the optimisation process approaches
global optimality, results in improved overall performance
and convergence speed. Using adaptive search weight tech-
niques therefore allows for tailoring of the search behaviour
throughout the optimisation process, in comparison with
using fixed parameters.

III. METHODOLOGY
A huge variety of strategies could be employed for swarm-
based architecture optimisation. One intuitive strategy is
to traverse through a large number of distinctive key ar-
chitecture decisions, where each individual could represent
a discrete architecture by determining distinct filter sizes,
dilation factors, strides, pooling kernel size, etc. for every
layer in the network. Our initial experiments with this ap-
proach used an R5j+2k dimensional vector to represent each
architecture where the dimensionality of the search space
was (2 × 84 × 162 × 322 × 126)j × (2 × 4096)k. Here,
j and k represent the number of convolutional layers and
the number of fully-connected layers respectively. Using our
standard values for j & k of j = 7 and k = 2, this represents
an approximate total number of discrete, potential models
of ∼ 7.1 × 1087. Such a search space allowed for many
configurations of architecture but proved incredibly difficult
to efficiently navigate owing to its enormous size, especially
compounded by the constraints introduced by the interactions
and conflictions between the individual scalar control values
in a position vector. Many combinations of the scalar control
values could result in physically impractical architectures,
which proved impossible to create given realistic hardware

constraints. This approach thus proved unworkable, even
when heavily penalising these failures inside the optimisation
process, as the model would often resort to creating the
simplest possible (unconstrained) architecture.

A. SEARCH SPACE/OBJECTIVE FUNCTION DESIGN
We started with the idea of a simplified version of the search
space described above, by looking at existing effective convo-
lutional network designs and distilling them down into their
core components. VGG-16 [6] is a popular CNN architecture
to start with when approaching a new computer vision task
owing to its simplicity, combined with its proven effective-
ness. We construct a restricted search space around the core
concept of the VGG family of networks by taking the concept
of downsampling the width and height of the network, whilst
simultaneously increasing the number of feature maps cre-
ated, and build a ‘skeleton’ of blocks where each block ends
with the proposed down/up-sampling operation. We then
have a model for the gradual decrease in spatial size and in-
crease in number of feature maps as the network progresses,
which we hypothesise to be the key to the success of the
network. The decrease in spatial size from the downsampling
operations can also be seen as a gradual increase in receptive
field size of the filters, beyond the usual increases, as each
subsampling operation increases the receptive field of the
next convolutional layer by condensing the feature map. For
simplicity, for all convolutional operations we use a filter size
of (3×3) with stride (1×1) and padding (1×1) to maintain
the feature map sizes between convolutional layers. For each
convolutional block, we produce a number of feature maps
equal to 2ε where ε takes the values [6, 7, 8, 9] for blocks
[0, 1, 2, 3] respectively. For the downsampling layers, we use
max pooling with kernel size (2 × 2) and stride (2 × 2). If
we were to scale up the experiments to larger images, we
would look to add additional subsampling layers to decrease
the spatial size of the feature maps, increase receptive field
sizes, and create more tuneable blocks in our architecture.
The skeleton architecture which is used as the starting point
for the deep CNN evolution can be seen in Fig.3, with further
detail in Table.1.

Next, we define a method for mapping a vector of integers
to a full convolutional architecture by ‘stacking’ layers in
each block, according to the value in the specific index
of the architecture vector. In this way, we can explore an
n dimensional space, where n represents the number of
tuneable blocks in our architecture. We then frame the task
of generating the architecture of a model as a minimisation
of an objective function f(x) (defined in Fig.4), where x
represents an abstraction of network architecture into a single
point in the navigable multi-dimensional search space and
f(x) represents the error rate of the model when evaluated on
the validation set. This involves discovering the optimal value
of x which produces the minimal error rate when evaluated
using the fitness function, as shown by (3).

argmin
x

f(x) = {x | x ∈ S∧∀y ∈ S : f(y) ≥ f(x)} (3)

VOLUME 4, 2016 5

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Table. 1: The structure of the convolutional architecture to be optimised when applied to CIFAR-10 and CIFAR-100

layer type input convolutional convolutional convolutional convolutional fully-connected output
depth (no. f-maps) 3 64 128 256 512 4096 10 | 100
spatial-size (of f-maps) 32× 32 16× 16 8× 8 4× 4 2× 2 1 1
filter-size n/a 3× 3 3× 3 3× 3 3× 3 n/a n/a
block-size (no. layers) n/a 1 . . . 10 1 . . . 10 1 . . . 10 1 . . . 10 1 . . . 10 n/a

where,

S ⊂ Nn | ∀x ∈ S : 0 ≤ {x0, . . . , xn−1} < 10 (4)

in actual fact, we explore the search space using,

S ⊂ Rn | ∀x ∈ S : 0 ≤ {x0, . . . , xn−1} < 10 (5)

and rely on the implicit integer-cast to function as a form
of regularisation by only allowing large, or multiple small,
movements to modify the structure, similar to the approach
taken by [25]. We do this by min-max scaling the position
values into our desired range and then converting into inte-
gers representing the number of layers to add to each block.
This is simply performed by multiplying each position value
by the upper bound of the range, as we use the values 0 and 1
as the lower and upper bounds for optimisation respectively.
In order to optimise the objective function, we use the pre-
viously described evolutionary optimisation technique, i.e.
the proposed adaptive PSO model, to efficiently explore the
search space defined by our objective function.

B. ENHANCED PARTICLE SWARM OPTIMISATION
We propose an enhanced PSO model for optimal deep CNN
model generation. It considers each individual architecture
in the search space as a position in an n-dimensional space
where n represents the number of distinct blocks in our skele-
ton architecture. Instead of using fixed acceleration coeffi-
cients as in the original PSO model, adaptive search parame-
ters based on linear and non-linear functions are proposed.
Four new strategies have been applied for the coefficient
generation: (1) linear functions with an equal crossover in
the centre, (2) cosine functions with an equal crossover in
the centre, (3) cosine functions with a later crossover, and
(4) cosine functions with no crossover. These strategies are
described in further detail in Section III-D.

We start by initialising a population of m individual
particles as random positions in the search space, where
each dimension in each particle is drawn from a uniform
distribution:

X = U(bl, bu) (6)

where bl and bu are the lower and upper boundaries of the
search space, respectively. We then initialise the velocities of
each of the particles:

Vi = U(vmin, vmax) (7)

where,
vmax = λ(bu − bl)
vmin = −vmax

(8)

and we use a value of 0.2 for λ in all experiments based on
best practice.

Once the swarm has been initialised, the optimisation
process can begin. It starts with updating the inertia weight
and both acceleration coefficients according to the specific
strategies chosen. Next, each particle Xi is processed with
the following steps. First, the velocity of the particle is
updated using the search weights and the distances between
the current position and the local and global best positions
as defined in (1). Using the velocity, the new position of
the particle is calculated based on the previous position as
illustrated in (2). The fitness of the particle is evaluated using
the objective function provided in Fig.4. The fitness score of
Xi is compared against those of the previous personal best
position Pi and the global best solution, respectively. The
local best position is updated according to (9).

Pi =

{
Xi, if f(Xi) < f(Pi)

Pi, otherwise
(9)

Whilst the global best is similarly updated according to (10).

G =

argmin
Pi

f(Pi), if min
f(Pi)

< f(G)

G, otherwise
(10)

In practice, in order to avoid unnecessary overhead we
store the fitness values for each evaluation for the score
comparisons, rather than re-calculating the fitness for each
updated particle position. This process then repeats over all
particles, and all iterations, until a certain stop criterion has
been met, i.e. the maximum number of iterations. Once the
iterations have completed, the final output of the system
is the global best position G and its fitness value f(G),
representing the best arguments to minimise the objective
function (argminx f(x)) and the fitness value respectively.
As mentioned earlier, Section III-D outlines several linear
and cosine annealing mechanisms that are proposed for
adaptive acceleration coefficient generation in the proposed
PSO model to enable the search to balance well between
local exploitation and global exploration. Fig.5 demonstrates
the proposed, customised PSO, with Fig.4 comprising our
bespoke objective function. In comparison with [31], we also
employ weight sharing strategies to overcome the function-
evaluation cost constraints, which are introduced below.

C. CONTINUAL TRAINING/PARAMETER SHARING
Due to the nature of our fitness function, evaluating fully
for each particle requires inhibitive amounts of time and
resources as each architecture must be trained and validated
to obtain a fitness score. We reconcile this constraint through

6 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Input (3x32x32)

Conv2D (64x32x32)

BatchNorm

ReLU

...

MaxPool2D (64x16x16)

Conv2D (128x16x16)

BatchNorm

ReLU

...

MaxPool2D (128x8x8)

Conv2D (256x8x8)

BatchNorm

ReLU

...

MaxPool2D (256x4x4)

Conv2D (512x4x4)

BatchNorm

ReLU

...

MaxPool2D (512x2x2)

Flatten (2048)

Dense (4096)

...

Output

block 0

block 1

block 2

block 3

block 4

Fig. 3: The skeleton architecture used in the proposed system

the use of early evaluation of the function on the validation
set, similar to the approach used by [31]. However, using
early evaluation solely does not provide a realistic view of
the performance of the particle, as an architecture may train
very successfully initially but later plateau before reaching
an acceptable level of accuracy. In contrast to [31], we
additionally use a form of parameter sharing, allowing new
architectures to inherit the weights from previous particles
when performing their fitness function evaluations. This al-
lows the architectures to train alongside the optimisation
process, with each block keeping track of its own weights. In
this way, the fitness function evaluations are representative of
the performance of the individual particles at all stages of the
optimisation process, as their training progresses and perfor-
mance increases throughout. In [25], Real et al. implemented
weight inheritance as a feature of the inheritance process of
their GA, allowing weights for layers with matching shapes
to be inherited, or not depending on the specific mutation.
We take this a step further by considering weight sharing
as a means of continually training all of the models jointly.
This continual training allows us to consider the optimisation
process as the bulk of the training of the final model, with
the fitness function evaluations becoming more accurate as
training progresses and the shared weights are trained. This
allows us to quickly navigate the search space, following
the path that leads to the greatest performance increases as
we go. We combine this approach with a previously men-
tioned annealing strategy applied to the PSO search weights.
These adaptive search parameters in PSO enable the search
to favour local exploitation in early iterations and global
exploration in final iterations. In this way we ensure that
we avoid prematurely optimising to a local minimum before
the possible architectures have been trained for a reasonable
number of iterations. Without this strategy, it is likely that
the large improvements in error rate that can be seen with the
first few training iterations would result in a rapid clustering
of all of the particles into one area after following the global
best solution.

We jointly train the population of continually evolving net-
work architectures by maintaining a lookup table of convo-
lutional filter parameters and fully-connected layer weights.
The lookup table consists of a simple key-value store, where
the key takes the form of a string concatenation of the integer
block number in the architecture, with the integer size of
the block (i.e. the number of layers in the block minus 1;
zero indicates a single layer) separated by a period. A key
thus takes the form ‘ψ.(ω − 1)’ where ψ is the specific
number of the block in the skeleton architecture, and ω is
the number of layers in the block. Each value in our key-
value store is itself a smaller key-value store, consisting of
two key-value pairs, i.e. the best performing parameters, and
the last used parameters, for each distinct block & size. This
allows us to check if a specific block has been constructed
to a certain size before, and inherit the weights of that block,
thereby gradually training the individual blocks as we explore
the architecture search space. Initially we experimented with

VOLUME 4, 2016 7

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

1: function OBJECTIVEFUNCTION(position):
2: model← InitModel(position) . Initialise the model using the particle position vector
3: if weight_sharing then
4: model.weights← BlockLookup(position) . Construct the weight lookup keys from the model structure
5: . Determine the weight lookup strategy
6: . Iteratively check the weight lookup table for existing weights
7: . Load the existing weights into the model
8: Train(model) . Train the model for a single epoch (or a defined number of batches)
9: error_rate← V alidate(model) . Evaluate the model on the validation set to determine the error rate

10: if weight_sharing then
11: BlockStore(position,model.weights, error_rate) . Iteratively update the weights in the weight lookup table
12: return (error_rate/100) . Return the error rate as the fitness for this function evaluation

Fig. 4: The bespoke objective function to be optimised

1: function PSO(x):
2: f ← ObjectiveFunction()
3: m← population
4: n← dimensions
5: bl ← 0
6: bu ← 1
7: Xm,n ← U(bl, bu)
8: P ← X
9: G← Xargmin(f(X))

10: Vmax ← λ(bu − bl)
11: Vmin ← −Vmax
12: V ← U(Vmin, Vmax)
13: mode← [′fixed′|′linear′|′cosine′|′AGPSO1′]
14: for t← 0, . . . , T do
15: lr ← SetLearningRate(lr, t)
16: w, c1, c2 ← SetSearchWeights(T, t,mode)
17: for i← 0,...,m do
18: Vi ← wVi + c1r1(Pi −Xi) + c2r2(G−Xi)
19: Xi ← Xi + Vi
20: if f(Xi) < f(Pi) then
21: Pi ← Xi

22: if f(Pi) < f(G) then
23: G← Pi

Fig. 5: The proposed PSO model with adaptive acceleration
coefficients

storing the best performing weights for each particle position
& block size (with the error-rate of the model as performance
indicator). This approach has the downside of limiting the
exploration of the model since it ensures that any training run
that does not increase performance by the end of the run will
be discarded, in favour of the original parameters. The model
is then limited in its exploration capability. To alleviate this
issue, we also store the last known weights of each block
number & size. We can then choose whether to continue with
the last known weights, or to select the best seen so far. We
control the selection of existing parameters through a weight
value β which controls how likely we are to select the best

1: function LOOKUP(β)
2: if β > U(0, 1) then
3: return best
4: else
5: return last

Fig. 6: The weighted parameter lookup function

weights over the last known weights by comparing with a
random value between 0 and 1. This process can be seen in
Fig.6.

We experimented with a number of strategies for β. Ini-
tially we chose to always use the best weights that have been
seen before for each block when performing the inheritance
process. However, as previously described, this led to a cycle
of limited exploration, whereby a model would become stuck
repeatedly retraining parameters but never achieving a better
validation score, therefore discarding its progress. Next we
experimented with a fixed 50:50 chance of inheritance from
best or last, allowing for exploration but also promoting
superior results with an even chance. We found this approach
to perform better than just using the best results but we still
hypothesised that there would be a superior approach. We
then implemented an annealing schedule for β, in order to
allow the chance of inheriting from best, rather than last, to
gradually increase from 0% to 100%. This schedule can be
seen in (11).

β = 1 +
cos(π(1− φ

Φ))

2
(11)

where φ and Φ represent the current and total number of
fitness function evaluations respectively. Φ can be calculated
by m + m × T , where m represents the swarm population
and T represents the number of iterations for the optimisation
algorithm. Finally, we experimented with only using the
last values stored for each block, regardless of their fitness
value. Surprisingly, we found this approach to be the most
performant, which led to its subsequent use in all following
experiments. The four main techniques that were tested can
be seen in Fig.7 and the experimental results can be seen in
Table.2. When storing the weights for a specific block in

8 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Table. 2: Error Rates (%) for Different Weight Lookup β
Strategies

Method CIFAR-10
Fixed Best 9.09
Fixed 50:50 7.90
Cosine Annealing 5.28
Fixed Last 4.78

Fig. 7: The different weighting strategies for parameter
lookup table access (β for the lookup function) against the
number of fitness function evaluations (φ)

the architecture, we transfer the weight tensors into RAM
in order to save the on-board GPU memory for larger batch
sizes and larger potential network architectures.

Once our optimisation process has concluded, we need to
finalise the model for testing. In related work, this is usually
performed by discarding any parameters learned during the
optimisation process, taking the best architecture discovered,
and training it completely from scratch. We use a different
approach in order to combine the optimisation process with
the final model training, so as not to waste the training
progress thus far. We construct a fine-tuning dataset from
the previous training and validation sets by combining them
into one large training dataset. We then fine-tune the best
performing model from the optimisation process on this
dataset for a small number of epochs in order to alleviate
the effect of any overfitting introduced by the optimisation
process. Once we have completed our fine-tuning on the
larger training set, we are able to test the model on the test set
and report the final results of the model without re-creating
or re-training the model after the optimisation process.

D. ADAPTIVE PSO SEARCH WEIGHTS
Using the process outlined above, we are able to effectively
explore our constructed search space in reasonable time using
the proposed PSO model. In the original PSO model, the
search weights for cognitive and social components are fixed
when updating the velocity of each particle, which is then
used to update the position. Specifically, the coefficients are
set to give fixed weightings to both the local and global best
solutions for each particle when performing the update. Our
continual training method means that initially, we expect to
see large gains no matter where a particle moves, owing to
the initial training of the networks up to a reasonable level

of performance. Because of this, it is desirable that each
particle can be allowed to explore its own space initially,
rather than move towards the global best. This will ensure
that the particles perform useful exploration in these initial
stages, by moving towards the area with the greatest improve-
ments around themselves. We can ensure that this happens
by setting the ratio between the local search weight and the
global search weight to a high value. This could be achieved
by setting the local search weight to a fixed, high value and
the global search weight to a fixed, low value. However, later
in the training process, we expect that the performance gains
from each iteration will slow down significantly, as the net-
works come closer to achieving their optimal performance.
At this point, it is desirable that we obtain the best perform-
ing, single network from the population of individuals. It
follows then, that rather than allowing the particles to explore
around their own space, it would be beneficial to exploit
one of the key functions of PSO, by allowing the particles’
positions to trend towards the position of the best performing
particle, in the hopes that they can explore together around
the position and achieve even better performance. At this later
iteration stage, we would like the previously described ratio
between local and global search weights to reverse, promot-
ing a high ratio of global to local. This means that a fixed
ratio for the whole optimisation process is less than ideal,
as this reversal process cannot happen. In order to achieve
the above, desired outcome for the search weight strategy
and overcome the premature convergence of the original
PSO model, we explored the concept of adaptive acceleration
coefficients, where the search weights can change depending
on the current iteration number.

Motivated by [35], several adaptive acceleration coeffi-
cient generation schemes are subsequently explored in this
research. Fig.8 shows the explored mechanisms for coef-
ficient generation, i.e. (1) fixed acceleration coefficients in
Fig.8a, as the baseline where c1 = c2 = 0.9 andw = 0.6; (2)
a linear AGPSO1 schedule borrowed from [35] (in Fig.8b),
as another baseline; (3) a proposed linear crossover function
in Fig.8c; and (4)-(6) proposed nonlinear cosine annealing
schedules with equal, late, and no crossover in Fig.8d, Fig.8e,
and Fig.8f respectively. The above adaptive search strategies
are employed with the goal of allowing the particles to
explore in their local search space initially, so as not to
prematurely head towards the global best during the initial
training stages. This could happen due to the large increases
in accuracy that are present in the initial training steps of
a convolutional architecture, combined with our continual
training method. We found that maintaining a reasonably
high level of local exploration during the optimisation pro-
cess was effective to allow the particles to efficiently cover
the search space, as can be seen in Fig.9 as well as Fig.10
(with detailed explanation provided later in this section).
The proposed linear and nonlinear adaptive search weight
functions are provided in (12) and (14), respectively. Fig.11
shows the pseudo-code for the overall adaptive accelera-
tion coefficient generation function, with the accompanying

VOLUME 4, 2016 9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

graphs in Fig.8. First of all, the proposed linear coefficient
generation function is defined in (12):

c1 = Q− t

T
(Q− q)

c2 = q +
t

T
(Q− q)

(12)

where t refers to the current iteration number, T refers
to the total number of iterations to be performed for the
optimisation run, q refers to the lower bound for the search
weight, andQ refers to the upper bound for the search weight.
A baseline adaptive weight generation strategy of AGPSO1
from [35] is defined below:

c1 = t
1

T
+ 1.25

c2 = t
−2.05

T
+ 2.55

(13)

Motivated by (13), in order to adapt the weights more gently
towards the extreme values, a smoother annealing schedule is
proposed in this research, based on the cosine function. (14)
denotes the proposed cosine search weights and variants:

c1 = q +
Q− q

2
cos(π(1− t

T
)) + 1

c2 = q +
Q− q

2
cos(π

t

T
) + 1

(14)

where the variants are created by choosing different values
for q andQ for c1 and c2. The Cosine Equal Crossover variant
(Fig.8d) is created using q = 0.5,Q = 2.5 for both c1 and c2.
The Cosine Late Crossover variant (Fig.8e) is created using
q = 1.5, Q = 2.5 for c1 and q = 0.5, Q = 2.5 for c2.
The Cosine No Crossover variant (Fig.8f) is created using
q = 2.0, Q = 2.5 for c1 and q = 0.5, Q = 2.5 for c2.
As mentioned above, Fig.11 shows the pseudo-code of the
adaptive weight generation over iterations, which are then
used to update the velocities of the particles using (1).

With fixed search weights, the behaviour of particles with
respect to local or global exploration remains the same
throughout the optimisation process, favouring whichever
is given a higher weighting, or neither if they are equally
weighted. Using an annealing schedule allows us to intro-
duce different search behaviour trends on local and global
exploration that evolve over the course of the optimisation.
Specifically we utilise this for the linear, AGPSO1, and
cosine schedules to initially favour local exploration around
each particle’s own best position, and gradually trend towards
focusing on global exploration, towards the best particle
position found so far. We do this to prevent our particles
from quickly abandoning their local search space in favour
of pursuing the best position, and thereby all becoming stuck
in the same local minima. Fig.10 demonstrates the effects
of the late crossover cosine search weight strategy on the
local bests of each particle and the overall global best. The
x and y axes represent the particle positions projected into
two-dimensional space using Principal Component Analysis
(PCA). The z axis represents the fitness value for the particle

Table. 3: Error rates (%) for different search weight strategies

Method CIFAR-10
Original PSO (fixed) 5.38
AGPSO1 [35] 5.84
Linear Crossover 5.78
Cosine Equal Crossover 5.14
Cosine Late Crossover 4.78
Cosine No Crossover 10

after being evaluated on the validation set. Fig.10a shows
how initially the particles explore their own space, improving
their fitness scores but not converging on a single location,
as well as how they begin to converge on the x and y axes
later as the search weights begin to favour following the
global best. This can also be seen in the positions of the local
and global bests in Fig.10b and Fig.10c, which eventually
converge around a single point after gradually narrowing
focus and improving fitness scores.

The test results for the different strategies for adaptive
coefficient generation can be seen in Table.3.

E. HYPERPARAMETERS
We use the excellent PyTorch library [36] for all deep
learning implementation and training. Each particle fitness
function evaluation involves creating a full CNN architec-
ture from the particle representation, training the CNN us-
ing stochastic gradient descent with backpropagation, and
evaluating the CNN on the validation set to determine its
fitness score. Treating the CNN training as a ‘black box’
like this means that our method could be generalised to
other deep learning tasks, where the fitness function could
be modified to train a different type of network without
having to modify the PSO system. We train each individual
CNN model using stochastic gradient descent (SGD) with
a nesterov momentum factor [37], [38] of 0.9, and weight
decay (L2 regularisation) of 1e-4, on minibatches of size 256
for one epoch per fitness function evaluation. The proposed
PSO swarm optimisation is performed using a population
size of 50 individual particles with a maximum number of
iterations of 100.

1) Learning Rate
In this research, we also experimented with a number of
different approaches for the learning rate schedule in order to
find the best mechanism for our combined optimisation and
training process. We started with (1) simple scheduled learn-
ing rate decay at certain points in the optimisation/training
process using (15),

αφ =

{
γαφ−1, if φ = 50 or φ = 75

αφ−1, otherwise
(15)

where γ was set to 10−1 and the initial learning rate was also
set to 10−1. This approach was reasonably effective.

Motivated by [39], [40], we experimented with (2) cyclic
learning rates, which proved effective owing to the fast ini-
tial convergence, allowing the shared parameters to quickly

10 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

(a) Original PSO (fixed) (b) AGPSO1

(c) Linear (d) Cosine Equal Crossover

(e) Cosine Late Crossover (f) Cosine No Crossover

Fig. 8: PSO search weights by iteration

become effective. Huang et al. [39] use a cyclical learning
rate to repeatedly train a network to an acceptable level of
performance, then store a snapshot of the model in that state.
These snapshots are then combined into an ensemble model
in a manner similar to gradient boosting, to achieve enhanced
performance. They construct an ensemble by ‘snapshotting’
the parameter weights after each cycle of the learning rate,
although we found it effective to simply train our models
with shared parameters using the cyclic learning rate without
snapshotting. The cyclic learning rate that we used in our
experiments can be seen in (16).

αφ =
α0

2
(cos(

πmod(φ− 1, dΦ/Me)
dΦ/Me

) + 1) (16)

where M represents the number of cycles, which was set to
5 in our experiments.

Our final approach for the learning rate was to simply
use (3) cosine annealing to decrease the learning rate over
a defined interval, throughout the optimisation process. This

was performed using (17),

αφ = b+
a− b

2
cos(π

φ

Φ
) + 1 (17)

where a and b represent the initial and final learning rate
values respectively, for the interval. We found this approach
works best for our combined optimisation and training pro-
cess, with values of 10−1 and 10−4 for a and b respectively.
Therefore, all of the following reported results use this strat-
egy. We also used this decay strategy for the fine-tuning
portion of the model training, using values of 10−4 and 10−7

for a and b respectively. A visualisation of the three different
learning rate schedules can be seen in Fig.12.

2) Fine-tuning
As previously mentioned, the usual method for evaluating ar-
chitecture optimisation systems is to separate out the optimi-
sation process from the final model training process. Contrary
to this approach, we evaluate our optimisation process by
integrating it into the training process for the final model to be

VOLUME 4, 2016 11

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

(a) All Particle Positions (b) Last Particle Positions

(c) Local Best Positions (d) Last Local Best Positions

(e) Global Best Positions (f) Last Global Best Positions

Fig. 9: Example particle movements over time (PCA for
dimensionality reduction to display particle positions on two
axes)

tested. Once the optimisation process has completed, we then
fine-tune the best performing model on a combined training
set consisting of the training and validation sets together for
a small number of epochs. In this way the training of the final
network is embedded in the optimisation process, meaning
the architecture design and training are performed as one
task. By using this approach we couple the architecture de-
sign and training processes together and remove some of the
high barrier-to-entry for building CNNs for new problems.
The finetuning process is performed for 10 epochs and uses
SGD with a nesterov momentum factor of 0.9, and weight
decay (L2 regularisation) of 1e-4, on minibatches of size
256 with a cosine annealing learning rate schedule over an
interval of a = 10−4 and b = 10−7.

IV. EVALUATION
The well known CIFAR-10 and CIFAR-100 datasets [7] are
used to evaluate the proposed SOBA model.

The CIFAR-10 dataset consists of 60,000 images equally
split over 10 classes (6,000 per class). The dataset divides
into 50,000 training images and 10,000 test images. For
our experiments we further divided the 50,000 training im-
ages into 45,000 training and 5,000 validation, whereby the
validation set was used to generate the fitness scores for
each function evaluation in the optimisation process. Fig.13a
shows a confusion plot generated from the pre-fine-tuning

(a) Local best positions & their fitness scores by iteration for all 50
particles (point indicates start position)

(b) All local & global best positions & their fitness scores

(c) Global best positions & their fitness scores

Fig. 10: Example local and global best positions over time
(PCA for dimensionality reduction to display particle posi-
tions on two axes)

12 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

1: function SETSEARCHWEIGHTS(T, t,mode)
2: if mode is fixed then
3: w ← 0.6
4: c1 ← 0.9
5: c2 ← 0.9
6: else if mode is linear then
7: q ← 0.5
8: Q← 2.5
9: w ← 0.6

10: c1 ← Q− t
T (Q− q)

11: c2 ← q + t
T (Q− q)

12: else if mode is cosine_equal_cross then
13: q ← 0.5
14: Q← 2.5
15: w ← 0.6
16: c1 ← q + Q−q

2 cos(π(1− t
T)) + 1

17: c2 ← q + Q−q
2 cos(π t

T) + 1
18: else if mode is cosine_late_cross then
19: q ← 1.5
20: Q← 2.5
21: w ← 0.6
22: c1 ← q + Q−q

2 cos(π(1− t
T)) + 1

23: m← 0.5
24: n← 2.5
25: c2 ← q + Q−q

2 cos(π t
T) + 1

26: else if mode is cosine_no_cross then
27: q ← 2.0
28: Q← 2.5
29: w ← 0.6
30: c1 ← q + Q−q

2 cos(π(1− t
T)) + 1

31: m← 0.5
32: n← 2.5
33: c2 ← q + Q−q

2 cos(π t
T) + 1

34: else if mode is AGPSO1 then
35: w ← 0.6
36: c1 ← t 1

T + 1.25
37: c2 ← t−2.05

T + 2.55

38: return w, c1, c2

Fig. 11: The function for the generation of adaptive PSO
search weights

Fig. 12: Learning rate by iteration

test on the CIFAR-10 dataset, whilst (18) shows the raw
confusion matrix.

933 0 119 24 4 819 6 20 12 2
18 15 2 4 0 1 0 0 965 947
0 1 0 0 0 0 0 0 0 4
1 963 30 94 22 122 990 4 8 17
0 0 0 0 0 0 0 0 0 0
12 21 834 15 14 6 1 20 9 12
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
32 0 5 846 7 39 1 19 6 16
4 0 10 17 953 13 2 937 0 2

(18)

This test was not used to influence the fine-tuning in any way.
It was simply performed in order to demonstrate the effect of
fine-tuning on the classification performance. Fig.13b shows
the confusion plot generated after fine-tuning, with (19)
showing the accompanying raw confusion matrix.

965 1 7 6 3 2 3 4 16 4
1 979 0 1 0 0 0 0 5 22
13 0 934 18 8 9 8 4 5 1
2 0 14 878 9 41 8 8 2 1
1 1 15 16 966 12 3 12 0 0
0 0 13 64 8 930 1 9 0 1
1 0 10 7 2 3 975 1 0 0
0 0 3 5 3 2 2 961 0 0
16 3 3 4 1 1 0 0 968 5
1 16 1 1 0 0 0 1 4 966

(19)

Table.4 shows aggregate statistics for the CIFAR-10 test runs
before the fine-tuning process and after. It is clear that the
fine-tuning process is effective in reversing the overfitting on
the training set and allows the model to generalise to greatly
improved performance on the test set. This fast, effective gen-
eralisation is owing to the robustness of the weights learned
through our combined optimisation and training process,
as each block in the architecture is trained to be globally
optimal for all potential surrounding configurations, rather
than one single, fragile configuration. It is also interesting to
note that after fine-tuning, the areas that the model seems to
struggle, namely the intersections of cat-dog, ship-airplane,
and truck-automobile, are areas that intuitively would also
prove difficult to a human classifying the images by hand.

The CIFAR-100 dataset consists of the same number of
images but split over 100 classes, each of which belongs
to one of twenty ‘superclasses’. Each class has 500 train-
ing images and 100 testing images, resulting in the same
training-testing split as that of CIFAR-10 (50,000 vs 10,000
respectively). As with CIFAR-10, we further split the training
images into 45,000 training and 5,000 validation for CIFAR-
100, and the validation images are used to generate the model
fitness after each optimisation function evaluation.

Fig.14 shows some analysis of the lookup table following
the final access during the optimisation/training process.
Each line represents a different block in the architecture,

VOLUME 4, 2016 13

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Table. 4: Aggregate performance measures on the CIFAR-10 test set

Stage Accuracy Error Rate Macro-Average
Precision

Macro-Average
Recall

Macro-Average
F1 Score

Pre-fine-tuning 10.56% 89.44% 0.0544 0.1056 0.0718
Post-fine-tuning 95.22% 4.78% 0.9523 0.9522 0.9522

(a) Pre-Finetuning

(b) Post-Finetuning

Fig. 13: Confusion plots for CIFAR-10 test results

(a) CIFAR-10

(b) CIFAR-100

Fig. 14: The best validation error rates achieved for each
individual block during the optimisation process, from the
final lookup table

with the number of layers in the block displayed along the x
axis. The y axis shows the lowest error rate achieved by any
particle with that configuration of block in its architecture
(although the other blocks could be in any configuration).
It is clear from the CIFAR-10 experiment (Fig.14a) that the
system tends to prefer more depth in the initial blocks, whilst
the feature maps are larger and the receptive field is smaller,
and more shallow blocks later in the network, especially
when it comes to the fully connected layers. This becomes
drastically more pronounced in the CIFAR-100 experiment
(Fig.14b) when the number of output classes is increased by
an order of magnitude and the same pattern can still be seen.

We have also compared our model with related research
as illustrated in Table.5. The first section of the table con-
tains traditional, hand-crafted architectures, the second sec-
tion contains reinforcement learning (RL) techniques, the
third section contains evolutionary techniques, and the final
section contains our proposed model. In comparison with
most of the existing studies, our proposed model achieves
the best trade-off between performance and computational
efficiency. As an example, [26], [25], and [19] used 200,

14 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

Table. 5: Classification error rates (%) for the proposed SOBA model and other related studies

Method CIFAR-10 CIFAR-100 GPUs Time (hours)
Handcrafted architectures

VGG [6] 7.25 - n/a n/a
ResNet-110 [9] 6.61 - n/a n/a
WideResNet [41] 3.80 18.30 n/a n/a
DenseNet [42] 3.46 17.18 n/a n/a

Reinforcement learning techniques
MetaQNN [18] 6.92 27.14 10 10
Neural Architecture Search [19] 3.65 - 800 672

Evolutionary optimisation techniques
Large-Scale Evolution [25] 5.40 23.00 250 264
Block-QNN [21] 3.54 18.06 32 72
SMASHv1 [27] 5.53 22.07 - -
SMASHv2 [27] 4.03 20.60 - -
Genetic CNN [43] 7.10 29.03 ∼ 20 ∼ 24
Hierarchical Representations [26] 3.60 - 200 36

Our system
SOBA (inc training model) 4.78 25.42 1 34

(36 for C-100)

250, and 800 GPUs with 36, 264, and 672 processing hours
respectively, but in some cases the performance enhancement
was marginal. Whilst these works did allow for more varia-
tion in the proposed architectures, they are also inaccessible
to the average user due to the enormous cost. They also
require re-training from scratch for the eventually discov-
ered architectures, whilst our method provides optimisation
and training in one process, quickly delivering an effective,
trained network. In addition, we also compare against hand-
designed methods [6], [9], [41], and [42], where our method
creates architectures that are most similar to [6]. However,
we achieve much improved results using our combined opti-
misation and training strategy and the enhanced PSO model
to generate and train the models. This improvement comes
not only from the optimised network topology itself, but also
from the robustness of the parameters in our network, as each
block is trained to its optimal performance regardless of the
configuration of the blocks surrounding it, ensuring that we
do not train to fragile local minima. Networks such as VGG-
16 [6] are likely to train to local minima as the structure
of the network never changes during the training process.
The integration of an overall optimisation process in SOBA
ensures that even as the structure of the network changes, we
still strive for the global minimum, thereby avoiding the local
minima as they disappear and reappear. This robustness of
weights is ideal for transfer learning as the network is already
able to deal very effectively with changes in surrounding
structure, so adding or removing layers will not disrupt the
performance greatly.

V. CONCLUSION
In this research we have presented an enhanced PSO model
with adaptive search weights and weight sharing for optimis-
ing the architecture of deep image classification networks.
Our model starts with a hand-crafted skeleton architecture
and quickly explores our constructed search space by con-
currently training multiple architectures, using a weighted
lookup table of trained parameters. This allows us to optimise

the architecture of CNNs quickly and effectively, without
having to fully train and validate each architecture from
scratch, which is prohibitively expensive. We demonstrate
results on CIFAR-10 and CIFAR-100, with comparison to
other recent architecture optimisation studies. As illustrated
in Table.5, our proposed model is among the top performers
and has significantly lower computational and hardware
requirements than those of other methods, even with our
method of training and optimising all-in-one, with no sep-
aration between the optimisation and training of the final test
architecture.

For future work, we intend to explore adding residual con-
nections [9] to the architecture search space, in order to
investigate the differences on the performance of the search
methods. We intend to expand our formulation of the search
space to treat the network structure as a Directed Acyclic
Graph, rather than a simple hierarchical structure. We also
intend to compare the performance of our enhanced PSO
method with other, similar optimisation techniques inside our
SOBA model on a wider variety of datasets, including trans-
fer learning tasks such as facial emotion recognition, image
description generation, and visual question generation.

REFERENCES
[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-
ageNet Large Scale Visual Recognition Challenge,” International Journal
of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[3] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[4] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[5] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

VOLUME 4, 2016 15

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2880416, IEEE Access

[7] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[10] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–
127, 2002.

[11] K. O. Stanley and R. Miikkulainen, “Efficient evolution of neural network
topologies,” in Evolutionary Computation, 2002. CEC’02. Proceedings of
the 2002 Congress on, vol. 2. IEEE, 2002, pp. 1757–1762.

[12] K. O. Stanley and R. Miikkulainen, “Efficient reinforcement learning
through evolving neural network topologies,” in Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc., 2002, pp. 569–577.

[13] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Evolving adaptive
neural networks with and without adaptive synapses,” in Evolutionary
Computation, 2003. CEC’03. The 2003 Congress on, vol. 4. IEEE, 2003,
pp. 2557–2564.

[14] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47–62, 2008.

[15] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
encoding for evolving large-scale neural networks,” Artificial life, vol. 15,
no. 2, pp. 185–212, 2009.

[16] P. Verbancsics and J. Harguess, “Image classification using generative
neuro evolution for deep learning,” in Applications of Computer Vision
(WACV), 2015 IEEE Winter Conference on. IEEE, 2015, pp. 488–493.

[17] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving deep neural
networks,” arXiv preprint arXiv:1703.00548, 2017.

[18] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” arXiv preprint
arXiv:1611.02167, 2016.

[19] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[20] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Computer Vision and
Pattern Recognition (CVPR), 2018 IEEE Conference on, 2018.

[21] Z. Zhong, J. Yan, and C.-L. Liu, “Practical network blocks design with
q-learning,” arXiv preprint arXiv:1708.05552, 2017.

[22] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Reinforcement learn-
ing for architecture search by network transformation,” arXiv preprint
arXiv:1707.04873, 2017.

[23] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Evolving the
topology of large scale deep neural networks,” in European Conference
on Genetic Programming. Springer, 2018, pp. 19–34.

[24] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient ar-
chitecture search for convolutional neural networks,” arXiv preprint
arXiv:1711.04528, 2017.

[25] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan,
Q. V. Le, and A. Kurakin, “Large-scale evolution of image classifiers,”
in Proceedings of the 34th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, D. Precup
and Y. W. Teh, Eds., vol. 70. International Convention Centre, Sydney,
Australia: PMLR, 06–11 Aug 2017, pp. 2902–2911. [Online]. Available:
http://proceedings.mlr.press/v70/real17a.html

[26] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hi-
erarchical representations for efficient architecture search,” arXiv preprint
arXiv:1711.00436, 2017.

[27] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-
shot model architecture search through hypernetworks,” arXiv preprint
arXiv:1708.05344, 2017.

[28] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp.
229–256, 1992.

[29] R. Negrinho and G. Gordon, “Deeparchitect: Automatically designing and
training deep architectures,” arXiv preprint arXiv:1704.08792, 2017.

[30] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” arXiv preprint arXiv:1802.01548,
2018.

[31] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,” arXiv preprint arXiv:1803.06492, 2018.

[32] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm the-
ory,” in Micro Machine and Human Science, 1995. MHS’95., Proceedings
of the Sixth International Symposium on. IEEE, 1995, pp. 39–43.

[33] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE transactions on evolutionary computation, vol. 1, no. 1,
pp. 67–82, 1997.

[34] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding, “A micro-
ga embedded pso feature selection approach to intelligent facial emotion
recognition,” IEEE transactions on cybernetics, vol. 47, no. 6, pp. 1496–
1509, 2017.

[35] S. Mirjalili, A. Lewis, and A. S. Sadiq, “Autonomous particles groups for
particle swarm optimization,” Arabian Journal for Science and Engineer-
ing, vol. 39, no. 6, pp. 4683–4697, 2014.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[37] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in op-
timizing recurrent networks,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp.
8624–8628.

[38] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in International conference
on machine learning, 2013, pp. 1139–1147.

[39] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Wein-
berger, “Snapshot ensembles: Train 1, get m for free,” arXiv preprint
arXiv:1704.00109, 2017.

[40] L. N. Smith and N. Topin, “Super-convergence: Very fast training of resid-
ual networks using large learning rates,” arXiv preprint arXiv:1708.07120,
2017.

[41] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[42] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks.” in CVPR, vol. 1, no. 2, 2017, p. 3.

[43] L. Xie and A. L. Yuille, “Genetic cnn.” in ICCV, 2017, pp. 1388–1397.

BEN FIELDING received the B.Sc. degree in
Computer Science from Northumbria University,
Newcastle upon Tyne, UK, in 2015. He is cur-
rently pursuing the Ph.D. degree at Northumbria
University, Newcastle upon Tyne, UK.

His current research interests include deep
learning, computer vision, and evolutionary com-
putation.

LI ZHANG received a PhD degree from the Uni-
versity of Birmingham. She is currently an Asso-
ciate Professor & Reader in Computer Science in
Northumbria University, UK and also serving as
an Honorary Research Fellow in the University of
Birmingham, UK.

She holds expertise in artificial intelligence, ma-
chine learning, evolutionary computation and deep
learning. She has served as an Associate Editor for
Decision Support Systems. Dr Zhang is a member

of IEEE.

16 VOLUME 4, 2016

http://proceedings.mlr.press/v70/real17a.html

