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Abstract
This condensed summary highlights the results of a
2016 AIJ paper reporting on a successful general-
purpose conjecturing program.

1 Introduction
We have reimplemented Fajtlowicz’s useful but little-known
Dalmatian heuristic for the automation of mathematical
conjecture-making (the first-ever reference in Artificial In-
telligence, for instance, is our own paper [Larson and
Van Cleemput, 2016]). The heuristic is general and can be
used to conjectured relations between real number invariants
of any objects, mathematical or otherwise. We have also im-
plemented an idea to include existing theorems in the pro-
gram; when used in this way the program is guaranteed to
produce statements that are not implied by existing mathe-
matical knowledge.

Our program often makes interesting and useful conjec-
tures on the basis of only a few examples. Humans, ordi-
narily and of necessity, make decisions based on very limited
data. A general automated conjecture-making module that
can make plausible and useful guesses based on limited data
may be a central architectural feature in the design of ma-
chines that are intelligent. Guesses can be used, for instance,
to constrain a search of possible actions. Fajtlowicz intro-
duced his Dalmatian heuristic for the automation of mathe-
matical conjecture-making more than 20 years ago [Fajtlow-
icz, 1995]. Simply put, the heuristic is to produce a consid-
ered mathematical statement if it is both true—with respect to
some given examples (matrices, integers, graphs, etc.)—and
if the statement gives new information about those objects, in
particular, if it says something about at least one of the ob-
jects which is not implied by any other stored statement or
conjecture.

Our experiments in implementing and applying this heuris-
tic, including in domains where the authors have no more
∗This is an extended abstract of [Larson and Van Cleemput,

2016]
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knowledge than anyone who has browsed a textbook or refer-
ence book, suggest the following conclusions:

1. Successful mathematical discovery heuristics can be ap-
plicable in a variety of mathematical domains.

2. Good conjectures can be based on very limited data.

3. Mathematical discovery programs should aim to pro-
duce conjectures that address and advance pre-existing
mathematical questions.

4. Intelligent conjecture-making programs for a domain do
not require developer expertise in that domain.

We see conjecture-making—and conjecture-revision in the
face of contradictory data (counterexamples)—as a central
feature of intelligence. We make guesses, based on our previ-
ous experience in relevantly similar situations, learn that our
guesses are wrong, revise them, and test them against our ex-
perience.

We provide a program for experimentation and further de-
velopment. Readers are encouraged to make their own ex-
plorations. Our program CONJECTURING is available at:
nvcleemp.github.io/conjecturing/. It functions
as a package of the Sage open source mathematical software
program [Stein, 2008]. Sage is intended as a free replacement
for general mathematical software programs such as Maple,
Matlab and Mathematica. Scripts that generate the conjec-
tures for the runs of our program described in this paper are
also available at this site.

Turing, famously, proposed the idea of designing intelli-
gent machines as an engineering problem, and proposed a
test for evaluating the success of such machines. In 1948 he
suggested designing machines to do mathematical research
as a starting point: mathematical research certainly requires
intelligence and, it would be a good starting point as mathe-
matical research would “require little contact with the outside
world” [Turing, 2004]. In the 1950s Newell and Simon de-
veloped the Logic Theorist program that could prove (some)
theorems in first-order logic, and went on to predict that a
computer would discover and prove an important mathemati-
cal theorem within another decade [Simon and Newell, 1958].
Success did not come quite that quickly—but there has been
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significant progress in many areas of automating mathemati-
cal discovery, and there is no theoretical impediment to con-
tinued improvement. There is every reason to believe that
Newell and Simon’s prediction will be achieved—and likely
sooner rather than later.

2 The Dalmatian Heuristic
Fajtlowicz’s Dalmatian heuristic is used to conjecture rela-
tions between real number invariants of objects. Many com-
mon object-types, including graphs, natural numbers, and
matrices, have associated real number invariants. The numer-
ical invariants of a graph include the number of vertices of
the graph, its number of edges, the maximum degree of any
of the vertices, among numerous others.

It is possible to generate conjectures using only a single
stored object. Counterexamples to existing conjectures can be
added as additional objects. On this approach, all objects in
the database are included exactly because they had some the-
oretical value—no object is included arbitrarily. Fajtlowicz
suggests that this approach may have its own benefits when
conducting research [Fajtlowicz, 1995]. The produced con-
jectures are based on a limited number of examples of objects
of the given type.

Let O1, . . . ,On be examples of objects of a given type.
Let α1, . . . , αk be real number invariants. And let α be an
invariant for which conjectured upper or lower bounds are of
interest. An unlimited stream of algebraic functions of the in-
variants can then be formed: α1+α2,

√
α1, α1α3, (α2+α4)

2,
etc. (One natural way to do this, and our own approach, is to
grow trees representing these expressions with operators rep-
resenting algebraic operations on the non-leaf nodes—with
the number of sub-nodes equal to the arity of the operator—
and invariants on the leaf nodes.) These expressions can then
be used to form conjectured bounds for α. If we are inter-
ested in upper bounds for α, say, we can form the inequalities
α ≤ α1 + α2, α ≤ √α1, α ≤ α1α3, α ≤ (α2 + α4)

2, etc.
These inequalities can be interpreted as being true for

all the objects of the given type. That is, the inequality
α ≤ α1 + α2 can be interpreted as, “For every object O,
α(O) ≤ α1(O) + α2(O).” A conjectured upper bound u is
only added to the database of conjectures if the bound passes
the following two tests.

1. (Truth test). The candidate conjecture α ≤ u is true for
all of the stored objects O1, . . . ,On, and

2. (Significance test.) There is an object
O ∈ {O1, . . . ,On} such that u(O) <
min{u1(O), . . . , ur(O)}, where u1, . . . , ur are the
currently stored conjectures. That is, the candidate
conjecture would give a better bound for α(O) than any
previously conjectured (upper) bound.

These criteria capture what Fajtlowicz calls the “Principle of
the Strongest Conjecture”: make the strongest conjecture for
which no counterexample is known. By design, the truth test
guarantees that the program does not know a counterexam-
ple, and the significance test guarantees that each conjectured
bound is “stronger” (gives a better bounding value) than any
other—at least for a single object known to the program.

3 The Program
An expression generating program (written in C for speed) is
at the heart of our program. In this context an expression is
just a rooted, labeled binary tree, that is, a rooted tree where
each node has at most two children and each node with, re-
spectively, two, one or no children is labeled with, respec-
tively, a binary operator, a unary operator or an invariant. The
expressions are generated according to increasing complex-
ity, which is defined as twice the number of binary operators
plus the number of unary operators. The program uses the al-
gorithm described in [Peeters, 2008] and the numbers of gen-
erated structures have been compared to the implementation
in [Peeters et al., 2009]. The generated expressions are tested
for being true for the provided invariant values (truth test) and
can then be handed over to an internal heuristic or can just
be output. Internally we have implemented two conjecture-
making heuristics: the Dalmatian heuristic and—for testing
purposes—the heuristic described in [Peeters, 2008].

The general approach to generating conjectures is as fol-
lows.

1. Produce a stream of inequalities with evaluable func-
tions of the invariants on each side of the inequality sym-
bol. Some of these will pass the truth and significance
tests and be stored as conjectures.

2. Initialize an initial collection of objects. These can be as
few as one.

3. Generate conjectures that are true for all stored objects
and significant with respect to these objects and the pre-
viously stored conjectures. Pass each generated state-
ment to the truth and significance tests. The program
needs a stopping condition. The best case is that, for
each object, there is at least one conjecture that gives the
exact value for the object. In this case there is no possi-
bility of improving the current conjectures—in the sense
that no other conjectures can make better predictions
about the values of the existing objects—exact predic-
tive power for all objects has been achieved. In the case
where this natural stopping condition is never attained,
another stopping condition will be required. One pos-
sibility is to simply stop making conjectures after some
hardcoded or user-specified time.

4. Remove insignificant conjectures. After a conjecture is
added to the store of conjectures, it may be the case that
another conjecture in the store is no longer significant.
If conjectured upper bounds (for example) for an invari-
ant α are being generated then a conjectured bound αi

in the conjectures store is significant, with respect to the
stored objects, if and only if there is an object O such
that αi(O) < min{αj(O) : j 6= i}, that is, if and only
if, there is an object O where the bound gives a bet-
ter predicted value for α(O) than any other conjectured
bound does. Insignificant conjectures are then removed.

The following steps are not necessary to the conjecturing
process, but arguably lead to better conjectures.

1. Search for a counterexample to any of these conjectures.
This can be done by a human or automated in some way.
In the case of number theory conjectures, the conjectures
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can easily be checked by testing the conjectures for each
integer from 1 up to an arbitrary large integer. In the
case of other objects, it will usually require some work
to generate a stream of distinct objects. In the case of
graphs, McKay’s geng provides a stream of examples
from graphs with a single vertex up to any user-specified
number of vertices.

2. Add the counterexample, and repeat the conjecture gen-
erating and testing process. The program can never
make more conjectures than the number of objects it has
stored: the reason is exactly because each conjecture in
the conjectures store must give a better bound for at least
one stored object than any other conjecture does.
If there were, for instance, two stored objects and three
conjectured bounds, at least one of the conjectured
bounds could not possibly be significant: at best one of
the conjectures could be the best bound for one of the
objects and another for the second object—but the third
conjecture would have no possible remaining objects for
which it could give the unique best predicted value; this
conjecture would have been removed as insignificant.

From the point of view of a user of our program, the re-
quired inputs of the program are three:

1. A list of objects. The type is arbitrary, but they will
usually all be of the same type. To get meaningful re-
sults they will all represent the same mathematical type
of object. For instance, if you want to generate con-
jectures about graphs, and c5, k5 and petersen are
pre-defined graph objects, you would define objects
= [c5, k5, petersen], and give objects as a pa-
rameter to the program.

2. A list of invariants. These must be functions that are
defined for the type of objects in the objects list.
For instance, if radius, size and order are pre-
defined real-valued graph functions, you would define
invariants = [radius, size, order] and give
invariants as a parameter to the program.

3. A positive integer listing the position of the invariant in
the list of invariants that you would like to conjec-
ture bounds for from the list of invariants. For in-
stance if conjectures for the radius of a graph, the user
would enter 0 in the list of parameters to the C program.

4 Bounds for the Graph Theoretic
Domination Number

This is an example of one of our experiments. A dominat-
ing set in a graph is a set D such that every vertex of the
graph which is not in D is adjacent to at least one vertex in
D; the domination number of a graph is the cardinality of a
minimum dominating set [Haynes et al., 1998]. Computing
the domination number of a graph is intractable (NP-hard)
and currently impossible for general graphs of even moder-
ate size. Conjectured bounds for the domination number are
of theoretical interest—bounds which are functions of effi-
ciently computable invariants are also of practical interest—
these can lead to speed up of domination number computa-
tions.

The objects are connected graphs. The invariants
we started with included domination number,
matching number, annihilation number, girth,
radius, fractional independence number,
average distance, diameter, order, size,
szeged index, wiener index, average degree,
min degree, max degree, and residue. Many of
these are standard graph theoretic invariants that can be
found in introductory texts such as [West, 2001]. These
invariants were either built-in Sage functions or were coded
by us as Sage procedures. For acyclic graphs, girth was set
to infinity. The Szeged and Wiener indices are of special
interest in chemical graph theory. The fractional indepen-
dence number is the optimum solution to the relaxation
of the independence number linear program (and thus an
upper bound for the independence number). The annihi-
lation number is a degree sequence upper bound for the
independence number introduced by Pepper [Pepper, 2009;
Larson and Pepper, 2011], and the residue is a degree se-
quence lower bound for the independence number introduced
by Fajtlowicz [Favaron et al., 1991].

The three invariants listed after domination number
are known upper bounds for the domination number and were
eventually removed in order to try to generate better upper
bound conjectures. Manual removal of invariants in this way
is no longer required: the inclusion and use of known bounds
would have precluded the initial production of these conjec-
tures.

We used McKay’s program geng [McKay, 2007] to gener-
ate all graphs up to some (small) specified order in a loop to
automatedly find counterexamples to generated conjectures
and, thus, automatedly improve the produced conjectures. In
our run generating upper bound conjectures for the domi-
nation number, the program ended up with four examples
(found by this automated search for counterexamples) and
the conjecture that the domination number of a graph is no
more than its matching number. The conjecture exactly pre-
dicted the true value of the domination number of these four
graphs—and, hence, the program stopped. This is a known
(and not difficult to prove) fact about the domination number.
Again, if existing theory had been included, this conjecture
could not have been made.

In the next run, we removed matching number from
the list of invariants and the program generated the three con-
jectures in Table 1. The first two we knew to be true. The
third is false: Ryan Pepper found a 24 vertex counterexam-
ple.

After adding Pepper’s counterexample, we generated an-
other run of upper bound domination conjectures. These are
in Table 2. Stephen Hedetniemi, a co-author of the standard
reference on domination [Haynes et al., 1998], points out that
the second of these conjectures is false for K1 and K2—we

1. domination number(x) ≤ fractional independence number(x)
2. domination number(x) ≤ annihilation number(x)
3. domination number(x) ≤ residue(x) + 1

Table 1: Upper bound conjectures for the domination number of a
graph.
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1. domination number(x) ≤ 1/2*order(x)
2. domination number(x) ≤ size(x) - 1
3. domination number(x) ≤ 2*diameter(x) - 1
4. domination number(x) ≤ diameter(x)ˆ2
5. domination number(x) ≤ girth(x)ˆ2
6. domination number(x) ≤ residue(x) + 2
7. domination number(x) ≤ -average degree(x) + order(x)
8. domination number(x) ≤ max(radius(x),

average distance(x)ˆgirth(x))
9. domination number(x) ≤ 2*residue(x) - 1
10. domination number(x) ≤ min degree(x) + residue(x)
11 domination number(x) ≤ 2*diameter(x) - radius(x) + 2
12. domination number(x) ≤ (min degree(x) + 1)ˆ(residue(x) - 1)
13. domination number(x) ≤ max(residue(x), -girth(x) + order(x))
14. domination number(x) ≤ max(diameter(x), order(x) - 2*radius(x))

Table 2: Upper bound conjectures for the domination number of a
graph.

had only been including graphs of order n ≥ 3 in our auto-
mated counterexample search—and trivially true for graphs
or order n ≥ 3. The truth of Conjecture 7 follows from
a well-known result. He also provided counterexamples to
Conjectures 3, 4, 5, and 11.

5 Discussion & Future Work
Here are two observations from our use of the program.

Successful conjecture-making programs do not require
domain-specific heuristics. The description of the Dalmatian
heuristic does not refer to any particular branch of mathemat-
ics, or even to mathematical object-types. We have demon-
strated its general utility in graph theory, number theory and
matrix theory, and in characterizing game positions. The au-
thors specifically generated conjectures for mathematical ar-
eas in which we had no expert knowledge. We paged through
relevant books looking for invariants and to try to determine
invariants for which experts would be interested in conjec-
tured bounds.

Knowledge of existing theorems can improve the con-
jectures produced by a conjecture-making program. This
is knowledge that experts would have—but not “expert
knowledge”—anyone can page through the relevant texts and
papers to find these theorems. Knowledge of all examples
of objects that have appeared in the literature of a domain
would also improve the conjectures. For the program de-
scribed here, it would guarantee the truth of any produced
conjecture with respect to at least these objects. It would
also be useful to have an an “intelligent” counterexample-
finder. We do not know of one—or whether these would re-
quire domain-specific heuristics. The object generators used
in our research all have the same underlying idea. These are
finite structures and they can be systematically generated for
all objects of a desired “size”. No expert knowledge is re-
quired here. Generators like geng – used here for generating
graphs – are simply more efficient than ones non-experts can
write. A graph of order n, for instance, is simply a symmet-
ric 0-1 matrix. A non-expert can easily write a program that
generates all symmetric 0-1 matrices up to any order.

There is some sense in which domain-specific knowledge
can be of use in improving conjecture-making programs:
experts do not need to consult the literature to find invari-
ants and examples, and they can write more efficient object-
generators. Nevertheless we know of no example of a suc-
cessful conjecture-making program that uses domain-specific

heuristics. And we only claim here that domain-specific
heuristics are not necessary.

Success of conjecturing programs is by design. Scientific
discovery, in general, is the result of effort directed at specific
questions of interest; we are not aware of any case of discov-
ery which cannot to traced back to work on specific problems.

Development of a program that contributes to scientific
discoveries requires knowing what counts as a contribution
to scientific discovery; a successful discovery program must
make such a contribution. Scientists and mathematicians
must address this issue in their own work: to make a scien-
tific discovery you must first know what the open questions
are and which ones are the most central. And not all scientific
and mathematical research is of equal value.

The only way to determine the value of mathematical
research is to engage the community of mathematical re-
searchers and users of mathematics about how the research
is connected to existing mathematical questions and what po-
tential consequences of the research are; there is no external
criteria for judging the value of mathematical research. Many
mathematical papers explicitly address an existing mathemat-
ical problem—they intend to make a contribution either by
answering an outstanding question, by helping to better un-
derstand the problem or its difficulties, or by developing tools
that might be used in attacking the problem.

Our next goal is to advance research on a specific question
of continuing mathematical research: bounds for the inde-
pendence number of a graph. We plan to add all known inde-
pendence number bounds, and produce conjectures that are,
in turn, better than existing theory, for at least one graph. A
proof of any of these would be a proof that automated conjec-
turing programs can make genuine, scientifically interesting,
contributions.

Since the publication of [Larson and Van Cleemput, 2016]
we have produced a property-relations conjecturing program,
which works analogously to the described invariant-relations
conjecturing program, conjectured and proved a new theo-
rem for P -positions in the combinatorial game Chomp, and
discovered and proved several theorems for the domination
number of benzenoid graphs (graphs representing the carbon
structures of benzenoid molecules). We have also used the
program to produce a “conjectured proof” of the well-known
Friendship Theorem about graphs where every pair of ver-
tices has exactly one common neighbor [Aigner and Ziegler,
2010]. This experiment suggests that it may be possible to use
published knowledge together with conjectures to produce se-
mantic proofs (as opposed to the syntactic proofs of tradi-
tional automated theorem-proving programs) of mathemati-
cal conjectures. We do not yet know the full possibilities—or
limitations—of these ideas.

Our dream is to code all properties, invariants, graphs, and
theorems that have appeared in the graph theory literature.
This would be a long-term, massive project, which will ul-
timately require the work of a community of interested re-
searchers. But then, in a well-defined sense, no human could
produce a simpler conjecture than our program could—that
is true for all published graphs, and which improves on all
known theorems. A well-funded experiment along these lines
could lead the way to a new era of mathematical research.
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