
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

6 | P a g e

www.ijacsa.thesai.org

Developing Deep Learning Models to Simulate

Human Declarative Episodic Memory Storage

Abu Kamruzzaman
1
, Charles C. Tappert

2

Seidenberg School of Computer Science and Information Systems

Pace University

Pleasantville, NY

Abstract—Human like visual and auditory sensory

devices became very popular in recent years through the

work of deep learning models that incorporate aspects of

brain processing such as edge and line detectors found in

the visual cortex. However, very little work has been done

on the human memory, and thus our aim is to model

human long-term declarative episodic memory storage

using deep learning methods. An innovative way of deep

neural network was created on supervised feature

learning dataset such as MNIST to achieve high accuracy

as well as storing the models hidden layers for future

extraction. Convolutional Neural Network (CNN)

learning models with transfer learning models were

trained to imitate the long-term declarative episodic

memory storage of human. A Recurrent Neural Network

(RNN) in the form of Long Short Term Memory (LSTM)

model was assembled in layers and then trained and

evaluated. A Variational Autoencoder was also used for

training and evaluation to mimic the human memory

model. Frameworks were constructed using TensorFlow

for training and testing the deep learning models.

Keywords—Convolutional neural network; long short term

memory; Variational Autoencoder; deep learning; memory model;

machine learning

I. INTRODUCTION

The aim of this research is to construct a deep learning
model to simulate the human brain long-term declarative
episodic memory storage, focusing primarily on the computer
science perspective of the Rosenblatt Model for experiential
storage in neural networks [1]. It is not known completely
how human memory remembers past events. Previous work
showed that Convolutional Neural Networks (CNN) models
work well for classification of spatial data while CNN was
unable to store the hidden layers for future predictions [2].
Our new hypothesis is that an integrated framework of CNN,
Long Short Term Memory (LSTM) and Variational
Autoencoder (VAE) adequately stores images for future recall.

Deep learning models can produce highly accurate results
while trained and tested on datasets. However, the dataset
might not generate accurate results while used inaccurately
and larger dataset increase the amount of inconsistency of
generating errors [3]. This issue can be resolved through
additional training on the larger dataset.

The MNIST (Modified National Institute of Standards and
Technology) is a well-known database of handwritten

characters for image processing comprised of 60,000 training
set examples and 10,000 test set examples [4]. MNIST is a
subset of NIST which have been size-normalized and have
been aligned in the center [4]. The current test error rate for
MNIST is very low reported to be 0.23% using CNN [5].

This research focuses on simulated deep learning memory
models using simple CNN and pre trained CNN transfer
learning VGG16, ResNet, Inception, MobileNet, LSTM and
VAE to mimic the human brain‟s long-term declarative
episodic memory of human mind. The research experiment
and result show that the deep learning models built using
TensorFlow API (Application Programing Interface) works
well store the model for future usage. Our experiments in this
journal uses CNN, LSTM, VAE conducted on MNIST
handwritten dataset images with TensorFlow frameworks to
simulate the human brain‟s long-term declarative episodic
memory of human mind.

II. LITERATURE REVIEW

Deep learning is a subsection of machine learning where
models are graph structures with multiple layers and typically
non-linear. Both supervised and unsupervised methods are
used for fitting models to data. Deep learning is used for
prediction and generation and its application domains are
image, audio and texts. Our literature review focuses on
proving the similarities with human memory and deep
learning model while also explaining on the deep learning
algorithms such as CNN, LSTM, VAE which is the primary
focus for this research to be used for storage mechanism to
mimic human memory model.

Both human memory and deep learning models are mostly
comprised of neurons. Hebbs states that the basics of human
learning are that when a neuron accepts input from another
neuron and if both neurons are highly active, the weight for
both of the neurons should be strengthened [6].

A. Deep Learning and Memory Model Similarities

Human brain and deep learning core functionality is
memory or storage [7]. Deep learning neural network contains
input, weight parameters and works with calculated dataset
and memory in brain acts similar way. Deep learning stores in
dynamic RAM (DRAM), static RAM (SRAM) internally and
externally which is the functionality of classical computers to
save new data where as human brain dynamically and
nomadically the patterns of neurons and synapses accomplish
the behavior of neural networks storage mechanism [8].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

7 | P a g e

www.ijacsa.thesai.org

Brain stores the input dataset of pattern recognizers in the
hippocampus and learns from the frequency of the high-level
features from cortical neurons and in similar fashion neural
network store the complete dataset in the computer memory
for frequent access to the dataset for learning the data
behavior [9].

B. Long-Term Declarative Episodic Memory

Atkinson-Shiffrin memory model divided primarily into
three categories named as sensory, short-term and long-term
which are very popular for understanding memory as shown in
Fig. 1. This research primarily studies the long-term
declarative episodic (experiential) memory. This study is the
focus of storing experiences and events that took place in
different times in memory in a serial form and human can
recreate these events and experiences that happened in a
person lifetime that might have been forgotten for the time
being. The permanent storage of the long-term declarative
episodic (experiential) memory is infinite and limitless. The
invention of Miller [11] discusses on the short-term memory
that can hold only 5-9 chunks of information (seven plus or
minus two) and a chunk is somewhat meaningful unit. The
meaning of chunk is digits, words, chess positions, or people‟s
faces. All the following theories of memory after Miller‟s
chunk invention followed the concept of chunking and the
limited capacity of short-term memory as a basic. The long-
term memory comes from short-term memory once the
memory saved permanently.

C. Convolutional Neural Network

Convolutional neural network known as CNN is very
popular in deep neural networks aka deep learning for image
processing and analysis. CNN apply multilayer perceptron
with input, output, single or multiple hidden layers and does
not require preloading of the images [12]. The CNN interprets
images into pixels and features to classify the objects in the
images during the training of the model. The images output
classification allocated a probability from the numeric
translation and learnt data as the training of the model
completes.

Fig. 1. Types of Human Memory (Adapted) [10].

CNN model training consists of several steps. Primarily
the model takes an input from the image for sample analysis.
Convolution is an evaluation of the sample area of pixels
known as „features‟ with the other parts of the image. The
model uses a simple mathematical formula to select a match of
these features. The network applies multiplication of each
pixel to match the feature with is the source area. This method
applied throughout the image to match every pixel. The model
will apply these matches everywhere possible to attempt the
highest accuracy of the image. The other subsamples are
recognized and this technique repeated across the complete
image. Pooling known to shrinking the large area of an image
for calculation also applied. CNN also applies "Rectified
Linear Units" which is known as ReLU where model swaps
out negative calculations from convolution for a zero. ReLU
helps identify the valuable units of the images and keeps the
accuracy into stable position.

Fig. 2 below an input image (e.g. dog.jpg) sent to
convolution layer for the CNN model to train. The CNN will
train the model using the neural network hidden layers,
acquire the features of the image, and extract the labels from
the pre-trained weights to identify the output label of the
image. We used VGG16, ResNet50, MobileNets and
InceptionV3 pre-trained CNN transfer learning models with
TensorFlow framework used in this research. However, these
experiments are not presented in this journal.

D. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) introduced in 1997 by
Hochreiter & Schmidhuber is a branch derived from Recurrent
Neural Network (RNN) [14]. LSTM remembers previously
stored information into memory as needed. It has mechanism
to forget and utilize the newly stored information or mix the
newly stored input with the old stored memory information.

Fig. 3 below shows the architecture of RNN with three
gates (input, forget and output) for LSTM. The input gate
collects the new information and transfers to output gate with
the current time stamp whereas forget gate deletes the
information that is not required anymore.

The RNN gates act on incoming signals as to pass or block
the data utilizing its strength and import that is similar to the
neural network‟s nodes. The filtering of RNN works with
weights as well. The weights used through iterative process of
guesses, backpropagation error. The input and output states
monitored through weights using recurrent network learning
mechanism. The weights adjusted through gradient descent.

Fig. 2. A General Depiction of the Convolution Process (Adapted) [13].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

8 | P a g e

www.ijacsa.thesai.org

Fig. 3. RNN with Input, Output and Forget Gates [15].

Fig. 4 below shows the LSTM with inputs, outputs
normalization and vector operations components in detail. The
network takes three inputs. The LSTM network takes three
inputs. The input is the X_t keeps track of current time step.
h_t is the output and C_t is the memory of the current LSTM
network. C_t-1 is known to be the “memory” of the previous
unit plays a very important role. h_t-1 is the output of an
LSTM.

Our research focus will be mostly on building an LSTM
model to preserve episodic memory like the human brain.
LSTMs can preserve the errors through time and layers using
backpropagation. A supplementary constant error maintained
through the recurrent nets learning using time steps that opens
a channel to link sources and outcome remotely. This study
looks through the LSTM deep learning model to imitate the
episodic memory of human brain.

E. Variational Autoencoder (VAE)

Autoencoder is a function used in model to process the
input data with restrictive sensitive manner. Variational
Autoencoder (VAE) is a form of Autoencoder divided into
two parts known as encoder and decoder. Encoder collects the
input data and adds the most important data features to a
vector form with a lower dimension than the original input.
Decoder reconstructs the features vector to represent the
output. Below Fig. 5 illustrates the VAE. VAE can take a
principled Bayesian approach toward building systems. It's
mostly used for semi-supervised machine learning. VAEs
have one fundamentally unique property very useful for
generative modeling different from vanilla autoencoders.
VAEs contain latent spaces provide random sampling and
interpolation with continuity by design.

Fig. 4. Illustration of a Single LSTM Building Block [16].

Fig. 5. Variational Autoencoder [17].

III. METHODOLOGY

The focus of this research is to learn and study the deep
learning models with a c-system added on incorporated from
the Rosenblatt Brain model [1] with storage mechanism. The
deep neural network models are built from scratch using
TensorFlow estimator framework. Experiments conducted on
MNIST dataset to see how the representations work and stored
for future predictions. In these experiments and results, CNN
image classification and recognition tasks generated excellent
output. In addition, CNN learning and storing of the model for
future predictions were successful in these deep learning
models.

Finally, we extended our MNIST experiments on LSTM
and on VAE, using TensorFlow save and restore framework.
In these experiments and results, MNIST image classification
and recognition tasks generated excellent output and we were
able to store the model for future predictions as well.

Our experiments and results focuses on the following:

A. Framework used to Store the Models for Future Extraction

The initial experiments were unable to store the dataset for
future prediction using plain vanilla CNN and transfer
learning CNN experiments. Therefore, our new deep learning
experiments behave as long-term declarative episodic memory
models using a framework with CNN, LSTM and VAE. The
new experiments and results prove that the added framework
combined with simple CNN model or pre-trained CNN
models using input dataset MNIST handwritten dataset were
able to classify the dataset and restore the output at later time.

Fig. 6 below depicts our architecture of the deep learning
model in the visualization form that described below.

The newly proposed models collects input images from S-
system, hidden layers shown in A-System and output layers
are for R-System a normal display of a neural network
classification model. The extended C-System works as the
memory unit to store the output of the classification model for
future retrieval. The C-system will maintain connections with
both A-system (hidden layer) and R-system (output layer). We
use different mechanisms to build our proposed C-system that
explained later section in detail.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

9 | P a g e

www.ijacsa.thesai.org

Fig. 6. Proposed Deep Learning Model Storage Architecture.

Our initial experiments were not able to store as complete
memory model similar to human memory model while
experiments conducted using CNN with MNIST images,
LSTM with computer-generated numbers, ImageNet datasets
applied on transfer learning CNN models such as ResNet,
VGG16, InceptionV3 and MobileNet [2].

B. Proposed C-System

The proposed C-system is built using the TensorFlow
Premade and Custom Estimators API and Save and Restore
API frameworks. We also used the pre-trained ImageNet
models transfer learning mechanism to test the C-system
storage mechanism.

Google Brain team developed the TensorFlow framework
which is an open source machine-learning framework [18].
TensorFlow bundles together multiple deep learning and
machine learning models and algorithms to make the models
useful. TensorFlow and open source platform helps to write
lazy evaluation, imperative programs, graphs, sessions,
variables, debug, etc. [1]. This framework is build using C++
works on Python. Tensorflow can train and run various deep
learning models such as word embedding, image recognition,
handwritten digit classification, recurrent neural networks,
natural language processing, and sequence-to-sequence
models for machine translation.

Our goal using the TensorFlow API to enable the C-
System storage and retrieval feature as required. The Figure 7
below shows the hierarchy of TensorFlow API which is
mostly divided into three levels. The top level of this
hierarchy encapsulates the framework into a deep learning
model. The mid-level APIs are a set of reusable packages to
create computational graphs. The low level API give access to
the runtime. In this level, tf.Session provides the flexibility to
fine tune the models as needed. We customized the estimator
of the High-level API to build our proposed C-system for
majority of our experiments. We also use save and restore
low-level API with tf.Session in our LSTM and VAE MNIST
experiments to enable the C-system features. Below are the
descriptions of high-level API Estimator and the low-level
API Save and Restore that we used to build the C-system.

Fig. 7. Tensor Flow API Hierarchy [19].

C. Estimator API Framework

An Estimator API framework works well to specify, train,
evaluate and deploy machine learning models and can be used
with distributed platform utilizing the TensorFlow distributed
training support [4]. This framework saves the complete deep
learning neural network model if configured correctly. Google
internally benefited introducing the TensorFlow Estimators
where multiclass classification models perform 37% better
accuracy and reduced required lines of code from 800 to 200
[4]. Estimators can be on the details of initialization, model
save and restore, model logging, and other various features.
The Estimator API used for training a model, estimating
model accuracy, and generating predictions.

Cheng, Heng-Tze, et al. [4] mentions that an internal
survey has shown that the Google codebase checked in with
1,000 Estimators and it is recorded that more than 120,000
experiments conducted within one year since Estimators
framework is introduced and the prediction is that the true
number of experiments are much higher. Fig. 8 below shows
in percent usage of multiple Estimators at Google. Our
MNIST CNN memory model experiment built showing both
pre-made and custom Estimators. We used pre-made
DNNClassifier in this experiment. The other pre-trained
MNIST CNN memory models experiments using custom
Estimators.

TensorFlow has a collection of tf.estimator to implement
deep learning algorithms and the Estimator API comes from
tf.estimator.Estimator. Estimator API has functions train(),
evaluate(), or predict(). Fig. 9 shows how the Estimator is
build. It automatically writes the checkpoints and the event
files to the disk.

Fig. 8. Estimators Framework usage at Google [20].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

10 | P a g e

www.ijacsa.thesai.org

Fig. 9. Estimator Restore the Model [18].

Checkpoints created at training time are the versions of the
model. Events files used for visualization on TensorBoard.
The Estimator saves the model every 10 minutes (600
seconds) by default until model completely trained (if no steps
are defined) in a custom directory defined by the developer
through model_dir function call. We used /tmp/mnist_model
as storing location for one of our experiment. The ls command
in UNIX shows the objects in that directory. The Table 1
below $ ls -1 /tmp/mnist_model are the objects and
descriptions are shown as comment as displayed in model_dir
which is our proposed C-system. The directory retains five
most recent checkpoints.

TABLE I. PROPOSED C-SYSTEM FILES DESCRIPTION

Object Name Comments

checkpoint
model parameters will be reloaded

from the checkpoint

events.out.tfevents.

timestamp.hostname

TensorFlow events files with summary

data; uses to create visualizations

graph.pbtxt
File saves the complete graph (meta +

data). To load and use.

model.ckpt-1.data-00000-of-00001 stores the values of each variable

model.ckpt-1.index
identifies the checkpoint; store index

of variables

model.ckpt-1.meta Meta graph stores the graph structure

Our experiments used the default values and did not use
the tf.estimator.RunConfig function. Estimator restore the
model and saving to a specified directory. There exists two
kinds of Estimators as shown in Fig. 10: Pre-made Estimators
and custom Estimators. Pre-made Estimators and custom
estimators displayed at a later discussion. The pre-made
Estimators are plain vanilla models with default setups to
build regular machine learning/ deep learning models such as
Random Forests Classification/Regression and Linear
Classification /Regression, and Deep learning models for
classification and regression. Google YouTube Watch Next
video recommender system (a user can choose a list of videos
from a ranked list after watching the current video) uses a
deep model with TensorFlow Estimators (DNNClassifier)
framework where it takes multiple days to train a model and
model training data are continuously updated [4]. The pre-
made Estimators perform the tasks below:

Fig. 10. Estimators API [18].

 Single or multiple input functions created.

 Feature columns for the model defined.

 Estimator defined with the feature columns and various
hyperparameters.

 Estimator objects call single or multiple methods and
with required input function for the source dataset.

Estimator requires customization built using custom
estimators.

D. Custom Estimator API Framework

Custom Estimator API is a lower level method utilizes as a
custom black-box model to reuse easily. We customize this
API to build our C- system memory unit to store our deep
learning models. The deep learning model is stored in a
method called the model_fn(). A model_fn on a deep learning
model illustrated in Fig. 11 below.

The function of the model has the code to outline the
process of training the model. It may include identify the
labels, loss function, model prediction, evaluation and training
the model as well. Both pre-made and custom Estimator class
contains three major methods, which are, the train(),
evaluate(), predict().

 To train a dataset in the deep learning model train()
method is called and this method is used for iteration
through a set of training operations.

 To evaluate a dataset performance by iterating through
a set of evaluation operations evaluate() method is
called.

 To make predictions predict() method called on a
trained model.

Fig. 11. Tensor Flow Framework Model_fn Pseudo Code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

11 | P a g e

www.ijacsa.thesai.org

Both pre-made and the custom Estimators require writing a
method to input the dataset into the pipeline. Both training and
evaluation of dataset require this method named model_dir.
As model_dir method called during the estimator training, a
checkpoint is stored using TensorFlow. This store in a folder
in the hard disk storage initialized in model_dir. Every
following call to model_dir during training, evaluation, or
prediction the following happens:

 A model graph is being builds through estimator by
running the model_fn().

 The most recent checkpoint stores the weights of the
new model initialized by the estimator.

It can also be said that using checkpoints TensorFlow
rebuilds the model as the following function call evaluate(),
train(),or predict(). Each model training should be built in
separate directory to avoid the bad restoration of the model
[21].

The model and checkpoint require being compatible for a
model to be restore using checkpoint. For example, if a model
trained on DNNClassifier as shown in Fig. 12 below Estimator
using two hidden layers where each hidden layer have 10
hidden nodes:

Once the training is completed and checkpoints are created
in model_dir and the hidden layer parameters are modified
from 10 to 20 to retrain the model will fail because of the state
of the checkpoint is incompatible with the new model. It will
fail with the following error as shown in Fig. 13.

Different versions of a model should run from separate
model_dir. This isolation helps the recovery of the
checkpoints.

Estimator‟s checkpoints can easily save and restore
models. Here developer can define the function parameter
steps to train the model partially.

E. Save and Restore API Framework

Save and Restore API is a low-level TensorFlow method
for saving and restoring deep learning models. Export and
import of models using SavedModel is not language
dependent, easily recovered, and works on serialization
format.

 The graph variables saved and restored using the saver
variable through the tf.train.Saver() object.

 To save the variables in a session, session instance run
and stored in a directory passed through save_path
method. model.ckpt is a prefix added to the checkpoint
filename by system while storing the checkpoint files
in model directory.

 saver.restore is called to restore the Graphs variables,
build the graph and run the session instance.

Save and Restore low-level API with tf.Session is used in
our LSTM and VAE MNIST experiments to enable the C-
system storage and retrieval features.

Fig. 12. Model Code with DNN Classifier Estimator.

Fig. 13. Tensor Flow Error Code.

IV. PROJECT REQUIREMENTS

To experiment all the proposed deep learning models,
some programs and libraries installation required. It requires
Python 3.5, Keras and TensorFlow 1.10 and numpy and
matplotlib need to be installed. TensorBoard 1.10 required for
graph visualization. Furthermore, a background knowledge of
CNN, LSTM, pre-trained transfer learning, VAE, TensorFlow
API and knowledge of Rosenblatt experiential storage model
is required for the comparison of the architectures. We mostly
used a local laptop environment to conduct all the
experiments. Google Colab a free tool could be used for small
experiments and Google cloud ML engine with VM instance
and CUDA GPU can be utilized to achieve better performance
for these experiments as well.

V. EXPERIMENTS AND RESULTS

Deep learning models such as CNN, LSTM or pre-trained
CNN models without any framework unable to retrieved the
complete c-system with storage mechanism [2]. Pre-trained
CNN models transfer the weights of previously trained models
but unable to replicate the proposed c-system. We needed a
mechanism where we could store the complete model into c-
system for future use. The new proposed TensorFlow
framework added with CNN, pre-trained CNN (ResNet,
VGG16, MobileNet, InceptionV3), LSTM or VAE provided
the solution of storing the complete model. It also helps us
visualize the model using TensorBoard.

Our new experiment models using TensorFlow Framework
API on MNIST datasets elaborated in this journal include

 CNN memory model with Premade DNNClassifier
Estimator

 CNN memory model with Custom Estimators

 LSTM MNIST Model with Save and Restore
Framework API

 VAE Memory Model with Save and Restore
Framework API

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

12 | P a g e

www.ijacsa.thesai.org

Often we had to train with a small dataset instead of
the complete dataset. As deep learning models consumes
enormous powerful resources and it takes significant
amount of time running the complete dataset that makes
the process very slow. For example, it would take us
about 70 days to train ResNet model for 60,000 MNIST
dataset in an ordinary machine. We ran for 2000 dataset
for our experiment that took us more than 3 days.

MNIST CNN memory model contains two experiments.
One experiment conducted using pre-made estimator while the
other experiment was conducted using custom estimator. Both
experiments were trained successfully for 2000 MNIST
datasets as shown in Fig. 14 below. The evaluations conducted
by restoring the trained model in both cases. In addition, the
predictions were done from restoring the model in both cases
to see if the correct images are predicted.

A. Experiment#1 CNN Memory Model with TensorFlow DNN

Classifier Estimator

The purpose of building this MNIST CNN memory model
with learning and training on MNIST hand written dataset to
identify for image classification and recognition. The
motivation of this experiment is to identify the sample images
and store the model for future use. This experiment is to train
a CNN deep learning model from scratch with learning and
training on MNIST dataset and extend the model to build the
proposed C-system for storing images or model for future
prediction. We enhanced the model with tf.estimator.DNN
Classifier using a 3-layer hidden units with 512, 256 and 128
units respectively for pre-made estimator. The model_fn()is
built for custom estimator. Both experiments utilized the
70,000 MNIST dataset using training-set: 55000, validation-
set: 5000 and test-set: 10000. Below is the snapshot of the
input dataset with label before training. We trained the model
up to 2000 datasets as our research interest is to build and test
the storage mechanism for C-system. Therefore, it‟s not
required to train the model for entire 55000 datasets. The C-
system storing location was defined as model_dir =
"./checkpoints_CNN_DNN" on pre-made DNNClassifier
Estimator and model_dir= "./checkpoints_CNN_Custom/" for
custom Estimator C-system storing location.

Initially the code calls the required imports and loads the
MNIST data. Here is the high-level description for both pre-
made and custom Estimator model experiments.

 Define functions for inputting data to the Estimator.

 Train the Estimator using the training-set defined in
step 1.

 Evaluate the performance of the Estimator on the test-
set defined in step 1.

 Use the trained Estimator to make predictions on other
data.

We added the model implementation code of the model
including comments in the Appendix section.

Fig. 14. MNIST Input Images and Labels used.

B. Experiment#1 Result

Fig. 15 below is the snapshot of DNNClassifier Estimator
experiment image output with true and predicted label.

Fig. 16 below is the snapshot of DNNClassifier Estimator
Model Evaluation result.

Fig. 17 below is the snapshot of C-system disk
(./checkpoints_CNN_DNN) directory after training and
evaluation for DNNClassifier Estimator.

Fig. 18 below is the snapshot of model graph visualization
through TensorBoard for DNNClassifier Estimator from the
C-system disk (./checkpoints_CNN_DNN /graph.pbtxt)
directory.

Fig. 15. MNIST Predicted Images and Labels after Training with Pre-Made

DNNClassifier Estimator.

Fig. 16. Pre-Made Estimator Model Evaluation Result.

Fig. 17. Pre-Made Estimator C-System Disk Directory.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

13 | P a g e

www.ijacsa.thesai.org

Fig. 18. Pre-Made Estimator Model Graph Visualization.

C. Experiment#2 CNN Memory Model with TensorFlow

custom Estimator

Fig. 19 below is the snapshot of custom Estimator
experiment image output with true and predicted label.

Fig. 20 below is the snapshot of custom Estimator Model
Evaluation result:

C-system disk (./checkpoints_CNN_Custom) directory
was created after training and evaluation for custom
Estimator and graph visualization through TensorBoard for
custom Estimator from the C-system disk
(./checkpoints_CNN_Custom/graph.pbtxt) directory:

D. CNN Memory Model Summary

The MNIST CNN memory model classify the images well
and stores the model where there is a mechanism for future
prediction while combined with TensorFlow Estimator
framework if this model needed to be retrieved at a later time..
In conclusion, based on the above experiments and results,
even though CNN deep learning models alone cannot be used
to replicate long-term declarative episodic memory. However,
we can achieve the research objective while a CNN model is
combined with a deep learning framework like Estimator API.

We also conducted custom estimator experiments on pre
trained CNN deep learning models such as ResNet, VGG16,
InceptionV3 and MobileNet and enable storage capability in
similar fashions.

Fig. 19. MNIST Predicted Images and Labels after Training with Custom

Estimator.

Fig. 20. Custom Estimator Model Evaluation Result.

E. Experiment#3 LSTM Memory Model with TensorFlow

Save and Restore Framework

This experiment is to train a LSTM deep learning model
from scratch on MNIST dataset and extend the model to build
the proposed C-system for storing the model for future
prediction. This experiment uses TensorFlow low level API
framework tf.train.Saver to save and restore a model by
utilizing the tf.Session. We build the LSTM model and pass it
to the framework using tf.Session. The model is saved in
“/tmp/lstm/” to be our C-system and restored from the same
location. The following steps are required to build this model:

1) Make the environment ready through importing the

needed libraries.

2) Define the configuration variables

3) Define the Functions

4) Load and preprocess the MNIST dataset and other

input parameters to build the Model

5) A functioning Model implementation by TensorFlow

6) Model training on the prepared data

7) Results analysis

F. Save and Restore API Require of the following Steps

1) creating an instance of tf.train.Saver() class

2) save the model inside a session

3) Define the Saving Location

4) Call the tf.train.Saver.restore() to restore the model

We added the model implementation code of the model
including comments in the Appendix section.

G. Experiment#3 Result

Model was trained successfully for 1000 datasets. The
evaluation was conducted by restoring the trained model. In
addition, the restored model was tested to see if the correct
data are preserved. We also captured saver session and restore
session log snapshot to observe the memory consistency.
Similar to CNN model we observed the C-system disk
(/tmp/lstm/) directory after training on MNIST using LSTM.
Also, we were able to visualize graph through TensorBoard
for LSTM from the C-system disk (/tmp/lstm/) directory.

In conclusion, the LSTM MNIST memory model satisfies
the requirement of classifying the images and store the model
for future retrieval.

H. LSTM Memory Model Summary

The LSTM MNIST memory model classify the images
well and stores the model where there is a mechanism for
future prediction while combined with TensorFlow Save and
Restore framework if this model needed to be retrieved at a
later time. Therefore, it is an ideal model to use independently
for the objective of this research. In conclusion, based on the
above experiment and result, even though LSTM deep
learning model alone cannot be used to replicate long-term
declarative episodic memory. However, we can achieve the
research objective while a LSTM model is combined with a
deep learning framework like TensorFlow Save and Restore
API.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

14 | P a g e

www.ijacsa.thesai.org

I. Experiment#4 VAE Memory Model with TensorFlow Save

and Restore Framework

This experiment is to train a VAE deep learning model
from scratch on MNIST dataset and extend the model to build
the proposed C-system for storing the model for future
prediction. VAE MNIST uses TensorFlow low level API
framework tf.train.Saver to save and restore a model by
utilizing the tf.Session. We build the VAE model and pass it
to the framework using tf.Session. The model is saved in
“/tmp/lstm/” to be our C-system and restored from the same
location.

J. Experiment#4 Result

Model was trained successfully for 10000 datasets. The
evaluation was conducted by restoring the trained model. In
addition, the restored model was tested to see if the correct
data are preserved. We observed the Saver session and Restore
session C-system disk (/tmp/vae/) directory was created after
training on MNIST using VAE. We observed the graph
visualization through TensorBoard for VAE from the C-
system disk (/tmp/vae/) directory.

In conclusion, the VAE MNIST memory model satisfies
the requirement of classifying the images and store the model
for future retrieval.

K. VAE Memory Model Summary

The VAE MNIST memory model classify the images well
and stores the model where there is a mechanism for future
prediction while combined with TensorFlow Save and Restore
framework if this model needed to be retrieved at a later time.
Therefore, it is an ideal model to use independently for the
objective of this research. In conclusion, based on the above
experiment and result, even though VAE deep learning model
alone cannot be used to replicate long-term declarative
episodic memory. However, we can achieve the research
objective while a VAE model is combined with a deep
learning framework like TensorFlow Save and Restore API.

Finally, we can draw a conclusion based on all these
experiments and results that we can produce a desired C-
system which can remember and replicate the previous events
that occurred while building the deep learning model.
Therefore, we can draw a conclusion that deep learning
models can be replicated to incorporate human long-term
declarative episodic memory storage.

We also conducted experiments on TensorFlow Custom
Estimators Framework API on MNIST datasets for CNN
ResNet, VGG16, InceptionV3 and MobileNet and enhance the
models to be used as storage mechanism.

VI. DISCUSSION

Was a correlation found with human brain?

We assume there is a keen relationship and similarities
with human brain long-term episodic memory storage and c-
system memory storage unit we built using Tensorflow API.
Human long-term episodic memory illustrates events and
experiences of previous occurrences. Our deep learning
models with c-system storage also originate on events and
experiences. Here an event is triggered when a deep learning

model is being trained. In addition, the model gathers the
experience from the behavior of the data is being trained on.
After model gains the experience meaning trained on the data
we store the model permanently into the c-system which is a
permanent storage location of a disk specified by the
framework. In our case, we used our C drive folder to be the
replica of the c-system storage unit. In the event, we want the
system to bring back the memory we connect the model using
framework and the model is able to retrieve the information
correctly. We can claim that our model storage capacity is
much bigger than a human brain. Herbert Simon‟s chunk or
George A. Miller‟s magic chunk [11] as illustrated before are
very small in comparison to our deep learning memory
storage. Here we can store the entire model that may have
learn for days and worked on a large set of chunks or
numbers. Therefore, we can draw the conclusion that we are
able to find a correlation with our deep learning models and
the human long-term declarative episodic memory.

VII. FUTURE WORK

We have explored into building a framework to build our
proposed c-system storage mechanism. However, there are
still other different techniques can be applied to build c-
system storage mechanism. Below are some
recommendations.

 Combine the CNN and LSTM together to build the c-
system. CNN will work as the classification model and
LSTM will work as the storage unit.

 Other dataset besides MNIST dataset can be tested and
evaluated to check how the storage mechanism
behaves.

 Our research was to work with images. This research
can be enhanced to work with video frames.

 More work can be done to build comparison between
human memory storage and the proposed c-system
storage.

 Our research was limited to CNN, RNN-LSTM and
VAE or pre trained CNN models. This can be
expanded to work with other deep learning/ machine
learning algorithms.

 We focused into TensorFlow framework for storage.
Other frameworks can be evaluated to build the storage
mechanism.

 TensorFlow framework low level API allows coding
into other languages besides python. This research can
be enhanced into multiple directions such as
visualization to the web integrating other languages as
well.

 TensorFlow.js also can be used to implement web
mechanism to connect to the c-system.

VIII. CONCLUDING REMARKS

Finally, we reached into conclusion that deep learning
models require building a framework to build the c-system to
achieve the storage mechanism for an image classification

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

15 | P a g e

www.ijacsa.thesai.org

model. In addition, we can replicate the human memory model
by enhancing the deep learning classification to model with
storage unit.

REFERENCES

[1] Rosenblatt, F. “A model for experiential storage in neural networks”.
Washington, DC: Spartan Books, 1964.

[2] Abu Kamruzzaman, Yousef Alhwaiti, and Charles C. Tappert "
Developing a Deep Learning Model to Implement Rosenblatt‟s
Experiential Memory Brain Model" Future of Information and
Communication Conference (FICC) IEEE 2019.

[3] Karayev, S., Jia, Y., Shelhamer, E., Donahue, J., Long, J., Girshick,R.,
Guadarrama, S., and Darrell, T. "Caffe: Convolutional Architecture for
Fast Feature Embedding", UC Berkeley EECS, Berkeley.

[4] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521(7553), 436.

[5] Cires, D. , Meier, U., and Schmidhuber, J., "Multi-column Deep Neural
Networks for Image Classification", IDSIA / USI-SUPSI, Manno,
Switzerland, 2012.

[6] D. O. Hebb, The Organization of Behavior. New York: John Wiley &
Sons, 1949.

[7] Teresa Nicole Brooks, Abu Kamruzzaman, Avery Leider and Charles C.
Tappert “A Computer Science Perspective on Models of the Mind”
Intelligent Systems Conference (IntelliSys), IEEE, 2018.

[8] S. Nahal, The Relationship Between Deep Learning and Brain Function:
Proceedings of Student-Faculty Research Day. Pleasantville, NY, USA:
CSIS, Pace University, 2017, vol. May 5.

[9] A. Fontana, “A deep learning-inspired model of the hippocampus as
storage device of the brain extended dataset,” arXiv preprint
arXiv:1706.05932, 2017.

[10] Mastin, L. (2010). Types of memory. The human memory.

[11] Miller, George A. "The magical number seven, plus or minus two: Some
limits on our capacity for processing information." Psychological review
63.2 (1956): 81.

[12] Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., & Xie, X. (2016,
February). Co-Occurrence Feature Learning for Skeleton Based Action
Recognition Using Regularized Deep LSTM Networks. In AAAI (Vol.
2, p. 8).

[13] CNN workflow image - adeshpande3.github.io

[14] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory."
Neural computation 9.8 (1997): 1735-1780.

[15] Wikipedia "Long short-term memory" https://en.wikipedia.org /wiki/
Long_short-term_memory, 2018

[16] Cheng, Heng-Tze, et al. "Tensorflow estimators: Managing simplicity
vs. flexibility in high-level machine learning frameworks." Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017.

[17] "Visualizing MNIST with a Deep Variational Autoencoder"
https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-
variational-autoencoder, 2018

[18] “TensorFlow ” https://www.tensorflow.org/ , 2018

[19] “Tensorflow Estimator API” https://blog.10yung.com/tensorflow-
estimator-api-note/, 2017

[20] Cheng, Heng-Tze, et al. "Tensorflow estimators: Managing simplicity
vs. flexibility in high-level machine learning frameworks." Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017.

[21] "TensorFlow: A proposal of good practices for files, folders and models
architecture" https://blog.metaflow.fr/tensorflow-a-proposal-of-good-
practices-for-files-folders-and-models-architecture-f23171501ae3, Apr
28, 2017

