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Abstract—Human like visual and auditory sensory 

devices became very popular in recent years through the 

work of  deep learning models that incorporate aspects of 

brain processing such as edge and line detectors found in 

the visual cortex. However, very little work has been done 

on the human memory, and thus our aim is to model 

human long-term declarative episodic memory storage 

using deep learning methods.  An innovative way of deep 

neural network was created on supervised feature 

learning dataset such as MNIST to achieve high accuracy 

as well as storing the models hidden layers for future 

extraction. Convolutional Neural Network (CNN) 

learning models with transfer learning models were 

trained to imitate the long-term declarative episodic 

memory storage of human.  A Recurrent Neural Network 

(RNN) in the form of Long Short Term Memory (LSTM) 

model was assembled in layers and then trained and 

evaluated.  A Variational Autoencoder was also used for 

training and evaluation to mimic the human memory 

model.  Frameworks were constructed using TensorFlow 

for training and testing the deep learning models. 
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I. INTRODUCTION 

The aim of this research is to construct a deep learning 
model to simulate the human brain long-term declarative 
episodic memory storage, focusing primarily on the computer 
science perspective of the Rosenblatt Model for experiential 
storage in neural networks [1]. It is not known completely 
how human memory remembers past events.  Previous work 
showed that Convolutional Neural Networks (CNN) models 
work well for classification of spatial data while CNN was 
unable to store the hidden layers for future predictions [2]. 
Our new hypothesis is that an integrated framework of CNN, 
Long Short Term Memory (LSTM) and Variational 
Autoencoder (VAE) adequately stores images for future recall. 

Deep learning models can produce highly accurate results 
while trained and tested on datasets. However, the dataset 
might not generate accurate results while used inaccurately 
and larger dataset increase the amount of inconsistency of 
generating errors [3]. This issue can be resolved through 
additional training on the larger dataset. 

The MNIST (Modified National Institute of Standards and 
Technology) is a well-known database of handwritten 

characters for image processing comprised of 60,000 training 
set examples and 10,000 test set examples [4]. MNIST is a 
subset of NIST which have been size-normalized and have 
been aligned in the center [4]. The current test error rate for 
MNIST is very low reported to be 0.23% using CNN [5]. 

This research focuses on simulated deep learning memory 
models using simple CNN and pre trained CNN transfer 
learning VGG16, ResNet, Inception, MobileNet, LSTM and 
VAE to mimic the human brain‟s long-term declarative 
episodic memory of human mind. The research experiment 
and result show that the deep learning models built using 
TensorFlow API (Application Programing Interface) works 
well store the model for future usage. Our experiments in this 
journal uses CNN, LSTM, VAE conducted on MNIST 
handwritten dataset images with TensorFlow frameworks to 
simulate the human brain‟s long-term declarative episodic 
memory of human mind. 

II. LITERATURE REVIEW 

Deep learning is a subsection of machine learning where 
models are graph structures with multiple layers and typically 
non-linear. Both supervised and unsupervised methods are 
used for fitting models to data. Deep learning is used for 
prediction and generation and its application domains are 
image, audio and texts. Our literature review focuses on 
proving the similarities with human memory and deep 
learning model while also explaining on the deep learning 
algorithms such as CNN, LSTM, VAE which is the primary 
focus for this research to be used for storage mechanism to 
mimic human memory model. 

Both human memory and deep learning models are mostly 
comprised of neurons. Hebbs states that the basics of human 
learning are that when a neuron accepts input from another 
neuron and if both neurons are highly active, the weight for 
both of the neurons should be strengthened [6]. 

A. Deep Learning and Memory Model Similarities 

Human brain and deep learning core functionality is 
memory or storage [7]. Deep learning neural network contains 
input, weight parameters and works with calculated dataset 
and memory in brain acts similar way. Deep learning stores in 
dynamic RAM (DRAM), static RAM (SRAM) internally and 
externally which is the functionality of classical computers to 
save new data where as human brain dynamically and 
nomadically the patterns of neurons and synapses accomplish 
the behavior of neural networks storage mechanism [8]. 
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Brain stores the input dataset of pattern recognizers in the 
hippocampus and learns from the frequency of the high-level 
features from cortical neurons and in similar fashion neural 
network store the complete dataset in the computer memory 
for frequent access to the dataset for learning the data 
behavior [9]. 

B. Long-Term Declarative Episodic Memory 

Atkinson-Shiffrin memory model divided primarily into 
three categories named as sensory, short-term and long-term 
which are very popular for understanding memory as shown in 
Fig. 1. This research primarily studies the long-term 
declarative episodic (experiential) memory. This study is the 
focus of storing experiences and events that took place in 
different times in memory in a serial form and human can 
recreate these events and experiences that happened in a 
person lifetime that might have been forgotten for the time 
being. The permanent storage of the long-term declarative 
episodic (experiential) memory is infinite and limitless. The 
invention of Miller [11] discusses on the short-term memory 
that can hold only 5-9 chunks of information (seven plus or 
minus two) and a chunk is somewhat meaningful unit. The 
meaning of chunk is digits, words, chess positions, or people‟s 
faces. All the following theories of memory after Miller‟s 
chunk invention followed the concept of chunking and the 
limited capacity of short-term memory as a basic. The long-
term memory comes from short-term memory once the 
memory saved permanently. 

C. Convolutional Neural Network 

Convolutional neural network known as CNN is very 
popular in deep neural networks aka deep learning for image 
processing and analysis. CNN apply multilayer perceptron 
with input, output, single or multiple hidden layers and does 
not require preloading of the images [12]. The CNN interprets 
images into pixels and features to classify the objects in the 
images during the training of the model. The images output 
classification allocated a probability from the numeric 
translation and learnt data as the training of the model 
completes. 

 

Fig. 1. Types of Human Memory (Adapted) [10]. 

CNN model training consists of several steps. Primarily 
the model takes an input from the image for sample analysis. 
Convolution is an evaluation of the sample area of pixels 
known as „features‟ with the other parts of the image. The 
model uses a simple mathematical formula to select a match of 
these features. The network applies multiplication of each 
pixel to match the feature with is the source area. This method 
applied throughout the image to match every pixel. The model 
will apply these matches everywhere possible to attempt the 
highest accuracy of the image. The other subsamples are 
recognized and this technique repeated across the complete 
image. Pooling known to shrinking the large area of an image 
for calculation also applied. CNN also applies "Rectified 
Linear Units" which is known as ReLU where model swaps 
out negative calculations from convolution for a zero. ReLU 
helps identify the valuable units of the images and keeps the 
accuracy into stable position. 

Fig. 2 below an input image (e.g. dog.jpg) sent to 
convolution layer for the CNN model to train. The CNN will 
train the model using the neural network hidden layers, 
acquire the features of the image, and extract the labels from 
the pre-trained weights to identify the output label of the 
image. We used VGG16, ResNet50, MobileNets and 
InceptionV3 pre-trained CNN transfer learning models with 
TensorFlow framework used in this research. However, these 
experiments are not presented in this journal. 

D. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) introduced in 1997 by 
Hochreiter & Schmidhuber is a branch derived from Recurrent 
Neural Network (RNN) [14]. LSTM remembers previously 
stored information into memory as needed. It has mechanism 
to forget and utilize the newly stored information or mix the 
newly stored input with the old stored memory information. 

Fig. 3 below shows the architecture of RNN with three 
gates (input, forget and output) for LSTM. The input gate 
collects the new information and transfers to output gate with 
the current time stamp whereas forget gate deletes the 
information that is not required anymore. 

The RNN gates act on incoming signals as to pass or block 
the data utilizing its strength and import that is similar to the 
neural network‟s nodes. The filtering of RNN works with 
weights as well. The weights used through iterative process of 
guesses, backpropagation error. The input and output states 
monitored through weights using recurrent network learning 
mechanism. The weights adjusted through gradient descent. 

 

Fig. 2. A General Depiction of the Convolution Process (Adapted) [13]. 
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Fig. 3. RNN with Input, Output and Forget Gates [15]. 

Fig. 4 below shows the LSTM with inputs, outputs 
normalization and vector operations components in detail. The 
network takes three inputs. The LSTM network takes three 
inputs. The input is the X_t keeps track of current time step. 
h_t is the output and  C_t is the memory of the current LSTM 
network. C_t-1 is known to be the “memory” of the previous 
unit plays a very important role. h_t-1 is the output of an 
LSTM. 

Our research focus will be mostly on building an LSTM 
model to preserve episodic memory like the human brain. 
LSTMs can preserve the errors through time and layers using 
backpropagation. A supplementary constant error maintained 
through the recurrent nets learning using time steps that opens 
a channel to link sources and outcome remotely. This study 
looks through the LSTM deep learning model to imitate the 
episodic memory of human brain. 

E. Variational Autoencoder (VAE) 

Autoencoder is a function used in model to process the 
input data with restrictive sensitive manner. Variational 
Autoencoder (VAE) is a form of Autoencoder divided into 
two parts known as encoder and decoder.  Encoder collects the 
input data  and adds the most important data features to a 
vector form with a lower dimension than the original input. 
Decoder reconstructs the features vector to represent the 
output. Below Fig. 5 illustrates the VAE. VAE can take a 
principled Bayesian approach toward building systems. It's 
mostly used for semi-supervised machine learning. VAEs 
have one fundamentally unique property very useful for 
generative modeling different from vanilla autoencoders. 
VAEs contain latent spaces provide random sampling and 
interpolation with continuity by design. 

 

 

Fig. 4. Illustration of a Single LSTM Building Block [16]. 

 

Fig. 5. Variational Autoencoder [17]. 

III. METHODOLOGY 

The focus of this research is to learn and study the deep 
learning models with a c-system added on incorporated from 
the Rosenblatt Brain model [1] with storage mechanism. The 
deep neural network models are built from scratch using 
TensorFlow estimator framework. Experiments conducted on 
MNIST dataset to see how the representations work and stored 
for future predictions. In these experiments and results, CNN 
image classification and recognition tasks generated excellent 
output. In addition, CNN learning and storing of the model for 
future predictions were successful in these deep learning 
models. 

Finally, we extended our MNIST experiments on LSTM 
and on VAE, using TensorFlow save and restore framework. 
In these experiments and results, MNIST image classification 
and recognition tasks generated excellent output and we were 
able to store the model for future predictions as well. 

Our experiments and results focuses on the following: 

A. Framework used to Store the Models for Future Extraction 

The initial experiments were unable to store the dataset for 
future prediction using plain vanilla CNN and transfer 
learning CNN experiments. Therefore, our new deep learning 
experiments behave as long-term declarative episodic memory 
models using a framework with CNN, LSTM and VAE. The 
new experiments and results prove that the added framework 
combined with simple CNN model or pre-trained CNN 
models using input dataset MNIST handwritten dataset were 
able to classify the dataset and restore the output at later time. 

Fig. 6 below depicts our architecture of the deep learning 
model in the visualization form that described below. 

The newly proposed models collects input images from S-
system, hidden layers shown in A-System and output layers 
are for R-System a normal display of a neural network 
classification model. The extended C-System works as the 
memory unit to store the output of the classification model for 
future retrieval. The C-system will maintain connections with 
both A-system (hidden layer) and R-system (output layer). We 
use different mechanisms to build our proposed C-system that 
explained later section in detail. 
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Fig. 6. Proposed Deep Learning Model Storage Architecture. 

Our initial experiments were not able to store as complete 
memory model similar to human memory model while 
experiments conducted using CNN with MNIST images, 
LSTM with computer-generated numbers, ImageNet datasets 
applied on transfer learning CNN models such as ResNet, 
VGG16, InceptionV3 and MobileNet [2]. 

B. Proposed C-System 

The proposed C-system is built using the TensorFlow 
Premade and Custom Estimators API and Save and Restore 
API frameworks. We also used the pre-trained ImageNet 
models transfer learning mechanism to test the C-system 
storage mechanism. 

Google Brain team developed the TensorFlow framework 
which is an open source machine-learning framework [18]. 
TensorFlow bundles together multiple deep learning and 
machine learning models and algorithms to make the models 
useful. TensorFlow and open source platform helps to write 
lazy evaluation, imperative programs, graphs, sessions, 
variables, debug, etc. [1]. This framework is build using C++ 
works on Python. Tensorflow can train and run various deep 
learning models such as word embedding, image recognition, 
handwritten digit classification, recurrent neural networks, 
natural language processing, and sequence-to-sequence 
models for machine translation. 

Our goal using the TensorFlow API to enable the C-
System storage and retrieval feature as required. The Figure 7 
below shows the hierarchy of TensorFlow API which is 
mostly divided into three levels. The top level of this 
hierarchy encapsulates the framework into a deep learning 
model. The mid-level APIs are a set of reusable packages to 
create computational graphs. The low level API give access to 
the runtime.  In this level, tf.Session provides the flexibility to 
fine tune the models as needed. We customized the estimator 
of the High-level API to build our proposed C-system for 
majority of our experiments. We also use save and restore 
low-level API with tf.Session in our LSTM and VAE MNIST 
experiments to enable the C-system features. Below are the 
descriptions of high-level API Estimator and the low-level 
API Save and Restore that we used to build the C-system. 

 

Fig. 7. Tensor Flow API Hierarchy [19]. 

C. Estimator API Framework 

An Estimator API framework works well to specify, train, 
evaluate and deploy machine learning models and can be used 
with distributed platform utilizing the TensorFlow distributed 
training support [4]. This framework saves the complete deep 
learning neural network model if configured correctly. Google 
internally benefited introducing the TensorFlow Estimators 
where multiclass classification models perform 37% better 
accuracy and reduced required lines of code from 800 to 200 
[4]. Estimators can be on the details of initialization, model 
save and restore, model logging, and other various features. 
The Estimator API used for training a model, estimating 
model accuracy, and generating predictions. 

Cheng, Heng-Tze, et al. [4] mentions that an internal 
survey has shown that the Google codebase checked in with 
1,000 Estimators and it is recorded that more than 120,000 
experiments conducted within one year since Estimators 
framework is introduced and the prediction is that the true 
number of experiments are much higher. Fig. 8 below shows 
in percent usage of multiple Estimators at Google. Our 
MNIST CNN memory model experiment built showing both 
pre-made and custom Estimators. We used pre-made 
DNNClassifier in this experiment. The other pre-trained 
MNIST CNN memory models experiments using custom 
Estimators. 

TensorFlow has a collection of tf.estimator to implement 
deep learning algorithms and the Estimator API comes from 
tf.estimator.Estimator. Estimator API has functions train(), 
evaluate(), or predict(). Fig. 9 shows how the Estimator is 
build. It automatically writes the checkpoints and the event 
files to the disk. 

 

Fig. 8. Estimators Framework usage at Google [20]. 
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Fig. 9. Estimator Restore the Model [18]. 

Checkpoints created at training time are the versions of the 
model. Events files used for visualization on TensorBoard. 
The Estimator saves the model every 10 minutes (600 
seconds) by default until model completely trained (if no steps 
are defined) in a custom directory defined by the developer 
through model_dir function call. We used /tmp/mnist_model 
as storing location for one of our experiment. The ls command 
in UNIX shows the objects in that directory. The Table 1 
below $ ls -1 /tmp/mnist_model are the objects and 
descriptions are shown as comment as displayed in model_dir  
which is our proposed C-system. The directory retains five 
most recent checkpoints. 

TABLE I. PROPOSED C-SYSTEM FILES DESCRIPTION 

Object Name Comments 

checkpoint 
model parameters will be reloaded 

from the checkpoint 

events.out.tfevents. 

timestamp.hostname 

TensorFlow events files with summary 

data; uses to create visualizations 

graph.pbtxt 
File saves the complete graph (meta + 

data). To load and use. 

model.ckpt-1.data-00000-of-00001 stores the values of each variable 

model.ckpt-1.index 
identifies the checkpoint; store index 

of variables 

model.ckpt-1.meta Meta graph stores the graph structure 

Our experiments used the default values and did not use 
the tf.estimator.RunConfig function. Estimator restore the 
model and saving to a specified directory. There exists two 
kinds of Estimators as shown in Fig. 10: Pre-made Estimators 
and custom Estimators. Pre-made Estimators and custom 
estimators displayed at a later discussion. The pre-made 
Estimators are plain vanilla models with default setups to 
build regular machine learning/ deep learning models such as 
Random Forests Classification/Regression and Linear 
Classification /Regression, and Deep learning models for 
classification and regression. Google YouTube Watch Next 
video recommender system (a user can choose a list of videos 
from a ranked list after watching the current video)  uses a 
deep model with TensorFlow Estimators (DNNClassifier) 
framework where it takes multiple days to train a model and 
model training data are continuously updated [4]. The pre-
made Estimators perform the tasks below: 

 

Fig. 10. Estimators API [18]. 

 Single or multiple input functions created. 

 Feature columns for the model defined. 

 Estimator defined with the feature columns and various 
hyperparameters. 

 Estimator objects call single or multiple methods and 
with required input function for the source dataset. 

Estimator requires customization built using custom 
estimators. 

D. Custom Estimator API Framework 

Custom Estimator API is a lower level method utilizes as a 
custom black-box model to reuse easily. We customize this 
API to build our C- system memory unit to store our deep 
learning models. The deep learning model is stored in a 
method called the model_fn(). A model_fn on a deep learning 
model illustrated in Fig. 11 below. 

The function of the model has the code to outline the 
process of training the model. It may include identify the 
labels, loss function, model prediction, evaluation and training 
the model as well. Both pre-made and custom Estimator class 
contains three major methods, which are, the train(), 
evaluate(), predict(). 

 To train a dataset in the deep learning model train() 
method is called and this method is used for iteration 
through a set of training operations. 

 To evaluate a dataset performance by iterating through 
a set of evaluation operations evaluate() method is 
called. 

 To make predictions predict() method called on a 
trained model. 

 

Fig. 11. Tensor Flow Framework Model_fn Pseudo Code. 
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Both pre-made and the custom Estimators require writing a 
method to input the dataset into the pipeline. Both training and 
evaluation of dataset require this method named model_dir. 
As model_dir method called during the estimator training, a 
checkpoint is stored using TensorFlow. This store in a folder 
in the hard disk storage initialized in model_dir. Every 
following call to model_dir during training, evaluation, or 
prediction the following happens: 

 A model graph is being builds through estimator by 
running the model_fn(). 

 The most recent checkpoint stores the weights of the 
new model initialized by the estimator. 

It can also be said that using checkpoints TensorFlow 
rebuilds the model as the following function call evaluate(), 
train(),or predict(). Each model training should be built in 
separate directory to avoid the bad restoration of the model 
[21]. 

The model and checkpoint require being compatible for a 
model to be restore using checkpoint. For example, if a model 
trained on DNNClassifier as shown in Fig. 12 below Estimator 
using two hidden layers where each hidden layer have 10 
hidden nodes: 

Once the training is completed and checkpoints are created 
in model_dir and the hidden layer parameters are modified 
from 10 to 20 to retrain the model will fail because of the state 
of the checkpoint is incompatible with the new model. It will 
fail with the following error as shown in Fig. 13. 

Different versions of a model should run from separate 
model_dir. This isolation helps the recovery of the 
checkpoints. 

Estimator‟s checkpoints can easily save and restore 
models. Here developer can define the function parameter 
steps to train the model partially. 

E. Save and Restore API Framework 

Save and Restore API is a low-level TensorFlow method 
for saving and restoring deep learning models. Export and 
import of models using SavedModel is not language 
dependent, easily recovered, and works on serialization 
format. 

 The graph variables saved and restored using the saver 
variable through the tf.train.Saver() object. 

 To save the variables in a session, session instance run 
and stored in a directory passed through save_path 
method. model.ckpt is a prefix added to the checkpoint 
filename by system while storing the checkpoint files 
in model directory. 

 saver.restore  is called to restore the Graphs variables, 
build the graph and run the session instance. 

Save and Restore low-level API with tf.Session is used in 
our LSTM and VAE MNIST experiments to enable the C-
system storage and retrieval features. 

 

Fig. 12. Model Code with DNN Classifier Estimator. 

 

Fig. 13. Tensor Flow Error Code. 

IV. PROJECT REQUIREMENTS 

To experiment all the proposed deep learning models, 
some programs and libraries installation required. It requires 
Python 3.5, Keras and TensorFlow 1.10 and numpy and 
matplotlib need to be installed. TensorBoard 1.10 required for 
graph visualization. Furthermore, a background knowledge of 
CNN, LSTM, pre-trained transfer learning, VAE, TensorFlow 
API and knowledge of Rosenblatt experiential storage model 
is required for the comparison of the architectures. We mostly 
used a local laptop environment to conduct all the 
experiments. Google Colab a free tool could be used for small 
experiments and Google cloud ML engine with VM instance 
and CUDA GPU can be utilized to achieve better performance 
for these experiments as well. 

V. EXPERIMENTS AND RESULTS 

Deep learning models such as CNN, LSTM or pre-trained 
CNN models without any framework unable to retrieved the 
complete c-system with storage mechanism [2]. Pre-trained 
CNN models transfer the weights of previously trained models 
but unable to replicate the proposed c-system. We needed a 
mechanism where we could store the complete model into c-
system for future use. The new proposed TensorFlow 
framework added with CNN, pre-trained CNN (ResNet, 
VGG16, MobileNet, InceptionV3), LSTM or VAE provided 
the solution of storing the complete model. It also helps us 
visualize the model using TensorBoard. 

Our new experiment models using TensorFlow Framework 
API on MNIST datasets elaborated in this journal include 

 CNN memory model with Premade DNNClassifier 
Estimator 

 CNN memory model with Custom Estimators 

 LSTM MNIST Model with Save and Restore 
Framework API 

 VAE Memory Model with Save and Restore 
Framework API 
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Often we had to train with a small dataset instead of 
the complete dataset. As deep learning models consumes 
enormous powerful resources and it takes significant 
amount of time running the complete dataset that makes 
the process very slow. For example, it would take us 
about 70 days to train ResNet model for 60,000 MNIST 
dataset in an ordinary machine. We ran for 2000 dataset 
for our experiment that took us more than 3 days. 

MNIST CNN memory model contains two experiments. 
One experiment conducted using pre-made estimator while the 
other experiment was conducted using custom estimator. Both 
experiments were trained successfully for 2000 MNIST 
datasets as shown in Fig. 14 below. The evaluations conducted 
by restoring the trained model in both cases. In addition, the 
predictions were done from restoring the model in both cases 
to see if the correct images are predicted. 

A. Experiment#1 CNN Memory Model with TensorFlow DNN 

Classifier Estimator 

The purpose of building this MNIST CNN memory model 
with learning and training on MNIST hand written dataset to 
identify for image classification and recognition. The 
motivation of this experiment is to identify the sample images 
and store the model for future use. This experiment is to train 
a CNN deep learning model from scratch with learning and 
training on MNIST dataset and extend the model to build the 
proposed C-system for storing images or model for future 
prediction. We enhanced the model with tf.estimator.DNN 
Classifier using a 3-layer hidden units with 512, 256 and 128 
units respectively for pre-made estimator. The model_fn()is 
built for custom estimator. Both experiments utilized the 
70,000 MNIST dataset using training-set: 55000, validation-
set: 5000 and test-set: 10000. Below is the snapshot of the 
input dataset with label before training. We trained the model 
up to 2000 datasets as our research interest is to build and test 
the storage mechanism for C-system. Therefore, it‟s not 
required to train the model for entire 55000 datasets. The C-
system storing location was defined as model_dir = 
"./checkpoints_CNN_DNN" on pre-made DNNClassifier 
Estimator and model_dir= "./checkpoints_CNN_Custom/" for 
custom Estimator C-system storing location. 

Initially the code calls the required imports and loads the 
MNIST data. Here is the high-level description for both pre-
made and custom Estimator model experiments. 

 Define functions for inputting data to the Estimator. 

 Train the Estimator using the training-set defined in 
step 1. 

 Evaluate the performance of the Estimator on the test-
set defined in step 1. 

 Use the trained Estimator to make predictions on other 
data. 

We added the model implementation code of the model 
including comments in the Appendix section. 

 

Fig. 14. MNIST Input Images and Labels used. 

B. Experiment#1 Result 

Fig. 15 below is the snapshot of DNNClassifier Estimator 
experiment image output with true and predicted label. 

Fig. 16 below is the snapshot of DNNClassifier Estimator 
Model Evaluation result. 

Fig. 17 below is the snapshot of C-system disk 
(./checkpoints_CNN_DNN) directory after training and 
evaluation for  DNNClassifier Estimator. 

Fig. 18 below is the snapshot of model graph visualization 
through TensorBoard for DNNClassifier Estimator from the 
C-system disk (./checkpoints_CNN_DNN /graph.pbtxt) 
directory. 

 

Fig. 15. MNIST Predicted Images and Labels after Training with Pre-Made 

DNNClassifier Estimator. 

 

Fig. 16. Pre-Made Estimator Model Evaluation Result. 

 

Fig. 17. Pre-Made Estimator C-System Disk Directory. 
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Fig. 18. Pre-Made Estimator Model Graph Visualization. 

C. Experiment#2 CNN Memory Model with TensorFlow 

custom Estimator 

Fig. 19 below is the snapshot of custom Estimator 
experiment image output with true and predicted label. 

Fig. 20 below is the snapshot of custom Estimator Model 
Evaluation result: 

C-system disk (./checkpoints_CNN_Custom) directory 
was created after training and evaluation for  custom 
Estimator and graph visualization through TensorBoard for 
custom Estimator from the C-system disk 
(./checkpoints_CNN_Custom/graph.pbtxt) directory: 

D. CNN Memory Model Summary 

The MNIST CNN memory model classify the images well 
and stores the model where there is a mechanism for future 
prediction while combined with TensorFlow Estimator 
framework if this model needed to be retrieved at a later time.. 
In conclusion, based on the above experiments and results, 
even though CNN deep learning models alone cannot be used 
to replicate long-term declarative episodic memory. However, 
we can achieve the research objective while a CNN model is 
combined with a deep learning framework like Estimator API. 

We also conducted custom estimator experiments on pre 
trained CNN deep learning models such as ResNet, VGG16, 
InceptionV3 and MobileNet and enable storage capability in 
similar fashions. 

 

Fig. 19. MNIST Predicted Images and Labels after Training with Custom 

Estimator. 

 

Fig. 20. Custom Estimator Model Evaluation Result. 

E. Experiment#3 LSTM Memory Model with TensorFlow 

Save and Restore Framework 

This experiment is to train a LSTM deep learning model 
from scratch on MNIST dataset and extend the model to build 
the proposed C-system for storing the model for future 
prediction. This experiment uses TensorFlow low level API 
framework tf.train.Saver to save and restore a model by 
utilizing the tf.Session. We build the LSTM model and pass it 
to the framework using tf.Session.  The model is saved in 
“/tmp/lstm/” to be our C-system and restored from the same 
location. The following steps are required to build this model: 

1) Make the environment ready through importing the 

needed libraries. 

2) Define the configuration variables 

3) Define the Functions 

4) Load and preprocess the MNIST dataset and other 

input parameters to build the Model 

5) A functioning Model implementation by TensorFlow 

6) Model training on the prepared data 

7) Results analysis 

F. Save and Restore API Require of the following Steps 

1) creating an instance of tf.train.Saver() class 

2) save the model inside a session 

3) Define the Saving Location 

4) Call the tf.train.Saver.restore() to restore the model 

We added the model implementation code of the model 
including comments in the Appendix section. 

G. Experiment#3 Result 

Model was trained successfully for 1000 datasets. The 
evaluation was conducted by restoring the trained model. In 
addition, the restored model was tested to see if the correct 
data are preserved. We also captured saver session and restore 
session log snapshot to observe the memory consistency.  
Similar to CNN model we observed the C-system disk 
(/tmp/lstm/) directory after training on MNIST using LSTM. 
Also, we were able to visualize graph through TensorBoard 
for LSTM from the C-system disk (/tmp/lstm/) directory. 

In conclusion, the LSTM MNIST memory model satisfies 
the requirement of classifying the images and store the model 
for future retrieval. 

H. LSTM Memory Model Summary  

The LSTM MNIST memory model classify the images 
well and stores the model where there is a mechanism for 
future prediction while combined with TensorFlow Save and 
Restore framework if this model needed to be retrieved at a 
later time. Therefore, it is an ideal model to use independently 
for the objective of this research. In conclusion, based on the 
above experiment and result, even though LSTM deep 
learning model alone cannot be used to replicate long-term 
declarative episodic memory. However, we can achieve the 
research objective while a LSTM model is combined with a 
deep learning framework like TensorFlow Save and Restore 
API. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

14 | P a g e  

www.ijacsa.thesai.org 

I. Experiment#4 VAE Memory Model with TensorFlow Save 

and Restore Framework 

This experiment is to train a VAE deep learning model 
from scratch on MNIST dataset and extend the model to build 
the proposed C-system for storing the model for future 
prediction. VAE MNIST uses TensorFlow low level API 
framework tf.train.Saver to save and restore a model by 
utilizing the tf.Session. We build the VAE model and pass it 
to the framework using tf.Session.  The model is saved in 
“/tmp/lstm/” to be our C-system and restored from the same 
location. 

J. Experiment#4 Result 

Model was trained successfully for 10000 datasets. The 
evaluation was conducted by restoring the trained model. In 
addition, the restored model was tested to see if the correct 
data are preserved. We observed the Saver session and Restore 
session C-system disk (/tmp/vae/) directory was created after 
training on MNIST using VAE. We observed the graph 
visualization through TensorBoard for VAE from the C-
system disk (/tmp/vae/) directory. 

In conclusion, the VAE MNIST memory model satisfies 
the requirement of classifying the images and store the model 
for future retrieval. 

K. VAE Memory Model Summary 

The VAE MNIST memory model classify the images well 
and stores the model where there is a mechanism for future 
prediction while combined with TensorFlow Save and Restore 
framework if this model needed to be retrieved at a later time. 
Therefore, it is an ideal model to use independently for the 
objective of this research. In conclusion, based on the above 
experiment and result, even though VAE deep learning model 
alone cannot be used to replicate long-term declarative 
episodic memory. However, we can achieve the research 
objective while a VAE model is combined with a deep 
learning framework like TensorFlow Save and Restore API. 

Finally, we can draw a conclusion based on all these 
experiments and results that we can produce a desired C-
system which can remember and replicate the previous events 
that occurred while building the deep learning model. 
Therefore, we can draw a conclusion that deep learning 
models can be replicated to incorporate human long-term 
declarative episodic memory storage. 

We also conducted experiments on TensorFlow Custom 
Estimators Framework API on MNIST datasets for CNN 
ResNet, VGG16, InceptionV3 and MobileNet and enhance the 
models to be used as storage mechanism. 

VI. DISCUSSION 

Was a correlation found with human brain? 

We assume there is a keen relationship and similarities 
with human brain long-term episodic memory storage and c-
system memory storage unit we built using Tensorflow API. 
Human long-term episodic memory illustrates events and 
experiences of previous occurrences. Our deep learning 
models with c-system storage also originate on events and 
experiences. Here an event is triggered when a deep learning 

model is being trained. In addition, the model gathers the 
experience from the behavior of the data is being trained on. 
After model gains the experience meaning trained on the data 
we store the model permanently into the c-system which is a 
permanent storage location of a disk specified by the 
framework. In our case, we used our C drive folder to be the 
replica of the c-system storage unit. In the event, we want the 
system to bring back the memory we connect the model using 
framework and the model is able to retrieve the information 
correctly. We can claim that our model storage capacity is 
much bigger than a human brain. Herbert Simon‟s chunk or 
George A. Miller‟s magic chunk [11] as illustrated before are 
very small in comparison to our deep learning memory 
storage. Here we can store the entire model that may have 
learn for days and worked on a large set of chunks or 
numbers. Therefore, we can draw the conclusion that we are 
able to find a correlation with our deep learning models and 
the human long-term declarative episodic memory. 

VII. FUTURE WORK 

We have explored into building a framework to build our 
proposed c-system storage mechanism. However, there are 
still other different techniques can be applied to build c-
system storage mechanism. Below are some 
recommendations. 

 Combine the CNN and LSTM together to build the c-
system. CNN will work as the classification model and 
LSTM will work as the storage unit. 

 Other dataset besides MNIST dataset can be tested and 
evaluated to check how the storage mechanism 
behaves. 

 Our research was to work with images. This research 
can be enhanced to work with video frames. 

 More work can be done to build comparison between 
human memory storage and the proposed c-system 
storage. 

 Our research was limited to CNN, RNN-LSTM and 
VAE or pre trained CNN models. This can be 
expanded to work with other deep learning/ machine 
learning algorithms. 

 We focused into TensorFlow framework for storage. 
Other frameworks can be evaluated to build the storage 
mechanism. 

 TensorFlow framework low level API allows coding 
into other languages besides python. This research can 
be enhanced into multiple directions such as 
visualization to the web integrating other languages as 
well. 

 TensorFlow.js also can be used to implement web 
mechanism to connect to the c-system. 

VIII. CONCLUDING REMARKS 

Finally, we reached into conclusion that deep learning 
models require building a framework to build the c-system to 
achieve the storage mechanism for an image classification 
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model. In addition, we can replicate the human memory model 
by enhancing the deep learning classification to model with 
storage unit. 
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