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It has long been known that the uniqueness of the solution of an

ordinary differential problem of the type of (1) below and the con-

vergence of sequences of successive approximations (Picard se-

quences) to solutions are logically independent. Thus Brauer and

Sternberg [2] list examples (due to Müller and Dieudonné) in which

there is uniqueness but not convergence or convergence but not

uniqueness. Nevertheless, uniqueness and convergence are closely

related, and we have recently shown [lO], for a special type of equa-

tion, and then only in the case w = l, that we can associate with a

given differential problem another problem in such a way that the

uniqueness of the solution of the associated problem guarantees the

convergence of sequences of successive approximations to the (neces-

sarily unique) solution of the original problem. In this note we remove

the restriction to a "special type" of equation and extend the results

to systems of n equations, where n is an arbitrary positive integer.

If the functions/, in problem (1) satisfy a Lipschitz condition, then

the problem has a unique solution, and this solution is the limit of

sequences of successive approximations. Over the years, many weaker

"Lipschitz-like" conditions which guarantee uniqueness and con-

vergence have been found. Presently known conditions of this kind

guarantee the uniqueness of the solution of our associated problem,

and in this sense our results are generalizations of previous work. We

discuss this point in more detail after we state our main theorem.

We consider a differential problem of order n, that is, a system of n

differential equations with a given initial condition :

*/ = fi(t, xi, ■ • ■ , xn),       i Q N,    and    (xh ■ ■ ■ , xn)

= (ai, ■ ■ ■ , an)        when t = 0.

(Here N denotes the set of positive integers {1, •••,«} ; the nature

of our work is such that vector notation is of no advantage.) We as-

sume that the functions/», iQN, are continuous in an (n + ^-dimen-

sional region

R = {(t, xi, ■ ■ • ,xn): t Q [0, h], | Xi - bi |   Ú k,   iQN],

where   h   and   k   are   two   given   positive   numbers.   Let   us   set
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M=max\fi(t, xi, • • • , x„)|, (t, xu • ■ • , xn)ER, ¿G2V, and then let
m = min {h, k/M.}. In the definition of R, replace h with m and call

the resulting region R*. Now suppose that the functions £10, • • • , £i„

are defined in [O, m] and are such that for each tE [0, m] the point

(t, £io(¿)> • • • . %no(t))ER*. These functions initiate the Picard se-

quence {¿i„ • • • , £nr}, the rest of whose terms are defined by the

equations

£«»+u(0 = ai +  J  fi(s, $i,(í), • • • , £„,(*)) ¿j,

(2) i E N, y - 0, 1, • • • .

If our Picard sequence converges, its limit will constitute a solution

of (1), so we now seek conditions that will guarantee the convergence

of this sequence. Thus if we set

\(t) — lim inf £»,(/) and A,-(i) = lim sup £,>(i)>        * E N,

we are looking for conditions under which we can assert that X,(/)

=Ai(t) for each tE [0, m] and for each iEN. From (2) we see that

Í Ms, ti,(
•In

A,(0 = ai + lim sup I  fi(s, £i„(j), • ■ • , ^r(i)) ds,       i E N.
Jo

According to Fatou's Lemma, we may bring the symbols lim sup in-

side the integral sign if we replace the sign of equality with ^ :

(3) Af(0 S ai +  I    lim sup/¿(s, £i,(f), • • • , £„,(i)) ds,       i E N.
Jo

By similar reasoning, we obtain the inequalities

(4) \j(t) ^aj+  f liminîfj(s, &,(*), • • • , {„(*)) ds,       j E N.

If the functions/,, iEN, were monotonie, we could bring the sym-

bols lim sup and lim inf inside the parentheses in (3) and (4). But we

have made no assumption of monotonicity regarding these functions,

and so we shall not proceed further with inequalities (3) and (4) until

we have "embedded" each /,• in a monotone function F< as described

below.

These monotone functions will be functions of 2n + l variables, de-

fined in the region

S - {(t, yi, • • •, yn, zi, • ■ •, Zn) :

t E [0,m], j yt - ai\   ^ k, | z¿ - a,-1   ¿ k,    iEN}.
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To find the value of F¡ at a given point (t, yi, ■ ■ ■ , yn, Zi, • • • , zn) of

S, we proceed in n steps. In what follows we assume that | Xj — a¡\ ¿k

for each jQN. We first set

fa(t, yi, xi, ■ ■ ■ , xn, zi) =    max   fi(t, xh x2, ■ ■ ■ , xn)        if zx ^ yh

=     min    fi(t, xi, Xi, ■ ■ • , x»)        if yi ^ Zi.

Then we take

/«(<, Vi, Vi, xt, ■ ■ ■ ,%n, zi, z2)

=    max   fn(t, yi, x2, ■ ■ ■ , xn, zi)       if z2 ^ y2,

=     min   /«(<, yu x2, ■ ■ ■ , xn, zi)       if yt ^ z2,

and we continue this process in the obvious way to find

Fi(t, yi, • ■ • , yn, zi, ■ ■ ■ , zn).

It is a matter of straightforward calculation to verify that:

(i)  Fi is continuous in 5.

(ii) If (t, xi, • • • , xn)QR*, then (t, xu ■ • • , xn, xu • • • , x„)GS,

(5) and

r i\t, %!,  '   '   '  , Xn, Xl,  •   '   •  , Xn)   — fi\t, Xl, , xn).

(iii) Fi(t, yi, ■ • • , yn, Zi, • • • , z„) is nondecreasing in each y} and

nonincreasing in each z¡,jQN.

Because of property (5) (ii), we can write inequalities (3) as

A,-(0 á a< +  I    limsupF^j, £i,(í), • • • , in,(s),
Jo

$u(s), • ■ • ,%n*(s)) ds,        i Q N.

Now we use the monotonicity property (5) (iii) of F{ to get the first n

oí inequalities (6) below; the remaining « are obtained from in-

equalities (4) by a similar argument:

A,(0 úai+  \   Fi(s, Ki(s), • • • , An(i), Xi(s), • • • , X„(s)) ds,

iQ N,

(6) r
Xj(t) ^0j+  I   Fj(s, Xi(s), ■ ■ ■ , Xn(s), Ai(s), • • • , AB(i)) ds,

J 0

jQN.
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At this point we turn to Opial's generalization of Bellman's lemma

[8]. Kamke [4] has shown that the differential problem consisting of

the 2re equations

m y i = Fi(t, yi, ■ ■ ■ , y„, zi, ■ ■ ■ , zn),       i E N,

z'j = Fj(t, zi, ■ ■ ■ , zn, yi, • • • , yn),      j E N,

and the initial conditions

(8) (yi, • ■ ■ , yn, zi, ■ • ■ , zn) = (ah ■ ■ ■ , an, ah ■ ■ • , a„)    when / = a

has an extreme solution (ßi, • • • , Q„, Wi, • • • , co„), defined in the in-

terval [0, m] and with the property that if (171, • • • , r¡n, fi, • • • , f«)

is any solution of the problem, then for each tE [0, m] we have, for

each iEN, cOi(t)ÚVi(t)S^i(t) and a{(t) £?<(*) £&<(*)• (Actually, in

order to transform our system to agree exactly with Kamke's word-

ing, we must make the substitution Wj= —z¡, JEN, but this change

is trivial.) Opial's theorem says that since the functional values

\i(t), Ai(t), iEN, satisfy inequalities (6), they are bounded by the

values of the extreme solution of the differential problem (7)-(8).

More precisely, for each tE [0, m] we have

(9) wi(t) g Ht) è Ht) á üi(t),       i E N.

Inequalities (9) give us bounds on the upper and lower limits of the

Picard sequence {£i„(/), • • * , £nv(t)} ■ We may also use them to derive

a criterion for determining when these limits are equal. Let us note

that if (¿1, • • • , ¡in) is any solution of our original differential problem

(1), then by (5) (ii), (£1, •••,(•», £1, ••• , £„) is a solution of the

problem (7)-(8). From this fact we infer that if the problem (7)-(8)

has a unique solution, then the problem (1) has a unique solution.

This solution of (1) then determines the solution of (7)-(8) ; it must

have the form (¿1, •••,£»,&,•••, £J. Since it is the only solution,

this solution must be the extreme solution (ßi, • • • , ß„, toi, • • • , <¿n) ;

in other words, C0i(t) = ß»(<), iEN. Therefore we see from (9) that

\i(t) =A,(¿), and we have proved the following theorem.

Theorem. If the differential problem (7)-(8) has a unique solution,

then the differential problem (1) has a unique solution in the interval

[O, m], and the Picard sequence {£i„, • • • , £„,,} converges to that solu-

tion.

LaSalle [6] studied the convergence of sequences of successive ap-

proximations to solutions of differential problems of the type of (1),

in which he also assumed that each/i(¿, Xi, • • • , xn) is nondecreasing
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in Xi, ■ • • , xn. We may note that when f,(t, Xi, • • • , xn) is non-

decreasing in xi, ■ ■ ■ , xn, then our corresponding function F, is

simply given by the equation F,-(i, yi, ■ • • , yn, Zi, • • • , zn)

=fi(t, yi, ■ ■ ■ , yn). If this equation holds for each iQN, then the

differential problem consisting of the 2n equations (7) and initial

conditions (8) is merely two copies of (1). In particular, then, it has a

unique solution if, and only if, (1) has a unique solution, and we have

the following corollary to our main theorem.

Corollary 1. If, for each iQN,fi(t, Xi, - ■ • , xn) is nondecreasing

in %!,•••, xn, and if the differential problem (1) has a unique solution,

then the Picard sequence {£i„, • • • , £„„} converges to that solution.

Well-known conditions that guarantee uniqueness of, and con-

vergence of Picard sequences to, solutions of (1) consist of one or

more sets of inequalities of the form

fi\t, Xl,   '   '   '   ,  Xn) Ji\t, Xl,   •   *   *   ,  Xn)

(10) , ,
^ L(t, max I Xj — x¡\ ,j Q N),       iQN.

For example, in the ordinary Lipschitz condition, L(t, r) =pr, where p

is a positive number. There is a great deal of work devoted to finding

weaker functions L that guarantee uniqueness and convergence;

Santoro [9] lists a number of recent results. In presently known cases,

each L(t, r) is nondecreasing in r. The next corollary to our theorem

shows that when we add this monotonicity condition to any assump-

tion about the functions L that guarantee uniqueness, then we obtain

conditions that also guarantee the convergence of Picard sequences.

Corollary 2. // one or more sets of inequalities of the type of (10)

guarantee the uniqueness of the solution of a differential problem, and if

each L(t, r) is nondecreasing in r, then the convergence of sequences of

successive approximations is also guaranteed.

This assertion is easy to prove. It is a straightforward, but tedious,

matter to verify (using the monotonicity that we have assumed for a

given L) that for each of our monotone functions F,-, we have

I Fi(t, yi, ■ • • , yn, *i, • • • , zn) - F,(t, yh ■ ■ ■ , %, h, • • • , zn) \

g L(t, max{ | y, - yj\, \ z¡ - z¡\ ,j Q N]),       i Q N.

We are assuming that sets of inequalities of this sort guarantee the

uniqueness of solutions of a differential problem, so problem (7)-(8)

has a unique solution. Hence our theorem tells us that Picard se-

quences converge to the solution of (1).
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References [l], [5], and [7] are devoted to showing that certain

uniqueness conditions due to Krasnosel'skiï and Kreïn are also suffi-

cient to guarantee the convergence of sequences of successive ap-

proximations. These uniqueness conditions can be considered to be

two sets of inequalities of the type of (10) in which each L(t, r) is non-

decreasing in r. Therefore, according to our Corollary 2, these unique-

ness conditions automatically guarantee convergence.

There are uniqueness conditions of the form of (10) (see [3, p. 5l],

for example) in which L(t, r) is not necessarily nondecreasing. It is

one of the interesting open questions of this subject whether such a

condition can also guarantee convergence of Picard sequences.
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