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q-Poisson Bases and q-Poisson Curves  
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ABSTRACT  

We construct a new class of bases (q-Poisson bases) with one shape parameter 

based on q-integers. The q-Poisson bases have lots of good properties, including 

non-negativity, partition of unity, linear independence, which are suitable for 

modeling. Based on q-Poisson bases, we define q-Poisson curves, which have 

some properties similar to classical Poisson curves. We also present a degree 

elevation and de Casteljau algorithm for q-Poisson curve. The effect of the 

parameter q on q-Poisson curves is also studied. The introduction of the parameter 

q makes Poisson curves convenient and flexible for shape modeling. 

INTRODUCTION 

Last thirty years, q-calculus served as a bridge between mathematics and 

physics. Lots of experts concentrated on q-Hypergeometric series [1] and made a 

wide application of the Hypergeometric Series to Quantum Theory, Number 

Theory, Combinatorics, Statistical Mechanics and many other fields. After years 

of development, different kinds of q-special functions came up. On the other hand, 

discrete probability distributions play an important role in CAGD/CAD system 

and lots of blending functions are deduced from them. For example, the 

Bernstein-Bezier bases are formed from binomial distribution [2], the B-spline 

bases are formed from a simple stochastic distribution [3]. Morin and Goldman [4] 

extended the notion of Bezier curves to Poisson curves. In recent decades, people  
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combined the q-calculus with discrete probability distributions to achieve a series 

of q-bases for modeling as q-bases have more degrees of freedom than normal 

bases. Lupas, first introduced a type of q-Bernstein operator in [5]. Then Phillips 

came up with the q-Bernstein operator in terms of q-difference [6]. After that, 

different kinds of q-operators were proposed (see [7] and [8]). In 2003, 

q-Bernstein operator [9] was used to construct q-Bezier curve due to its fine 

properties. In 2012, Simeonov and Goldman [10] defined q-B-splines (quantum 

B-splines), which were based on q-blossoming in [11].  

In this paper we present a new operator called q-Poisson operator, which is an 

application of the q-integers in Poisson bases and curves. The paper is organized 

as follows. In Section 2, we review the basic knowledge of q-calculus, give the 

definition of q-Poisson bases and study some of their fundamental properties. 

Then we use the q-Poisson bases to construct the q-Poisson curves and discuss the 

properties of these curves in Section 3. After that, we talk about the effect of 

parameter q in shape control in Section 4. Finally, we conclude our paper in 

Section 4. 

THE GENERATION OF q-POISSON BASES 

In this section we first review some useful definitions about q-calculus [8], 

and then define the q-Poisson bases and discuss their properties.  

Definition 1. Let q> 0, n∈N, q-integer ( qn][
) is defined as 
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Definition 2. Let q> 0, n∈N, q-factorial (
！qn][

) is defined as 
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Definition 3. Let q> 0, 0 ≤ k ≤ n, n, k∈N, the q-binomial coefficients is 

defined as 

     
!][!][

!][

qq

q

q
knk

n

k

n










 .                            (3) 

To simplify the notation, we use [n], [n]! and 
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Definition 4. The q-analogue of (1 + x)n is the polynomial  
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Definition 5. (q-Series expansions). For |x| < 1, |q| < 1,  
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Now we introduce two types of q-analogue of classical exponential function 
te : 
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In the following part we define the degree n q-Poisson bases and discuss their 

properties. We take 
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as the degree n q-Poisson base. When q= 1 and n = 1, the base becomes 
  ]!/[ )1 ;(1 ktetb kt

k

 , which is the Poisson distribution function. 

Theorem 1. The q-Poisson bases have the following properties: 

1. Non-negativity: ; ... 2, 1, 0,    ,0);(  kqtbn

k
 

2. Partition of unity: ;1);(
0




k

n

k qtb   

3. End-point property: 0) ;(lim       and     
,0   ,0

,0   1,
);0( -1/1












qtb

k

k
qb n

kqt

n

k n）（
; 

4. Linear independence:  
k

k

n

kk kcqtbc for       00) ;( . 

Proof. Properties 1, 3 and 4 are obvious so here we only give the proof of 

property 2. 
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Theorem 2. (The property of degree elevation) A degree n q-Poisson base can be 

expressed as a combination of a series of degree n+1 q-Poisson bases 
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Proof. According to the definition of q-Poisson base (6), we have 
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Comparing these two bases, we derive 
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By using 
1)()( tEt qq , Equation (3.14) in [8], and simply calculations, we 

get (7). 

Theorem 3. (The property of degree reduction) A degree n base );( qtbn

k can 

be represented by combination of a series of degree n-1 bases, thus  
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Proof. According to the definition of q-Poisson base (6), we have 
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By direct calculations and using the method similar to Theorem 2, we obtain 

Equation (8). 

q-POISSON CURVES 

In this section we use q-Poisson bases to construct q-Poisson curves and study 

their properties.  

Definition 6. We define the degree n q-Poisson curve as  
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Where 
3kP

(k ≥ 0, k∈N) are the control points and );( qtbn

k are the 

q-Poisson bases defined by (6). Joining up the control points kP
 in sequence, we 

obtain a polygon, which is called the control polygon of q-Poisson curve. 

Theorem 4. From the definition, we can derive some basic properties of 

q-Poisson curves: 

1. Geometric and affine invariance. 

2. The q-Poisson curve lies inside the convex hull of its control polygon. 

3. The end-point interpolation property: p(0; q) = P0. 

4. Reducibility: when q=1, q-Poisson curve (14) degenerates to the classical 

degree n Poisson curve. 

Theorem 5. The degree n q-Poisson curves are variation diminishing, which 
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means that the number of intersection points between any straight line and 

q-Poisson curve is no more than the number of intersection points between the 

straight line and its control polygon. 

Proof. Let C denote a planar q-Poisson curve p(t; q) defined by (14), and L be 

any straight line, I(C, L) be the number of times C crosses L. Let L be the 

abscissa axis and establish the coordinate system. Because q-Poisson curves are 

geometric invariant, we can denote the new coordinates of the control points by 

( ii yx  , ). Thus, the number of intersection points between L and p(t; q) is equal to 

the number of the roots of new q-Poisson curve p*(t; q) =
) ;(

0
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}. Let P denote the control polygon and let I(P, 

L) be the number of times P crosses L. For any polynomial )(tf , we denote 

Zt∈ I⊆(0,∞)[ )(tf ] as the number of positive roots of )(tf on the interval I. For any 

vector V ),,,,( 10  kvvv , S ),,,,( 10  kvvv  denotes the strict sign changes in V. 
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Thus, the q-Poisson curves hold the variation diminishing property. 

From Theorem 5, we can easily deduce the following properties: 

Property 1. The degree n q-Poisson curves are convexity-preserving, which 

means that when the control polygon of planar q-Poisson curve is convex, the 

planar q-Poisson curve will also be convex. 

Property 2. The degree n q-Poisson curves are Monotonicity-preserving, 

which means that when the control polygon of q-Poisson curve is monotonically 

increasing (or decreasing) in a direction, the q-Poisson curve will also be 

monotonically increasing (or decreasing) in that direction. 

Theorem 6. (Degree elevation for q-Poisson curve) A degree n q-Poisson 

curve can be expressed as a combination of degree n+1 q-Poisson curves 
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Proof. The result is obvious by using Theorem 2, we omit the details of the 

proof. 

Theorem 7. (De Casteljau algorithm)  
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are the control points of j-th iteration.  

Proof. According to the degree reduction algorithm of the q-Poisson base, we 

obtain Eq. (11).  

SHAPE CONTROL OF q POISSON CURVE 

In this section, we discuss the effect of parameter q. The parameter q can be 

regard as the shape parameter. If we want to adjust the shape of the curve, we can 

just change the value of parameter q. For 0 < q < 1, as q increases, the curve 

moves closer to the control polygon. The effect of the shape parameter of the q 

Poisson curve is clear. Figure 1 shows the effect on the shape of the curve by 

altering the value q for 0 < q < 1.  

CONCLUSIONS 

In this paper we present a new class of q-Poisson bases by applying the 

q-calculus to Poisson distribution function. The q-Poisson bases have some good 

properties same as classical Poisson bases. With q-Poisson bases, the 

corresponding q-Poisson curves can be constructed. Compared to the classical 

Poisson curves, the q-Poisson curves have one more degree of freedom, which 

makes the adjustment of the curve easier. Experimental results show that the 

curve moves closer to the control polygon as q becomes greater.  

 

 

                  
 

Figure 1. The effects of parameter q on the shape of q-Poisson curves. 
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