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ABSTRACT

In this paper we consider the problem of low power SpO2

sensors for acquiring Photoplethysmograph (PPG) signals.
Most of the power in SpO2 sensors goes to lighting red and
infra-red LEDs. We use compressive sensing to lower the
amount of time LEDs are lit, thereby reducing the signal
acquisition power. We observe power savings by a factor
that is comparable to the sampling rate. At the receiver,
we reconstruct the signal with sufficient integrity for a given
task. Here we consider the tasks of heart rate (HR) and
blood pressure (BP) estimation. For BP estimation we use
ECG signals along with the reconstructed PPG waveform.
We show that the reconstruction quality can be improved
at the cost of increasing compressed sensing bandwidth and
receiver complexity for a given task. We present HR and
BP estimation results using the MIMIC database.
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1. INTRODUCTION
Body area networks (BAN) are promising for healthcare

applications such as continuous monitoring for diagnostic
purposes, effects of medicines on chronic ailments, etc. in
addition to promoting life styles aimed at prevention and
fitness. BAN consists of wireless sensors that sense the
vital signs and communicate them to an aggregator such
as a cell phone or PDA [1, 2]. Figure 1 illustrates a sim-
ple representation of an example BAN. The sensors used in
this example are electrocardiogram (ECG) electrodes, pulse
oximeters, 3D-accelerometer and microphone and the result-
ing sensory data could provide vital signs like heart rate,
SpO2 (oxygen content in blood), posture/activity and res-
piration rate. It is desirable for such sensors to be non-
intrusive and long lasting. In this work we are interested
in reducing the power consumption for the pulse oximeter
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Figure 1: Example Body Area Network.

sensors. A pulse oximeter sensor generates Photoplethysmo-
gram (PPG) waveforms, used to estimate blood oxygenation
(SpO2) and heart rate (HR). In addition, PPG and ECG sig-
nals can be combined to estimate systolic and diastolic blood
pressures (SBP and DBP) [3]. Commercial pulse oximeters
consume power in the order of 20 − 60mW. The red and
infrared LEDs account for most of this power [4]. Rhee et
al. report a power-efficient design for a “finger-ring” PPG
sensor, bringing the power consumption down to 1.5 mW.
They reduce the duty cycle for LED lighting for a given uni-
form sampling rate. They report use of fast detectors and
higher clock frequencies among other optimizations. Thus,
the LED will be switched on for T ·fs duration, where fs and
T represent the sampling rate and duration of lighting (to
acquire each sample) respectively.

In this work we make use of compressed sensing (CS) [5,
6] framework to further reduce the power consumption of
pulse oximeter sensors. We assume that the PPG signals
are sparse in some transform space and hence compressible.
We sample PPG at non-uniform time intervals, but with an
average sampling rate of Fs. In the compressed sensing ap-
proach, Fs is much smaller than the uniform sampling rate
fs. We refer to the factor fs/Fs as the under-sampling ratio
(USR). Note that this approach will result in reduced power
consumption (approximately by a factor of USR) by pulse
oximeter sensors for PPG acquisition. This is because the
LED is now lit up only fs/USR times for PPG acquisition.
A benefit of this CS based approach compared to low-pass
filtering and sampling at fs/USR is that the signal content
above fs/USR will not be lost. Similarly narrow-band sig-
nals at higher frequencies can also be acquired with high
USR. Figure 2 shows an example spectrum of a PPG sig-
nal sampled at fs = 125Hz. It can be seen that significant
spectral content will be lost if we just low-pass filter the
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PPG signal and sample at fs/40 = 3.125 Hz for a USR of
40. Another benefit from using the CS framework is that
the measurements are independent of the transform space
used at reconstruction, including the Fourier space as with
traditional uniform sampling. This CS measurement frame-
work translates into significant power-savings at the sensor
side, at the cost of an increase in computational overhead
at the receiver to reconstruct an approximation of the PPG
signal. In the context of BAN, this is desirable as we shift
computational complexity to nodes with flexible power bud-
gets and increase life of the sensor. Here we are interested in
understanding the receiver complexity for a given task. For
example, heart rate (HR) estimation task may not require
an intermediate representation of the PPG signal from CS
samples, and thus the post-processing complexity will be dif-
ferent for PPG signal reconstruction versus HR estimation.
We also report some results in this paper demonstrating that
the BP estimation accuracy is not compromised with high
values of USR.
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Figure 2: Example spectrum of PPG signal.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present an overview of uniformly sampled PPG
(Nyquist-PPG) waveforms from pulse oximeter sensors and
follow up with the CS principles for acquiring and recon-
structing PPG (CS-PPG). Section 3 compares the complex-
ity of the CS based post-processing (at the aggregator) for
the tasks of HR estimation and complete PPG signal recon-
struction. In Section 4, we discuss briefly the BP estimation
algorithm based on ECG and PPG signals. We then present
BP estimation results using Nyquist-PPG and CS-PPG for
selected subjects from the MIMIC database. We present
conclusions in Section 5.

2. CS BASED ACQUISITION
In this section we will begin by providing a brief back-

ground on conventional PPG signal acquisition, and then
extend it to the CS framework. There are three main com-
ponents of the PPG sensor: 1) Red and Infrared LED, 2)
Photodetector and 3) Lighting and sampling sequence for
LED and photodetector respectively. Figure 3 illustrates
the system flow diagram for PPG sensing. The light from
the LED is transmitted/reflected from the tissue and is col-
lected on the photodetector. The ratio of the the average
intensities corresponding to the red and the infrared LEDs,
measured at the photodetector, is useful in determining the
oxygen content (SpO2) in blood. Thus, SpO2 is a function

of the mean (DC content) of the PPG signal. The modu-
lations in the PPG waveform (associated with either LED)
are related to the instantaneous blood flow [7]. Instanta-
neous heart rate (HR) can be estimated as the inverse of
the distance between peaks and is expressed in the units
of beats per minute (BPM). The lighting sequence for the
LED depends upon the desired sampling rate for the PPG
signal. Up to now, we observe an uniform, Nyquist sampling
rate, and note that frequent lighting of the LEDs results in
significant power consumption by the pulse oximeter sensor.

   Human finger / ear

LED

      Photodetector

 Lighting sequence

Sampling sequence

Signal conditioning/ADC

Figure 3: System flow diagram for PPG acquisition.

In this work, we are interested in exploiting the sparse
nature of the PPG signal and make fewer measurements in
order to save sensor power. Currently we make use of Gabor
basis, consisting of various cosine waves with time support
limited by Gaussian window functions at different scales, as
the transform space. Let the original sampled PPG signal be
denoted by N−dimensional vector x and the sparse-domain
transform basis be represented by N×N matrix W. The
(i, j) entry of matrix W is given by,

[W]i,j = cos

„

2π(i − 1)(j − 1)

2N

«

× exp

„

− (i − 1)2(j − N/2)2

wN2

«

. (1)

The term w is associated with the width of the Gaussian ker-
nel in the Gabor basis. We normalize each row of the matrix
W such that the corresponding L2-norm is equal to 1, and
we will refer to W as the sparse-basis. The PPG signal x is
projected on the sparse-basis to generate the corresponding
N−dimensional representation in transform space and it is
given by

y = Wx. (2)

Figs. 4(a) and 4(b) illustrate an example with a short seg-
ment of PPG signal and the corresponding representation
y in transform space respectively. The figure shows a 8
second segment sampled at 125 Hz (i.e., N = 1000). We ob-
serve that the signal x is sparse/compressible in the trans-
form domain with about 30 coefficients greater than 0.2
in terms of absolute magnitude. This indicates that most
of the PPG signal characteristics reside in a much lower-
dimensional space compared to N and thus it is compress-
ible. This motivates us to use the recently developed CS
principles by Candes and Donoho [5, 6] which allows us to
make K � N measurements (i.e. heavily under-sample the
true data) and still be able to estimate x with high fidelity.
The result by Candes et al. states that if x is explicitly-
sparse with only M non-zero elements in some transform
space then selecting K ≥ M log N/M samples at random
from x provides sufficient information, with high probabil-
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ity, to enable signal reconstruction with zero error [6]. In
real situations the signal is never truly sparse and has some
information content throughout the transform-space; how-
ever the number of significant components with magnitude
greater than ε, where ε < max(x), is much smaller than N .
In Fig. 4, ε was 0.2. The extensions of Candes’s result to
the case where x is not explicitly-sparse has been presented
in [6]. The CS paradigm still remains valid; however, the
reconstruction error does not go to zero.
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Figure 4: (a) Sample PPG signal with N = 1000, (b)
Transform of the signal from (a) in Gabor space.

We now express mathematically the sensing process for
x. Let P denote a K−dimensional vector containing unique
entries (chosen at random) with each element bounded be-
tween 1 and N . This essentially provides the K random
locations to select the elements from x. We can now write
the K−dimensional measurement vector r, obtained from x,
as

r = Hx, (3)

where H denotes the K×N measurement matrix. The ith

row of the matrix H is an all-zero vector with 1 at the lo-
cation given by the ith element of P. We make use of the
matching pursuit (MP) algorithm for signal reconstruction
from measurement vector r. The MP technique is a greedy
algorithm that builds up a signal approximation iteratively
by making locally optimal decisions [8, 9]. Here is the de-
scription of MP algorithm as described in [8].

The term m is the upper-bound on the number of itera-
tions that is allowed for reconstruction, and the term ε de-
fines the convergence criterion. The simple intuition behind
the above algorithm is twofold: At each iteration step, the
algorithm 1) attempts to find the column of V that is most
strongly correlated with the residual of r, and 2) then sub-
tracts the contribution of this column vector from r. This
algorithm is greedy in nature because at each step it esti-
mates the most dominant component of the original signal x
in the projection space W. We note that the main complex-
ity of the MP algorithm lies in step 2 which costs O(KN)
arithmetic operations for a single iteration [9].

We now present some reconstruction examples generated
using the CS approach. We select an 8 second segment from
the MIMIC database, sampled at 125 Hz (i.e., N = 1000).
Recall that the number of CS samples is K that defines
our under-sampling ratio (USR) as N/K. Figure 5 demon-
strates the example CS-PPG signal reconstructions obtained
for USR= 10, 20 and 30 with the upper bound on the number

Algorithm: MP algorithm for reconstruction from CS
measurements

1. Initialization: Define a modified basis V = HW (of di-
mension K×N) such that V = [V1...VN ] where Vj is the

jth column vector of V. Initialize the residual r0 = r and
the approximation ŷ = 0. The dimension of ŷ is same as y
(i.e., N). Initialize the iteration counter i = 1.

2. Find the column vector from V that maximizes the inner-
product of the residual ri−1 onto V

ni = arg max
j=1...N

〈ri−1,Vj〉

‖Vj‖L2

. (4)

3. Update the residual and the estimate of coefficient vector
y as follows

ri = ri−1 −
〈ri−1,Vni

〉

‖Vni
‖2

L2

Vni
, (5)

ŷni
= ŷni

+
〈ri−1,Vni

〉

‖Vni
‖2

L2

. (6)

4. Increment i, Continue and go to step 2 if i < m and
‖ri‖L2

> ε‖r‖L2
otherwise go to next step.

5. Obtain the signal estimate x̂ = Wŷ.

of MP iterations (m) to be 500. The solid black curve repre-
sents the uniformly sampled original signal and the remain-
ing different curves represent different values of USR. From
this data we observe that the signal integrity is well pre-
served till USR= 20, and starts degrading thereafter. How-
ever, note that the signal peak locations are well-preserved
even with high USR. It is important to realize that the LED
power consumption (in the PPG data acquisition) will re-
duce significantly (by a factor of USR) because we are sens-
ing the signal at much smaller rate.
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Figure 5: Comparisons of signal reconstructions ob-
tained using USR = 10, 20 and 30.

3. HR AND PPG RECONSTRUCTION
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Recall from Eqns. (1) and (2) that each element of the
coefficient vector y approximately represents the strength
of a cosine (with specific frequency) in the signal x. We
also note that the PPG signal is oscillatory in nature with
the dominant frequency being proportional to the HR. The
HR can therefore be estimated from the CS reconstruction
ŷ (which is obtained via MP algorithm) as

ĤR = 60(nmax − 1)· fs

2N
BPM, (7)

where nmax = arg max
j=2...N

[ŷ]j ,

and [ŷ]j is the jth element of vector ŷ. Note that this HR
estimate is an average obtained over the time duration of
N ·fS seconds. Also, the resolution of the estimate is given
by 60fs

2N
BPM which is equal to 3.75 BPM for N = 1000 and

fs = 125Hz. Consider the example PPG signal segment in
Fig. 4, where the nmax is found to be 23 which corresponds
to 82.5 BPM. Also, recall that the MP algorithm is greedy
in nature which implies that the dominant components of
the PPG signal in projection space W are estimated in the
initial iterations. In this case the two most dominant compo-
nents are the DC component and the cosine with frequency
corresponding to HR. Therefore, we expect to achieve a reli-
able estimate of HR within a few iterations of the MP algo-
rithm, which also suggests that there is no need of generating
an intermediate representation of the complete PPG signal.
On the other hand we need to reconstruct more coefficients
in the projection space W for signal reconstruction task,
which results in significantly more iterations of MP post-
processing. Note that m iterations in the MP algorithm cost
roughly O(mKN) arithmetic operations. Therefore the HR
estimation task (from CS measurements) shall require less
computational complexity at the receiver when compared to
the signal reconstruction task. Also recall that the number
of CS samples corresponding to a N−dimensional signal x is
K, which defines our under-sampling ratio (USR) as N/K.
With increasing USR we would expect the computational
complexity to increase at the receiver in order to achieve a
specified performance level. This is the trade-off between
sensor power (fewer measurements at Tx) and aggregator
power (more iterations and computation at Rx).

We now introduce the performance metrics for HR esti-
mation and PPG signal reconstruction. For heart-rate es-
timation the metric is root-mean-square-error (RMSE) and

it is defined as

q

E[‖HR − ĤR‖2]. The metric for PPG re-

construction task is normalized RMSE and it is defined as√
E[‖x−x̂‖2]

max{|x|}
. The term E[·] denotes the expectation oper-

ator with Monte Carlo averaging over various realizations
of PPG signals (x) and different measurement bases (H).
The PPG signal realizations (x) are taken from the MIMIC
database. The true heart rate HR can be extracted from
the original signal x as suggested in Eq. (7). Each signal
segment x is taken to be 8 seconds long and is sampled at
125 Hz.

Fig. 6 plots HR estimation RMSE with respect to number
of iterations m (for MP post-processing) for USR= 10 and
20. We observe that RMSE decreases with increasing m
as the estimation accuracy improves with increasing num-
ber of iterations. Also, the number of iterations required
to achieve a specified RMSE increases with increasing USR.
Note that at m = 50, the HR estimation RMSE equals 1
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Figure 6: Comparison of HR estimation based on
CS framework (for USR= 10 and 20.)
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Figure 7: Comparison of PPG signal reconstruction
based on CS framework (for USR= 10 and 20.)

BPM and 4 BPM for USR= 10 and 20 respectively. There-
fore, in order to achieve a HR estimation RMSE of 1 BPM
at USR = 10, we require roughly on the order of 0.625
million arithmetic operations per second (i.e., O(mKN)· fs

N
,

where fs = 125Hz). Similarly, for reconstructing the signal
with an RMSE ≈ 0.1 at USR = 10, we require roughly on
the order of 3.875 million arithmetic operations per second
(i.e., O(mKN + N2)· fs

N
). This suggests that the estima-

tion approach described here can be easily handled by cur-
rent smartphones or PDAs from the complexity standpoint.
Fig. 7 plots the normalized reconstruction RMSE with re-
spect to m for USR= 10 and 20. We first observe that the
RMSE reduces with increasing m as expected. However, we
note that the decrease is gradual with m as opposed to HR
estimation RMSE. This is simply because the reconstruction
task requires reconstructing more coefficients in the sparse
space W as opposed to a single dominant component in the
case of HR estimation. To summarize, the receiver com-
plexity depends upon USR, the task of interest and desired
performance level. An intermediate representation with full
reconstruction may not be needed for some tasks such as HR
estimation from PPG.

4. CUFFLESS BP ESTIMATION
In this section we consider the application of cuffless blood

pressure estimation based on the PPG signal reconstructed
using CS framework (i.e., CS-PPG) and ECG signal. It has
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Figure 8: Measurement of PAT and HR through
ECG and PPG signal peaks.

been previously shown in [3] that SBP and DBP can be
estimated using Pulse Arrival Time (PAT), where PAT is
defined as the delay between QRS peak in ECG waveform
and corresponding peak in PPG waveform. Here we use a
baseline BP estimation algorithm that uses PPG, ECG and
heart rate (HR), to investigate the applicability of CS-PPG
for BP estimation. Fig. 8 illustrates the definition of PAT
and HR through example ECG and PPG waveforms. Our
baseline BP estimation model in can be stated as follows:

SBP = a1·PAT + b1·HR + c1,

DBP = a2·PAT + b2·HR + c2, (8)

where the calibration parameters ai, bi and ci, i = 1, 2 are
estimated during training process and adapted through re-
cursive least squares (RLS) algorithm at every re-calibration
opportunity. In this work, re-calibration is done once every
1 hour. Re-calibration duration essentially implies how of-
ten one needs the ground truth to estimate/adapt the model
parameters. The re-calibration step is required for a real ap-
plication to tackle with bias and drift issues. We would like
the re-calibration period to be longer so that blood pressure
can be measured continuously and non-invasively in a cuff-
less manner for longer periods. More frequent re-calibrations
reduce the BP estimation error whereas less frequent re-
calibrations will make the system more amenable for every-
day use. Reducing re-calibration frequency, while maintain-
ing BP estimation accuracy is an active area of research.
By identifying parameters that account for drift/bias and
incorporating them in the BP estimation model, it may be
possible to reduce re-calibration further.

In order to have reliable PAT and HR estimates at any
instant, one has to make sure that signal peaks in the vicin-
ity are reliable. There are many regions in the MIMIC
patient records where peak locations are ambiguous. Our
peak-extraction algorithm discards the data segments with
unreliable ECG and/or PPG signals.

Next, we present results of BP estimation using CS-PPG
and compare them with those using Nyquist-PPG. The records
corresponding to 13 patients from the MIMIC database are
used for this evaluation. The length of the records for these
patients is on average of the order of 38 hours. The gradient
projection based sparse reconstruction (GPSR) approach de-
scribed in [10] is used to generate CS-PPG for the entire
patient record. Note that we are using a different recon-
struction approach than the algorithm described in previous
section. We used MP algorithm in the previous section be-
cause it is more amenable from the standpoint of complexity
analysis. Table 1 presents BP estimation results based on

the use of ECG and CS-PPG signals of our approach. The
value of USR is taken to be 40 for the CS framework based
measurement of the PPG signal. It is important from BP
monitoring perspective to compute the frequency of report-
ing/generating BP estimates. To do so we introduce the
term NBP as average number of BP estimates generated
per minute using CS-PPG and the Nyquist-PPG baseline
algorithm. Table 1 shows the standard deviation (s.d.) of
the SBP and DBP estimation error and NBP for Nyquist-
PPG and CS-PPG (with USR= 40). The Association for
the Advancement of Medical Instrumentation (AAMI) re-
quirements for BP estimation indicate that the standard
deviation of the error has to be below 8 mmHg, both for
SBP and DBP. Note that the average s.d. for both SBP
and DBP estimation error is less than 8 mmHg. Further-
more the accuracy does not degrade by using CS-PPG when
compared to Nyquist-PPG. In this simulation study we es-
timate an average of 8.85 BP measurements per minute at
USR= 40, compared with an average of 51 BP estimates per
minute using Nyquist-PPG.

Nyquist-PPG CS-PPG (USR=40)

Patient
SBP DBP NBP SBP DBP NBP

(mmHg) (mmHg) (mmHg) (mmHg)

55 4.72 3.1 48.8 2.95 2.19 13.05

212 4.02 3.12 75.6 3.97 1.93 13

213 4.54 2.27 21.44 5.54 2.18 3.3

219 7.68 3.65 29.8 8.85 3.14 6.88

221 8.24 3.85 81.5 6.67 4.03 10.4

224 6.47 4.87 63.05 6.1 3.84 12.35

230 6.42 3.3 37.8 6.09 3.68 1.52

237 9.25 6.83 18.61 7.89 3.62 5.52

408 8.99 9.06 73.41 8.46 6.66 12.4

443 11.42 7.75 86.93 7.45 3.97 5.73

444 7.85 4.08 59.23 7.49 4.02 13.1

476 8.92 5.5 49.96 7.06 2.49 15.02

482 7.34 2.97 16.92 6.1 2.35 2.83

Avg: 7.37 4.64 51 6.51 3.39 8.85

Table 1: Standard deviation (s.d.) for SBP, DBP
estimation error and NBP for Nyquist-PPG and CS-
PPG at USR= 40.

5. CONCLUSIONS
We presented a compressed sensing based low power solu-

tion to acquire PPG signals. The power consumption at the
sensor is reduced by making use of CS measurement frame-
work. We observed that the LED power consumption (in the
PPG data acquisition) reduces significantly (by a factor of
USR) because the signal is sensed at much smaller rate. This
however results in increase of post-processing complexity at
the receiver. In this work we analyzed the receiver complex-
ity for tasks like heart rate estimation and PPG signal re-
construction. In the current version the receiver complexity
is defined in terms of arithmetic operations/computations
used for estimating HR and BP. The limitation of the cur-
rent definition is that it only accounts for the algorithmic
complexity. HR estimation does not require the intermedi-
ate representation of the PPG signal which therefore results
in reduced post-processing complexity when compared to
the PPG signal reconstruction task. We also make use of
CS-PPG and ECG signals to perform cuffless-BP estima-
tion. The under-sampling ratio of 40 was used for measure-
ment purposes and CS based reconstruction. We presented
SBP and DBP estimation results comparing Nyquist-PPG
and CS-PPG (with USR= 40). We found that the CS-PPG
signal results in average SBP and DBP standard deviations
of 6.51 mmHg and 3.39 mmHg, respectively.
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