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INTRODUCTION chains, and transpeptidases, which catalyze the formation of

Over the past 50 years, both the structure and the biosyn-
thesis of bacterial peptidoglycan (murein) have been exten-
sively investigated, owing to its importance as an essential
structural cell wall component (131, 145, 152), to its involve-
ment in cellular morphogenesis (61, 71, 124, 147, 150, 186),
and to the fact that steps of its biosynthesis are specific targets
for well-known antibiotics and potential ones for novel anti-
bacterials (66, 76, 145). An overall view of its biosynthesis valid
for both gram-positive and gram-negative bacteria has
emerged as a multistep process (references 34, 72, 73, 115, 145,
179, 180, and 190 and references therein). Briefly, the assembly
of the disaccharide-peptide monomer unit is achieved via a
linear pathway with a series of UDP nucleotide precursors and
lipid intermediates (Fig. 1). The cytoplasmic steps lead to the
formation of the UDP-MurNAc-pentapeptide precursor from
UDP-GIcNAc and are mediated by the MurA to MurF syn-
thetases. Thereafter, the transfer of the phospho-MurNAc-
pentapeptide moiety of UDP-MurNAc-pentapeptide to a
membrane acceptor, undecaprenyl phosphate, is catalyzed by
transferase MraY, yielding lipid I. Addition of N-acetylglu-
cosamine to the N-acetylmuramic acid residue of lipid I by
transferase MurG leads to lipid II, which carries the complete
disaccharide-peptide monomer unit: GIcNAc-B-(1—4)-MurNAc-
L-Ala-y-D-Glu-A,pm (or L-Lys)-D-Ala-p-Ala.

Lipid II is transferred by an as-yet-unknown mechanism
through the hydrophobic environment of the cytoplasmic
membrane to externally located sites where polymerization
of the disaccharide-peptide monomer involves two major
types of membrane-bound activities: glycosyltransferases
(GTs), which catalyze the formation of the linear glycan
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the peptide cross-bridges and the binding of nascent pepti-
doglycan to the preexisting cell wall (references 72, 73, and
179 and references therein). Prior to the polymerization
reactions, the lipid intermediates can undergo secondary
modifications mostly in their peptide moiety (amidation,
addition of extra amino acids, and esterification, etc.). Since
these reactions are not necessarily complete, lipid interme-
diates must be considered in many cases as complex mix-
tures of modified forms.

The discovery in the mid-1960s of the lipid intermediates
of peptidoglycan synthesis (37, 118) and the determination
of their structures (4, 87) were important for understanding
their role as the specific link between the intracellular syn-
thesis of the disaccharide-peptide monomer unit and the
extracytoplasmic polymerization reactions. However, for
several decades they were further studied to a limited extent
owing to the tedious work required for their preparation as
well as to poor knowledge of the membrane enzymes in-
volved in their metabolism. Renewed interest was brought
about by the now-ready availability of these enzymes, the
resolution of the crystal structure of several ones, and their
possible use as targets for the search of novel antibacterials.
In turn, this led to the preparation of the lipid intermediates
and analogues by new methods and to the development of
new specific assays. It has also appeared that they play an
important role in the covalent attachment of proteins to the
cell wall of gram-positive bacteria (113), in the modes of
action of antibiotics with which they form specific complexes
(references 30 and 79 and references therein), and in mech-
anisms of resistance to antibiotics. Although their role in
peptidoglycan biosynthesis has been reported in many re-
views, no systematic survey of their properties and functions
has been made. This review is an attempt to bring together
and critically evaluate the dispersed data concerning these
lipid intermediates.
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FIG. 1. Stepwise assembly of the peptidoglycan monomer unit.
A,pm, diaminopimelic acid; GIcNAc, N-acetylglucosamine; MurNAc,
N-acetylmuramic acid.

DETECTION OF THE LIPID INTERMEDIATES IN
CELL-FREE SYSTEMS

The existence of lipids I and II and their respective roles in
the pathway were established by the study of cell-free pepti-
doglycan-synthesizing systems using UDP-GIcNAc, radiola-
beled UDP-MurNAc-pentapeptide, and particulate prepara-
tions from Staphylococcus aureus (37, 118). The participation
in this process of a perchloric acid-precipitable membrane
intermediate was proposed (163). In assays with membranes
from S. aureus or Micrococcus luteus, it was identified as a lipid
intermediate (lipid I) and shown to be used as a substrate for
the formation of a second intermediate (lipid II) by the addi-
tion of an N-acetylglucosamine residue (3). Both lipids I and II
were detected as radiolabeled material migrating near the
front of paper chromatograms run in isobutyric acid-1 M am-
monia (5:3). It is noteworthy that at the same time a lipid
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intermediate was discovered in the biosynthesis of the Salmo-
nella O-antigen (195). Thereafter, in vitro peptidoglycan-syn-
thesizing activity was demonstrated with membrane or crude
cell wall preparations from various organisms, and the lipid
intermediates were detected in a similar way (references 145,
179, and 190 and references therein). As closely related com-
pounds, lipids I and II were not separable by paper chroma-
tography (4). Only recently was their clear separation by thin-
layer chromatography described (29, 153, 176).

DETECTION OF THE LIPID INTERMEDIATES IN
INTACT CELLS AND THEIR POOL LEVELS

The cellular pools of the lipid intermediates remain a poorly
addressed question. Knowledge of their levels and variations is
however essential for understanding many aspects of the mem-
brane steps of peptidoglycan synthesis. In numerous experi-
ments, the in vivo synthesis of peptidoglycan was followed by
specific radiolabeling (reference 179 and references therein),
but in only a few cases were the pools of the lipid precursors
considered (28, 65, 81, 97, 121, 139). They were recovered from
labeled cells in different ways (organic solvents, detergents,
lysozyme), purified by paper or/and column chromatography,
and quantitated. Their relative amounts were determined by
analysis of the muropeptides obtained after mild acid hydro-
lysis (81, 97, 121, 139). In Escherichia coli, the lipid I pool was
estimated at most at 700 molecules per cell and that of lipid II
at 1,000 to 2,000 (182) by comparing the UDP-MurNAc-pen-
tapeptide pool (120) with the relative pools of UDP-MurNAc-
pentapeptide, lipid I, and lipid II (97). Rough estimates can
also be made from other published data (139) and lead to 2,000
molecules per cell for lipid I and 3,000 for lipid II. It seems that
the pool levels are higher in gram-positive organisms, in agree-
ment with these organisms’ known higher peptidoglycan con-
tent. In Bacillus megaterium, the lipid II pool was estimated at
34,000 molecules per cell (65). The binding of ramoplanin to S.
aureus cells showed that the lipid intermediates amounted at
most to 50,000 molecules per cell (160). Similarly, 70,000 and
200,000 molecules per cell were found with mersacidin in M.
luteus and Staphylococcus simulans, respectively (31). Although
limited, these studies revealed several interesting features. In
E. coli, there is always an excess of lipid II over lipid I (81, 97,
121, 139), and the relative pools of UDP-MurNAc-pentapep-
tide, lipid I, and lipid II were found to remain constant during
the cell cycle (97). A two- to threefold accumulation of lipid II
was observed when cells were treated with moenomycin, an
inhibitor of peptidoglycan polymerization (98).

ISOLATION AND PURIFICATION OF THE
LIPID INTERMEDIATES

The isolation and purification of the lipid intermediates pre-
sented several challenges with respect to their presence at low
pool levels in overwhelming amounts of phospholipids. The
radiolabeled lipid intermediates that accumulated in the M.
luteus and S. aureus cell-free systems were totally solubilized by
n-butanol in the presence of isobutyric acid or, preferably, 6 M
pyridium acetate, pH 4.2, and purified by successive column
chromatographies on DEAE-cellulose, silicic acid, and Seph-
adex LH-20 (4, 87). The lipid intermediates were to some
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FIG. 2. Structures of lipids I and II.

extent extractible with petroleum ether, diethyl ether, chloro-
form, or chloroform-methanol. Depending on the initial ab-
sence or presence of UDP-GIcNAc and glycine in the cell-free
peptidoglycan-synthesizing system, either lipid I or lipid II or a
modified form was secured (4). Blocking polymerization by
ristocetin or vancomycin in peptidoglycan-synthesizing systems
promoted accumulation of the lipid intermediates (2, 3, 134,
141, 160; references 31 and 66 and references therein).

Subsequently, radiolabeled lipids I and II were prepared in
a similar way from cell-free systems of several organisms: lipid
I from staphylococci (136), B. megaterium (166), Micrococcus
flavus (153), E. coli (107), and Mycobacterium smegmatis (107),
and lipid II from E. coli (80, 107, 123, 168, 173, 181, 182),
Selenomonas ruminantium (94), B. megaterium (167), M. luteus
(31), M. flavus (153), and M. smegmatis (107). The absence or
presence of UDP-GIcNAc in these systems determined the
accumulation of lipid I only or of both intermediates. In the
latter case, lipids I and II could be distinguished by analysis of
their muropeptide content after removal of their lipid moiety
by mild acid hydrolysis (62, 95, 107, 157). When determined,
yields based on the initial amount of radiolabeled UDP-
MurNAc-pentapeptide used ranged from less than 1% to up to
18%, and preparations amounted at most to a few pmols.
Addition of purified MurG to the M. flavus system led to a high
lipid II accumulation with depletion of the endogenous un-
decaprenyl phosphate pool (99).

STRUCTURE OF THE LIPID INTERMEDIATES

The comparison of the structure of peptidoglycan with that
of its precursors was the key in understanding the biochemical
reactions underlying peptidoglycan polymerization. The struc-
ture of lipid II was first established with purified preparations
from S. aueus and M. luteus (4, 87) and characterized as un-
decaprenyl pyrophosphoryl disaccharide-pentapeptide (Fig. 2).

This work implied the determination of the amino acid, hex-
osamine, and phosphate compositions. The status of the two
phosphate residues found per disaccharide-pentapeptide was
determined by mild acid hydrolysis (20 min at pH 4 and
100°C), which released pyrophosphate disaccharide-pentapep-
tide and a lipid moiety conclusively identified by mass spec-
trometry as undecaprenol. Stronger acid hydrolysis (0.1 N HCI
or 1 N acetic acid for 15 min at 100°C) led to disaccharide-
pentapeptide, whereas pyrophosphatase led to the correspond-
ing phospho derivative. A pyrophosphate thus joins the reduc-
ing end of the N-acetylmuramic acid residue to undecaprenol.
The structure of lipid I was defined in a similar way and by its
relationship as the immediate precursor to lipid IT (Fig. 2). The
structures of the lipid intermediates from various organisms
and those of analogues were studied by mass spectrometry
without prior modification (29, 153), after conversion to re-
duced muropeptides (107), or after specific enzymatic degra-
dation by colicin M into pyrophospho-muropeptides (60). It is
noteworthy that the a-anomeric configuration of the N-acetyl-
muramic acid residue in UDP-MurNAc-pentapeptide is con-
served in lipids I and II (Fig. 2), whereas the addition of
N-acetylglucosamine to lipid I by MurG is accompanied by
an inversion of the a-anomeric configuration it has in UDP-
GlcNAc (see Fig. 4).

The stereochemistry of bacterial undecaprenol (Fig. 2) iso-
lated as the free alcohol or secured after mild acid hydrolysis of
the phosphorylated derivative was characterized by mass, in-
frared, and nuclear magnetic resonance (NMR) spectrome-
tries (75, 151, 196; reference 174 and references therein).
NMR spectrometry indicated the presence of two internal E,
one a-Z, seven internal Z, and one methyl-terminal isoprene
residues per molecule. This stereochemistry was further con-
firmed by the elucidation of the biosynthesis of undecaprenol
(reference 96 and references therein). In bacteria, the un-

1sanb Aq 6T0Z ‘0€ |Mdy uo /610 wse iquiwy//:dny woly papeojumoq


http://mmbr.asm.org/

VoL. 71, 2007

decaprenyl diphosphate synthase catalyzes the Z-prenyl chain
elongation onto (all-E)-farnesyl diphosphate as a primer to
yield undecaprenyl diphosphate with E,Z-mixed stereochemis-
try. Subsequent dephosphorylation yields undecaprenyl phos-
phate, used as the substrate by the MraY transferase for the
formation of lipid I (reference 59 and references therein). The
bacterial undecaprenol isolated directly or from phosphory-
lated derivatives contained small amounts of nonaprenol, de-
caprenol, and dodecaprenol (75, 87, 151, 173). Recently, struc-
tural analysis of compounds identified as lipids I and II from
M. smegmatis demonstrated that their lipid moiety was mainly
decaprenol and not undecaprenol as in all previously studied
cases (107).

SYNTHESIS OF THE LIPID INTERMEDIATES
AND ANALOGUES

The low pool levels of the lipid intermediates, their limited
accumulation in cell-free systems, and the tedious work in-
volved in their isolation and purification have restricted their
availability for the study of the membrane steps of the pepti-
doglycan pathway. Their synthesis by chemical and enzymatic
methods offers an alternative which has been successfully fol-
lowed over the past few years. Efforts have concerned both
lipids I and II and analogues. They have enabled the develop-
ment of the study of the MraY and MurG transferases and of
the peptidoglycan GTs as well as the search for specific inhib-
itors.

Initially, analogues of lipid I were synthesized for use in the
study of transferase MurG. Structural variations were intro-
duced in any one of the lipid, diphosphoryl, sugar, or peptide
moieties of lipid I. The general strategy was to chemically
couple an appropriate protected derivative of the phospho-N-
acetylmuramoyl-pentapeptide to a lipid phosphate. The first
functional substrate analogue described was (R,S)-a-dihy-
droheptaprenyl-pyrophosphoryl-N-acetylmuramoyl-L-Ala-y-D-
Glu-meso-A,pm (N*-dansyl)-D-Ala-D-Ala, obtained by a semi-
synthetic route (10). UDP-MurNAc-pentapeptide was
enzymatically degraded to phospho-MurNAc-pentapeptide,
which was dansylated and coupled to the lipid phosphate ac-
tivated by the phosphoroimidazolidate method to form the
pyrophosphate linkage. The next important step was the chem-
ical synthesis of a water-soluble substrate analogue with a
10-carbon citronellyl lipid chain and the same one with an
N&-biotinylated lysine residue (77, 119). The diphenyl chloro-
phosphate activation method was used for the assembly of the
pyrophosphate bond. In following work, numerous lipid I an-
alogues with modified lipid moieties were prepared in a similar
way by use of diphenyl chlorophosphate or 1,1'-carbonyl-
diimidazole (11, 39, 103, 197). Lipid I analogues were also
synthesized in which the anomeric diphosphoryl lipid moiety
was replaced by a phosphate group or noncharged groups such
as methoxy or thiophenoxy (158). Furthermore, citronellyl-
lipid I analogues containing o-D-N-acetylglucosaminyl, o-D-
glucosyl, and a-D-N-acetylmuramyl carbohydrates were made
(47). At the same time, two chemical syntheses of natural
lysine-containing lipid I were reported (183, 197). They in-
volved the coupling of protected phospho-N-acetylmuramoyl-
pentapeptide to undecaprenyl monophosphate by application
of the 1,1'-carbonyldiimidazole (197) or the phosphoroimid-
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azolidate (183) method. Finally, the availability of purified
MraY transferase has enabled the enzymatic synthesis of nat-
ural A,pm-containing lipid I from undecaprenyl phosphate
and UDP-MurNAc-pentapeptide (25, 60).

The synthesis of lipid II and its analogues was recently re-
viewed in detail (191). Both chemoenzymatic and chemical
approaches were followed. A first synthesis concerned a solu-
ble analogue of lipid II, citronellyl-pyrophosphoryl-N-acetyl-
muramoyl-[L-Ala-y-D-Glu-L-Lys-D-Ala-D-Ala]-B-(1—4)-GIcNAc,
which was obtained by the MurG-catalyzed transfer of
N-acetylglucosamine from UDP-GIcNAc onto the correspond-
ing chemically synthesized lipid I analogue (105). In a similar
way, numerous lipid II analogues with modified lipid moieties
were prepared (39, 197). In particular, the natural lysine-con-
taining lipid II was prepared in this way (197). Thereafter, its
total chemical synthesis was reported by two groups (154, 184).
As with lipid I, the strategy involved first the synthesis of a
protected  N-acetylglucosaminyl-p-1,4-(phospho)N-acetyl-
muramoyl pentapeptide and then its coupling to undecaprenyl
phosphate by the 1,1'-carbonyldiimidazole method. Lipid II
analogues with an e-amino-dansylated Lys (154, 184) or A,pm
(11) residue were also synthesized. In another approach, lipid
II and analogues with different lipid moieties were secured by
incubating membranes from M. flavus with polyprenyl, geranyl,
or farnesyl phosphate in the presence of UDP-GIcNAc and
UDP-MurNAc-pentapeptide (29). Presumably, the efficiency
of this system was due to the low specificities of membrane-
associated MraY and MurG for the different lipid moieties
considered. More recently, purified MurG was used to synthe-
size natural A,pm-containing lipid II from the corresponding
lipid I (60). The chemical synthesis of heptaprenyl-lipid IV
comprising two disaccharide-peptide units has also been de-
scribed (201).

BIOSYNTHESIS OF LIPID I

The literature dealing with transferase MraY has been re-
viewed in detail elsewhere (57, 138, 180). Recent data have
concerned its purification, the study of its catalytic mechanism,
the development of enzymatic assays, and the search for spe-
cific inhibitors. Owing presumably to its complex transmem-
brane structure (22), the overproduction and purification of
MraY were long-pending problems. They have now been suc-
cessfully overcome with MraY from Bacillus subtilis, which
enabled the study of kinetic parameters and various properties
(25). MraY belongs to the UDP-p-N-acetylhexosamine: poly-
prenol phosphate D-N-acetylhexosamine 1-P transferase fam-
ily, which includes other cell wall transferases such as WecA
and WbpL (138). Comparative analysis of these transferases
and mutations in the cytoplasmic loops led to the proposal of
a catalytic mechanism (Fig. 3) implying different groups of
MraY and the conservation of the a-anomeric configuration
of UDP-MurNAc-pentapeptide in lipid I (104, 138).

The specificity of MraY for its nucleotide substrate was
previously reviewed (138, 180). Recently, it was shown to have
a broad specificity for its lipid phosphate substrate accepting
dolichol-type isoprenyl phosphates, phytyl phosphate, and wa-
ter-soluble prenyl phosphates (29). Over the past few years,
new enzymatic assays mostly designed for high-throughput
screening and the study of specific inhibitors were developed
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(26, 92, 159, 161, 200). As a target in the search for novel
antibacterials, MraY presents many advantages (essentiality,
ubiquity to eubacteria, specificity). The known inhibitors of
MraY can be classified into three different groups (57): (i) the
nucleosides (comprising the tunicamycins, ribosamine-uri-
dines, uridylpeptides, and capuramycins), (ii) lipopeptide am-
phomycin, and (iii) protein E. Despite the number of described
inhibitors, not one has yet entered clinical use as an antibiotic.

BIOSYNTHESIS OF LIPID II

The MurG transferase is responsible for the synthesis of
lipid II by catalyzing the transfer of N-acetyl-D-glucosamine
from the UDP-GIcNAc donor onto the C-4 hydroxyl of the
N-acetylmuramic acid residue of the lipid I acceptor (Fig. 4).
The formation of the B-(1—4) linkage is accompanied by an
inversion of the anomeric configuration of the N-acetylglu-
cosamine residue. The study of MurG has mostly concerned
the E. coli enzyme, and elsewhere the literature has been
reviewed in detail up to 2000 (180). Since then, considerable
progress has been made. MurG was shown to belong to the
GT-B superfamily (175). Its X-ray structure and that of its
complex with UDP-GlcNAc were resolved (78, 90). Compared
to the free protein, there is a change in the relative organiza-

tion of the N- and C-terminal domains of the complex, which
adopts a more closed conformation. The binding site for UDP-
GlcNAc appears to be in the C-terminal domain, whereas the
primary acceptor binding site is located in the N-terminal do-
main. The location of the UDP-GIcNAc donor was confirmed
by mutational analysis (46, 90).

A direct assay for MurG activity was initially described with
radiolabeled lipid I (166). Owing to its difficult availability in
large amounts (136, 166), assays based on a reaction coupled
with MraY were developed (45, 121, 160). Various coupled
assays have since been used for high-throughput screening
purposes (26, 50, 92, 140, 200). Direct assays with synthetic
lipid T analogues were first carried out with compounds con-
taining C,, and Css chains (10, 11, 119). Their efficiency was
greatly enhanced by the use of a soluble lipid substrate and a
chaotropic agent such as dimethyl sulfoxide. More recently,
fluorescence assays were devised for conveniently monitoring
the MurG activity (39, 86, 102, 103). Activity measurements
with vesicles containing lipid I showed that MurG activity was
increased by the presence of cardiolipin (177).

The availability of adequate substrates and convenient as-
says enabled the determination of the kinetic parameters of E.
coli MurG (11, 77) and the study of its specificity profile (39,
77,90, 103). By use of a radioactive Cs; lipid II analogue, it was
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established that MurG can catalyze to a certain extent the
reverse reaction, namely, the production of radioactive UDP-
GlcNAc (11). Interestingly, biotinylated UDP-MurNAc-pen-
tapeptide functions as an acceptor substrate, albeit much less
efficiently than lipid I (77). The specificity of the acceptor site
was investigated with analogues of lipid I modified in its lipid
moiety (39, 103). From comparison of kinetic parameters, it
was concluded that the lipid chain interacts with the enzyme
(39). Those with a saturated alkyl chain were better substrates
than natural lipid I but not as good as one with a C,, tetra-
prenol (39, 103). This indicated that double bonds were not
crucial for recognition and that the interaction of the lipid
chain with MurG was simply hydrophobic. There is a length
requirement for the lipid chain, which should be long enough
to interact hydrophobically (103). The UDP-GIcNAc donor
site of MurG had a high specificity for UDP and also showed
good selectivity for GlcNAc, indicating that the equatorial
hydroxyl at C-4 was critical (77). UDP was found to be a
competitive inhibitor of the UDP-GIcNAc donor and a non-
competitive inhibitor of the lipid I acceptor. Product inhibition
and dead-end inhibition analyses demonstrated an ordered Bi
Bi mechanism in which the UDP-GIcNAc donor binds first
(39). This means that the two substrates bind to MurG before
the first product is formed and that the sequence of the addi-
tion of the two substrates and of the release of the two prod-
ucts follows an obligatory order (Fig. 4).

Like MraY, transferase MurG is an interesting potential
antibiotic target due to its essentiality, its ubiquity in eubacte-
ria, and the specificity of the reaction it catalyzes. A number of
acceptor and donor substrate analogues were found to have an

inhibitory effect (77). A fluorescence-based substrate displace-
ment assay was used for the high-throughput screening of large
compound collections against MurG (86, 91). In this way, com-
petitive inhibitors with a neutral core mimicking the diphos-
phate moiety of the UDP-GIcNAc donor substrate were iden-
tified. Ramoplanin (160, 188) and glycopeptides (103, 140)
were shown to inhibit the MurG activity in vitro. Initially,
ramoplanin was proposed to act by binding to lipid I and
sequestering it from the reaction (160), but more-recent ex-
periments showed that it interacts directly with the enzyme
(85). The inhibitory effect of glycopeptides is presumably due
to their interaction with the C-terminal p-Ala-p-Ala sequence
of lipid I, as previously established with C-terminal p-Ala-D-
Ala-containing precursors and many peptides (66, 93, 126, 141)
but to date not with lipid I. Since these drugs do not penetrate
the cell membrane, their in vitro effect on MurG activity is of
no significance for their in vivo mode of action, which involves
their interaction with extracytoplasmically located lipid II (see
last section).

BIOSYNTHESIS OF MODIFIED LIPID INTERMEDIATES

The basic structure of bacterial peptidoglycan is that of an
heteropolymer in which linear glycan chains are composed of
alternating B-(1—4)-linked units of GlcNAc and MurNAc
peptide and in which neighboring glycan chains are cross-
linked by a direct peptide bond between peptide subunits.
However, a variety of structural variations is encountered in
the peptidoglycans of most if not all bacteria (references 145,
152, and 180 and references therein). This is clearly illustrated
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TABLE 1. Specific peptidyltransferases catalyzing the assembly of
the interpeptide bridge in E. faecalis, E. faecium, L. lactis,
S. aureus, S. pneumoniae, and W. viridescens

Amino acid

Peptidyltransferase Organism added Reference(s)
AslA L. lactis D-Asp 185
Aslfm E. faecium D-Asp 15, 162
BppAl E. faecalis Ala 23/24
BppA2 E. faecalis Ala
FmhB S. aureus Gly 16, 114, 153
FemA S. aureus Gly
FemB S. aureus Gly
FemX W. viridenscens Ala 18, 84, 108, 135
MurM S. pneumoniae Ala/Ser 62
MurN S. pneumoniae Ala

by the complexity of the muropeptide composition initially
observed for E. coli (69, 70) and later in many other organisms
(for examples, see references 9, 19, 21, 41, 51, 67, and 137).
The importance of these modifications varies, and the physio-
logical significance of many of them is still poorly understood.

Among the observed modifications, the presence of a pep-
tide bridge between the peptide subunits is an important struc-
tural feature of many gram-positive organisms (reference 152
and references therein). It is assembled on the precursors by
the stepwise addition of amino acids onto the €-amino group of
the L-lysine residue of the pentapeptide subunit and accepted
by the subsequent steps of the pathway. The actual cross-
linking between the free N-terminal end of the peptide bridge
of one subunit and the carboxyl of p-Ala* of another subunit
takes place by transpeptidation during polymerization. Specific
peptidyltransferases forming the FemABX protein family (ref-
erences 146 and 185 and references therein) catalyze each step
of the assembly of the stem peptide (Table 1), and two differ-
ent mechanisms have been described. One entails the addition
of L-amino acids or glycine from aminoacyl-tRNAs (23, 24, 62,
84, 108, 114, 135, 153), while the other one, which is ATP
dependent and presumably specific for p-amino acids, pro-
ceeds without aminoacyl-tRNAs (15, 162, 185).

In Streptococcus pneumoniae and S. aureus, lipid I was iden-
tified as the main in vivo substrate for the assembly of the
peptide bridge (62, 153). In contrast, in Weissella viridescens
(formerly Lactobacillus viridescens), the in vivo addition of
L-alanine onto UDP-MurNAc-pentapeptide was substantiated
by the presence of a high UDP-MurNAc-hexapeptide pool and
the absence of UDP-MurNAc-pentapeptide (83). The pepti-
dyltransferases from Enterococcus faecalis (BppAl and
BppA2) and Enterococcus faecium (Aslfm) were overproduced
and purified by using UDP-MurNAc-pentapeptide as an in
vitro substrate (15, 23, 24). However, since the turnover ob-
served with this substrate was very low and since no large
UDP-MurNAc-hexapeptide pool level has been encountered
in studies of enterococci (20), it can be assumed that in vivo the
addition of the bridging amino acids occurs on the lipid inter-
mediates. It remains to be determined whether this takes place
on lipid I, on lipid II, or on both.

Therefore, the assembly of the peptide bridges seems to
proceed in many cases on the lipid intermediates. However,
UDP-MurNAc-hexapeptide and -heptapeptide precursors
were detected, although at low pool levels, in staphylococci,
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enterococci, and streptococci after treatment with antibiotics
inhibiting late steps of peptidoglycan synthesis or under con-
ditions of glycine depletion (20, 112, 165). This could be due
either to the addition of the bridging amino acid directly onto
UDP-MurNAc-pentapeptide accumulating to a high pool level
under these circumstances or to the reversibility of the MraY
reaction driven by the accumulation of the lipid intermediates.
In E. faecium and Lactococcus lactis, D-iso-Asn found in the
peptide bridge is not added to the precursor but is formed by
amidation of the already added D-iso-Asp residue (15, 185). It
is not yet clear whether amidation takes place on the D-iso-
Asp-containing lipid or on nascent peptidoglycan.

Other modifications of lipids I and II were described. A
cell-free system from Micrococcus luteus was shown to catalyze
the ATP-dependent addition of glycine onto the a-carboxyl of
the p-glutamic acid residue of both lipid intermediates, al-
though less efficiently on lipid I (95). Only a slight addition was
observed for UDP-MurNAc-pentapeptide. Similarly, with a
cell-free system from S. aureus, both lipids I and II acted as
acceptors of ammonia in an ATP-dependent reaction in which
the a-carboxyl of the p-glutamic acid residue was amidated
(157). No direct amidation of UDP-MurNAc-pentapeptide
was observed. The in vitro addition of cadaverine onto the
p-glutamic residue of lipid II was described with a particulate
fraction from S. ruminantium (94). For M. smegmatis, it was
recently shown by mass spectrometry that the muropeptide
originating from lipid II was a complex mixture in which the
muramic acid residue and the pentapeptide were modified
singly or in combination (107). The muramic acid residue was
present as such or N acetylated, or N glycolylated, whereas the
carboxylic functions of the pentapeptide were modified to var-
ious extents by amidation and methylation. The absence of any
modification of the lipid I peptide subunit strongly suggested
that in M. smegmatis those observed with lipid II occur after its
formation from lipid I (107). This implies either a specific
preference of the modifying enzymes for lipid II or their inac-
cessibility to lipid I owing to its possible direct channeling from
MraY to MurG.

Yet another important modification of lipid II was observed
in the cell wall sorting pathway of surface proteins in S. aureus
(113). In this process, sortase A, a membrane-anchored
transpeptidase, cleaves the threonine-glycine bond of the
LPXTG motif of the surface protein, generating an acyl inter-
mediate which is attacked by the N-terminal amino group of
the peptide bridge of modified lipid II. In this way, C-terminal
threonine of the surface protein is linked to the lipid precursor.
This intermediate, undecaprenyl-pyrophosphoryl-MurNAc-[L-
Ala-y-p-Gln-N®(surface protein-LPXT-Glys)-L-Lys-D-Ala-
D-Ala]-B-(1—4)-GlcNAc, functions as a substrate for the sub-
sequent steps of peptidoglycan polymerization. It is believed
that in this way the mature surface protein is incorporated as
anchored to the cell wall and displayed on the cell surface
(113).

The modifications undergone by the lipid intermediates are
not necessarily all complete and often lead to complex pools,
which can also be due in some cases to variations of the struc-
ture or pool levels of the cytoplasmic precursors. Direct anal-
ysis of the lipid intermediate pools, as carried out with M.
smegmatis (107), is not yet a usual approach. Generally, it is
assumed that structurally related precursors are recognized
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similarly by the different steps of the pathway and that the
heterogeneity of the lipid II pool is reflected to some extent by
the muropeptide composition. This is valid for MraY, MurG,
the lipid II translocation, and the GT steps, which have the
same low-specificity profile for modifications in the peptide
subunits, but not necessarily for the transpeptidation steps,
which can depend more on the structure of the peptide subunit
(see discussion in references 178 and 180). In the peptidogly-
can literature, there are many examples of the simultaneous
functioning of different sets of lipid intermediates. Briefly,
attention will be focused here on three gram-positive patho-
gens, namely, S. pneumoniae, enterococci, and S. aureus, which
have been extensively studied in connection with the mode of
action of the B-lactam and glycopeptide antibiotics and with
mechanisms of resistance. In these organisms, the incomplete
formation of the peptide bridges was established by high-pres-
sure liquid chromatography analysis of the muropeptide com-
positions (19, 51, 52, 62, 67, 109).

In S. pneumoniae, the MurM and MurN peptidyltransferases
catalyze the addition of the first (Ala or Ser) and second (Ala)
amino acid of the dipeptide bridge, respectively, onto lipid II
(62). The proportions of unbranched, incomplete, and
branched muropeptides vary with the murM allele of the strain
considered (62). In particular, penicillin-resistant strains con-
tain mostly dipeptide bridges, but inactivation of the murM
gene leads to their disappearance, to loss of the resistance
phenotype, and to increased susceptivity to antibiotic-induced
lysis (63). The mechanisms connecting these phenotypes are
not understood, but they make MurM a potential target for
antiresistance agents, as recently illustrated by the synthesis of
MurM inhibitors (44).

In enterococci, the mechanism of resistance to B-lactams
was shown to involve the production of low-affinity penicillin-
binding proteins (PBPs) (reference 43 and references therein).
Inactivation of the BppA2 peptidyltransferase catalyzing the
addition of the second vr-alanine residue of the dipeptide
bridge was associated with decreased B-lactam resistance, as
seen for S. pneumoniae (24). More recently, a new mechanism
of resistance was described for high-level B-lactam-resistant
mutants isolated from E. faecium lacking low-affinity PBP5
(110, 111). It entailed the formation of a high UDP-MurNAc-
tetrapeptide pool used by a B-lactam-insensitive L,D-transpep-
tidation reaction. The presence of both UDP-MurNAc-tet-
rapeptide and UDP-MurNAc-pentapeptide allowed for the
functioning of two peptidoglycan pathways with two sets of
lipid intermediate pools. A similar situation was observed with
the mechanism of resistance to glycopeptides which emerged
in E. faecium by acquisition of transposon Tn/546 (101), me-
diating the production of precursors with C-terminal p-lactate
instead of p-alanine (7, 8). The substitution led to a 1,000-fold
reduction in the affinity of vancomycin for its target (33). Upon
induction by vancomycin, the two pathways functioned in par-
allel with presumably mixed lipid intermediate pools, as in the
case of high-level B-lactam resistance. However, a novel mech-
anism of vancomycin resistance was recently discovered in an
E. faecium high-level B-lactam-resistant mutant devoid of
UDP-MurNAc-pentapeptide (43). The presence of an over-
whelming UDP-MurNAc-tetrapeptide pool not only favored
preferentially the L,D-transpeptidation pathway but also ex-
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cluded the binding of glycopeptides to lipid II and nascent
peptidoglycan, both lacking the C-terminal D-Ala-D-Ala target.

In S. aureus, heterogeneity of the lipid intermediate pools
occurs under different circumstances. In a strain with an al-
tered MurE lysine-adding enzyme, the UDP-MurNAc-Ala-D-
Glu precursor accumulates and L-Ala-p-Glu peptide subunits
are predominant in peptidoglycan (129). This implied the func-
tioning of two pathways, one with UDP-MurNAc-dipeptide up
to the transglycosylation step included and the other with
enough UDP-MurNAc-pentapeptide to insure a certain extent
of transpeptidation. The interpeptide bridge of S. aureus is
assembled by the stepwise addition of glycine, serine, or ala-
nine residues onto lipid II (153) catalyzed by peptidyltrans-
ferases FmhB, FemA, and FemB (146). The incompleteness of
these reactions is reflected in the muropeptide composition
(51). Interestingly, the presence of the mecA gene, which is the
key component of broad-spectrum B-lactam resistance in S.
aureus, had little effect on the heterogeneity of the muropep-
tide composition (51). A high-level vanA-type vancomycin re-
sistance similar to that encountered in studies with enterococci
was recently observed for S. aureus clinical strains (reference
156 and references therein). The impact of the presence of the
vanA mechanism on the structure of peptidoglycan was inves-
tigated in an S. aureus B-lactam-resistant strain by analysis of
the cytoplasmic precursor pools and the muropeptide compo-
sition after growth in the absence or presence of one or the
other antibiotic (156). Clearly, different pathways and, to some
extent, different enzymes were used by the mecA and vanA
mechanisms.

CELLULAR LOCATION OF THE LIPID
INTERMEDIATES AND TRANSLOCATION
OF LIPID II

The presence of the lipid intermediates in particulate prep-
arations, their structure, their properties, and their functions
all substantiated a cellular location in the cytoplasmic mem-
brane. For E. coli, the physical association with the cytoplasmic
membrane was established by sucrose gradient centrifugation
after specific radiolabeling (28). Lipid I is located on the inside
surface of the cytoplasmic membrane, since it is formed there
by MraY and used there as the substrate by MurG. Indeed,
topological analysis of MraY from both E. coli and §. aureus
suggested the involvement of its cytoplasmic loops in substrate
recognition and in the catalytic process (22, 138). Furthermore,
MurG was shown to be associated with the cytoplasmic side
(35, 122). Thus, lipid II is entirely assembled on the inner
surface of the cytoplasmic membrane. This is also true for its
modified forms, since their formation implies the use of cyto-
plasmic constituents (amino acids, aminoacyl-tRNAs, and
ATP, etc.). However, the protein-associated lipid II interme-
diate formed by sortase A appears to be exclusively located on
the outside surface of the cytoplasmic membrane (113).

Lipid IT or its modified forms are used as the substrate in the
extracytoplasmic polymerization processes. Considering its low
pool level, its translocation across the cytoplasmic membrane
must be a fast and unidirectional process to sustain a steady
peptidoglycan synthesis in growing cells. More than 4 decades
after the discovery of this translocation, its mechanism remains
unknown. This is a general problem regarding the translo-
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FIG. 5. Mechanism of transglycosylation with chain elongation at the reducing end. R, D-lactoyl-peptide.

cation of glycosyl carrier lipid-linked sugar chains through
biological membranes (202). The biosyntheses of bacterial
peptidoglycan, lipopolysaccharide O-antigen, and various
exopolysaccharides share common properties with that of N-
linked glycoproteins in the endoplasmic reticulum of eukary-
otic cells (32). In these cases, an oligosaccharide intermediate
is assembled on an isoprenoid lipid carrier at the cytoplasmic
side of the membrane and subsequently translocated. It was
proposed that the lipid polymorphism resulting from the non-
lamellar lipid phase induced by polyisoprenols may provide a
hydrophilic pore or channel to facilitate the translocation of
lipid-linked oligosaccharides (references 202 and 203 and ref-
erences therein). Such a mechanism could be responsible for
the reversible translocation of lipid I postulated to explain the
cleavage of the pentapeptide unit by the extracytoplasmic VanYy,
pD-carboxypeptidase and the formation of UDP-MurNAc-tet-
rapeptide in the cytoplasm of a vancomycin-resistant E. faecium
strain (143).

Regarding lipid II, fluorescence spectrometry experiments
carried out with a dansylated derivative showed that the rate of
unassisted movement across the membrane was not sufficient
to sustain peptidoglycan synthesis (192). New experiments with
a fluorescent lipid II analogue and lipid vesicles demonstrated
that, in contrast to phospholipids, lipid II was unable to spon-
taneously move across the bilayer (176). However, it was trans-
located when E. coli inner membrane vesicles with a right-side-
out orientation were used. This showed that an intact
translocation machinery was present in such vesicles and likely
composed of one or more membrane proteins. Additional ex-
periments excluded the possibility that MurG could be respon-
sible for lipid II translocation but suggested that the process is
coupled to ongoing transglycosylation (176). Earlier results

had suggested that the translocation of lipid II depended on
ongoing phospholipid synthesis and was likely to be more than
just a flip-flop mechanism (58). It is now essential to determine
which membrane proteins are involved in the translocation
process. In this respect, different reasons suggested that trans-
membrane protein FtsW might be a lipid II translocase (see
references in reference 100). However, the absence of UDP-
MurNAc-pentapeptide accumulation under conditions of
FtsW depletion seemed to exclude this possibility (100). Inter-
estingly, two distinct protein-mediated mechanisms were re-
ported to be involved in the transfer of enterobacterial antigen
(ECA) and O-antigen units across the membrane (1, 144). In
particular, an assay of translocase activity was developed with
sealed everted E. coli membrane vesicles to follow the trans-
port of a radiolabeled analogue of the ECA glycolipid inter-
mediate (144). Perhaps, this assay or the recently developed
fluorescence spectrometry assay (176) could be appropriately
used for the systematic search for translocases now that lipid II
or analogues are more readily available. The choice of the
membrane proteins to be overproduced, purified, and tested is
not an easy matter, considering the complexity of the bacterial
membrane proteome (48).

GLYCAN CHAIN FORMATION WITH LIPID II

Peptidoglycan glycan chains are assembled by the polymer-
ization of the N-acetyl glucosaminyl-B-(1—4)-N-acetylmu-
ramyl disaccharide unit of lipid II (or its modified forms) with
the formation of B-(1—4) linkages (Fig. 5). The transglycosyl-
ation reaction is accompanied by the inversion of the a-ano-
meric configuration of the N-acetylmuramic acid residue, thus
leading to linear chains containing exclusively B-(1—4) link-
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TABLE 2. Peptidoglycan GTs and in vitro use of lipid II
as the substrate

Type and name Organism Moenomycin Reference(s)
Class A
PBP 1b E. coli
Full length + 123, 164, 169
Soluble forms + 17, 155, 169
GT module + 13
PBP la E. coli
Full length ND 168, 172
PBP 4 B. megaterium
Full length ND 167
PBP 1la S. pneumoniae
Soluble form + 54
PBP 2a S. pneumoniae
Soluble form + 56
PBP 2 S. aureus
Full length + 106
Soluble form + 12
PBP 4 L. monocytogenes
Full length + 199
PBP 1a T. maritima
GT module + 127
MGT
Full length E. coli - 53, 80
Full length M. luteus - 132
Full length S. pneumoniae + 133
Full length S. aureus + 132
Soluble forms + 170, 189
Novel GT
Full length B. subtilis + 117

ages. Elsewhere, literature on this process was reviewed in
detail up to 2000 (179). In intact cells, transglycosylation is
tightly coupled with transpeptidation, but it can proceed alone
when transpeptidation is inhibited by penicillin, as observed in
many studies with intact cells and free-cell systems. This un-
coupling can even lead in some cases to a stimulation of the
transglycosylation reaction (5, 94; references in reference 100).
Specific periplasmic GTs are responsible for the formation of
the glycan chains and come in two forms (references 72 and
179 and references therein): as N-terminal modules in bifunc-
tional class A PBPs, which also contain C-terminal transpep-
tidase modules, and as monofunctional GTs (MGTs). They all
show high sequence similarity, belong to the GT51 family in
the sequence-based classification of GTs, and possess five con-
served motifs (42, 72).

Initially, lipid II was used as the substrate with membrane
preparations for studying in vitro peptidoglycan formation
(reference 179 and references therein). A specific assay for
transglycosylation was developed with lipid II, E. coli mem-
branes, and penicillin as the transpeptidation inhibitor (181).
Presently, more than 15 peptidoglycan-specific GTs have been
overproduced and purified, and most of them have been as-
sayed for their GT activity with lipid II as the substrate (Table
2). Analogues of lipid IT have also been used as substrates (155,
197). Interestingly, heptaprenyl-lipid IV can also be used as the
substrate in the presence or absence of lipid II (201). Inhibitors
of the transglycosylation reaction either interact directly with
the enzyme or form complexes with lipid II. Among the first
type, moenomycin has the greatest potency and is the best-

PEPTIDOGLYCAN LIPID INTERMEDIATES 629

studied example (references 27, 130, 179, and 191 and refer-
ences therein). Other inhibitors include derivatives of vanco-
mycin, compounds partially mimicking moenomycin, and
analogues of lipid II (references 39, 68, 74, 93, 179, and 191
and references therein). Complexes with lipid II will be dis-
cussed in the following section.

PBP1b from E. coli has been by far the most investigated
class A PBP in terms of location, membrane topology, purifi-
cation, and GT activity (reference 179 and references therein).
Recent work has dealt with its kinetic characterization (155),
the in vivo role of its dimeric form (36), the structural analysis
of the in vitro-formed material (17), the successful preparation
of a stable active form of its GT domain (13), and the study of
its specificity profile (64). Efforts to study peptidoglycan GTs
from gram-positive organisms were first undertaken with
PBP1la and PBP2a from S. pneumoniae (54, 55). In particular,
in vitro polymerization by a soluble form of PBP2a by use of
dansylated lipid II as the substrate was observed with a cata-
lytic efficiency of 1072 M~ ' s~ ! (56). More recently, the over-
expression and purification of PBP2 from S. aureus (12) and
that of PBP4 from Listeria monocytogenes (199) were reported.
They catalyzed polymerization using lipid II with catalytic ef-
ficiencies of 3.4 X 10> M ! s7! and 14 X 10> M ! s},
respectively. These values are comparable to previous esti-
mates for E. coli PBP1b (40, 155, 169). The GT domain of
PBPla from Thermotoga maritima was also functionally char-
acterized (127). The recently reported resolution of the crystal
structures of PBP2 from S. aureus, of its moenomycin-bound
form, and of the GT domain of Aquifex aeolicus brings new
insights to the mechanism of transglycosylation and its inhibi-
tion by moenomycin (106, 198).

Membrane-bound MGTs capable of catalyzing un-cross-
linked glycan chain formation in various bacteria were identi-
fied (references 170 and 179 and references therein). MGTs
from E. coli (80) and S. aureus (170, 189) were overproduced,
purified, and partially characterized. In particular, a capacity to
use lipid I with a catalytic efficiency of 5,800 M~ ' s~ was
established for S. aureus MGT (170). Since some MGTSs were
shown to be nonessential, their exact physiological role re-
mains poorly understood. It was proposed they could be in-
volved in infection processes (170). Recently, mutants lacking
all class A PBPs and possessing no MGT were described for B.
subtilis (117) and E. faecalis (6). This showed that in some
organisms they were not essential and that the transglycosyla-
tion reaction with lipid IT was performed by a novel kind of GT
activity displaying no similarity with known peptidoglycan GTs.
It was demonstrated that the B. subtilis mutant was sensitive to
moenomycin and that its membranes could use lipid II as the
substrate for peptidoglycan synthesis (117). In the E. faecalis
mutant, the deletion of the three class A PBP genes led to
high-level resistance to moenomycin (6).

COMPLEXES BETWEEN THE LIPID INTERMEDIATES
AND ANTIBIOTICS

It is now well established that antibiotics like ramoplanin,
mersacidin, vancomycin, telavancin, nisin, epidermin, man-
nopeptides, and other glycopeptides and lantibiotics can bind
noncovalently to the peptidoglycan lipid intermediates. Work
on these complex-forming compounds has been extensively
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reviewed (8, 14, 30, 34, 38, 79, 93, 116, 142, 148, 149, 188, 191,
194). In general, they are cyclic peptides, depsipeptides, or
peptides with extra posttranslationally introduced ring rear-
rangements and amino acid modifications. Some contain sugar
and/or lipid moieties. Owing to their size and polar structure,
they penetrate with difficulty both the bacterial cytoplasmic
membrane and the outer membrane of gram-negative bacteria.
Therefore, in gram-positive bacteria they interact with extra-
cytoplasmically located lipid II and by its sequestration they
lead to the arrest of peptidoglycan polymerization. However,
these antibiotics differ from one another in many respects, such
as their affinity for lipid II, the interacting sites of lipid II, and
the possession of additional and separate mechanisms of ac-
tion affecting their antibacterial activity. This is illustrated by
briefly outlining the properties and effects of some well-studied
examples.

The affinity of ramoplanin for lipid II was determined with a
fluorescent derivative, and the dissociation constant (10 to 100
nM) was in agreement with the value calculated (50 nM) from
the inhibition kinetics of the transglycosylation reaction (188).
Both approaches showed that ramoplanin binds in a 2:1 ratio
to lipid II, and NMR results were consistent with a model in
which lipid II binds in a dimer cleft. The direct correlation
between the affinity for lipid IT and the high bactericidal effect
on various gram-positive organisms suggested that the seques-
tration of lipid II is its main mechanism of action. A tight
specific association in an equimolar ratio was observed with
mersacidin, which is a type B lantibiotic presumably acting
similarly to ramoplanin (31). They both recognize the pyro-
phosphate and disaccharide moieties of lipid II, although they
do not compete efficiently with one another.

The affinity of vancomycin for lipid II determined with a
water-soluble form of the precursor was 10-fold lower than
that of ramoplanin (93). Moreover, the 50% inhibitory con-
centration for inhibition of the transglycosylation reaction was
ca. 107> M (123, 199). This could explain its lower bactericidal
potency and the easy reversibility of its bacteriostatic effect.
The complex involves the specific noncovalent binding of van-
comycin to the C-terminal p-alanyl-p-alanine motif present in
peptidoglycan precursors and nascent material (reference 93
and references therein). In intact cells, complex formation is
limited to exported lipid IT and nascent peptidoglycan. In the
first case, the resulting sequestering of lipid II will lead to an
arrest of glycan chain elongation by substrate depletion,
whereas in the second case the binding to the p-alanyl-D-
alanine motifs of growing chains inhibits transglycosylation and
transpeptidation by steric hindrance. It is difficult to assess
whether both mechanisms are functioning in vivo or whether
one is predominant. Another aspect of the mechanism of ac-
tion of vancomycin is the proposal that its dimerization in
aqueous solution facilitates in a cooperative manner the bind-
ing to the membrane precursor (reference 194 and references
therein), but this has been questioned (187).

Telavancin is a semisynthetic derivative of vancomycin with
two extra chemical groups (reference 88 and references
therein). Compared to vancomycin, it exhibits a superior anti-
bacterial potency with a rapid bactericidal activity against a
broad spectrum of gram-positive pathogens. By its preferential
association with the cell membrane rather than with the cell
wall, it leads to rapid membrane permeabilization and depo-
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larization. This explains its greater potency for the inhibition of
peptidoglycan synthesis in membrane systems despite its five-
fold-reduced affinity for b-Ala-p-Ala termini compared to van-
comycin. The direct correlation between membrane potential
and viability suggests that its action on the membrane could be
mostly responsible for its rapid bactericidal activity.

Nisin is the most prominent member of type A lantibiotics,
which are elongated, amphiphilic, screw-shaped peptides with
net positive charges (references 14, 30, 38, and 193 and refer-
ences therein). It has antibacterial activity against various
gram-positive bacteria and is widely used as a food preserva-
tive. Its primary mode of action is the formation in the cyto-
plasmic membrane of defined pores of 2 to 2.5 nm in diameter
by use of lipid II as a docking molecule and as an integral part
of the pore (30). In this way, nisin not only leads to the rapid
permeabilization of the cell membrane but also sequesters
lipid IT no longer available for peptidoglycan biosynthesis. The
affinity of nisin for lipid II was estimated to be 2 X 10’ M~*
(30). Fluorescence and circular dichroism experiments with
lipid vesicles demonstrated that nisin uses all available mole-
cules of lipid II in the membrane to form pore complexes of
remarkable stability, which have a uniform structure and con-
sist of eight nisin and four lipid II molecules (82). NMR anal-
ysis of the in vitro-made stoichiometric 1:1 nisin-lipid II com-
plex solubilized in dimethyl sulfoxide demonstrated a cage-like
motif of nisin in which the pyrophosphoryl moiety of lipid II
interacts with backbone amide groups of nisin (89). Besides the
binding of pyrophosphate via hydrogen bonds, the structure of
the nisin-lipid II complex revealed minor interactions with the
first isoprene unit and the MurNAc residue (89).

CONCLUDING REMARKS

As illustrated here by many examples, chemically or enzy-
matically synthesized lipid intermediates and analogues are
now essential tools for the study of the functioning of the
peptidoglycan membrane pathway, of the catalytic mechanisms
of its enzymes, of the mode of action of many antibiotics, and
of mechanisms of antibiotic resistance. Their ready availability
is thus of primary importance. Lipid I and analogues were
synthesized mainly by chemical methods, but the successful
synthesis of lipid I by use of purified MraY (25, 60) could be
extended to that of analogues. A possible drawback of this
approach is the easy reversibility of the MraY-catalyzed reac-
tion requiring the use of high lipid phosphate concentrations
or a specific way of removing formed UMP. Lipid II was
prepared by both enzymatic (29, 60, 197) and chemical (154,
184) methods, but most analogues (11, 39, 197) were made by
use of the MurG-catalyzed reaction, taking advantage of its
limited reversibility (11). The enzymatic approach offers the
possibility of flexibility for specific isotopic labeling, of easy
scaling up, and of accessibility to a fairly wide range of scien-
tists. Its success is based on the low specificities of MraY and
MurG for the lipid and peptide moieties of their substrate. The
chemical approach implies greater costs and a specific exper-
tise in organic synthesis but allows access to a larger variety of
structural modifications incompatible with the MraY and
MurG substrate specificities. The choice of one approach or
another therefore depends on the intended use of the lipid
intermediate.
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Various modifications of lipids I and II have been reviewed
here. Undoubtedly, many more are yet to be identified, as
recently exemplified with lipid II from M. smegmatis (107). As
already pointed out, the physiological significance of the struc-
tural modifications observed for peptidoglycan is not always
well understood, and it is necessary to clearly distinguish be-
tween modifications of the lipid intermediates from those tak-
ing place after polymerization on nascent peptidoglycan. Fu-
ture studies will thus imply the systematic analysis of complex
pools of lipid intermediates. Presently, the only approach is to
analyze the fragments recovered after extraction and chemical
processing. More convenient and efficient analytical methods
must be developed. Among the cellular aspects still poorly
addressed, the main one is the mechanism of translocation of
lipid II. Perhaps lipid II-antibiotic complexes could be useful
tools in these matters, as illustrated by their recent use in the
study of the dynamic assembly of peptidoglycan in B. subtilis
(49, 171).

The main enzymes of the metabolism of the lipid interme-
diates have now been purified, and the resolution of the crystal
structures of MurG (78), FemA (16), FemX (18), S. aureus
PBP2 (106), and the Aquifex acolicus GT domain (198) have
been achieved. Although MraY was successfully purified (25),
its structural study is a difficult challenge owing to its 10-
segment transmembrane topology but remains a necessity,
considering the potency of its numerous known inhibitors (57).
The question is why no inhibitor has yet come into clinical use
after so many years of effort. Some of the reasons for this were
recently discussed (57). The successful study of the catalytic
mechanism of MurG illustrates quite well the advantages of
combining biochemical and structural approaches. Due to
their location on the outside of the cytoplasmic membrane,
peptidoglycan GTs are potential targets in the search for novel
antibacterials, and the recent structural study of two GT do-
mains (106, 198) offers new perspectives for the study of these
enzymes, which have not yet been explored extensively. The
next expected progress is the resolution of the structure of a
complex with lipid II or a substrate analogue. However, these
structural approaches do not exclude the urgent necessity for
more-advanced biochemical studies leading to a better under-
standing of their catalytic mechanism and of the modes of
action of inhibitors as diverse as moenomycin (191) and new
glycopeptide derivatives (79, 93). Finally, it should be stressed
that a number of activities responsible for secondary modifi-
cations (amidation and esterification, etc.) of the lipid inter-
mediates remain to be identified and studied.
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