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Abstract 

Metagenomics promotes our understanding of microbial communities. The methodology profoundly          

relies on computational interpretation of the sequencing reads in the light of our evolving              

understanding of microbial taxonomy. The fast growing volumes of such readouts and the reference              

databases prompted development of a multitude of computational procedures over recent years. Only             

a subset of these has appeared in independent benchmarking assessments, which are also quickly              

becoming obsolete. This is obscuring an informed choice of a method for biologists as well as the                 

impact of certain innovations for method developers. 

 

Here we present the LEMMI benchmarking platform (​https://lemmi.ezlab.org ​) enabling the continuous           

integration of taxonomic profilers and binners, their assessment on a variety of data, as well as                

dynamic presentation of their ranking according to alternative objectives of required analyses or             

technical limitations. The platform is container-based and exploits the ability of many methods to              

construct a reference database on demand to compare them under highly controlled conditions and              

with identical inputs. Curated references can also be provided by method developers, enabling the              

advantages of particular databases to be highlighted. LEMMI creates a link between method             

developers and their users. It provides automated and unbiased benchmarking that are valuable to              

both. Moreover, the standardised and easy-to-use containers created by us or developers can be              

downloaded by metagenomic tool users, who will get exactly the same software as it appears in                

evaluation. 
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Introduction 

Over the last decade, assessing complete microbial communities has emerged as a key component              

of medical and environmental research. Microbiologists, who had previously relied on culture to             

conduct their experiments, started to perceive the true magnitude of the unseen majority that does not                

grow when taken away from their habitat (Whitman et al., 1998). Sequencing has now become               

common practice for investigating targeted genomes using high-throughput technologies (Goodwin et           

al., 2016), which has enabled metagenome research, a young but rapidly growing area interested in               

reaching all organisms found in a microbial community through sequencing. One of its important goals               

is to identify and quantify all organisms present in a sample. This can, for instance, refine the action of                   

clinicians and environmental scientists by associating key organisms to the stability of a given              

environment (Ainsworth et al., 2015), detecting a variety of pathogens (Petty et al., 2014), or linking                

variations in microbial composition to host phenotypic differences (Qin et al., 2012). The approach              

that first demonstrated the feasibility of targeting a ubiquitously conserved marker gene to obtain a               

prokaryotic phylogeny, the 16s ribosomal ribonucleic acids (16s rRNA) gene (Woese et al., 1977), is               

now commonly applied to bacterial classification. A more recent approach that has become popular              

with the decreasing costs of whole genome sequencing (WGS) consists of exploiting the whole DNA               

or RNA content of the sample without targeted amplification. WGS avoids the bias induced by the                

affinity of the primers in PCR-based methods, allows to get beyond the limited phylogenetic resolution               

of 16s markers (Eloe-Fadrosh et al., 2016), and to reach bacteria, viruses, fungi and other eukaryotes                

in a single analysis. This methodology is known as WGS-metagenomics, or simply metagenomics. To              

assign a taxonomic label and estimate the relative abundance of reads or genome copies, both               

approaches require raw or assembled reads to be queried against a reference of known sequences               

mapped to a taxonomic classification (Federhen, 2012; McDonald et al., 2012; O’Leary et al., 2016;               

Quast et al., 2012; Wang et al., 2007). Taxonomy-independent binning of reads or contigs sharing               

similar features that may correspond to ​ab-initio​-defined “species”, usually called operational           

taxonomic units (OTUs), are outside the current scope of the present work. 
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The complexity inherent in metagenomes has triggered the prolific development of methods dedicated             

to this field. Alignment-based techniques such as BLAST (Camacho et al., 2009) can be applied to the                 

output of amplicon-based and metagenomics sequencing (Huson et al., 2007), but they are limited by               

an inability to query billions of reads against thousands of known genomes in a reasonable time.                

Alignment-free approaches, that proxy alignment by composition of the reads in terms of exact              

subsequences (n- or k-mers) as well as Burrows-Wheeler transform indexes, can process reads             

orders of magnitude faster (Ounit et al., 2015). In spite of this, the rate at which sequences                 

representing new organisms are made available (RefSeq: 24,000 bacteria in May 2014, 53,000 in              

December 2018. ​https://www.ncbi.nlm.nih.gov/refseq/statistics/​) now exceeds the potential of many         

tool users to have access to computing resources able to deal with comprehensive references for               

running their analyses. Consequently, other methods have focused on systematically reducing the            

reference material while trying to keep the representation of the existing diversity as accurate as               

possible (Kim et al., 2016; Nasko et al., 2018), and others have focused on producing curated                

references (Truong et al., 2015).  

 

The number of published metagenome assessment methods has soared, raising the question of how              

the methods compare and how to make an informed choice when designing specialized pipelines,              

e.g. for clinical practitioners. As in other fields of bioinformatics (The Assemblathon, Bradnam et al.,               

2013; CASP, Moult et al., 2018), comparative benchmarking has become a “must-have”. Furthermore,             

it is a publishing requirement for novel method papers to include a benchmarking section in which the                 

tool is compared to existing competitors, focusing on the innovation and strengths of the newcomer               

(Dilthey et al., 2018; Müller et al., 2017; Piro et al., 2018). While this kind of “benchmarking” ​is a useful                    

starting point, its real ability to judge the actual merits of the tool in addressing the whole range of                   

scenarios it is expected to cover remains questionable. For a fairer comparison, independent             

benchmarking studies (i.e. in which the authors do not directly promote their tool) have been               

published on several occasions (Lindgreen et al., 2016; McIntyre et al., 2017; Peabody et al., 2015). A                 

key component of any benchmarking effort is that of the common input sample used during the                

analysis, which has to be described as comprehensively as possible to constitute the ground truth of                

the evaluation. Mock ​in-silico datasets created from public genomes are a convenient method, but              

Page 4 of 32 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/507731doi: bioRxiv preprint first posted online Dec. 28, 2018; 

https://www.ncbi.nlm.nih.gov/refseq/statistics/
http://dx.doi.org/10.1101/507731
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

have the disadvantage of containing matches to existing references. This can be mitigated by using               

artificially evolved strains (Lindgreen et al., 2016) or clade exclusion, i.e. removing from the reference               

the sequences that are in the reads, when the methods can reprocess it (Peabody et al., 2015). To                  

fully exclude this bias, the Critical Assessment of Metagenome Interpretation (CAMI), one of the              

largest efforts to date in benchmarking various metagenome-related problems, used organisms           

unreleased at the time of the evaluation to conduct a challenge taking place over months, open to the                  

community, leading to a collaborative publication that introduced many valuable resources required            

for efficient benchmarking (Sczyrba et al., 2017). While informative to assess the potential of technical               

advances and crucial to define the common goals that need to be pursued by all tools, one-shot                 

publications have not succeeded in clearly identifying the best implementations of most methods by              

not following the pace of a fast-evolving field. Many projects have remained out of such benchmarks,                

which has prevented novel or updated methods from getting the visibility they deserve at the time they                 

could be beneficial. Moreover, a point ignored by these studies is the ability of a method to last                  

beyond the time of evaluation and publication of a benchmarking paper. For instance, despite being               

considered by CAMI as relevant methods, some tools were not well adopted by the community during                

the year following the publication of the benchmark results (Table 1). This may be in part explained by                  

a lack of technical maintenance, documentation, or advertising, as many bioinformatics tools cannot             

be easily reused some time after their publication (Mangul et al., 2018). Finally, as taxonomic               

classification is not only affected by the choice of the method (i.e. algorithm), but strongly directed by                 

the choice of the reference sequences, a fair and comprehensive evaluation needs to judge the ability                

of different solutions to exploit expanding reference material, monitoring the effects on different             

families of methods of the exponential growth of sequence databases (Nasko et al., 2018).  
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Given the limitations of previous benchmarking projects in addressing these critical aspects, we             

introduce LEMMI, a Web-based platform that hosts a semi-automated benchmarking pipeline that            

enables continuous tracking and evaluation of newly published methods for metagenome taxonomic            

classification (its first “Live” dimension). Many tools can complete multiple tasks (in the present              

context, binning and profiling), likely with unequal performances, which often leads tool users to seek               

the optimal trade-off for their specific field (i.e. Velsko et al., 2018). LEMMI does not present distinct,                 

non comparable categories, but maintains a ranked evaluation of the strengths and weaknesses of              

each tool on multiple aspects of the metagenome classification problem. These aspects can be              

explored dynamically through the Web interface (the second “Live” dimension). When a method             

cannot deal with raw genomes as reference, a set of markers or preprocessed sequences can be                

provided as custom reference by the developer. Otherwise, LEMMI evaluates the ability of a tool to                

build a custom reference that can be used in the subsequent benchmarking process, therefore              

assessing methods under highly controlled and comparable conditions. By using a containerized            

approach resembling a previously suggested format (Belmann et al., 2015; Sczyrba et al., 2017) as               

the unique way of taking part to the evaluation, we strongly encourage developers to engage in                

standardizing their methodology in order to evaluate their tools or pipelines in a neutral environment               

under different conditions (references, datasets) and parameters (e.g. k-mer size, score thresholds)            

as well as being readily available to the tool users. The computational resources needed to process a                 

reference and conduct mock sample analyses are evaluated together with the accuracy of the              

corresponding results to obtain a complete overview. In order to simulate unsequenced strains from              

public data, the LEMMI platform can generate mock reads from publicly available genomes, taking              

care of excluding the source material from the reference subsequently provided to the tools (referred               

as the “leave-out” approach). It also includes some of the available mock datasets previously seen in                

published studies (Bokulich et al., 2016; Sczyrba et al., 2017). The platform, with detailed results,               

documentation, and evaluated containers, is available on ​https://lemmi.ezlab.org/​. 
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Table 1 | Apparent lack of correspondence between the CAMI ranking and citations. ​Number of               

citations for methods included in the profiling category of the first CAMI challenge compared to               

methods not included. The tools presented on the top section were ranked as first or second best for                  

at least one metric in the category taxonomic profilers. The number of citations is based on the most                  

cited paper that can be related to the method or an update according to Google Scholar (18/12/2018).                 

Kraken was included in CAMI, but in a different category, Kaiju was first released in late 2015,                 

Centrifuge and Kraken’s companion tool Bracken were released in the first half of 2016. 

 
Tool Citations in 2018 Paper 

Methods evaluated as profilers by CAMI: 

MetaPhlAN 134 Truong et al., 2015 

Metaphyler 15 Liu et al., 2011 

Clark 71 Ounit et al., 2015 

common kmer (metapalette) 2 Koslicki and Falush, 2016 

Focus 8 Silva et al., 2014 

Taxy-pro 3 Klingenberg et al., 2013 

Quikr 3 Koslicki et al., 2013 

 
Methods not evaluated as profilers by CAMI: 

Kraken (when used with Bracken) 367 Wood and Salzberg, 2014 

Centrifuge 63 Kim et al., 2016 

Kaiju 78 Menzel et al., 2016 
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Results 

Workflow 

The central component of our benchmarking process is the method or a combination of methods               

wrapped into a container (see ​https://www.docker.com/​) to complete the two tasks that will be called               

by the LEMMI pipeline during the assessment and that can be downloaded by the tool users (Fig. 1).                  

One task performs the analysis of single or paired-end reads in FASTQ format using a reference and                 

provides either a taxonomic profile describing relative abundance, a taxonomic binning report, or both.              

The other task is to process provided FASTA files (nucleotides and/or proteins) along with a mapping                

to the taxonomy to create an output folder containing a reference compatible with the method               

implemented in the previous task, to be kept and reused afterwards. The implementation of the latter                

is optional but highly recommended if the method does not require a specific curated reference.               

Otherwise, a preprocessed reference can be provided along with the container, e.g. to demonstrate              

the advantage of a curated database. The taxonomic rank of interest is provided as a parameter, as                 

some tools process the reference in a rank-specific manner (Ounit et al., 2015). The taxonomic ranks                

that have to be supported in the initial version of the LEMMI platform are genus and species. To                  

achieve the evaluation of the tool, the container is loaded and ran on the pipeline to complete the                  

construction of a reference and the evaluation of several datasets. Such containers not only are               

essential to the benchmarking process, but are a useful resource when made available to the tool                

user. A detailed guideline to build containers is included in the LEMMI user guide on               

https://gitlab.com/ezlab/lemmi/wikis/userguide ​. The results of the benchmark are presented in details          

on the Web interface of the LEMMI platform (Fig. 2, Fig. 3, Fig. 5). 
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Fig. 1 | Workflow. ​Tool developers prepare a LEMMI container for their method following the               

provided guideline, to complete two tasks: building a reference on provided genomic FASTA files              

(task 1), and analysing FASTQ samples to provide a profile and binned reads (task 2). They can                 

provide a curated reference if their method is unable to complete task 1. Their containerized method                

is then managed by the LEMMI coordinator to complete all tasks required to process all datasets and                 

appear in the ranking. Multiple runs to explore parameters and references can be conducted using a                

single container. The tool users can browse the results to define which methods best suit their needs                 

and obtain the corresponding containers to conduct additional tests or actual analyses, with the              

guarantee of identical file formats and similar behaviors shared by all methods.  
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Tools and references included 

We conceived the platform to encourage developers to submit their up-to-date methods by             

themselves. Nevertheless, we added a selection of tools as a proof of concept. We created demo                

LEMMI containers for Metaphlan2 (Truong et al., 2015), Kraken 2, Kraken 1 combined with Bracken               

(Lu et al., 2017; Wood and Salzberg, 2014), Metacache (Müller et al., 2017), and Kaiju (Menzel et al.,                  

2016). We used provided reference for Metaphlan2 and Kraken 1, and built controlled reference for all                

other tools using RefSeq (O’Leary et al., 2016) assemblies nucleotide or protein files. When provided               

with 245GB of RAM, only Kraken 2 (any parameters) and Metacache (when k=16) were able to                

process the entirety of the 124,520 fasta files available in the LEMMI RefSeq repository for the                

bacterial and archeal domains (RefSeq All 08.2018). Therefore, a subset of 18,916 file constituting              

one file per species taxid was used as a smaller representative reference (RefSeq 1 rep. 08.2018).                

Furthermore, to evaluate the benefits of the increase of sequences over time, the repository was               

subsampled back in time, to keep only the sequences available at the end of 2015, for a total of                   

52,051 files for the bacterial and archeal domains (RefSeq All 12.2015). The latter still covers               

respectively 95% and 94% of the species diversity present in the in-house generated datasets,              

LEMMI_RefSeq_201805_001 and LEMMI_RefSeq_201805_002. 

Interactive interface permits a quick overview to a detailed         

understanding 

The visualisation of the results starts on the homepage with a list of methods (Fig. 2a) ranked                 

according to a score expressing multiple metrics averaged over all available datasets. The LEMMI              

platform user can generate a different ranking by changing the weight of a variety of parameters to                 

better fit their expectations (e.g. focused on recall, ignoring precision, giving more importance to              

abundance estimation or maximizing the amount of classified reads) (Fig. 2ab). The LEMMI platform              

offers different presets and a “fingerprint” to facilitate keeping track of rankings over time when               

mentioned in a publication by developers and tool users. Two different types of reference exist and                
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can be displayed individually, “BUILT” that stands for a reference constructed during the             

benchmarking process on a controlled source material, a firm guarantee of an unbiased evaluation,              

and “GIVEN” when an external reference was provided with the container. Among the criteria used to                

generate the ranking, a section dedicated to the resources needed to perform the computation can be                

enabled to penalize tools consuming too much time and memory (Fig. 2c). As all included datasets                

are not comparable in their composition, and to provide to the LEMMI platform user a real                

understanding of what is behind the ranking, a detailed view of all metrics is plotted for each dataset                  

(to date, we offer five: LEMMI_RefSeq_201805_001, LEMMI_RefSeq_201805_002, Mockrobiota-17,        

CAMI_I_LOW, CAMI_I_HIGH_1), along with information about the composition of these datasets (Fig.            

3abc). The metrics are displayed separately for the species and genus ranks, and the interface allows                

the LEMMI platform user to toggle the visibility of each tool separately, as well as zooming in and out                   

to disentangle overlapping data points. Finally, several metrics are computed according to different             

levels of low coverage filtering (i.e. taxa having less than 10/100/1000 reads are ignored in both the                 

candidate profile and the ground truth) to emphasize the benefits of applying such strategy on the                

output of high recall but low precision tools, such as Kaiju (Fig. 3b). 
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Fig. 2 | Main interface, the dynamic ranking. a ​, The interface on the left allows the LEMMI platform                  

users to edit specific criteria to modify the default ranking. Five suggested sets of parameters are                

available, generating a unique fingerprint that can be used to refer to a specific ranking at a specific                  

date and version (as indicated by the white arrow). ​b​, The LEMMI platform users can freely edit                 

parameters to correspond to their needs, thus affecting the ranking. The black arrows highlight a               

choice that swapped the top ranked tools. ​c​, Among the metrics that can be selected to create a                  

custom ranking, the time and memory consumption filters can be enabled, and a maximum              

acceptable value can be set. 
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Fig. 3 | Example panels from the details section of an individual dataset, 

LEMMI_RefSeq_201805_001. ​Three of the 16 detailed plots available for each dataset at each 

taxonomic rank. The Web interface allows the LEMMI platform user to toggle the visibility of each tool 

and freely zoom in and out. ​a​, List of tools for all panels. Precision and recall curve for eight 

combinations of references, parameters, and tools, illustrating that a greater precision and recall can 

be achieved when using the complete RefSeq repository instead of a single representative genome 

for each species. Metacache, ran here with two difference k-mer sizes, outcompetes Kraken 2 in 

terms of recall, even when using a reduced representation of the reference. It also reaches a better 

precision than Kraken 2 when using the complete RefSeq repository as reference. ​b​, Counts of false 
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positive taxa detected for the same eight tools. When filtering under 100 reads, the false positives 

produced by Kaiju decrease dramatically. ​c​, Amount of memory required by each tool to build their 

reference, showing the higher performances of kraken 2 to that aspect. 

 

Evaluation under highly controlled conditions 

While the GIVEN mode opens the benchmark to methods relying on manually curated references,              

which authorizes the evaluation to be primarily guided by the reference, the BUILT benchmarking              

mode of the LEMMI pipeline places all tools under the same conditions, excluding any bias that would                 

have to be investigated on a case-by-case basis, incompatible with a systematic, semi-automated             

approach. Therefore, any deprecated taxid, missing reference, or on the contrary, similarity between             

reads and reference, will equally affect each and every candidate method for all datasets evaluated in                

this mode. However, as different families of methods may be affected differently by identical              

sequences in reads and reference (e.g. alignment-based or composition methods) and these are             

unlikely to represent close-to-real-life scenarios, the LEMMI pipeline introduces another level of            

control when assessing the datasets generated in-house using RefSeq assembly genomes. It            

functions in a leave-out mode, excluding the genomic or protein files corresponding to the accessions               

used to generate reads (Fig. 4). The two existing LEMMI_RefSeq datasets contains 100 species each               

issued from several genomes, which can still be fully recovered as they have multiple representatives               

in the RefSeq repository in addition to those used to produce the reads. These datasets are more                 

complex (their non-unique 50-mers diversity is 115M) than the microbiota-17 dataset (68M), but             

almost an order of magnitude less diverse than the CAMI 1 high complexity datasets (940M). All                

results presented on Fig. 3abc are issued from these highly controlled runs, based on comparable               

reference and leave-out approach. 
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Fig. 4 | The leave-out approach used when running the BUILT mode on LEMMI in-house               

datasets. ​A toy example illustrating how representative strains of ​Escherichia coli are selected to              

create a scenario where the taxon can be identified at the species and genus level. Two accessions                 

are taken out, and the corresponding files are chunked to generate the mock reads. All other files are                  

used as material for building the reference if the method can handle a large amount of files.                 

Otherwise, one representative is picked (◆). As all sequences share the same label (NCBI              

taxid=561|562, rank=genus|species), a correct classification is expected for the reads at species or             

higher ranks. This approach can be applied at any taxonomic rank, i.e. excluding all representatives of                

the species while keeping representatives of its genus (NCBI taxid=561) artificially creates unknown             

clades that can only produce false predictions at low levels. 
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Multiple runs to explore several references and parameters 

A LEMMI container can accept multiple parameters, defined by the method, which in the context of                

benchmarking allows successive runs to explore the range of possibilities offered by the tool. This               

feature is illustrated on Fig. 3a that shows the different effects of varying the k-mer size on Kraken 2                   

and Metacache. The latter is less negatively affected by a decrease in the value of k (from 31 to 16)                    

than Kraken 2 (from 35 to 22), which loses most of its recall. Furthermore, the marked difference in                  

memory consumption between runs with different k-mer sizes (e.g. k=31 and k=16) allows Metacache              

with k=16 to be run on a machine with less available memory, or to build a much larger reference                   

which results in an increase of both precision and recall (Fig. 3ac). On the other hand, Kraken 2 is the                    

ideal tool to explore the impact of varying the reference on last common ancestor (LCA) based                

classifiers, as it can quickly process large amount of files while still using less memory than all other                  

tools (Fig. 3c). Our runs tend to agree with Nasko et al., 2018 who raised the potential issue of losing                    

the ability to reach low ranks with LCA k-mers methods with the increased representation of the same                 

species in the public repositories. When contrasting a reference limited to 2015 and a complete from                

2018 to proceed to the analysis of the LEMMI_RefSeq_001 dataset, Kraken 2 identifies one extra               

species (68 vs 67) with a reference limited to 2015 (Fig. 3a), despite having only 95 species                 

represented out of 100. The cost, however, is a greater amount of false positive (Fig. 3b). On the                  

contrary to what is stated in Nasko et al., 2018, this effect is even more pronounced at the genus                   

level, with six extra genera recovered from LEMMI_RefSeq_001 with the reference from 2015 (with 74               

out of 78 genera represented). The second in-house dataset, LEMMI_RefSeq_002, does not replicate             

this finding, with the limited reference recovering three fewer species (when covering 94 out of the                

100 species) and two fewer genera. Furthermore, this cannot be seen at all on the datasets issued                 

from the CAMI challenge (Fig. 5a), as many of the species that compose its microbial community                

seem absent in RefSeq in 2015. Additionally, the tools ran with their embedded database performed               

very poorly on the CAMI sets at the species level (Fig. 5a). While we cannot exclude the absence of                   

the representation of some species in the source material (Minikraken, created in October 2017 and               

mpa_v20_m200, created in November 2017), when compared to Kraken 2 and Metacache with a              
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complete reference from mid-2018 or even from 2015, and given the proportion of reads classified at                

the species level (Fig. 5c), it is likely that increasing the number of k-mers in the dataset content has a                    

major impact on the ability of very reduced references to deal with the analysis (Minikraken is a                 

subset of 5% of the k-mer in RefSeq, Metaphlan2 uses marker genes). Minikraken performs very well                

on the other, less complex datasets (Fig. 5d). It probably benefits from escaping the leave-out step                

when analysing the LEMMI in-house datasets, having the advantage of the source of the reads as                

reference. 
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Fig. 5 | Performance of various tools when assessing the CAMI_1_HIGH_1 dataset. ​ ​a ​, List of 

tools for all panels. Precision and recall curve at the species level, showing that Kraken 2 with a 
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reference from 2015, Kraken 1 with Minikraken, and Metaphlan 2 perform poorly compared with tools 

exploiting the entirety of RefSeq mid-2018. ​b​, Equivalent at the genus level. ​c​, Proportion of classified 

reads at the species level for Kraken 1 using Minikraken, Kraken 2 and Metacache based on several 

subsets of RefSeq. All other methods were hidden through the LEMMI Web interface, which helps to 

focus only on tools of interest. ​d​. Equivalent for the LEMMI_RefSeq_001 dataset at the species level. 
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Discussion 

A continuous benchmark that includes reference processing 

In this paper, we describe a Web interface that maintains a dynamic and multi-criteria ranking for tools                 

dedicated to metagenome taxonomic profiling and binning. It lies on the top of a hosted evaluation                

workflow (Fig. 1) exploiting containers that wrap candidate methods able to construct their reference              

using provided genomic files (optional) and conduct their analyses using this previously built reference              

or a provided one. The analyses are conducted on a variety of mock samples gathered from different                 

external sources or generated in-house by the pipeline. While forthcoming benchmarking efforts are             

expected to focus on new technological and field-specific challenges with interdisciplinary scientific            

teams (Bremges and McHardy, 2018), our solution aims at filling the major time gap existing between                

benchmarking publications and the absence of a solution to monitor the uninterrupted flow of new               

developments with an efficient way to visualize the results, filter the performances, and examine all               

coexisting metrics at once. Its continuous integration approach allows novel methods to appear in an               

independent evaluation at the time of their release, loosening the dependency to others’             

benchmarking agenda. This will not only provide benefits to developers, by helping to publish and               

promote their tools, but most of all to tool users who have to choose the appropriate method, and who                   

are sometimes at a loss when seeing multiple forked repositories based on similar tools claiming               

technical refinements (Breitwieser et al., 2018; Břinda et al., 2015) along with newcomers’             

publications that remain absent from benchmarks. Once populated with a significant number of recent              

methods, the LEMMI platform will help to unravel several practical questions associated with the              

choice of references, methods, and parameters, to maximize the benefits of selecting metagenomic             

classifiers. 
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A standardized problem for heterogeneous tools 

During the design of the LEMMI platform, the choice was made to define a unique category of                 

problem (i.e. providing both taxonomic binning and profiling) to allow efficient comparisons of tools or               

combination of tools (e.g. kraken + bracken (Lu et al., 2017; Wood and Salzberg, 2014)) which have                 

multiple features, strength and weaknesses. They can be combined in a pipeline to constitute a               

complete solution to run analyses only once and obtain various results, evaluated here as a whole,                

ultimately promoting the navigation by dynamic ranking offered by the LEMMI platform (tools,             

parameters, and reference as one entry in the list). If a solution is not able to provide a required                   

information, it is maintained in the list with a poor score only when the corresponding metric is                 

considered as important. Great care was taken here to not compare apples with oranges by defining                

standardized inputs, outputs, controlled reference whenever possible and clear expectations. One of            

the major advantages of our platform is that by accepting both tools that can process imposed                

genomic material as input and those that rely on a curated reference, clearly tagged as such, we are                  

able to include in the evaluation most of the methods that exist and to provide detailed metrics                 

including computational resources usage. As a proof of concept, we present some of the well-adopted               

softwares in the field of metagenome sciences.  
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Future plans and perspectives 

As sequencing technologies improve and new methods appear with new claims, moving the scope of               

the standardized problem stated above, the minimal offer for a generalist benchmarking solution has              

to evolve. The initial release of this platform focuses on datasets representing bacterial and archeal               

assessment of short read sequences, at the genus and species level as defined by the NCBI                

taxonomy. However, we have designed our platform to be flexible in order to include new datasets,                

new metrics, and be ready to potentially incorporate more profound changes such as a different               

taxonomic classification system (Parks et al., 2018). After establishing the state of the art of the                

methods available to date, the next milestone will be to offer an assessment at lowest levels by                 

defining a way to match different representative genomes of the same strain, which cannot be               

achieved by the NCBI taxonomy anymore (​https://www.ncbi.nlm.nih.gov/books/NBK431007/​).  

 

By contrasting the advantages of the LEMMI datasets with those offered by reusing previously              

published datasets, we demonstrated the potential of creating both the reference and the reads from a                

shared controlled source, to disconnect the outcome of the evaluation from the publication state of               

specific sequences, allowing a continuous enrichment of the platform with new tools still facing              

identical benchmarking conditions. The now published CAMI 1 datasets were useful to highlight the              

impact of complex datasets on the outcome of the analysis below the genus level when using reduced                 

references. It shows that our offer of in-house datasets has to be completed with complex datasets,                

encompassing unknown clades corresponding to different taxonomic ranks, for the LEMMI platform to             

provide rankings of tools able to model a use in close-to-real-life scenarios. Even though our datasets                

are generated from public data, the details of the sampling cannot remain permanently hidden.              

Therefore, the composition of our in-house datasets will be made public in time, to be replaced by                 

newly generated ones, freezing the current ranking and moving the platform to the next release. This                

moment will give the opportunity to decide whether each method should be migrated (i.e. by rerunning                

the container on the new release), updated, or discarded. The periodicity of these releases has still to                 

be defined, but should correspond to the introduction of new features required to follow the method                
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developments and expand the LEMMI platform offer. The improvements that are likely to be included               

in the near future are sequences representing long reads technologies and benchmarking methods for              

the analysis of metaviromes. 

 

To conclude, we think that appearing side-by-side in a trusted ranking with established competitors              

under clear and validated criteria is essential to bring credibility to any newly published method in                

order to be adopted by their target audience. This represents a trustable baseline before introducing               

additional scenarios designed to promote the novelty of the method on specific, previously poorly              

addressed problems. Therefore, we strongly encourage developers or advanced tool users to            

encapsulate their scripts in a container compatible with our platform and take the lead to appear in the                  

present ranking (​https://lemmi.ezlab.org/contact.html ​), especially prior to enter a publishing process.          

Achieving this and providing a container publicly will ensure that the method is sustainable for being                

used on most user’s environment, who will get “what they see on benchmark”, including the crucial                

part dedicated to custom reference processing, which is not always straightforward. The technology of              

containerization is gaining interest among the bioinformatics community (da Veiga Leprevost et al.,             

2017), with Docker as main technology. The approach used by the LEMMI platform will certainly be                

revised in due time to cope with the evolution and requests of the tool users and developers, with the                   

ultimate goal of promoting a standardized way to efficiently evaluate and share bioinformatics             

solutions. 
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Methods 

Structure of the pipeline 

An in-house python3-based controller (McKinney, 2010; Oliphant, 2015) coordinates the many           

subtasks required to generate datasets, run the candidate containers, and compute the statistics (Fig.              

1). Snakemake 5.3.1 (Koster and Rahmann, 2012) is used to supervise individual subtasks such as               

generating a dataset or running one evaluation. The process is semi-automated through configuration             

files, designed to allow a potential full automation through a Web application. To be easily deployable,                

the benchmarking pipeline itself is wrapped in a Docker container. The plots presented on the user                

interface are generated with the mpld3 library (Hunter, 2007, ​https://mpld3.github.io ​) 

LEMMI containers 

The LEMMI containers are implemented for Docker 18.09.0-ce. They partially follow the design             

introduced by ​http://bioboxes.org/ (Belmann et al., 2015; Sczyrba et al., 2017) as part of the CAMI                

challenge effort. The required output files are compatible with the profiling and binning format created               

for the CAMI challenge. Two tasks have to be implemented in order to generate a reference and                 

conduct an analysis. To take part in the benchmark, a tool developer has to build the container on                  

their own environment, while ensuring that both tasks can be run by an unprivileged user. A tutorial is                  

available on ​https://gitlab.com/ezlab/lemmi/wikis/userguide ​. The containers or the sources to recreate          

them are available to the user. 

Computing resources 

During the benchmarking process, the container is loaded on a dedicated server and given 245GB of                

RAM and 32 cores. Reaching the memory limit will cause the container to be killed and the end of the                    
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benchmarking process. All inputs and outputs are written on a local disk and the container is not                 

connected to the Internet. 

Taxonomy 

The NCBI taxonomy is used to validate all entries throughout the process and unknown taxids are                

ignored. The framework etetoolkit (ETE3) (Huerta-Cepas et al., 2016) is used to query the taxonomy.               

The database was downloaded on 03/09/2018 and remains frozen to this version until a new release                

of the LEMMI platform. 

RefSeq repository 

All RefSeq assemblies for bacteria, archaea, and viruses were downloaded from           

ftp.ncbi.nlm.nih.gov/refseq/release ​(last download, 08/2018) ​with the conditions that they contained          

both a protein and a nucleotide file and that their taxid has a corresponding entry in the ETE3 NCBI                   

taxonomy database, for a total of 132,167 files of each sequence type. Their taxonomic lineage for the                 

seven main levels was extracted with ETE3. To subset the repository and keep one representative               

per species as inputs for the reference construction (1 rep. 08.2018), the list was sorted according to                 

the assembly states (1:Complete Genome, 2:Chromosome, 3:Scaffold, 4:Contig) and the first entry for             

each species taxid was retained. 

LEMMI datasets 

To sample the genomes included in the LEMMI_RefSeq datasets, a custom python script was used to                

randomly select representative genomes for 100 species having more than one genome in the              

RefSeq assembly repository (05/2018), among bacterial and archaeal content, using complete           

assemblies or chromosome level assemblies. Their abundance was randomly defined following a            

lognormal distribution (mean=1, standard deviation=2.75). Additional low coverage species         

(abundance corresponding to < 100 reads) were manually defined and the total value was normalized               

to one to constitute a relative abundance profile. BEAR (Johnson et al., 2014) was used to generate                 
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10,000,000 paired-end reads, 2x150bp, and DRISEE (Keegan et al., 2012) was used to extract an               

error profile from the SRA entry ERX2528389 to be applied onto the generated reads. The ground                

truth profile for the seven ranks, and bins for species and genus were kept. The non-unique 50-mers                 

and 31-mers diversity of the obtained reads were generated with Jellyfish 2.2.8 (Marçais and              

Kingsford, 2011) on the concatenated pair of reads using the following parameters: jellyfish count -m               

31 -s 3G --bf-size 5G -t 8 -L 1 reads.fq.  

Additional datasets 

The CAMI datasets were obtained from ​https://data.cami-challenge.org/ (09/2018) along with the           

metadata describing their content, already in the expected file format. The binning details were              

reprocessed to obtain distinct lists at the species and genus rank. The mockrobiota-17 dataset              

(Kozich et al., 2013) was obtained through ​https://github.com/caporaso-lab/mockrobiota and         

reprocessed to obtain a taxonomic profile in the appropriate format. No binning detail is available for                

this dataset, therefore no assessment of this aspect is based on this dataset. 50-mers and 31-mers                

diversity were computed as detailed above. 

Metrics 

The profile and binning reports are processed with OPAL 0.2.8 (Meyer et al., 2018a) and AMBER                

0.7.0 (Meyer et al., 2018b) against the ground truth to obtain a wide range of metrics. The profiles of                   

the candidate tools and the ground truth are filtered to ignore low coverage taxa (below 10/100/1000)                

and all metrics are computed at all these thresholds. The low abundance score is a custom metric                 

calculated separately to evaluate the ability of the tool to correctly identify organisms present at very                

low coverage, but penalizing methods likely to recover them by recurrent report of the same taxids                

owed to very poor precision. To achieve this, as precision of low abundance organisms cannot be                

defined for a dataset (all false positives have a true abundance of zero and cannot be categorized as                  

low abundance), the metric is computed by pairing two datasets to judge if a prediction can be trusted.                  

The datasets (D1 and D2) include sets of taxa T1 and T2 that contain a subset of low abundance taxa                    
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(T1_low and T2_low, < 100 reads coverage, T1_low ≠ T2_low). Each taxon belonging to T1_low               

identified in D1 increases the low abundance score of the tool for D1 (recall) only when it is not                   

identified in D2 if absent from T2. Otherwise, a correct prediction of the taxon in D1 does not improve                   

the score (as proxy for low abundance precision). The score (0.0 - 1.0) is processed from both sides                  

(D1, D2), to obtain an independent score for each dataset. This metric is only defined for all                 

LEMMI_RefSeq datasets (low abundance species: n=10, n=8, for LEMMI_RefSeq_001 and          

LEMMI_RefSeq_002, respectively). The runtime corresponds to the time in seconds during which the             

container is loaded. The memory is the peak value of total_rss memory reported when the container is                 

loaded. 

Ranking score 

All metrics that are not already values between 0.0 and 1.0, with 1.0 being the best score, are                  

transformed. The L1 distance is divided by its maximum value of 2.0 and subtracted from 1.0, the                 

weighted UniFrac score is divided by its maximum value of 16.0 and subtracted from 1.0. The                

unweighted UniFrac score is divided by an arbitrary value of 25,000 and subtracted from 1.0. The                

memory and runtime are divided by 2x the maximum value (as defined by the user through the                 

interface) and subtracted from 1.0, to obtain a range between 0.5 and 1.0. This approach allows to                 

segregate methods that remain below the limit from those that exceed it and get the value 0.0. Any                  

transformed metric below 0.0 or above 1.0 is constrained back to the respective value. The final score                 

displayed in the ranking is the harmonic mean of all metrics, taken into account zero, one, or three                  

times depending on the weight assigned to the metric by the user. 
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