

1

Locations in the Neocortex: A Theory of Sensorimotor Object Recognition
Using Cortical Grid Cells

Marcus Lewis, Scott Purdy, Subutai Ahmad, and Jeff Hawkins
Numenta, Inc., Redwood City, CA, USA

ABSTRACT

The neocortex is capable of anticipating the sensory results of
movement but the neural mechanisms are poorly understood. In
the entorhinal cortex, grid cells represent the location of an animal
in its environment, and this location is updated through movement
and path integration. In this paper, we propose that sensory
neocortex incorporates movement using grid cell-like neurons that
represent the location of sensors on an object. We describe a two-
layer neural network model that uses cortical grid cells and path
integration to robustly learn and recognize objects through
movement and predict sensory stimuli after movement. A layer of
cells consisting of several grid cell-like modules represents a
location in the reference frame of a specific object. Another layer
of cells which processes sensory input receives this location input
as context and uses it to encode the sensory input in the object’s
reference frame. Sensory input causes the network to invoke
previously learned locations that are consistent with the input, and
motor input causes the network to update those locations.
Simulations show that the model can learn hundreds of objects
even when object features alone are insufficient for
disambiguation. We discuss the relationship of the model to
cortical circuitry and suggest that the reciprocal connections
between layers 4 and 6 fit the requirements of the model. We
propose that the subgranular layers of cortical columns employ
grid cell-like mechanisms to represent object specific locations
that are updated through movement.

INTRODUCTION

Our brains learn about the outside world by processing our sensory
inputs and movements. As we touch an object, survey a visual
scene, or explore an environment, the brain receives a series of
sensations and movements, a sensorimotor sequence.

Cortical areas that are traditionally viewed as sensory areas are
known to integrate the motor stream into their processing. In vision,
we perceive a stable image of the world, usually oblivious to the
fact that our eyes are making multiple saccadic movements per
second. As the eyes move, many neurons in the visual cortex that
represent a particular stimulus anticipate the stimulus before it lands
in the cell’s receptive field (Duhamel et al., 1992). In audition,
responses in auditory cortex are predictively suppressed by motor
signals (Schneider and Mooney, 2018). In somatosensation, when
moving our fingers over familiar objects we quickly notice
discrepancies suggesting we make tactile predictions that are
specific to particular objects.

Predictive sensorimotor processing also occurs in the hippocampal
formation. Grid cells (Hafting et al., 2005) and place cells (O’Keefe
and Dostrovsky, 1971) represent an animal’s location, and they use
a combination of sensory landmarks and self-motion cues to update

their activity (Campbell et al., 2018). Another population of
neurons selectively become active when an animal arrives at a
location where a previously present object is missing (Tsao et al.,
2013), indicating that the system is predictive.

Thus, different areas of the brain that seemingly play different roles
in cognition display hallmarks of two common computations:
integration of information over sensorimotor sequences, and
prediction of sensory stimuli after movements. It is unclear how a
network of neurons can extract reusable information from a
sequence of sensations and movements, or how it can use this
information to predict the sensory results of subsequent sequences.
Simply memorizing sensorimotor sequences will lead to excessive
learning requirements because for each sensed object there are
many possible sensorimotor sequences.

Recent work from our lab (Hawkins et al., 2017) proposed that the
neocortex processes a sensorimotor sequence by converting it into
a sequence of sensory features at object-centric locations. The
neocortex then learns and recognizes objects as sets of sensory
features at locations that are in the reference frame of the object,
and it predicts sensory input by referring to these learned object
models. This approach integrates movement into object
recognition, and forms representations of objects that generalize
over novel sequences of movement. However in that paper we left
open the neural mechanisms for computing such a location signal.

This paper extends our previous work by showing how the
neocortex could represent and compute object-centric locations.
Using this solution, we present a neural network model that learns
and recognizes objects by processing sensorimotor sequences. We
define a sensor to be the patch of skin or retina providing input to a
particular patch of cortex. These patches of cortex can be thought
of as cortical columns (Mountcastle, 1997). Drawing inspiration
from how the hippocampal formation predicts sensory stimuli in
environments, this model represents the sensor’s location relative
to an object using an analog to grid cells, and it associates this
location with sensory input. It then predicts sensory input by using
motor signals to compute the next location of the sensor, and
recalling the associated sensory feature. We propose that each patch
of neocortex, processing input from a small sensory patch, contains
all the circuitry needed to learn and recognize objects using
sensation and movement. Information is also exchanged
horizontally between patches, so movement isn’t always required
for recognition (Hawkins et al., 2017), however this paper focuses
on the computation that occurs within each individual patch of
cortex.

There is a rich history of sensorimotor integration and learning
internal models in the context of skilled motor behavior (Wolpert et
al., 2011; Wolpert and Ghahramani, 2000). These have primarily
focused on learning motor dynamics and kinematic control, such as
reaching and grasping tasks. This paper focuses on a

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

2

complementary problem, that of learning and representing external
objects by integrating information over sensation and movement.

In the rest of this paper we first review the basic properties of grid
cells in the entorhinal cortex. We then propose that the neocortex
uses analogs of grid cells to model objects just as the hippocampal
formation uses them to model environments. Building on the
theoretical framework introduced in (Hawkins et al., 2017) we
propose that every neocortical column contains a variant of this
model. Based on cortical anatomy, we propose that cells in Layer 6
employ grid cell like mechanisms to represent object specific
locations that are updated through movement. We propose that
Layer 4 uses its input from Layer 6 to predict sensory input.

How grid cells represent locations and movement

We first review how grid cells in the entorhinal cortex represent
space and location. Although many details of grid cell function
remain unknown, general consensus has emerged for a number of
principles. Here we focus on two properties that are critical to our
model: location coding and path integration.

Individual grid cells become active at multiple locations in an
environment, typically in a repeating triangular lattice that

resembles a grid (Figure 1A). The side length of these triangles in
is known as the grid cell’s “scale”. A grid cell “module” is a set of
grid cells that activate with the same scale and orientation but
different positions, such that one or more grid cells will be active at
any location (Figure 1B). If you sort the grid cells in a module by
their relative firing locations, they form a rhombus-shaped tile. As
the animal moves, a “bump” of activity moves across this rhombus
(Figure 1B and 1C). The activity in a single module provides
information on an animal’s location, but this information is
ambiguous; many locations within the environment can lead to the
same activity.

To form a unique representation requires multiple grid cell modules
with different scales or orientations (Figure 1C and 1D). For
illustration purposes say we have 10 grid cell modules and each
module can encode 25 possible locations via a bump of activity.
These 10 bumps encode the current location of the animal. Notice,
if the animal moves continuously in one direction the activity of
individual modules will repeat due to the tiling, but the ensemble
activity of ten modules is unlikely to repeat due to the differences
in scale and orientation between the modules. The representational
capacity formed by such a code is large. In our example the number
of unique locations that can be represented is 25#$ ≈ 10#(. A
review of the capacity and noise robustness of grid codes can be
found in (Fiete et al., 2008; Sreenivasan and Fiete, 2011).

Figure 1. Grid cells represent locations in environments. (A) An individual grid cell becomes active at multiple locations (green
circles) in an environment. The locations of activation form a repeating grid-like lattice. (B) A grid cell module (left) is a set of
cells that share the same lattice scale and orientation but which activate at different relative positions in the environment. If you
sort the cells by their relative firing locations, it forms a rhombus-shaped tile. As the animal moves, as shown by the arrow, a bump
of cell activity will move in some direction through this rhombus. Two grid cells and their firing locations (green and blue) are
highlighted. The grid cell module will activate cells at every location in an environment, but because of tiling, a single grid cell
module cannot represent a location uniquely. (C) This figure shows how a second module tiles the same space differently. Each
cell’s firing fields have a larger scale and a different orientation than the module in (A) and (B). The same movement of the animal
as shown by the arrow causes the bump to move in a different direction and a different distance than the bump in the first module
in (B). In this case, the bump overlaps the edge of the rhombus, so it wraps around. (D) Although a single module cannot represent
locations in an environment uniquely, the activity across multiple modules can. Here we superimpose the firing patterns of the two
modules. Note that when the green and red cells fire together, only one location is possible. The larger the number of modules, the
more locations that can be represented uniquely.

DC

Cells in Module 1

Cells in Module 2

A Environment B

Both
Modules

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

3

As an animal moves, the active grid cells in a module change to
reflect the animal’s updated location. This change occurs even if the
animal is in the dark (Hafting et al., 2005), telling us that grid cells
are updated using information about the animal’s movement. This
process, called “path integration”, has the desirable property that
regardless of the path of movement, when the animal returns to the
same physical location, then the same grid cells will be active
(Figure 2A). Path integration is imprecise so in learned
environments sensory landmarks are used to “anchor” the grid cells
and prevent the accumulation of path integration errors
(McNaughton et al., 2006; Ocko et al., 2018).

A final important property is that the location representations can
be unique to each environment. If upon first entering a new
environment each grid cell module activates a random bump to
represent the current location. Then all the location representations
that the animal can move to in that environment will, with high
probability, be unique to that environment. The initial random
starting point thus implicitly defines a unique location space for
each environment, including locations that have not yet been
explicitly visited. Since each module independently integrates
motion information, path integration properties automatically hold
for each new environment. Consequently, path integration can be
learned once for each module and then reused across all
environments. The location space for each new environment will be
a tiny subset of the full space of possible cell activities (in our
example above the full space contains 25#$ points), thus the
capacity for representing environments is quite large. When re-
entering a previously learned environment, learned associations
between sensory cues and grid cells are used to “re-anchor” or re-
activate the previous location space.

To summarize the above properties, a set of grid cell modules can
unambiguously represent locations in an environment. These
locations can be path integrated via movement, and environmental
landmarks are used to correct path integration errors. By choosing
random starting points within modules, unique location spaces can
be defined for each environment. The space of all possible cell
activations grows exponentially with the number of modules, thus
the capacity for representing locations and environments is large.

MODEL

We propose that grid cell equivalents exist throughout the
neocortex. Rather than representing the location of the animal in an
environment, we propose that cortical grid cells represent the
location of sensory patches, for example the tip of a finger, in the
reference frame of an object (Figure 2B). Similar to traditional grid
cells, cortical grid cells define a unique location space around each
object. As a sensor moves, populations of grid cells representing
each sensory patch’s location will path integrate through unique
location spaces. The relative locations of features on an object can
thus be used as a powerful cue for disambiguating and recognizing
objects.

Our network model integrates information over sensorimotor
sequences, associating unique location spaces with objects and then
identifying these location spaces. To outline the mechanism, let us
first consider the question: how might a rat recognize a familiar
environment? It must use its sensory input, but a single sensory
observation may be insufficient to uniquely identify the
environment. The rat thus needs to move and make multiple
observations.

To combine information from multiple sensory observations, the rat
could use each observation to recall the set of all locations
associated with that feature. As it moves, it could then perform path
integration to update each possible location. Subsequent sensory
observations would be used to narrow down the set of locations and
eventually disambiguate the location. At a high level, this general
strategy underlies a set of localization algorithms from the field of
robotics including Monte Carlo / particle filter localization, multi-
hypothesis Kalman filters, and Markov localization (Thrun et al.,
2005).

Our model uses this strategy to recognize objects with a moving
sensor. The model uses each sensed feature to recall locations where
it has previously sensed this feature, activating a superposition of
these previously learned location representations. As the sensor
moves, the network performs path integration on each of these
recalled locations, i.e. the movement signal shifts the superposition
of locations within each grid cell module. This updated location

Figure 2. (A) Grid cells in the entorhinal cortex represent locations of a body in an environment. The location representations are
updated by movement (Room 1). The path integration property ensures that the representation of location 𝑐 is independent of the path
taken to get there. Locations are unique to each environment such that the representations of locations 𝑎, 𝑏, and 𝑐 are distinct from the
representations of any point in Room 2. (B) We propose that the neocortex contains grid cell analogs that represent locations relative to
an object. The location representations are unique to each object.

a

b c

Room 1
Room 2

A B
t

u

v

w

x

y

ze

d

f

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

4

predicts a set of possible features, and the sensory input is used to
confirm a subset of these predictions. Thus, with each subsequent
sensation the network will narrow down this list of locations until it
uniquely identifies a specific location on a specific object that is
consistent with the sequence of sensations and movements.

Sensory features are known to invoke grid cell activity associated
with familiar environments (Barry et al., 2007). Our model achieves
this by learning associations between sensory input and the
currently active grid cells at each location.

In our model, grid cell modules represent ambiguity by having
multiple simultaneous bumps of cell activity, constituting a
superposition of location representations. We refer to this set of
simultaneously-active representations as a union of locations. The
system is capable of path integrating unions of locations; during
movement, every active bump in a module is shifted.

This localization algorithm assumes that the animal always knows
the direction that it is moving in the reference frame of its
environment. Determining this direction requires the animal to first
perform heading retrieval, a computation that occurs somewhat
independently of localization in the brain (Julian et al., 2018b). Our
model doesn’t include an analog of heading retrieval. The model
assumes it is given movement vectors in the reference frame of the
object. In the discussion we briefly describe how this model could
be extended to perform an analog of heading retrieval and hence
build orientation-invariant models of objects.

Model description

Our two-layer model consists of two populations of neurons and
four primary sets of connections (Figure 3). Later in the “Mapping
to biology” section we propose which cortical populations
implement this circuit. For each movement of the sensor, the
network goes through a progression of stages, processing the motor
input followed by the sensory input. Each stage corresponds to
using the connections from one of the numbered arrows in Figure
3. We show an example of the network going through these stages
three times in Figure 4.

Stage 1. Motor input arrives before the sensory input and is
processed by the location layer, which consists of grid cell modules.
If this layer has an active location representation, it uses the motor
input to shift the activity in each module, computing the sensor’s
new location.

Stage 2. This updated grid cell activity propagates to the sensory
layer and causes a set of predictions in that layer.

Stage 3. The sensory layer receives the actual sensory input. The
predictions are combined with sensory input. The new activity is a
union of highly sparse codes. Each sparse code represents a single
sensory feature at a specific location that is consistent with the input
so far.

Stage 4. The sensory layer activity propagates to the location layer.
Each module activates a union of grid cells based on the sensory
representation. The location layer will contain a union of sparse
location representations that are consistent with the input so far.

After the fourth stage the next motor action is initiated and the
cycle repeats. The next few sections describe the network structure
and each of these 4 stages in detail, as well as the learning process.

Network structure
We compute the network activity through a set of discrete
timesteps. Each time step 𝑡 consists of a progression of the 4 stages
outlined above. Here we describe the neuron model and network
structure before describing the stages in detail.

Each neuron in the network is a discrete time neuron with multiple
independent dendritic segments. 𝑫.,0123 and 𝑫.,045 each denote a vector
which specifies the synapses of dendrite 𝑑 on cell 𝑐 in the location
layer and sensory layer, respectively. Each neuron has a binary
output, and synapse weights are either 0 or 1. The number of
synapses on each dendrite after learning is generally small and as a
result these vectors are highly sparse. The neuron model with
independent dendritic segments is closely related to the structure of
the Poirazi-Mel neuron (Poirazi and Mel, 2001) and the existing
experimental literature on active dendrites in pyramidal neurons
(Antic et al., 2010; Major et al., 2013). Multiple dendritic segments
enable each neuron to robustly recognize independent sparse
patterns, and thus be associated with multiple location or sensory
contexts. Although the activity of a single neuron can be
ambiguous, we have shown in (Ahmad and Hawkins, 2016;
Hawkins and Ahmad, 2016) that the activity of a network of such
neurons can represent sparse distributed codes that are highly
unique to specific contexts. In addition, with a sufficiently large
number of cells, sparse representations enable such networks to
represent a union of patterns (Ahmad and Hawkins, 2016) with a
low probability of false match errors (up to a limit).

Sensory and location layers
The network presented here is an extension of the work in (Hawkins
et al., 2017), and the sensory layer is identical in structure to the
sensory input layer in that paper. As in that paper, the layer is
organized into a set of mini-columns (Buxhoeveden, 2002) such
that all cells within a mini-column have identical feedforward

Figure 3. A diagram of the network with arrows indicating
the main connections. (1) Motor input shifts the activity in the
location layer, which consists of a set of independent grid cell
modules. (2) The active location cells provide modulatory
predictive input to the sensory layer. (3) Sensory input
activates cells in the sensory layer. (4) The location is updated
by the new sensory representation.

Location Layer
1

42

3

Sensory Input

Motor Input

Sensory Layer

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

5

receptive fields but inhibit each other. Dendritic segments of the
neurons in the sensory layer have a modulatory effect. An active
segment does not by itself cause the cell to become active. When a
cell with an active dendritic segment recognizes feedforward input,
that cell will inhibit any other cells within the mini-column that do
not have active segments (see Stage 3 below). The active cells of
mini-column 𝑖 are denoted by the binary array 𝑨9

45,:. The layer
activity 𝑨945 consists of the concatenation of all of the mini-column
activities 𝑨9

45,:.

The location layer is structured as a set of grid cell modules, each
containing the same number of neurons. The active neurons of
module 𝑖 at time 𝑡 are denoted by the binary array 𝑨9

123,:, and the
layer activity 𝑨9123 consists of the concatenation of all of the module
activities 𝑨9

123,:. Dendritic segments of the neurons in this layer have
a driving effect; a cell will become active if any of its dendritic
segments become active. During inference, activity in the location
layer is updated once in response to movement and then again in
response to sensory-derived input. We denote these two activation
states by the vectors 𝑨9,;2<=123 , and 𝑨9,>=5>=123 .

The location layer projects to the dendritic segments of the sensory
layer (Figure 3, connection 2). Thus 𝑫.,045 is a vector with the same
length as 𝑨9123 where a 1 represents a connection to a cell in the
location layer. The sensory layer projects to the dendritic segments
of the location layer (Figure 3, connection 4). Thus 𝑫.,0123 is a vector
with the same length as 𝑨945	where a 1 represents a connection to a
cell in the sensory layer. These vectors are generally extremely
sparse as they connect to sparsely active cells during learning (see
section on learning below).

In each timestep, dendritic segments that receive sufficient input
become active. The binary vectors 𝝅945 and 𝝅9123 denote cells in each
layer that contain at least one active dendritic segment. These
denote whether each cell was predicted from the other layer's
activity. Designating 𝜃45 and 𝜃123 as dendritic thresholds,

𝝅9
45,. = C1,		∃0[𝑫.,0

45 ⋅ 𝑨9,;2<=123 ≥ 𝜃45]
0, 		otherwise

	 (1)

f1

f3

f1

f2

bc

a

f2
b

1 2 3 4

Movement 2 Sensation 2

f1
c

1 2 3 4

Movement 3 Sensation 3

f1

a

1 2 3 4

Movement 1 Sensation 1

Figure 4. As the sensor moves over a previously learned
object, these two layers receive a sensorimotor sequence and
recognize the object. Features 𝑓#, 𝑓T and 𝑓U indicate the
sensory input invoked by touching the objects at the
indicated locations. Motor commands 𝑎, 𝑏, and 𝑐 indicate
the motor input received by the network when the sensor
makes a movement. The objects are colored to relate them to
active cells below. We show three movements, each
consisting of the four stages above, and we draw snapshots
of the network at the end of stages 2 and 4. The stages 1
through 4 correspond to the connections in Figure 3.
Movement 1. The network receives a movement command,
and nothing happens because it doesn’t have a current
location representation. Sensation 1. The sensor senses
feature 𝑓# which provides input to every cell in a set of mini-
columns. None of the cells were predicted, so all become
active. This feature has been learned on two objects, so this
set of active cells contains two feature-at-location
representations, shown in yellow and blue. These
representations drive a pair of location representations to
become active. This union of activity encodes the two
possible locations that could have produced the sensation.
Movement 2. Motor input 𝑏 causes each module to perform
path integration, shifting its bump according to its scale and
orientation. The newly active cells provide modulatory input
to the sensory layer which predicts two different potential
features, 𝑓T and 𝑓U, priming two representations to become
active. Sensation 2. The sensor senses feature 𝑓T, and only
the predicted cells in the 𝑓T mini-columns become active.
The other predicted cells do not activate. This active
representation drives a single representation to become
active in the location layer. At this point, the network has
identified the cube. Movement 3 and Sensation 3.
Subsequent movements maintain the unambiguous
representation as long as the sensed features match those
predicted by the path-integrated locations. A movement back
to the original location, for instance, causes a prediction only
for the 𝑓# representation specific to that location on the cube.

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

6

𝝅9
123,. = C1,		∃0[𝑫.,0

123 ⋅ 𝑨945 ≥ 𝜃123]
0, 		otherwise

(2)

Stage 1: Use movement to update location layer
The location layer consists of a set of independent grid cell
modules, each with its own scale and orientation. We follow
notation and assumptions of other grid cell models and analyses
(Ocko et al., 2018; Sreenivasan and Fiete, 2011). Within a module,
the active cells are always part of a Gaussian bump of cell activity
centered at a position, or phase, within the module’s tile (Figure
1B). We designate the phase of module 𝑖’s bump as 𝜙W⃗ 9: . Each cell
within a module is centered at a phase, and its activity at time 𝑡 is
proportional to its nearness to 𝜙W⃗ 9: . The network responds to
movement commands by updating 𝜙W⃗ 9: for each module.

Movement will shift each module’s bump according to the
module’s scale and orientation. A 2D transform matrix 𝑴:
associated with each module represents how the module converts a
movement vector for the sensor into a movement vector for the
bump. Denoting the scale of module 𝑖 as 𝑠: and the orientation as
𝜃:, this transformation matrix is:

𝑴: = [
𝑠: cos 𝜃: 					𝑠: cos(𝜃: + 60°)
𝑠: sin 𝜃: 					 	𝑠: sin(𝜃: + 60°)	

a
b#

(3)

This operation converts the movement vector into a 60° basis,
arranging each grid cell’s firing fields into a triangular rather than
square lattice. It also scales and rotates the movement vector to set
the scale and orientation of the lattice.

Each module receives the same 2D movement vector 𝑑⃗9, and it
shifts its bump as follows:

𝜙W⃗ 9,;2<=: = d𝜙W⃗ 9b#,>=5>=: +	𝑴:𝑑9e	mod	1 (4)

The modulo operation confines each bump of activity to have a
phase within the 2D range [0, 1) × [0, 1). In the sorted view of a
grid cell module (Figure 1B), the phase [0, 0] corresponds to the
lower left corner while [0.9, 0.9] corresponds to the upper right
corner. The bump of cell activity is centered at this phase, and we
model the bump as having a Gaussian shape to qualitatively match
the shape of the firing fields of observed grid cell responses
(Monaco and Abbott, 2011).

In addition to these properties, our model requires a grid cell
module to be capable of path integrating multiple bumps
simultaneously. Each module represents uncertainty by activating
multiple bumps, one for each possible location. We refer to this as
a union of locations. We designate a module’s set of bumps as Φ9

: .
With every movement, we apply Eq. (4) to every phase in Φ9

: .

Φ9,;2<=
: = md𝜙W⃗ +	𝑴:𝑑9e	mod	1	n	𝜙W⃗ ∈ Φ9b#,>=5>=

: p (5)

Rather than simulating individual cell dynamics explicitly, each
module in the location layer simply maintains a list of activity
bump phases and updates each one according to Eq. (5). The
location layer then outputs the binary vector 𝑨9,;2<=123 by
thresholding the activity of each cell within the module (see

Model Details). In the discussion we review models of individual
grid cell dynamics and discuss their compatibility with unions.

Stage 2: Use updated location to form sensory predictions
In Stage 2, we compute which sensory features are predicted by the
location layer. In our network these predictions are represented by
𝝅945, the activity of distal dendritic segments of cells in the sensory
layer. We compute 𝝅945 from 𝑨9,;2<=123 using Eq. (1) above.

Each sensory feature that has been encountered at any of the current
possible locations will be predicted. Note that because 𝑨9,;2<=123 is a
concatenation of all grid cell modules, the predictions are based on
highly specific location codes.

𝝅945 has a modulatory effect on the activity of the sensory layer, as
described in Stage 3.

Stage 3: Calculate activity in sensory layer
In Stage 3, the sensory layer uses the sensed feature to confirm
correct predictions and to disregard incorrect predictions. When no
predictions are correct, it activates all possible feature-at-location
representations for the feature. This stage is responsible for both
activating and narrowing unions.

The sensory layer is identical to the sensory input layer in (Hawkins
et al., 2017). In this layer, all the cells in a mini-column share the
same feedforward receptive fields. Each sensory feature is
represented by a sparse subset of the mini-columns, denoted by
𝑾9

45. When a cell is predicted, it is primed to become active, and if
it receives sensory input it will quickly activate and inhibit other
cells in the mini-column.

The active cells within the sensory layer are selected by considering
𝑾9

45 and by considering which cells are predicted by the location
layer, i.e. which cells have an active dendritic segment. If a cell is
predicted and it is in a mini-column in 𝑾9

45, it becomes active. If a
mini-column in 𝑾9

45 has no predicted cells, every cell in that mini-
column becomes active.

𝑨9
:r,:,. = 	

⎩
⎪
⎨

⎪
⎧1, 𝑖 ∈ 𝑾9

45 and 𝝅9
45,:,. > 0

1, 𝑖 ∈ 𝑾9
45 and x𝝅9

45,:,.y

.y
= 0

0, otherwise

(6)

If the location layer has uniquely identified the current location,
there will be exactly one active cell in each mini-column in 𝑾9

45
encoding this sensory feature at the current location. If the location
layer contains a union of locations, the sensory layer will represent
this feature at a union of locations. Note that the location layer
may predict features that are not represented in 𝑾9

45. These mini-
columns will not contain any activity after this step (Figure 4,
Sensation 2) and the set of possible objects is thus narrowed down.

Stage 4: Update location layer based on sensory cues
In Stage 4, the activity in the sensory layer recalls locations in the
location layer. 𝑨945 is used to compute 𝝅9123 (Eq. (2)) which drives
activity in the location layer. The list of activity bump phases in
each module is replaced by a new set of bumps driven by sensory
input. For each cell in the location layer that has a corresponding

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

7

active dendritic segment, the module activates a bump centered on
that cell.

Φ9,z{rz{
|}.,: = ~

m𝜙W⃗ .n𝑐 ∶ 𝝅9
123,:,. > 0p, ∃.�𝝅9

123,:,. > 0�
Φ9,;2<=
123,: 	, otherwise

(7)

This new set of bumps is often very similar to the previous set, as
in Figure 4, Sensation 3. Note that this step happens during
inference only. During learning, the location layer doesn't update in
response to sensory input; we simply assign Φ9,>=5>=

123,: = Φ9,;2<=
123,: .

The active cells in the location layer 𝑨9,>=5>=123 are computed from
Φ9,>=5>=
123 (see Model Details). Note that since connections from the

location layer to the sensory layer cannot drive activity, recurrence
in the network is minimal (see Model Details).

Learning
In our model the learning process involves associating locations
with sensory features, and vice versa. These associations are learned
on the distal dendritic segments, as specified in Eq. (8) and Eq. (9).
Learning in this model always consists of the active cells in the two
layers forming reciprocal connections. At the start of training on a
new object, each module in the location layer activates a bump at a
random phase. This instantiates a random location space that is

specific to that object. For the rest of training, we provide a
sequence of motor and sensory inputs, calculating Φ9,;2<=

123 as
before, shifting each module’s bump with each movement.

Each sensory input is represented by a set of mini-columns
𝑾9,>=5>=

45 . Following Eq. (6) above, if this part of the object hasn't
been learned yet there will be no predictions in the sensory layer
and every cell in these mini-columns will become active. In this
case a random cell in each active mini-column is selected as the cell
to learn on, i.e. to represent this sensory input at this location. If this
part of the object has been learned, there will be predictions in the
sensory layer. In this case the cells corresponding to the existing
active segments are selected to learn on. 𝑨9,1=��545 represents these
learning cells for the current time step.

Each active cell in 𝑨9,>=5>=123 and 𝑨9,1=��545 selects one of its dendritic
segments 𝑑′ and forms connections between this segment and each
active cell in the other layer.

𝑫.,0y
123 ∶= 	𝑫.,0y

123 	|	𝑨9,1=��545 (8)

𝑫.,0y
45 ∶= 	𝑫.,0y

45 	|	𝑨9,>=5>=123 (9)

Figure 5. Our model learns and recognizes objects from sensorimotor sequences. The order of movements and sensations is not
critical for either learning or recognition. We ran simulations to test these properties. This cartoon figure illustrates a training and
test run of one of these simulations. (Top) Two objects are shown (right side). Each object is composed of the same sensory
features (circle, square, star) in different spatial arrangements. The network learns the objects via a sequence of sensory features
and movements (left). Note that the model learns the relative arrangement of the features (right), not the sensorimotor sequence
itself (left). (Bottom) The network can recognize objects with novel sensorimotor sequences. The left input sequence consists of a
sensed circle, a diagonally upward movement, and a sensed star. Although the network has never experienced this particular
sensorimotor sequence before, it detects that this sequence matches a portion of object 1 and doesn’t match any other objects. In
this example, one movement and two sensations is sufficient to recognize the object and the sensor’s current location on that
object. The right sensorimotor sequence matches locations on both objects until the fourth sensory input, so it takes three
movements and four sensations to recognize that this is object 2.

Train
Sequence of sensory features and movements: The network learns:

Sequence of sensory features and movements: The network learns:

Novel sequence: The network recognizes: Novel sequence: The network recognizes:

Test

Object 1

Object 2

Object 1 Object 2

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

8

Here we designate “|” as bitwise OR, implying that the existing
connections on the dendritic segment are unaffected when these
new connections are formed.

SIMULATION RESULTS

We ran simulations to test the ability of our model to learn the
structure of objects and accurately predict sensory features from
motor sequences. Our model is agnostic to the specific feature
extraction technique, thus we focus on testing the set of neural
computations that occur after features have been extracted. Thus,
these experiments tested this set of neural computations and weren’t
intended to be a general benchmark for object recognition. Our goal
was to understand whether the model can accumulate information
over sensorimotor sequences and to understand when the model
reaches its breaking point.

In the simulations, the model’s input consisted of sequences of
sensory features and movements. The model’s task was to learn an
object from a single sensorimotor sequence and then recognize that
object from a different sensorimotor sequence. In Figure 5 we show
an illustration of our test objects and the input sequences. Each
object consisted of ten points chosen randomly from a four-by-four
grid. We placed a feature at each point, choosing each feature
randomly with replacement from a fixed feature pool. Features were
shared across objects and a given feature could occur at multiple
points on the same object.

For every simulation, we trained the network by visiting each point
on each object once. For each point, we stored the activity in the
location layer in a separate classifier. We then tested the network
on each object by traversing each of the object points in random
order. Importantly, the network received a motor input for each of
these random transitions between features, enabling it to properly
accumulate information over time. As the sensor traversed the
object, we tested whether the location representation exactly
matched the classifier’s stored representation for that point on that
object. If it matched this representation and if this representation
was unique to this object, we considered the object to be recognized.
If the network never converged to a single location representation
after four complete passes over the object, or if it ever converged
on a wrong location, we considered this a recognition failure. (In
these experiments, the model always either converged to a single
location or didn’t converge at all.) It is possible for the network to
converge on the correct location representation even if that location
isn’t unique to the object, for example if there aren’t enough
modules to create a unique code. In the sections ahead, we
specifically note when this occurred.

We set the sensory layer to have 150 mini-columns and 16 cells
per mini-column. Each sensory feature activated a predetermined,
randomly selected set of 10 mini-columns which comprised the
𝑾9,>=5>=

45 of timestep 𝑡. We varied the number of cells per module
and the number of modules in the location layer. For these
simulations we varied the module orientations but not the scales.
The orientations were evenly spaced along the 60° range of
possible orientations. Each module used the same scale, and this
scale was fixed to be half the maximum width of the objects. We
set the dendritic thresholds 𝜃123 and 𝜃45 to 8 and ⌈𝑛 ∗ 0.8⌉,
respectively, where 𝑛 is the number of modules in the location
layer and ⌈	⌉ is the ceiling operator.

Figure 6. As the network recognizes an object, it converges onto
a sparse activation. (A) Location layer cell activity in three (out
of ten) grid cell modules while recognizing a single object. The
bumps of activity are shown in color; red indicates a high firing
rate. The location representation, shown as darkened circles,
consists of cells that are sufficiently active. Each movement shifts
the activity and each sensation narrows the activity to the cells
that predict the new sensation. Cell activity converges onto a
sparse representation by Sensation 3 and remains sparse
afterward. (B) Cell activity in the same three modules as (A),
shown for additional sensations and for two additional objects.
Each module has 100 cells. The black lines indicate that the cell
is active during the indicated sensation. After the first sensation,
the location codes are very ambiguous in all cases. Depending on
how common the sensed features are, the module activity narrows
at different rates for the different objects. The sensation
highlighted in red shows the first step in which the object is
unambiguously determined. From this point on, the module
activity shifts with each movement but remains unique to the
object being sensed. (These simulations used a unique feature
pool of size 40.)

Sensation 1 Sensation 2 Sensation 3 Sensation 4

M
od

ul
e

1

M
od

ul
e

2

M
od

ul
e

3

A

B

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

9

Cell activity converges to a unique location representation.
We begin by demonstrating the cell activity in a typical recognition
task, and we show how it varies as the network learns more objects.
In Figure 6 we show the actual grid cell activity for several modules
in the location layer as the network sensed different objects. The
network was first trained on 50 objects, each with ten features
drawn from a pool of 40 features. The activity changes with each
new sensation, first via path integration shifts based on the
movement, followed by narrowing of the activity to only the
locations consistent with the newly sensed feature. The network can
take a different number of sensations to narrow to a single
representation per module. Once the network has narrowed, the
activity in a single module may be ambiguous but the set of active
cells across all modules (only three of ten modules are shown)
uniquely encode the object and location.

The recognition process always follows this template. The initial
sensory input typically causes dense activation, assuming the
sensory feature is not unique to a single location. With subsequent
movement and sensation this activity becomes sparser and
eventually converges on a single representation. In Figure 7A we
aggregate the cell activity from Figure 6 across all objects and all
modules to show the average cell activation density after each
sensation. As the network learns more objects, the initial density
and the convergence time increase because the network recalls more

locations-on-objects for each sensory input, and it has to
disambiguate between more objects.

The model approximates an ideal observer.
Ideally, the network should recognize an object as soon as it
receives a sensorimotor sequence that uniquely matches that object.
In Figure 7B we compare the recognition time with such an ideal
observer. The ideal detector stores both the features and their
relative locations during training and exhaustively checks the
current sensorimotor sequence against the stored objects during
testing. It yields a correct classification as soon as the object is
unambiguous based on the features and relative locations sensed up
to that point. We also include a bag of features model. It ignores
location information and yields a correct classification if it can
unambiguously determine the object based solely on the sensory
features.

This network uses 10 modules, and the dataset contains 100 objects
with 10 unique features. Very few objects can possibly be
determined by a single sensation, but three or four sensations are
sufficient. As we increase the number of cells in each module, the
model’s performance approaches that of the ideal detector. With
40x40 cells per module, the two are near identical. The bag of
features model often cannot uniquely identify the objects because
many objects are different arrangements of identical sets of
features.

Figure 7. (A) With multiple sensations, the location layer activity converges to a sparse representation. Using the same simulation
from Figure 6, we show the activation density after each sensation, averaged across all objects and modules. With additional
sensations, the representation becomes sparser until the object is unambiguously recognized. With more learned objects, the network
takes longer to disambiguate. The activation density of the first sensation increases with the number of learned objects. If the initial
activation density is low, the network converges very quickly. If it’s high, convergence can take longer. (B) Comparison of this
network’s performance with the ideal observer and a bag-of-features detector. Each model learned 100 objects from a unique feature
pool of size 10. We show the percentage of objects that have been uniquely identified after each sensation, averaged across all
objects. The ideal model compares the sequence of input features and relative locations to all learned objects while the bag-of-
features model ignores relative locations. With a sufficiently large number of cells per module, the proposed neural algorithm gets
similar results to the ideal computational algorithm. (Both) In both of these charts we repeat the experiment with 10 different sets of
random objects and we plot the 5th, 50th, and 95th percentiles of each data point across trials.

A B

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

10

Near the model’s capacity limits, recognition time degrades.
As this model learns more objects, it eventually begins taking
longer to recognize objects than the ideal observer. If it’s pushed
further, it eventually begins failing to recognize objects. In Figure
7B, the network with 30x30 cells per module requires more
sensations to narrow down the object than the ideal observer, but it
always recognizes the object eventually. The network with 27x27
cells per module often never recognizes the object after many
sensations, indicating the network has been pushed beyond its
capacity.

To understand the way that the system reaches a capacity limit,
consider the density of activation in the location modules when a
single feature is sensed. If a single feature occurs in many locations,
then during learning the location layer and sensory layer
reciprocally associate many cells in each module with that feature.
Sensing that feature will cause a large percentage of the cells in the
location layer to activate. If this percentage is too high, location
representations that aren’t supposed to be active will be largely
contained in this dense activation, resulting in false positives. In the
worst case, the location layer will fail to extract anything useful out
of this sensory input, because it will activate nearly every location
representation as part of its dense activation. We found that the
main influence on the model’s recognition time is whether the
model is approaching its capacity limit. In the following section we
characterize this capacity limit.

Capacity varies with size of location layer, statistics of objects.
The previous simulations investigated the time to converge onto a
unique location. Here we consider the capacity of the network
independent of convergence time. We compute the fraction of
objects correctly classified after many sensations, and we define the
capacity as the maximum number of objects the network can store
while maintaining a 90% accuracy rate. While we use 10 locations
per object for these simulations, the total number of locations
(number of objects times the number of locations per object) is what
matters.

It is worth noting that this definition of capacity is a measure of the
model’s ability to recognize objects, not simply a measure of its
ability to store objects. The network could potentially store many
more predictive models of objects, but after some point it will be
unable to recognize those objects from sensory input via this
model’s circuitry. The model has multiple potential bottlenecks that
could determine this breaking point: the representational capacity
for sensory features, the representational capacity for locations, the
number of patterns a cell can learn via independent dendritic
segments, and the network’s ability to represent multiple locations
simultaneously. By changing the model parameters and input data
in different ways, any of these could become the bottleneck, but we
found that the most unavoidable of these potential bottlenecks was
the last one.

Because our experiments focused on scenarios in which the same
features occur on multiple objects, the model begins running into
capacity limits when the sensory input causes the location layer to
activate a union of representations that is large enough to cause false
positives in the sensory layer. This occurs when the union contains
large portions of location representations that aren’t supposed to be
active. The likelihood of this event is influenced by the model’s
number of modules, the number of cells per module, and the
statistics of objects. In Figure 8, we characterize the impact of these
variables on the model’s capacity.

The model’s capacity increases with the number of modules, though
with diminishing returns. In Figure 8A we plot two lines to dissect
the relationship between the number of modules and capacity. The
top line shows the impact of having multiple modules, then the
bottom line shows how this effect is reduced by our model’s lower
dendritic thresholds. Even with a single module, the network is able

Figure 8. (A-C) Model capacity changes with model
parameters (blue) and object parameters (orange). The
network’s capacity is the maximum number of objects that
it can learn while maintaining the ability to uniquely
identify at least 90% of the objects. We repeat the
experiment with 10 different sets of random objects and we
plot the 5th and 95th percentiles of each capacity. (A)
Increasing the number of modules in the network increases
capacity sublinearly, and this impact depends on the
dendritic threshold of the neurons reading this location
representation. The two lines show two different thresholds
relative to 𝑛, the number of modules. With only one
module the network can successfully converge to one
location, but that location isn’t object-specific (red ‘x’). (B)
Increasing the number of cells increases capacity linearly.
(C) Similarly, increasing the feature pool size also
increases capacity linearly. (D) A heatmap showing the
capacity of the network while varying the feature pool size
and location module size. An increase in the number of
cells per module can compensate for a decrease in the
number of unique features.

A B C

D

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

11

to converge onto one location representation for a considerable
number of learned objects. However, this location representation
isn’t unique to the object, so it doesn’t qualify as recognizing the
object; we denote this with a red ‘x’. Adding a few more modules
ensures unique locations, and each additional module helps the
model deal with large unions. They guard the model from having
too many false positives when a large percentage of cells are active.
More precisely, for each representation, the percentage of the cells
that will be active due to randomness will be approximately equal
to the activation density, with some variance, and having more
modules reduces this variance. If the threshold is 100%, then the
model can increase its capacity indefinitely by adding modules.
However, to avoid depending on every neuron reliably firing, this
model doesn’t use such a high threshold. In our model, neurons will
detect a location if 80% of its cells are active. With this lower
threshold the benefit of additional modules asymptotes, and no
number of modules will be able to handle more than 80% activation
density.

Previous analysis of grid cell codes (Fiete et al., 2008) showed that
the code’s representational capacity increases exponentially with
the number of modules. This holds true for this model, but this
model’s bottleneck is not the size of its unique location spaces. This
model’s performance depends on its ability to unambiguously
represent multiple locations simultaneously. A grid cell code’s
union capacity doesn’t scale exponentially with number of modules.

The model’s capacity increases linearly with number of cells per
module (Figure 8B). As we add additional cells, the size of a bump
remains constant relative to the cells, so the bump shrinks relative
to the module. Because each bump activates a smaller percentage
of the cells in a module, a module can activate more bumps before
the network reaches the density at which object classification starts
failing.

The model’s capacity increases linearly with the number of unique
features (Figure 8C). This happens because it reduces the expected
total number of occurrences of each feature, and hence the number
of elements in each union. This indicates that the statistics of the
world influence the capacity of the model, and it also means that
this network can improve its capacity by adjusting the “features”
that it extracts from sensory input.

Because these two latter parameters have independent linear
relationships with capacity, they can compensate for each other. In
Figure 8D we plot object capacities in a network with 10 modules.
We show that increasing (decreasing) the number of cells per
module and decreasing (increasing) the number of unique features
by the same factor causes the capacity to remain approximately
constant. This is illustrated by the approximate symmetry across the
chart’s diagonal.

The model recognizes an object if the object has at least one
sufficiently uncommon feature.
Up to this point, we’ve characterized this model’s ability to
recognize objects by stating, “The network will reliably recognize
an object if the network has learned fewer than c total objects,” and
we’ve measured c. This characterization is built on many
assumptions about objects. It’s desirable to be able to characterize
the model in a way that isn’t specific to these assumptions.

Given that the model’s ability to recognize objects depends on the
density of cell activity invoked by sensory features, we found we

could characterize the model’s performance more directly by
answering, “The network will reliably recognize an object if the
object contains a feature with fewer than k total occurrences across
all learned objects,” and measuring k. In another set of experiments
(Figure S1), we generated objects using multiple alternate
distributions of features. We found that the network’s breaking
point relative to c (the number of learned objects) did indeed vary
widely with the choice of feature distribution, while its breaking
point relative to k (the number of locations recalled by sensing a
feature) was much more consistent across distributions. This
suggests that the network’s performance relative to k will hold true

Figure 9. Summary chart showing recognition time and
capacity while varying the model parameters. The top chart
shows the median number of sensations required to recognize
an object, and it marks the final point where a network
recognized at least 50% of objects using an ‘x’. The bottom
chart shows the percentage of objects that were recognized after
traversing every point on the object multiple times. The charts
share an x axis, and this x axis has two sets of ticks and labels.
The bottom ticks are numbers of learned objects, given 10
locations per object and 100 unique features. The top ticks are
the typical smallest union sizes that will be invoked by each
object. With different statistics, these curves will shift relative
to the bottom ticks, but they should stay approximately fixed
relative to the top ticks. We repeat the experiment with 10
different sets of random objects. In the top chart we combine
the data from all trials and plot the median. In the bottom chart
we plot the 20th, 50th, and 80th percentiles for each data point
across trials.

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

12

with real-world statistics. Using both of these metrics, c and k, we
summarize all of these results in Figure 9.

We conclude that this model reliably recognizes an object if the
object has at least one sufficiently uncommon feature, a feature
that causes the network to recall a sufficiently small number of
locations. After sensing this feature, the model can use other, more
common features to finish recognizing the object, but it needs
some initial clue to help it activate a manageable union that it can
then narrow. With enough cells, this initial clue doesn’t need to be
especially unique. For example, the feature could have 10 learned
locations-on-objects if the module has 10x10 cells per module and
10 modules, as shown in Figure 9, and this breaking point can be
pushed arbitrarily high by adding more cells. The network can also
avoid running into this breaking point by tweaking the set of
“features” that it extracts from sensory input.

MAPPING TO BIOLOGY

We have described a two-layer network model for sensorimotor
inference and now consider how this network motif maps to known
cortical anatomy and physiology. Layer 4 (L4) is well understood
to be the primary target of thalamocortical sensory inputs (Douglas
and Martin, 2004; Jones, 1998; Theyel et al., 2010). These
connections are believed to be driving inputs (Viaene et al., 2011)
and target both excitatory and inhibitory neurons, with a slight delay
for the inhibitory neurons that provides a window of opportunity for
neurons to fire (Harris and Shepherd, 2015). Mountcastle identified
the organization of neurons into mini-columns with shared
receptive fields (Buxhoeveden, 2002; Mountcastle, 1957).

The connections between L4 and layer 6a (L6a) closely resemble
the connections in our model (Figure 3, arrows 2 and 4). Thalamic
input forms a relatively small percentage of L4 synapses;
approximately 45% of its synapses come from L6a (Binzegger et
al., 2004). The connections from L6a are weak (Harris and
Shepherd, 2015; Kim et al., 2014). They connect to distal dendritic
segments of L4 cells whereas thalamocortical afferents connect
more proximally (Ahmed et al., 1994; Binzegger et al., 2004). L4
cells also form a significant number of connections to cells in L6a
(Binzegger et al., 2004). These biological details closely match our
network model, where the location layer (putatively L6a) has a
modulatory influence on the sensory input layer (putatively L4)
which in turn can drive representations in the location layer.

Our location layer also requires a motor input. Experiments show
that L5 cells in motor regions, such as M2, project to sensory
regions, including layer 6 (Leinweber et al., 2017; Nelson et al.,
2013). Principal cells in Layer 6 of mouse V1 receive a direct
projection from retrosplenial cortex that signal the angular velocity
of horizontal rotation of the head (Vélez-Fort et al., 2018). There is
also a potential indirect pathway through thalamocortical inputs that
target layer 6 (Harris and Shepherd, 2015; Thomson, 2010).
Thalamic relay cells receive input from layer 5 neurons that are
presumed to be efference copies of motor commands sent
subcortically (Chevalier and Deniau, 1990; Jones, 1998). Any of
these direct or indirect pathways could serve as motor signals for
path integration in L6.

Our model draws inspiration from the grid and place cell systems
in the hippocampal formation. Our location layer is modeled after
grid cells. These cells project (Zhang et al., 2013) to place cells

(O’Keefe and Dostrovsky, 1971) in the hippocampus. Areas of
hippocampus containing place cells also project back to areas of
entorhinal cortex containing grid cells (Rowland et al., 2013). Many
place cells seem to represent item-place pairs, and these pairs are
learned through experience (Komorowski et al., 2009), a
phenomenon that is analogous to the learning of feature-location
pairs in our sensory layer.

Location representations in neocortex similar to grid cells are
speculative but there is initial experimental support for grid-like
codes in neocortex. fMRI experiments with humans performing
tasks have led to activity signatures in prefrontal cortex that are
similar to grid cell signals (Constantinescu et al., 2016; Julian et al.,
2018a). Direct cell recordings have also shown grid-like activity in
frontal cortex (Doeller et al., 2010; Jacobs et al., 2013). These
experiments are consistent with the hypothesis that grid-like cells
are present in the neocortex and not just a phenomenon of the
hippocampal formation. These grid cells were discovered by
looking for cells that respond similarly to grid cells in the
hippocampal formation; in the Testable Predictions section we
predict that more grid-like cells will be found by looking for cells
representing sensors’ locations relative to objects.

In our model, primary sensory cortex represents the sensory input
at locations in an external reference frame. This is consistent with
results from (Saleem et al., 2018). As a mouse ran on a virtual track,
the majority of recorded cells in primary visual cortex encoded the
animal’s location on the track, even when the mouse received visual
input that occurred at multiple points of the track. According to our
model, in this task the visual cortex represented the location of a
sensor (the mouse’s eye) relative to an object (the virtual track), and
the cortex used the visual input to recall locations on the track while
using the mouse’s movement to update these location
representations. Their finding that the error in V1’s location
representation matches the error in CA1’s location representation
suggests that these two areas use the same path integration signals.

Although additional experimental work is required, evidence
suggests that L4 and L6a provide the best candidate populations
for our sensory and location layers, respectively.

DISCUSSION

We have presented a two-layer neural network model for
sensorimotor object recognition. By pairing sensory input with an
object-centric representation of location, the model learns objects
as spatial arrangements of sensory features. Both object learning
and object recognition are independent of the particular order of
movements and sensations.

The model’s location layer contains modules that operate similarly
to grid cell modules in the medial entorhinal cortex. The location
modules represent the sensed location in the reference frame of the
object. The location modules receive a movement input that updates
and predicts new locations. The sensory layer combines the
representation of location with sensory input to create
representations of sensory inputs that are unique to objects and
locations on those objects.

Object recognition in our model occurs via a series of sensations
and movements. A sensory input activates the set of locations where
the input has been previously learned. The location layer updates

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

13

these locations based on motor input. The updated locations cause
prediction in the sensory layer. The next sensory input narrows
down possible locations and possible objects. In this way, a series
of sensations and movements will allow the model to rapidly infer
which object is being sensed.

The model provides a concrete implementation of the location
signal introduced in our earlier model (Hawkins et al., 2017) and
proposes a mechanism for how sensory input and motor input
work together.

Can grid cell modules support unions

In our model we treat a grid cell module as a black box with well-
known and previously documented properties. Our model is
agnostic regarding the internal dynamics and mechanisms that
create the grid cell properties. However, we gave grid cell modules
an additional property that is not typically noted in grid cells:
support for unions. The grid cell modules in our model can activate,
maintain, and shift multiple bumps of activity simultaneously.
Various models of grid cell dynamics could be plugged into this
model, but this union property introduces a new requirement for
these models.

Several models have been proposed to explain grid cell dynamics
(Giocomo et al., 2011). Recurrent grid cell models have received
more empirical support (Yoon et al., 2013) than models in which
grid cells establish their responses independently of each other. In
recurrent models, grid cells determine their activity using velocity
input and connections to other grid cells, either directly or via
interneurons. A well-known recurrent model is the continuous
attractor network (Burak and Fiete, 2009; Fuhs and Touretzky,
2006) which performs robust path integration and offers a simple
explanation for the origin of the hexagonal firing fields. Another
explanation for the origin of these fields is that they are an optimal
code for locations which is naturally learned by neural learning
rules. This argument has appeared in two lines of research. In path
integration models, (Banino et al., 2018) and (Cueva and Wei,
2018) found that recurrent neural networks trained to perform path
integration naturally develop grid cells, although neither report the
network developing the full rhombus of grid cells at each scale.
Setting path integration aside, (Kropff and Treves, 2008), (Dordek
et al., 2016), and (Stachenfeld et al., 2017) showed that cells
performing Hebbian learning on place cell activity would naturally
learn periodic firing fields similar to those of grid cells.

The continuous attractor model is so named because it has a
continuous manifold of stable states. If the network activates a
representation that isn’t within this manifold of stable
representations, the activity will move to the nearest stable state. In
typical continuous attractor networks, a union is not a stable state
and the network will collapse a union of bumps into a single bump.
It’s an open question whether it’s possible to have a continuous
attractor with stable union states. In this paper we’ve shown that it’s
theoretically advantageous for grid cell modules to work with
unions. The attractor dynamics are appealing in part because they
explain the hexagonal firing fields, but as mentioned, those may be
explainable as the natural result of a recurrent neural network
learning a location code.

Modeling the internal mechanisms of the location layer is an area
for future research.

Egocentric vs. object-centric coordinates

Sensors such as eyes and skin detect features in a viewer-centric or
egocentric coordinate frame. It is inefficient to learn an object’s
features in egocentric coordinates as the system will need to learn
the object at every shifted location and rotated orientation. Our
model represents location using grid cell-like modules, and, like
grid cells in the entorhinal cortex, cortical grid cells represent
locations relative to the external object being observed.

Converting from an egocentric reference frame to an object-centric
reference frame is therefore necessary. If reference frames are based
on Cartesian coordinates then it is necessary to establish origin
points and the conversion, as outlined in (Marr and Nishihara,
1978), is complex. Grid cell representations avoid much of this
complexity. Reference frames based on grid cells do not have an
origin. Grid cells represent locations and features relative to each
other as opposed to relative to an origin.

However, representing objects with grid cells still requires knowing
the orientation of the sensor and features relative to the object. Our
model does not yet have a representation of orientation. As a result,
our model will only recognize an object if the object is at its learned
orientation relative to the sensor. An extended version of our model
could incorporate orientation using analogs to head-direction cells
(Taube et al., 1990). Grid cells represent the animal’s location on a
cognitive map, whereas head-direction cells represent the animal’s
orientation relative to the cognitive map. When an animal moves,
grid cell modules move their bump of activity depending on the
orientation of the animal. Similarly, we expect the neocortex to
represent the orientation of sensors relative to the reference frame
of the sensed object, and this orientation will influence how sensor
movement translates into the movement of bumps in cortical grid
cell modules. This extended model would be able to learn
orientation-invariant models of objects as well as handle sensors
that rotate with respect to objects.

2D vs. 3D objects

We have described our model using 2D grid cell modules to learn
2D objects, however, the neocortex is capable of learning 3D
objects. Our model should work with 3D objects provided the
location code represents 3D locations relative to an object. How the
entorhinal cortex represents 3D space is an active area of research
(Jeffery et al., 2015). Our team is currently working on extending
our model to include 3D representations and orientation.

Relationship to other models

Our model identifies objects using the relative location of sensory
features. Objects are disambiguated over time through successive
sensations and movements. In contrast, most existing models of
object recognition involve a strictly feedforward spatial hierarchical
system (DiCarlo et al., 2012; Riesenhuber and Poggio, 1999; Serre
et al., 2007; Yau et al., 2009). In these models each level detects the
presence of increasingly abstract features in parallel until a
complete object is recognized at the top of the hierarchy. Our model
implies that each level of a hierarchy might be more powerful than
previously assumed. In (Hawkins et al., 2017) we discussed how
spatially separated sensory inputs (across multiple cortical columns
each computing a location signal) can cooperate in parallel to

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

14

recognize objects, and some of the implications on hierarchy. Our
model suggests a path for integrating sensorimotor behavior into a
hierarchical system, and accounts for the many inter and
intracortical connections that are not explained by a purely
feedforward model. A more detailed study integrating our model
into a full hierarchical system is a topic for future research.

There is significant literature on sensorimotor integration and the
learning of internal models in the context of skilled motor behavior
(Wolpert et al., 2011; Wolpert and Ghahramani, 2000). These have
primarily focused on learning motor dynamics and kinematic
control, including reaching and grasping tasks. Our model focuses
on the more structured object recognition paradigm, but there are
many high-level similarities with this body of literature. Our
location layer is highly analogous to the forward models posited to
exist in motor control (Wolpert et al., 2011). In both cases the
current state is updated using a motor efference copy to compute
the next state. In both these models, this is an estimate of the state
that informs predictions (arrow 2 in Figure 3) and is then combined
with sensory input to produce the current state (arrows 3 and 4 in
Figure 3). The primary difference is that our model recognizes a set
of structured objects rather than motion trajectories. The neural
mechanisms are also significantly different. Nevertheless it is
intriguing that the same ideas can be applied to both situations and
may reflect a more general design pattern in the brain. An in-depth
exploration of this relationship is a topic for future research.

Our model provides an alternate explanation for predictive
processing in visual cortex. Existing models of saccadic remapping
suggest that it occurs by shifting attended parts of the image across
visual cortex (Wurtz, 2008). This explanation requires every part of
the retinotopic map to be connected to every other part, either
horizontally or through the feedforward input, and it requires using
the eye movement information to enable a small subset of these
connections. In our model, each patch of visual cortex computes the
location of a patch of retina relative to the attended object, then uses
this location to predict sensory input. As the eyes saccade over a
static object, our model would not require any horizontal shifting of
information within the visual cortex. Thus this paper suggests a
model of saccadic remapping that does not require every patch of
visual cortex to be related to every other patch via long distance
connections. Implementing this extended model is a topic for future
research.

A recent article (Keller and Mrsic-Flogel, 2018) proposed a neural
circuit for using a signal to form predictions and represent
prediction error. This is a general-purpose circuit that can consume
any type of prediction signal. In the present study we have presented
a particular type of prediction signal – locations – and how they are
updated. We combined this signal with a different neural
mechanism for prediction (Hawkins and Ahmad, 2016), but it
would also be possible to use locations as prediction signal with
Keller and Mrsic-Flogel’s mechanism. The two mechanisms differ
in how they represent prediction error. In our model, when an input
matches a prediction, the network activates a sparse representation
of the input in this particular context, whereas a mismatch causes
the network to activate a dense representation of the input in many
different possible contexts. Keller and Mrsic-Flogel’s model
represents sensory stimuli and prediction error using two different
populations of cells.

Others have emphasized the importance of sensorimotor processing
in how we perceive different sensory modalities differently.
(O’Regan and Noë, 2001) use the example of holding a bottle and

seeing a bottle. They propose that your conscious perception of the
bottle via a sensory modality comes from your mastery of that
modality, from being able to predict what you will feel as you move
your hand over the bottle or what you will see as you move your
eyes over the bottle. In this paper we have not focused on conscious
perception, but our model does propose how the brain represents
the bottle in different sensory modalities in such a way that it will
make predictions in response to movements. We think the idea of
object-specific location representations is quite compatible with
this view of perception.

A recent article from our lab (Hawkins et al., 2019) proposed a
location-based framework for understanding the neocortex. There
we described how models of objects can be related to one another
by representing displacements between grid cells, enabling
representations of compositional objects. In the present paper we
provide a neural mechanism for learning object models that fit into
this approach to compositionality. This is one building block of a
larger theory in which locations are key computational primitives
of the neocortex.

Testable Predictions

Our model makes a number of experimentally testable predictions.
We expand on the predictions from (Hawkins et al., 2017).

1. The neocortex uses analogs of grid cell modules to represent
locations relative to objects. The cell activity in a module
moves through a manifold of representations as the attended
location moves relative to an object. For example, in
somatosensory areas, cells will respond selectively when the
animal’s finger is at particular locations relative to an attended
object. Just as entorhinal grid cell modules use the same map
for every environment, the cells of a single module use the
same manifold of representations for every object. This map
has limited size, and hence it will perform some form of
wrapping at its edges.

2. The neocortex uses a population code of multiple modules to
represent object-specific locations.

3. These modules are in Layer 6 of the neocortex.
4. The projection from Layer 6 to Layer 4 modulates which cells

in Layer 4 become active. If Layer 6 input is experimentally
inhibited, activity in Layer 4 will become denser.

5. The connection from Layer 4 to Layer 6 can drive the Layer 6
cells to become active, but this only occurs when the animal
receives an unpredicted input.

MODEL DETAILS

Each module has a fixed number of cells which each have a fixed
phase in the rhombus. Gaussian bumps of activity move over these
cells. A cell is considered active if its firing rate is sufficiently high.
In this section, we walk through the details of these calculations.

Each module contains 𝑤 ∗ 𝑤 cells. Each cell 𝑐 has a constant phase
𝜙W⃗ .. We partition the 2D range [0,1) × [0,1) into 𝑤 ∗ 𝑤 ranges of
equal area and set each cell’s 𝜙W⃗ . to the center of one of these ranges.
Because these modules use basis vectors separated by 60° (Eq. (3)),
when mapped onto physical space these cells form a rhombus and
they pack together in a hexagonal formation.

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

15

The normalized firing rate of a cell 𝑐 caused by bump 𝑏, denoted
𝑟.,�, is equal to the Gaussian of the distance between them.

Gaussian(𝑑) = 	𝑒b
��
T��	 (10)

𝑟.,� = Gaussian �Distanced𝜙W⃗ ., 	𝜙W⃗ �e�	 (11)

Distance(𝜙W⃗ 3, 𝜙W⃗ �) represents the shortest distance between the cell
and the bump on the phase rhombus. Computing this distance
requires changing the basis so that each 𝜙W⃗ is a point on a rhombus
rather than a point on the [0,1) × [0,1) square. 𝜎 specifies the size
of the bump relative to the rhombus, which we discuss later.

When there are multiple bumps, the firing rates from each bump are
combined as if each rate encodes a probability of an event. The
combined firing rate encodes a probability of the “or” of those
events.

𝑟. = 1 −�d1 − 𝑟.,�e
�

	 (12)

To compute module 𝑖’s active cells 𝑨9
123,:, we compute each cell’s

firing rate and check whether it is above the active firing rate 𝑟�3�4<=.

𝑨9
|}.,:,. = 	 C1, 𝑟. ≥ 𝑟�3�4<=

0, otherwise 	 (13)

We choose 𝑟�3�4<= using a readout resolution parameter 𝛿𝜙 which is
common in grid cell models (Fiete et al., 2008; Sreenivasan and
Fiete, 2011).

𝑟�3�4<= = Gaussian �
𝛿𝜙
2 ∗

2
√3
¡	 (14)

The readout resolution 𝛿𝜙 approximately specifies the diameter of
the range of phases that a bump encodes. Because modules are 2D,
if the readout resolution is 1/4 then the bump can encode
approximately 16 possible positions in the rhombus. The
multiplicative factor of 2/√3 accounts for the fact that when circles
pack together in hexagonal formation, they leave some area
uncovered; this factor expands the circles to overlap and cover this
area. With a single bump, changing the 𝜎 parameter has no effect
on the model, because the 𝛿𝜙 parameter has complete control over
what fraction of the cells are considered active. 𝜎 becomes relevant
when there are multiple bumps. The wider these bumps are, the
more they’ll combine and cause interstitial cells’ firing rates to rise
above 𝑟�3�4<=.

We vary 𝜎 and 𝛿𝜙 as follows. Our baseline parameters mimic the
sparsity of rat entorhinal grid cell modules. We set 𝜎 to 0.18172, a
number we obtained by fitting a 2D Gaussian to the firing fields
generated by the model in (Monaco and Abbott, 2011). We set 𝛿𝜙
to a conservative estimate of 1/3. In this configuration, we assign
the network 6x6 cells, and a bump always activates at least 2x2
cells. When we test the network with more cells, we assume that the
bump remains a fixed size relative to the cells, i.e. that the bump is
smaller relative to the size of the module, and we scale down 𝜎 and
𝛿𝜙 accordingly. For example, with 12x12 cells, we use 𝜎/2	 and

𝛿𝜙	/	2. By varying the parameters in this way, a single bump
always activates between 4 and 7 cells, depending on where the
bump is centered relative its local neighborhood of cells, and as we
vary the number of cells we’re effectively varying the number of
cells that the bump doesn’t activate.

During learning, only the cell with the highest firing rate is
associated with the sensed feature. (When a sensed feature activates
a cell, it activates a bump centered on the cell via Eq. (7), activating
the cells around it.) This means this model’s learning resolution is
twice as precise as the readout resolution. Because sensed features
are associated with cells that represent a range of phases, there’s
always some uncertainty in the phase recalled by sensory input. If
the learned resolution weren’t more precise than the readout
resolution, the bump of active cells would need to expand to
account for this uncertainty, and the effective readout resolution
would be half as precise. Using fixed-sized bumps, achieving a
particular readout resolution – that is, having a bump encode a range
of phases with a particular diameter – requires the learning
resolution to be at least twice as precise as this readout resolution.

The ideal classifier in Figure 7B stores all objects as 2D arrays.
During inference, it uses the first sensed feature to find all possible
locations on all objects with that feature, and it stores these as
candidate locations. With each subsequent movement it updates all
of the candidate locations. Any updated candidates that are not valid
locations on objects or contain features that don’t match the new
sensed feature are removed from the candidate list. Once there is
only a single location left, inference is successfully completed.

The bag of features detector stores a set of features for each
learned object. It does not keep track of how many times features
occur, just the set of unique features present somewhere on the
object. During inference, another set keeps track of which features
have been sensed so far. Once there is only one object that
contains all of the sensed features, inference is successfully
completed. If there are multiple objects that contain all features
once all locations on the object being tested have been visited,
then the object cannot be uniquely classified.

Recurrent dynamics
This network contains a recurrent loop, so there is potential for
additional recurrent dynamics after Stage 4 of a given timestep.
However, because the input in Stage 2 is modulatory and never
drives cells to become active, the network generally converges after
Stage 4. We found that simulating these dynamics occasionally
allowed the network to recognize objects with one fewer sensation.
To keep the model and the notation simple, in this paper after Stage
4 the simulation advances to the next timestep, and Stage 1 repeats
with the next sensory input.

Code availability
All of the source code for this model and these simulations can be
found at https://github.com/numenta/htmpapers.

REFERENCES

Ahmad, S., and Hawkins, J. (2016). How do neurons operate on
sparse distributed representations? A mathematical theory
of sparsity, neurons and active dendrites. arXiv,
arXiv:1601.00720 [q-NC].

Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. C., and

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

16

Nelson, J. C. (1994). Polyneuronal innervation of spiny
stellate neurons in cat visual cortex. J. Comp. Neurol. 341,
39–49. doi:10.1002/cne.903410105.

Antic, S. D., Zhou, W. L., Moore, A. R., Short, S. M., and
Ikonomu, K. D. (2010). The decade of the dendritic NMDA
spike. J. Neurosci. Res. 88, 2991–3001.
doi:10.1002/jnr.22444.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T.,
Mirowski, P., et al. (2018). Vector-based navigation using
grid-like representations in artificial agents. Nature 557,
429–433. doi:10.1038/s41586-018-0102-6.

Barry, C., Hayman, R., Burgess, N., and Jeffery, K. J. (2007).
Experience-dependent rescaling of entorhinal grids. Nat.
Neurosci. 10, 682–684. doi:10.1038/nn1905.

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A
Quantitative Map of the Circuit of Cat Primary Visual
Cortex. J. Neurosci. 24, 8441–8453.
doi:10.1523/JNEUROSCI.1400-04.2004.

Burak, Y., and Fiete, I. R. (2009). Accurate path integration in
continuous attractor network models of grid cells. PLoS
Comput. Biol. 5. doi:10.1371/journal.pcbi.1000291.

Buxhoeveden, D. P. (2002). The minicolumn hypothesis in
neuroscience. Brain 125, 935–951.
doi:10.1093/brain/awf110.

Chevalier, G., and Deniau, J. M. (1990). Disinhibition as a basic
process in the expression of striatal functions. Trends
Neurosci. 13, 277–280. doi:10.1016/0166-2236(90)90109-
N.

Constantinescu, A. O., OReilly, J. X., and Behrens, T. E. J.
(2016). Organizing conceptual knowledge in humans with a
gridlike code. Science (80-.). 352, 1464–1468.
doi:10.1126/science.aaf0941.

Cueva, C. J., and Wei, X.-X. (2018). Emergence of grid-like
representations by training recurrent neural networks to
perform spatial localization. 1–15.

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. (2012). How does the
brain solve visual object recognition? Neuron 73, 415–434.
doi:10.1016/j.neuron.2012.01.010.

Doeller, C. F., Barry, C., and Burgess, N. (2010). Evidence for
grid cells in a human memory network. Nature 463, 657–
661. doi:10.1038/nature08704.

Dordek, Y., Soudry, D., Meir, R., and Derdikman, D. (2016).
Extracting grid cell characteristics from place cell inputs
using non-negative principal component analysis. Elife 5,
1–36. doi:10.7554/eLife.10094.

Douglas, R. J., and Martin, K. A. C. (2004). Neuronal Circuits of
the Neocortex. Annu. Rev. Neurosci. 27, 419–451.
doi:10.1146/annurev.neuro.27.070203.144152.

Duhamel, Colby, C. L., and Goldberg, M. E. (1992). The updating
of the representation of visual space in parietal cortex by
intended eye movements. Science (80-.). 255, 90 LP-92.
doi:10.1126/science.1553535.

Fiete, I. R., Burak, Y., and Brookings, T. (2008). What Grid Cells
Convey about Rat Location. J. Neurosci. 28, 6858–6871.
doi:10.1523/JNEUROSCI.5684-07.2008.

Fuhs, M. C., and Touretzky, D. S. (2006). A Spin Glass Model of
Path Integration in Rat Medial Entorhinal Cortex. J.
Neurosci. 26, 4266 LP-4276.
doi:10.1523/JNEUROSCI.4353-05.2006.

Giocomo, L. M., Moser, M. B., and Moser, E. I. (2011).
Computational models of grid cells. Neuron 71, 589–603.
doi:10.1016/j.neuron.2011.07.023.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I.
(2005). Microstructure of a spatial map in the entorhinal
cortex. Nature 436, 801–806. doi:10.1038/nature03721.

Harris, K. D., and Shepherd, G. M. G. (2015). The neocortical
circuit: themes and variations. Nat. Neurosci. 18, 170–181.
doi:10.1038/nn.3917.

Hawkins, J., and Ahmad, S. (2016). Why Neurons Have
Thousands of Synapses, a Theory of Sequence Memory in
Neocortex. Front. Neural Circuits 10, 1–13.
doi:10.3389/fncir.2016.00023.

Hawkins, J., Ahmad, S., and Cui, Y. (2017). A Theory of How
Columns in the Neocortex Enable Learning the Structure of
the World. Front. Neural Circuits 11, 81.
doi:10.3389/FNCIR.2017.00081.

Hawkins, J., Lewis, M., Klukas, M., Purdy, S., and Ahmad, S.
(2019). A Framework for Intelligence and Cortical Function
Based on Grid Cells in the Neocortex. Front. Neural
Circuits 12. doi:10.3389/fncir.2018.00121.

Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J.
F., Wei, X. X., et al. (2013). Direct recordings of grid-like
neuronal activity in human spatial navigation. Nat.
Neurosci. 16, 1188–1190. doi:10.1038/nn.3466.

Jeffery, K. J., Wilson, J. J., Casali, G., and Hayman, R. M. (2015).
Neural encoding of large-scale three-dimensional space—
properties and constraints. Front. Psychol. 6, 1–12.
doi:10.3389/fpsyg.2015.00927.

Jones, E. G. (1998). Viewpoint: The core and matrix of thalamic
organization. Neuroscience 85, 331–345.
doi:10.1016/S0306-4522(97)00581-2.

Julian, J. B., Keinath, A. T., Frazzetta, G., and Epstein, R. A.
(2018a). Human entorhinal cortex represents visual space
using a boundary-anchored grid. Nat. Neurosci. 21, 191–
194. doi:10.1038/s41593-017-0049-1.

Julian, J. B., Keinath, A. T., Marchette, S. A., and Epstein, R. A.
(2018b). The Neurocognitive Basis of Spatial
Reorientation. Curr. Biol. 28, R1059–R1073.
doi:10.1016/j.cub.2018.04.057.

Keller, G. B., and Mrsic-Flogel, T. D. (2018). Predictive
Processing: A Canonical Cortical Computation. Neuron
100, 424–435. doi:10.1016/j.neuron.2018.10.003.

Kim, J., Matney, C. J., Blankenship, A., Hestrin, S., and Brown, S.
P. (2014). Layer 6 corticothalamic neurons activate a
cortical output layer, layer 5a. J Neurosci 34, 9656–9664.
doi:10.1523/JNEUROSCI.1325-14.2014.

Komorowski, R. W., Manns, J. R., and Eichenbaum, H. (2009).
Robust Conjunctive Item-Place Coding by Hippocampal
Neurons Parallels Learning What Happens Where. J.
Neurosci. 29, 9918–9929. doi:10.1523/JNEUROSCI.1378-
09.2009.

Kropff, E., and Treves, A. (2008). The emergence of grid cells:
Intelligent design or just adaptation? Hippocampus 18,
1256–1269. doi:10.1002/hipo.20520.

Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A., and
Keller, G. B. (2017). A Sensorimotor Circuit in Mouse
Cortex for Visual Flow Predictions. Neuron 95, 1420–
1432.e5. doi:10.1016/j.neuron.2017.08.036.

Major, G., Larkum, M. E., and Schiller, J. (2013). Active
properties of neocortical pyramidal neuron dendrites. Annu.
Rev. Neurosci. 36, 1–24. doi:10.1146/annurev-neuro-
062111-150343.

Marr, D., and Nishihara, H. K. (1978). Representation and
Recognition of the Spatial Organization of Three-
Dimensional Shapes. Proc. R. Soc. B Biol. Sci. 200, 269–
294. doi:10.1098/rspb.1978.0020.

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., and
Moser, M.-B. (2006). Path integration and the neural basis
of the “cognitive map.” Nat. Rev. Neurosci. 7, 663–678.
doi:10.1038/nrn1932.

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

17

Monaco, J. D., and Abbott, L. F. (2011). Modular Realignment of
Entorhinal Grid Cell Activity as a Basis for Hippocampal
Remapping. J. Neurosci. 31, 9414–9425.
doi:10.1523/JNEUROSCI.1433-11.2011.

Mountcastle, V. B. (1957). MODALITY AND TOPOGRAPHIC
PROPERTIES OF SINGLE NEURONS OF CAT’S
SOMATIC SENSORY CORTEX. J. Neurophysiol. 20,
408–434. doi:10.1152/jn.1957.20.4.408.

Mountcastle, V. B. (1997). The columnar organization of the
neocortex. Brain 120, 701–722.
doi:10.1093/brain/120.4.701.

Nelson, A., Schneider, D. M., Takatoh, J., Sakurai, K., Wang, F.,
and Mooney, R. (2013). A Circuit for Motor Cortical
Modulation of Auditory Cortical Activity. J. Neurosci. 33,
14342–14353. doi:10.1523/JNEUROSCI.2275-13.2013.

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a
spatial map. Preliminary evidence from unit activity in the
freely-moving rat. Brain Res. 34, 171–175.
doi:10.1016/0006-8993(71)90358-1.

O’Regan, J. K., and Noë, A. (2001). A sensorimotor account of
vision and visual consciousness. Behav. Brain Sci. 24, 939–
973. doi:DOI: 10.1017/S0140525X01000115.

Ocko, S. A., Hardcastle, K., Giocomo, L. M., and Ganguli, S.
(2018). Emergent elasticity in the neural code for space.
Proc. Natl. Acad. Sci. 115, E11798 LP-E11806.
doi:10.1073/pnas.1805959115.

Poirazi, P., and Mel, B. W. (2001). Impact of active dendrites and
structural plasticity on the memory capacity of neural
tissue. Neuron 29, 779–796. doi:10.1016/S0896-
6273(01)00252-5.

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of
object recognition in cortex. Nat. Neurosci. 2, 1019–25.
doi:10.1038/14819.

Rowland, D. C., Weible, A. P., Wickersham, I. R., Wu, H.,
Mayford, M., Witter, M. P., et al. (2013). Transgenically
Targeted Rabies Virus Demonstrates a Major Monosynaptic
Projection from Hippocampal Area CA2 to Medial
Entorhinal Layer II Neurons. J. Neurosci. 33, 14889–
14898. doi:10.1523/JNEUROSCI.1046-13.2013.

Saleem, A. B., Diamanti, E. M., Fournier, J., Harris, K. D., and
Carandini, M. (2018). Coherent encoding of subjective
spatial position in visual cortex and hippocampus. Nature.
doi:10.1038/s41586-018-0516-1.

Schneider, D. M., and Mooney, R. (2018). How Movement
Modulates Hearing. Annu. Rev. Neurosci. 41, 553–572.
doi:10.1146/annurev-neuro-072116-031215.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T.
(2007). Robust Object Recognition with Cortex-Like
Mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29,
411–426. doi:10.1109/TPAMI.2007.56.

Sreenivasan, S., and Fiete, I. (2011). Grid cells generate an analog
error-correcting code for singularly precise neural
computation. Nat. Neurosci. 14, 1330–1337.
doi:10.1038/nn.2901.

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017).
The hippocampus as a predictive map. Nat. Neurosci. 20,
1643. Available at: http://dx.doi.org/10.1038/nn.4650.

Taube, J. S., Muller, R. U., and Ranck, J. B. (1990). Head-
direction cells recorded from the postsubiculum in freely
moving rats. I. Description and quantitative analysis. J.
Neurosci. 10, 420–35.
doi:10.1212/01.wnl.0000299117.48935.2e.

Theyel, B. B., Llano, D. A., and Sherman, S. M. (2010). The
corticothalamocortical circuit drives higher-order cortex in
the mouse. Nat. Neurosci. 13, 84–88.

doi:10.1038/nn.2449.The.
Thomson, A. M. (2010). Neocortical layer 6, a review. Front.

Neuroanat. 4, 1–14. doi:10.3389/fnana.2010.00013.
Thrun, S., Wolfram, B., and Fox, D. (2005). Probabilistic

Robotics (Intelligent Robotics and Autonomous Agents).
doi:10.1145/504729.504754.

Tsao, A., Moser, M.-B., and Moser, E. I. (2013). Traces of
Experience in the Lateral Entorhinal Cortex. Curr. Biol. 23,
399–405. doi:https://doi.org/10.1016/j.cub.2013.01.036.

Vélez-Fort, M., Bracey, E. F., Keshavarzi, S., Rousseau, C. V.,
Cossell, L., Lenzi, S. C., et al. (2018). A Circuit for
Integration of Head- and Visual-Motion Signals in Layer 6
of Mouse Primary Visual Cortex. Neuron 98, 179–191.e6.
doi:10.1016/j.neuron.2018.02.023.

Viaene, A. N., Petrof, I., and Sherman, S. M. (2011). Synaptic
Properties of Thalamic Input to the Subgranular Layers of
Primary Somatosensory and Auditory Cortices in the
Mouse. J. Neurosci. 31, 12738–12747.
doi:10.1523/JNEUROSCI.1565-11.2011.

Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011).
Principles of sensorimotor learning. Nat. Rev. Neurosci. 12,
739–51. doi:10.1038/nrn3112.

Wolpert, D. M., and Ghahramani, Z. (2000). Computational
principles of movement neuroscience. Nat. Neurosci. 3,
1212–1217. doi:10.1038/81497.

Wurtz, R. H. (2008). Neuronal mechanisms of visual stability.
Vision Res. 48, 2070–2089.
doi:https://doi.org/10.1016/j.visres.2008.03.021.

Yau, J. M., Pasupathy, A., Fitzgerald, P. J., Hsiao, S. S., and
Connor, C. E. (2009). Analogous intermediate shape coding
in vision and touch. Proc. Natl. Acad. Sci. U. S. A. 106,
16457–16462. doi:10.1073/pnas.0904186106.

Yoon, K., Buice, M. A., Barry, C., Hayman, R., Burgess, N., and
Fiete, I. R. (2013). Specific evidence of low-dimensional
continuous attractor dynamics in grid cells. Nat. Neurosci.
16, 1077–1084. doi:10.1038/nn.3450.

Zhang, S. J., Ye, J., Miao, C., Tsao, A., Cerniauskas, I.,
Ledergerber, D., et al. (2013). Optogenetic dissection of
entorhinal-hippocampal functional connectivity. Science
(80-.). 340, 44. doi:10.1126/science.1232627.

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

18

Supplementary figures

Figure S1. Varying the object statistics, the model’s breaking point varies significantly relative to number of learned objects. The
breaking point is much more consistent relative to the number of locations recalled by object features. In these charts we use a single
model and test on 6 different distributions of objects. The model uses 10 modules with 10x10 cells per module. (Left) The network’s
capacity depends on the statistics of objects. The network’s performance begins to break down after a certain number of objects, and
this breaking point can vary by orders of magnitude with different object distributions. (Right) This breaking point varies significantly
less when described in terms of “number of locations recalled by a sensation” rather than “number of objects learned”. Using the same
data from the first chart, for each object we measure the total number of occurrences of the object’s rarest feature, and we plot
recognition accuracy against this number. With each of these object distributions, the model reaches its breaking point when the
number of recalled locations is within a small interval – conservatively, between 7 and 15. There is still some variation due to the
statistics of the object’s other features (not just its rarest feature), but the number of occurrences of the rarest feature provides a good
first approximation for whether the network will recognize the object. (Object descriptions) Each object set had 100 unique features
and 10 features per object, except where otherwise noted. The first three sets generate objects using the same strategy as all the other
simulations, varying the parameters. The last three use different strategies. Object Set 1: baseline. Object Set 2: 40 unique features
rather than 100. Object Set 3: 5 features per object rather than 10. Object Set 4: Every feature occurs the same number of times, +/- 1,
rather than each object being randomly selected set of features with replacement. Object Set 5: Bimodal distribution of features,
probabilistic. Divide features into two equal-sized pools, choose features from the second pool more often than features from the first.
Object Set 6: Bimodal distribution of features, enforced structure. The features are divided equally into pools. Each object consists of
one feature from the first pool and nine from the second.

.CC-BY-NC 4.0 International licenseIt is made available under a
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/436352doi: bioRxiv preprint first posted online Oct. 5, 2018;

http://dx.doi.org/10.1101/436352
http://creativecommons.org/licenses/by-nc/4.0/

