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ABSTRACT 

The neocortex is capable of anticipating the sensory results of 
movement but the neural mechanisms are poorly understood. In 
the entorhinal cortex, grid cells represent the location of an animal 
in its environment, and this location is updated through movement 
and path integration. In this paper, we propose that sensory 
neocortex incorporates movement using grid cell-like neurons that 
represent the location of sensors on an object. We describe a two-
layer neural network model that uses cortical grid cells and path 
integration to robustly learn and recognize objects through 
movement and predict sensory stimuli after movement. A layer of 
cells consisting of several grid cell-like modules represents a 
location in the reference frame of a specific object. Another layer 
of cells which processes sensory input receives this location input 
as context and uses it to encode the sensory input in the object’s 
reference frame. Sensory input causes the network to invoke 
previously learned locations that are consistent with the input, and 
motor input causes the network to update those locations. 
Simulations show that the model can learn hundreds of objects 
even when object features alone are insufficient for 
disambiguation. We discuss the relationship of the model to 
cortical circuitry and suggest that the reciprocal connections 
between layers 4 and 6 fit the requirements of the model. We 
propose that the subgranular layers of cortical columns employ 
grid cell-like mechanisms to represent object specific locations 
that are updated through movement. 

INTRODUCTION 

Our brains learn about the outside world by processing our sensory 
inputs and movements. As we touch an object, survey a visual 
scene, or explore an environment, the brain receives a series of 
sensations and movements, a sensorimotor sequence. 

Cortical areas that are traditionally viewed as sensory areas are 
known to integrate the motor stream into their processing. In vision, 
we perceive a stable image of the world, usually oblivious to the 
fact that our eyes are making multiple saccadic movements per 
second. As the eyes move, many neurons in the visual cortex that 
represent a particular stimulus anticipate the stimulus before it lands 
in the cell’s receptive field (Duhamel et al., 1992). In audition, 
responses in auditory cortex are predictively suppressed by motor 
signals (Schneider and Mooney, 2018). In somatosensation, when 
moving our fingers over familiar objects we quickly notice 
discrepancies suggesting we make tactile predictions that are 
specific to particular objects. 

Predictive sensorimotor processing also occurs in the hippocampal 
formation. Grid cells (Hafting et al., 2005) and place cells (O’Keefe 
and Dostrovsky, 1971) represent an animal’s location, and they use 
a combination of sensory landmarks and self-motion cues to update 

their activity (Campbell et al., 2018). Another population of 
neurons selectively become active when an animal arrives at a 
location where a previously present object is missing (Tsao et al., 
2013), indicating that the system is predictive.  

Thus, different areas of the brain that seemingly play different roles 
in cognition display hallmarks of two common computations: 
integration of information over sensorimotor sequences, and 
prediction of sensory stimuli after movements. It is unclear how a 
network of neurons can extract reusable information from a 
sequence of sensations and movements, or how it can use this 
information to predict the sensory results of subsequent sequences. 
Simply memorizing sensorimotor sequences will lead to excessive 
learning requirements because for each sensed object there are 
many possible sensorimotor sequences. 

Recent work from our lab (Hawkins et al., 2017) proposed that the 
neocortex processes a sensorimotor sequence by converting it into 
a sequence of sensory features at object-centric locations. The 
neocortex then learns and recognizes objects as sets of sensory 
features at locations that are in the reference frame of the object, 
and it predicts sensory input by referring to these learned object 
models. This approach integrates movement into object 
recognition, and forms representations of objects that generalize 
over novel sequences of movement. However in that paper we left 
open the neural mechanisms for computing such a location signal. 

This paper extends our previous work by showing how the 
neocortex could represent and compute object-centric locations. 
Using this solution, we present a neural network model that learns 
and recognizes objects by processing sensorimotor sequences. We 
define a sensor to be the patch of skin or retina providing input to a 
particular patch of cortex. These patches of cortex can be thought 
of as cortical columns (Mountcastle, 1997). Drawing inspiration 
from how the hippocampal formation predicts sensory stimuli in 
environments, this model represents the sensor’s location relative 
to an object using an analog to grid cells, and it associates this 
location with sensory input. It then predicts sensory input by using 
motor signals to compute the next location of the sensor, and 
recalling the associated sensory feature. We propose that each patch 
of neocortex, processing input from a small sensory patch, contains 
all the circuitry needed to learn and recognize objects using 
sensation and movement. Information is also exchanged 
horizontally between patches, so movement isn’t always required 
for recognition (Hawkins et al., 2017), however this paper focuses 
on the computation that occurs within each individual patch of 
cortex. 

There is a rich history of sensorimotor integration and learning 
internal models in the context of skilled motor behavior (Wolpert et 
al., 2011; Wolpert and Ghahramani, 2000). These have primarily 
focused on learning motor dynamics and kinematic control, such as 
reaching and grasping tasks. This paper focuses on a 
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complementary problem, that of learning and representing external 
objects by integrating information over sensation and movement.  

In the rest of this paper we first review the basic properties of grid 
cells in the entorhinal cortex. We then propose that the neocortex 
uses analogs of grid cells to model objects just as the hippocampal 
formation uses them to model environments. Building on the 
theoretical framework introduced in (Hawkins et al., 2017) we 
propose that every neocortical column contains a variant of this 
model. Based on cortical anatomy, we propose that cells in Layer 6 
employ grid cell like mechanisms to represent object specific 
locations that are updated through movement. We propose that 
Layer 4 uses its input from Layer 6 to predict sensory input. 

How grid cells represent locations and movement 

We first review how grid cells in the entorhinal cortex represent 
space and location. Although many details of grid cell function 
remain unknown, general consensus has emerged for a number of 
principles. Here we focus on two properties that are critical to our 
model: location coding and path integration. 

Individual grid cells become active at multiple locations in an 
environment, typically in a repeating triangular lattice that 

resembles a grid (Figure 1A). The side length of these triangles in 
is known as the grid cell’s “scale”. A grid cell “module” is a set of 
grid cells that activate with the same scale and orientation but 
different positions, such that one or more grid cells will be active at 
any location (Figure 1B). If you sort the grid cells in a module by 
their relative firing locations, they form a rhombus-shaped tile. As 
the animal moves, a “bump” of activity moves across this rhombus 
(Figure 1B and 1C). The activity in a single module provides 
information on an animal’s location, but this information is 
ambiguous; many locations within the environment can lead to the 
same activity. 

To form a unique representation requires multiple grid cell modules 
with different scales or orientations (Figure 1C and 1D). For 
illustration purposes say we have 10 grid cell modules and each 
module can encode 25 possible locations via a bump of activity. 
These 10 bumps encode the current location of the animal. Notice, 
if the animal moves continuously in one direction the activity of 
individual modules will repeat due to the tiling, but the ensemble 
activity of ten modules is unlikely to repeat due to the differences 
in scale and orientation between the modules. The representational 
capacity formed by such a code is large. In our example the number 
of unique locations that can be represented is 25#$ ≈ 10#(. A 
review of the capacity and noise robustness of grid codes can be 
found in (Fiete et al., 2008; Sreenivasan and Fiete, 2011). 

 

Figure 1. Grid cells represent locations in environments. (A) An individual grid cell becomes active at multiple locations (green 
circles) in an environment. The locations of activation form a repeating grid-like lattice. (B) A grid cell module (left) is a set of 
cells that share the same lattice scale and orientation but which activate at different relative positions in the environment. If you 
sort the cells by their relative firing locations, it forms a rhombus-shaped tile. As the animal moves, as shown by the arrow, a bump 
of cell activity will move in some direction through this rhombus. Two grid cells and their firing locations (green and blue) are 
highlighted. The grid cell module will activate cells at every location in an environment, but because of tiling, a single grid cell 
module cannot represent a location uniquely. (C) This figure shows how a second module tiles the same space differently. Each 
cell’s firing fields have a larger scale and a different orientation than the module in (A) and (B). The same movement of the animal 
as shown by the arrow causes the bump to move in a different direction and a different distance than the bump in the first module 
in (B). In this case, the bump overlaps the edge of the rhombus, so it wraps around. (D) Although a single module cannot represent 
locations in an environment uniquely, the activity across multiple modules can. Here we superimpose the firing patterns of the two 
modules. Note that when the green and red cells fire together, only one location is possible. The larger the number of modules, the 
more locations that can be represented uniquely. 
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As an animal moves, the active grid cells in a module change to 
reflect the animal’s updated location. This change occurs even if the 
animal is in the dark (Hafting et al., 2005), telling us that grid cells 
are updated using information about the animal’s movement. This 
process, called “path integration”, has the desirable property that 
regardless of the path of movement, when the animal returns to the 
same physical location, then the same grid cells will be active 
(Figure 2A). Path integration is imprecise so in learned 
environments sensory landmarks are used to “anchor” the grid cells 
and prevent the accumulation of path integration errors 
(McNaughton et al., 2006; Ocko et al., 2018). 

A final important property is that the location representations can 
be unique to each environment. If upon first entering a new 
environment each grid cell module activates a random bump to 
represent the current location. Then all the location representations 
that the animal can move to in that environment will, with high 
probability, be unique to that environment. The initial random 
starting point thus implicitly defines a unique location space for 
each environment, including locations that have not yet been 
explicitly visited. Since each module independently integrates 
motion information, path integration properties automatically hold 
for each new environment. Consequently, path integration can be 
learned once for each module and then reused across all 
environments. The location space for each new environment will be 
a tiny subset of the full space of possible cell activities (in our 
example above the full space contains 25#$ points), thus the 
capacity for representing environments is quite large. When re-
entering a previously learned environment, learned associations 
between sensory cues and grid cells are used to “re-anchor” or re-
activate the previous location space. 

To summarize the above properties, a set of grid cell modules can 
unambiguously represent locations in an environment. These 
locations can be path integrated via movement, and environmental 
landmarks are used to correct path integration errors. By choosing 
random starting points within modules, unique location spaces can 
be defined for each environment. The space of all possible cell 
activations grows exponentially with the number of modules, thus 
the capacity for representing locations and environments is large. 

MODEL 

We propose that grid cell equivalents exist throughout the 
neocortex. Rather than representing the location of the animal in an 
environment, we propose that cortical grid cells represent the 
location of sensory patches, for example the tip of a finger, in the 
reference frame of an object (Figure 2B). Similar to traditional grid 
cells, cortical grid cells define a unique location space around each 
object. As a sensor moves, populations of grid cells representing 
each sensory patch’s location will path integrate through unique 
location spaces. The relative locations of features on an object can 
thus be used as a powerful cue for disambiguating and recognizing 
objects. 

Our network model integrates information over sensorimotor 
sequences, associating unique location spaces with objects and then 
identifying these location spaces. To outline the mechanism, let us 
first consider the question: how might a rat recognize a familiar 
environment?  It must use its sensory input, but a single sensory 
observation may be insufficient to uniquely identify the 
environment. The rat thus needs to move and make multiple 
observations. 

To combine information from multiple sensory observations, the rat 
could use each observation to recall the set of all locations 
associated with that feature. As it moves, it could then perform path 
integration to update each possible location. Subsequent sensory 
observations would be used to narrow down the set of locations and 
eventually disambiguate the location. At a high level, this general 
strategy underlies a set of localization algorithms from the field of 
robotics including Monte Carlo / particle filter localization, multi-
hypothesis Kalman filters, and Markov localization (Thrun et al., 
2005). 

Our model uses this strategy to recognize objects with a moving 
sensor. The model uses each sensed feature to recall locations where 
it has previously sensed this feature, activating a superposition of 
these previously learned location representations. As the sensor 
moves, the network performs path integration on each of these 
recalled locations, i.e. the movement signal shifts the superposition 
of locations within each grid cell module. This updated location 

 

Figure 2. (A) Grid cells in the entorhinal cortex represent locations of a body in an environment. The location representations are 
updated by movement (Room 1). The path integration property ensures that the representation of location 𝑐 is independent of the path 
taken to get there. Locations are unique to each environment such that the representations of locations 𝑎, 𝑏, and 𝑐 are distinct from the 
representations of any point in Room 2. (B) We propose that the neocortex contains grid cell analogs that represent locations relative to 
an object. The location representations are unique to each object.  
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predicts a set of possible features, and the sensory input is used to 
confirm a subset of these predictions. Thus, with each subsequent 
sensation the network will narrow down this list of locations until it 
uniquely identifies a specific location on a specific object that is 
consistent with the sequence of sensations and movements. 

Sensory features are known to invoke grid cell activity associated 
with familiar environments (Barry et al., 2007). Our model achieves 
this by learning associations between sensory input and the 
currently active grid cells at each location. 

In our model, grid cell modules represent ambiguity by having 
multiple simultaneous bumps of cell activity, constituting a 
superposition of location representations. We refer to this set of 
simultaneously-active representations as a union of locations. The 
system is capable of path integrating unions of locations; during 
movement, every active bump in a module is shifted. 

This localization algorithm assumes that the animal always knows 
the direction that it is moving in the reference frame of its 
environment. Determining this direction requires the animal to first 
perform heading retrieval, a computation that occurs somewhat 
independently of localization in the brain (Julian et al., 2018b). Our 
model doesn’t include an analog of heading retrieval. The model 
assumes it is given movement vectors in the reference frame of the 
object. In the discussion we briefly describe how this model could 
be extended to perform an analog of heading retrieval and hence 
build orientation-invariant models of objects. 

Model description 

Our two-layer model consists of two populations of neurons and 
four primary sets of connections (Figure 3). Later in the “Mapping 
to biology” section we propose which cortical populations 
implement this circuit. For each movement of the sensor, the 
network goes through a progression of stages, processing the motor 
input followed by the sensory input. Each stage corresponds to 
using the connections from one of the numbered arrows in Figure 
3. We show an example of the network going through these stages 
three times in Figure 4.  

Stage 1. Motor input arrives before the sensory input and is 
processed by the location layer, which consists of grid cell modules. 
If this layer has an active location representation, it uses the motor 
input to shift the activity in each module, computing the sensor’s 
new location. 

Stage 2. This updated grid cell activity propagates to the sensory 
layer and causes a set of predictions in that layer. 

Stage 3. The sensory layer receives the actual sensory input. The 
predictions are combined with sensory input. The new activity is a 
union of highly sparse codes. Each sparse code represents a single 
sensory feature at a specific location that is consistent with the input 
so far. 

Stage 4. The sensory layer activity propagates to the location layer. 
Each module activates a union of grid cells based on the sensory 
representation. The location layer will contain a union of sparse 
location representations that are consistent with the input so far. 

After the fourth stage the next motor action is initiated and the 
cycle repeats. The next few sections describe the network structure 
and each of these 4 stages in detail, as well as the learning process. 

Network structure 
We compute the network activity through a set of discrete 
timesteps. Each time step 𝑡 consists of a progression of the 4 stages 
outlined above. Here we describe the neuron model and network 
structure before describing the stages in detail. 

Each neuron in the network is a discrete time neuron with multiple 
independent dendritic segments. 𝑫.,0123 and 𝑫.,045  each denote a vector 
which specifies the synapses of dendrite 𝑑 on cell 𝑐 in the location 
layer and sensory layer, respectively. Each neuron has a binary 
output, and synapse weights are either 0 or 1. The number of 
synapses on each dendrite after learning is generally small and as a 
result these vectors are highly sparse. The neuron model with 
independent dendritic segments is closely related to the structure of 
the Poirazi-Mel neuron (Poirazi and Mel, 2001) and the existing 
experimental literature on active dendrites in pyramidal neurons 
(Antic et al., 2010; Major et al., 2013). Multiple dendritic segments 
enable each neuron to robustly recognize independent sparse 
patterns, and thus be associated with multiple location or sensory 
contexts. Although the activity of a single neuron can be 
ambiguous, we have shown in (Ahmad and Hawkins, 2016; 
Hawkins and Ahmad, 2016) that the activity of a network of such 
neurons can represent sparse distributed codes that are highly 
unique to specific contexts. In addition, with a sufficiently large 
number of cells, sparse representations enable such networks to 
represent a union of patterns (Ahmad and Hawkins, 2016) with a 
low probability of false match errors (up to a limit).  

Sensory and location layers 
The network presented here is an extension of the work in (Hawkins 
et al., 2017), and the sensory layer is identical in structure to the 
sensory input layer in that paper. As in that paper, the layer is 
organized into a set of mini-columns (Buxhoeveden, 2002) such 
that all cells within a mini-column have identical feedforward 

 

Figure 3. A diagram of the network with arrows indicating 
the main connections. (1) Motor input shifts the activity in the 
location layer, which consists of a set of independent grid cell 
modules. (2) The active location cells provide modulatory 
predictive input to the sensory layer. (3) Sensory input 
activates cells in the sensory layer. (4) The location is updated 
by the new sensory representation.  
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receptive fields but inhibit each other. Dendritic segments of the 
neurons in the sensory layer have a modulatory effect. An active 
segment does not by itself cause the cell to become active. When a 
cell with an active dendritic segment recognizes feedforward input, 
that cell will inhibit any other cells within the mini-column that do 
not have active segments (see Stage 3 below). The active cells of 
mini-column 𝑖 are denoted by the binary array 𝑨9

45,:. The layer 
activity 𝑨945 consists of the concatenation of all of the mini-column 
activities 𝑨9

45,:. 

The location layer is structured as a set of grid cell modules, each 
containing the same number of neurons. The active neurons of 
module 𝑖 at time 𝑡 are denoted by the binary array 𝑨9

123,:, and the 
layer activity 𝑨9123 consists of the concatenation of all of the module 
activities 𝑨9

123,:. Dendritic segments of the neurons in this layer have 
a driving effect; a cell will become active if any of its dendritic 
segments become active. During inference, activity in the location 
layer is updated once in response to movement and then again in 
response to sensory-derived input. We denote these two activation 
states by the vectors 𝑨9,;2<=123 , and 𝑨9,>=5>=123 .  

The location layer projects to the dendritic segments of the sensory 
layer (Figure 3, connection 2). Thus 𝑫.,045  is a vector with the same 
length as 𝑨9123 where a 1 represents a connection to a cell in the 
location layer. The sensory layer projects to the dendritic segments 
of the location layer (Figure 3, connection 4). Thus 𝑫.,0123 is a vector 
with the same length as 𝑨945	where a 1 represents a connection to a 
cell in the sensory layer. These vectors are generally extremely 
sparse as they connect to sparsely active cells during learning (see 
section on learning below). 

In each timestep, dendritic segments that receive sufficient input 
become active. The binary vectors 𝝅945 and 𝝅9123 denote cells in each 
layer that contain at least one active dendritic segment. These 
denote whether each cell was predicted from the other layer's 
activity. Designating 𝜃45 and 𝜃123 as dendritic thresholds, 

𝝅9
45,. = C1,		∃0[𝑫.,0

45 ⋅ 𝑨9,;2<=123 ≥ 𝜃45]
0, 		otherwise

	 (1) 
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Figure 4. As the sensor moves over a previously learned 
object, these two layers receive a sensorimotor sequence and 
recognize the object. Features 𝑓#, 𝑓T and 𝑓U indicate the 
sensory input invoked by touching the objects at the 
indicated locations. Motor commands 𝑎, 𝑏, and 𝑐 indicate 
the motor input received by the network when the sensor 
makes a movement. The objects are colored to relate them to 
active cells below. We show three movements, each 
consisting of the four stages above, and we draw snapshots 
of the network at the end of stages 2 and 4. The stages 1 
through 4 correspond to the connections in Figure 3. 
Movement 1. The network receives a movement command, 
and nothing happens because it doesn’t have a current 
location representation. Sensation 1. The sensor senses 
feature 𝑓# which provides input to every cell in a set of mini-
columns. None of the cells were predicted, so all become 
active. This feature has been learned on two objects, so this 
set of active cells contains two feature-at-location 
representations, shown in yellow and blue. These 
representations drive a pair of location representations to 
become active. This union of activity encodes the two 
possible locations that could have produced the sensation. 
Movement 2. Motor input 𝑏 causes each module to perform 
path integration, shifting its bump according to its scale and 
orientation. The newly active cells provide modulatory input 
to the sensory layer which predicts two different potential 
features, 𝑓T and 𝑓U, priming two representations to become 
active. Sensation 2. The sensor senses feature 𝑓T, and only 
the predicted cells in the 𝑓T mini-columns become active. 
The other predicted cells do not activate. This active 
representation drives a single representation to become 
active in the location layer. At this point, the network has 
identified the cube. Movement 3 and Sensation 3. 
Subsequent movements maintain the unambiguous 
representation as long as the sensed features match those 
predicted by the path-integrated locations. A movement back 
to the original location, for instance, causes a prediction only 
for the 𝑓# representation specific to that location on the cube. 
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𝝅9
123,. = C1,		∃0[𝑫.,0

123 ⋅ 𝑨945 ≥ 𝜃123]
0, 		otherwise

(2) 

Stage 1: Use movement to update location layer 
The location layer consists of a set of independent grid cell 
modules, each with its own scale and orientation. We follow 
notation and assumptions of other grid cell models and analyses 
(Ocko et al., 2018; Sreenivasan and Fiete, 2011). Within a module, 
the active cells are always part of a Gaussian bump of cell activity 
centered at a position, or phase, within the module’s tile (Figure 
1B). We designate the phase of module 𝑖’s bump as 𝜙W⃗ 9: . Each cell 
within a module is centered at a phase, and its activity at time 𝑡 is 
proportional to its nearness to 𝜙W⃗ 9: . The network responds to 
movement commands by updating 𝜙W⃗ 9:  for each module. 

Movement will shift each module’s bump according to the 
module’s scale and orientation. A 2D transform matrix 𝑴: 
associated with each module represents how the module converts a 
movement vector for the sensor into a movement vector for the 
bump. Denoting the scale of module 𝑖 as 𝑠: and the orientation as 
𝜃:, this transformation matrix is: 

𝑴: = [
𝑠: cos 𝜃: 					𝑠: cos(𝜃: + 60°)
𝑠: sin 𝜃: 					 	𝑠: sin(𝜃: + 60°)	

a
b#

(3) 

This operation converts the movement vector into a 60° basis, 
arranging each grid cell’s firing fields into a triangular rather than 
square lattice. It also scales and rotates the movement vector to set 
the scale and orientation of the lattice. 

Each module receives the same 2D movement vector 𝑑⃗9, and it 
shifts its bump as follows: 

𝜙W⃗ 9,;2<=: = d𝜙W⃗ 9b#,>=5>=: +	𝑴:𝑑9e	mod	1 (4) 

The modulo operation confines each bump of activity to have a 
phase within the 2D range [0, 1) × [0, 1). In the sorted view of a 
grid cell module (Figure 1B), the phase [0, 0] corresponds to the 
lower left corner while [0.9, 0.9] corresponds to the upper right 
corner. The bump of cell activity is centered at this phase, and we 
model the bump as having a Gaussian shape to qualitatively match 
the shape of the firing fields of observed grid cell responses 
(Monaco and Abbott, 2011).  

In addition to these properties, our model requires a grid cell 
module to be capable of path integrating multiple bumps 
simultaneously. Each module represents uncertainty by activating 
multiple bumps, one for each possible location. We refer to this as 
a union of locations. We designate a module’s set of bumps as Φ9

: . 
With every movement, we apply Eq. (4) to every phase in Φ9

: . 

Φ9,;2<=
: = md𝜙W⃗ +	𝑴:𝑑9e	mod	1	n	𝜙W⃗ ∈ Φ9b#,>=5>=

: p (5) 

Rather than simulating individual cell dynamics explicitly, each 
module in the location layer simply maintains a list of activity 
bump phases and updates each one according to Eq. (5). The 
location layer then outputs the binary vector 𝑨9,;2<=123  by 
thresholding the activity of each cell within the module (see 

Model Details). In the discussion we review models of individual 
grid cell dynamics and discuss their compatibility with unions. 

Stage 2: Use updated location to form sensory predictions 
In Stage 2, we compute which sensory features are predicted by the 
location layer. In our network these predictions are represented by 
𝝅945, the activity of distal dendritic segments of cells in the sensory 
layer. We compute 𝝅945 from 𝑨9,;2<=123  using Eq. (1) above.  

Each sensory feature that has been encountered at any of the current 
possible locations will be predicted. Note that because 𝑨9,;2<=123  is a 
concatenation of all grid cell modules, the predictions are based on 
highly specific location codes. 

𝝅945 has a modulatory effect on the activity of the sensory layer, as 
described in Stage 3. 

Stage 3: Calculate activity in sensory layer 
In Stage 3, the sensory layer uses the sensed feature to confirm 
correct predictions and to disregard incorrect predictions. When no 
predictions are correct, it activates all possible feature-at-location 
representations for the feature. This stage is responsible for both 
activating and narrowing unions. 

The sensory layer is identical to the sensory input layer in (Hawkins 
et al., 2017). In this layer, all the cells in a mini-column share the 
same feedforward receptive fields. Each sensory feature is 
represented by a sparse subset of the mini-columns, denoted by 
𝑾9

45. When a cell is predicted, it is primed to become active, and if 
it receives sensory input it will quickly activate and inhibit other 
cells in the mini-column. 

The active cells within the sensory layer are selected by considering 
𝑾9

45 and by considering which cells are predicted by the location 
layer, i.e. which cells have an active dendritic segment. If a cell is 
predicted and it is in a mini-column in 𝑾9

45, it becomes active. If a 
mini-column in 𝑾9

45 has no predicted cells, every cell in that mini-
column becomes active. 

𝑨9
:r,:,. = 	

⎩
⎪
⎨

⎪
⎧1, 𝑖 ∈ 𝑾9

45 and 𝝅9
45,:,. > 0

1, 𝑖 ∈ 𝑾9
45 and x𝝅9

45,:,.y

.y
= 0

0, otherwise

(6) 

If the location layer has uniquely identified the current location, 
there will be exactly one active cell in each mini-column in 𝑾9

45 
encoding this sensory feature at the current location. If the location 
layer contains a union of locations, the sensory layer will represent 
this feature at a union of locations. Note that the location layer 
may predict features that are not represented in 𝑾9

45. These mini-
columns will not contain any activity after this step (Figure 4, 
Sensation 2) and the set of possible objects is thus narrowed down. 

Stage 4: Update location layer based on sensory cues 
In Stage 4, the activity in the sensory layer recalls locations in the 
location layer. 𝑨945 is used to compute 𝝅9123 (Eq. (2)) which drives 
activity in the location layer. The list of activity bump phases in 
each module is replaced by a new set of bumps driven by sensory 
input. For each cell in the location layer that has a corresponding 
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active dendritic segment, the module activates a bump centered on 
that cell. 

Φ9,z{rz{
|}.,: = ~

m𝜙W⃗ .n𝑐 ∶ 𝝅9
123,:,. > 0p, ∃.�𝝅9

123,:,. > 0�
Φ9,;2<=
123,: 	, otherwise

(7) 

This new set of bumps is often very similar to the previous set, as 
in Figure 4, Sensation 3. Note that this step happens during 
inference only. During learning, the location layer doesn't update in 
response to sensory input; we simply assign Φ9,>=5>=

123,: = Φ9,;2<=
123,: . 

The active cells in the location layer 𝑨9,>=5>=123  are computed from 
Φ9,>=5>=
123  (see Model Details). Note that since connections from the 

location layer to the sensory layer cannot drive activity, recurrence 
in the network is minimal (see Model Details). 

Learning 
In our model the learning process involves associating locations 
with sensory features, and vice versa. These associations are learned 
on the distal dendritic segments, as specified in Eq. (8) and Eq. (9). 
Learning in this model always consists of the active cells in the two 
layers forming reciprocal connections. At the start of training on a 
new object, each module in the location layer activates a bump at a 
random phase. This instantiates a random location space that is 

specific to that object. For the rest of training, we provide a 
sequence of motor and sensory inputs, calculating Φ9,;2<=

123  as 
before, shifting each module’s bump with each movement. 

Each sensory input is represented by a set of mini-columns 
𝑾9,>=5>=

45 . Following Eq. (6) above, if this part of the object hasn't 
been learned yet there will be no predictions in the sensory layer 
and every cell in these mini-columns will become active. In this 
case a random cell in each active mini-column is selected as the cell 
to learn on, i.e. to represent this sensory input at this location. If this 
part of the object has been learned, there will be predictions in the 
sensory layer. In this case the cells corresponding to the existing 
active segments are selected to learn on. 𝑨9,1=��545  represents these 
learning cells for the current time step.  

Each active cell in 𝑨9,>=5>=123  and 𝑨9,1=��545  selects one of its dendritic 
segments 𝑑′ and forms connections between this segment and each 
active cell in the other layer.  

𝑫.,0y
123 ∶= 	𝑫.,0y

123 	|	𝑨9,1=��545 (8) 

𝑫.,0y
45 ∶= 	𝑫.,0y

45 	|	𝑨9,>=5>=123 (9) 

 

Figure 5. Our model learns and recognizes objects from sensorimotor sequences. The order of movements and sensations is not 
critical for either learning or recognition. We ran simulations to test these properties. This cartoon figure illustrates a training and 
test run of one of these simulations. (Top) Two objects are shown (right side). Each object is composed of the same sensory 
features (circle, square, star) in different spatial arrangements. The network learns the objects via a sequence of sensory features 
and movements (left). Note that the model learns the relative arrangement of the features (right), not the sensorimotor sequence 
itself (left). (Bottom) The network can recognize objects with novel sensorimotor sequences. The left input sequence consists of a 
sensed circle, a diagonally upward movement, and a sensed star. Although the network has never experienced this particular 
sensorimotor sequence before, it detects that this sequence matches a portion of object 1 and doesn’t match any other objects. In 
this example, one movement and two sensations is sufficient to recognize the object and the sensor’s current location on that 
object. The right sensorimotor sequence matches locations on both objects until the fourth sensory input, so it takes three 
movements and four sensations to recognize that this is object 2. 

 

 

Train
Sequence of sensory features and movements: The network learns:

Sequence of sensory features and movements: The network learns:

Novel sequence: The network recognizes: Novel sequence: The network recognizes:

Test

Object 1

Object 2

Object 1 Object 2
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Here we designate “|” as bitwise OR, implying that the existing 
connections on the dendritic segment are unaffected when these 
new connections are formed. 

SIMULATION RESULTS 

We ran simulations to test the ability of our model to learn the 
structure of objects and accurately predict sensory features from 
motor sequences. Our model is agnostic to the specific feature 
extraction technique, thus we focus on testing the set of neural 
computations that occur after features have been extracted. Thus, 
these experiments tested this set of neural computations and weren’t 
intended to be a general benchmark for object recognition. Our goal 
was to understand whether the model can accumulate information 
over sensorimotor sequences and to understand when the model 
reaches its breaking point. 

In the simulations, the model’s input consisted of sequences of 
sensory features and movements. The model’s task was to learn an 
object from a single sensorimotor sequence and then recognize that 
object from a different sensorimotor sequence. In Figure 5 we show 
an illustration of our test objects and the input sequences. Each 
object consisted of ten points chosen randomly from a four-by-four 
grid. We placed a feature at each point, choosing each feature 
randomly with replacement from a fixed feature pool. Features were 
shared across objects and a given feature could occur at multiple 
points on the same object. 

For every simulation, we trained the network by visiting each point 
on each object once. For each point, we stored the activity in the 
location layer in a separate classifier. We then tested the network 
on each object by traversing each of the object points in random 
order. Importantly, the network received a motor input for each of 
these random transitions between features, enabling it to properly 
accumulate information over time. As the sensor traversed the 
object, we tested whether the location representation exactly 
matched the classifier’s stored representation for that point on that 
object. If it matched this representation and if this representation 
was unique to this object, we considered the object to be recognized. 
If the network never converged to a single location representation 
after four complete passes over the object, or if it ever converged 
on a wrong location, we considered this a recognition failure. (In 
these experiments, the model always either converged to a single 
location or didn’t converge at all.) It is possible for the network to 
converge on the correct location representation even if that location 
isn’t unique to the object, for example if there aren’t enough 
modules to create a unique code. In the sections ahead, we 
specifically note when this occurred.  

We set the sensory layer to have 150 mini-columns and 16 cells 
per mini-column. Each sensory feature activated a predetermined, 
randomly selected set of 10 mini-columns which comprised the 
𝑾9,>=5>=

45  of timestep 𝑡. We varied the number of cells per module 
and the number of modules in the location layer. For these 
simulations we varied the module orientations but not the scales. 
The orientations were evenly spaced along the 60° range of 
possible orientations. Each module used the same scale, and this 
scale was fixed to be half the maximum width of the objects. We 
set the dendritic thresholds 𝜃123 and 𝜃45 to 8 and ⌈𝑛 ∗ 0.8⌉, 
respectively, where 𝑛 is the number of modules in the location 
layer and ⌈	⌉ is the ceiling operator. 

 

Figure 6. As the network recognizes an object, it converges onto 
a sparse activation. (A) Location layer cell activity in three (out 
of ten) grid cell modules while recognizing a single object. The 
bumps of activity are shown in color; red indicates a high firing 
rate. The location representation, shown as darkened circles, 
consists of cells that are sufficiently active. Each movement shifts 
the activity and each sensation narrows the activity to the cells 
that predict the new sensation. Cell activity converges onto a 
sparse representation by Sensation 3 and remains sparse 
afterward. (B) Cell activity in the same three modules as (A), 
shown for additional sensations and for two additional objects. 
Each module has 100 cells. The black lines indicate that the cell 
is active during the indicated sensation. After the first sensation, 
the location codes are very ambiguous in all cases. Depending on 
how common the sensed features are, the module activity narrows 
at different rates for the different objects. The sensation 
highlighted in red shows the first step in which the object is 
unambiguously determined. From this point on, the module 
activity shifts with each movement but remains unique to the 
object being sensed. (These simulations used a unique feature 
pool of size 40.) 
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Cell activity converges to a unique location representation. 
We begin by demonstrating the cell activity in a typical recognition 
task, and we show how it varies as the network learns more objects. 
In Figure 6 we show the actual grid cell activity for several modules 
in the location layer as the network sensed different objects. The 
network was first trained on 50 objects, each with ten features 
drawn from a pool of 40 features. The activity changes with each 
new sensation, first via path integration shifts based on the 
movement, followed by narrowing of the activity to only the 
locations consistent with the newly sensed feature. The network can 
take a different number of sensations to narrow to a single 
representation per module. Once the network has narrowed, the 
activity in a single module may be ambiguous but the set of active 
cells across all modules (only three of ten modules are shown) 
uniquely encode the object and location. 

The recognition process always follows this template. The initial 
sensory input typically causes dense activation, assuming the 
sensory feature is not unique to a single location. With subsequent 
movement and sensation this activity becomes sparser and 
eventually converges on a single representation. In Figure 7A we 
aggregate the cell activity from Figure 6 across all objects and all 
modules to show the average cell activation density after each 
sensation. As the network learns more objects, the initial density 
and the convergence time increase because the network recalls more 

locations-on-objects for each sensory input, and it has to 
disambiguate between more objects. 

The model approximates an ideal observer. 
Ideally, the network should recognize an object as soon as it 
receives a sensorimotor sequence that uniquely matches that object. 
In Figure 7B we compare the recognition time with such an ideal 
observer. The ideal detector stores both the features and their 
relative locations during training and exhaustively checks the 
current sensorimotor sequence against the stored objects during 
testing. It yields a correct classification as soon as the object is 
unambiguous based on the features and relative locations sensed up 
to that point. We also include a bag of features model. It ignores 
location information and yields a correct classification if it can 
unambiguously determine the object based solely on the sensory 
features. 

This network uses 10 modules, and the dataset contains 100 objects 
with 10 unique features. Very few objects can possibly be 
determined by a single sensation, but three or four sensations are 
sufficient. As we increase the number of cells in each module, the 
model’s performance approaches that of the ideal detector. With 
40x40 cells per module, the two are near identical. The bag of 
features model often cannot uniquely identify the objects because 
many objects are different arrangements of identical sets of 
features. 

 

Figure 7. (A) With multiple sensations, the location layer activity converges to a sparse representation. Using the same simulation 
from Figure 6, we show the activation density after each sensation, averaged across all objects and modules. With additional 
sensations, the representation becomes sparser until the object is unambiguously recognized. With more learned objects, the network 
takes longer to disambiguate. The activation density of the first sensation increases with the number of learned objects. If the initial 
activation density is low, the network converges very quickly. If it’s high, convergence can take longer. (B) Comparison of this 
network’s performance with the ideal observer and a bag-of-features detector. Each model learned 100 objects from a unique feature 
pool of size 10. We show the percentage of objects that have been uniquely identified after each sensation, averaged across all 
objects. The ideal model compares the sequence of input features and relative locations to all learned objects while the bag-of-
features model ignores relative locations. With a sufficiently large number of cells per module, the proposed neural algorithm gets 
similar results to the ideal computational algorithm. (Both) In both of these charts we repeat the experiment with 10 different sets of 
random objects and we plot the 5th, 50th, and 95th percentiles of each data point across trials. 
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Near the model’s capacity limits, recognition time degrades. 
As this model learns more objects, it eventually begins taking 
longer to recognize objects than the ideal observer. If it’s pushed 
further, it eventually begins failing to recognize objects. In Figure 
7B, the network with 30x30 cells per module requires more 
sensations to narrow down the object than the ideal observer, but it 
always recognizes the object eventually. The network with 27x27 
cells per module often never recognizes the object after many 
sensations, indicating the network has been pushed beyond its 
capacity. 

To understand the way that the system reaches a capacity limit, 
consider the density of activation in the location modules when a 
single feature is sensed. If a single feature occurs in many locations, 
then during learning the location layer and sensory layer 
reciprocally associate many cells in each module with that feature. 
Sensing that feature will cause a large percentage of the cells in the 
location layer to activate. If this percentage is too high, location 
representations that aren’t supposed to be active will be largely 
contained in this dense activation, resulting in false positives. In the 
worst case, the location layer will fail to extract anything useful out 
of this sensory input, because it will activate nearly every location 
representation as part of its dense activation. We found that the 
main influence on the model’s recognition time is whether the 
model is approaching its capacity limit. In the following section we 
characterize this capacity limit. 

Capacity varies with size of location layer, statistics of objects. 
The previous simulations investigated the time to converge onto a 
unique location. Here we consider the capacity of the network 
independent of convergence time. We compute the fraction of 
objects correctly classified after many sensations, and we define the 
capacity as the maximum number of objects the network can store 
while maintaining a 90% accuracy rate. While we use 10 locations 
per object for these simulations, the total number of locations 
(number of objects times the number of locations per object) is what 
matters. 

It is worth noting that this definition of capacity is a measure of the 
model’s ability to recognize objects, not simply a measure of its 
ability to store objects. The network could potentially store many 
more predictive models of objects, but after some point it will be 
unable to recognize those objects from sensory input via this 
model’s circuitry. The model has multiple potential bottlenecks that 
could determine this breaking point: the representational capacity 
for sensory features, the representational capacity for locations, the 
number of patterns a cell can learn via independent dendritic 
segments, and the network’s ability to represent multiple locations 
simultaneously. By changing the model parameters and input data 
in different ways, any of these could become the bottleneck, but we 
found that the most unavoidable of these potential bottlenecks was 
the last one. 

Because our experiments focused on scenarios in which the same 
features occur on multiple objects, the model begins running into 
capacity limits when the sensory input causes the location layer to 
activate a union of representations that is large enough to cause false 
positives in the sensory layer. This occurs when the union contains 
large portions of location representations that aren’t supposed to be 
active. The likelihood of this event is influenced by the model’s 
number of modules, the number of cells per module, and the 
statistics of objects. In Figure 8, we characterize the impact of these 
variables on the model’s capacity. 

The model’s capacity increases with the number of modules, though 
with diminishing returns. In Figure 8A we plot two lines to dissect 
the relationship between the number of modules and capacity. The 
top line shows the impact of having multiple modules, then the 
bottom line shows how this effect is reduced by our model’s lower 
dendritic thresholds. Even with a single module, the network is able 

 

Figure 8. (A-C) Model capacity changes with model 
parameters (blue) and object parameters (orange). The 
network’s capacity is the maximum number of objects that 
it can learn while maintaining the ability to uniquely 
identify at least 90% of the objects. We repeat the 
experiment with 10 different sets of random objects and we 
plot the 5th and 95th percentiles of each capacity. (A) 
Increasing the number of modules in the network increases 
capacity sublinearly, and this impact depends on the 
dendritic threshold of the neurons reading this location 
representation. The two lines show two different thresholds 
relative to 𝑛, the number of modules. With only one 
module the network can successfully converge to one 
location, but that location isn’t object-specific (red ‘x’). (B) 
Increasing the number of cells increases capacity linearly. 
(C) Similarly, increasing the feature pool size also 
increases capacity linearly. (D) A heatmap showing the 
capacity of the network while varying the feature pool size 
and location module size. An increase in the number of 
cells per module can compensate for a decrease in the 
number of unique features. 
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to converge onto one location representation for a considerable 
number of learned objects. However, this location representation 
isn’t unique to the object, so it doesn’t qualify as recognizing the 
object; we denote this with a red ‘x’. Adding a few more modules 
ensures unique locations, and each additional module helps the 
model deal with large unions. They guard the model from having 
too many false positives when a large percentage of cells are active. 
More precisely, for each representation, the percentage of the cells 
that will be active due to randomness will be approximately equal 
to the activation density, with some variance, and having more 
modules reduces this variance. If the threshold is 100%, then the 
model can increase its capacity indefinitely by adding modules. 
However, to avoid depending on every neuron reliably firing, this 
model doesn’t use such a high threshold. In our model, neurons will 
detect a location if 80% of its cells are active. With this lower 
threshold the benefit of additional modules asymptotes, and no 
number of modules will be able to handle more than 80% activation 
density. 

Previous analysis of grid cell codes (Fiete et al., 2008) showed that 
the code’s representational capacity increases exponentially with 
the number of modules. This holds true for this model, but this 
model’s bottleneck is not the size of its unique location spaces. This 
model’s performance depends on its ability to unambiguously 
represent multiple locations simultaneously. A grid cell code’s 
union capacity doesn’t scale exponentially with number of modules. 

The model’s capacity increases linearly with number of cells per 
module (Figure 8B). As we add additional cells, the size of a bump 
remains constant relative to the cells, so the bump shrinks relative 
to the module. Because each bump activates a smaller percentage 
of the cells in a module, a module can activate more bumps before 
the network reaches the density at which object classification starts 
failing.  

The model’s capacity increases linearly with the number of unique 
features (Figure 8C). This happens because it reduces the expected 
total number of occurrences of each feature, and hence the number 
of elements in each union. This indicates that the statistics of the 
world influence the capacity of the model, and it also means that 
this network can improve its capacity by adjusting the “features” 
that it extracts from sensory input. 

Because these two latter parameters have independent linear 
relationships with capacity, they can compensate for each other. In 
Figure 8D we plot object capacities in a network with 10 modules. 
We show that increasing (decreasing) the number of cells per 
module and decreasing (increasing) the number of unique features 
by the same factor causes the capacity to remain approximately 
constant. This is illustrated by the approximate symmetry across the 
chart’s diagonal. 

The model recognizes an object if the object has at least one 
sufficiently uncommon feature. 
Up to this point, we’ve characterized this model’s ability to 
recognize objects by stating, “The network will reliably recognize 
an object if the network has learned fewer than c total objects,” and 
we’ve measured c. This characterization is built on many 
assumptions about objects. It’s desirable to be able to characterize 
the model in a way that isn’t specific to these assumptions. 

Given that the model’s ability to recognize objects depends on the 
density of cell activity invoked by sensory features, we found we 

could characterize the model’s performance more directly by 
answering, “The network will reliably recognize an object if the 
object contains a feature with fewer than k total occurrences across 
all learned objects,” and measuring k. In another set of experiments 
(Figure S1), we generated objects using multiple alternate 
distributions of features. We found that the network’s breaking 
point relative to c (the number of learned objects) did indeed vary 
widely with the choice of feature distribution, while its breaking 
point relative to k (the number of locations recalled by sensing a 
feature) was much more consistent across distributions. This 
suggests that the network’s performance relative to k will hold true 

 

Figure 9. Summary chart showing recognition time and 
capacity while varying the model parameters. The top chart 
shows the median number of sensations required to recognize 
an object, and it marks the final point where a network 
recognized at least 50% of objects using an ‘x’. The bottom 
chart shows the percentage of objects that were recognized after 
traversing every point on the object multiple times. The charts 
share an x axis, and this x axis has two sets of ticks and labels. 
The bottom ticks are numbers of learned objects, given 10 
locations per object and 100 unique features. The top ticks are 
the typical smallest union sizes that will be invoked by each 
object. With different statistics, these curves will shift relative 
to the bottom ticks, but they should stay approximately fixed 
relative to the top ticks. We repeat the experiment with 10 
different sets of random objects. In the top chart we combine 
the data from all trials and plot the median. In the bottom chart 
we plot the 20th, 50th, and 80th percentiles for each data point 
across trials. 
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with real-world statistics. Using both of these metrics, c and k, we 
summarize all of these results in Figure 9. 

We conclude that this model reliably recognizes an object if the 
object has at least one sufficiently uncommon feature, a feature 
that causes the network to recall a sufficiently small number of 
locations. After sensing this feature, the model can use other, more 
common features to finish recognizing the object, but it needs 
some initial clue to help it activate a manageable union that it can 
then narrow. With enough cells, this initial clue doesn’t need to be 
especially unique. For example, the feature could have 10 learned 
locations-on-objects if the module has 10x10 cells per module and 
10 modules, as shown in Figure 9, and this breaking point can be 
pushed arbitrarily high by adding more cells. The network can also 
avoid running into this breaking point by tweaking the set of 
“features” that it extracts from sensory input. 

MAPPING TO BIOLOGY 

We have described a two-layer network model for sensorimotor 
inference and now consider how this network motif maps to known 
cortical anatomy and physiology. Layer 4 (L4) is well understood 
to be the primary target of thalamocortical sensory inputs (Douglas 
and Martin, 2004; Jones, 1998; Theyel et al., 2010). These 
connections are believed to be driving inputs (Viaene et al., 2011) 
and target both excitatory and inhibitory neurons, with a slight delay 
for the inhibitory neurons that provides a window of opportunity for 
neurons to fire (Harris and Shepherd, 2015). Mountcastle identified 
the organization of neurons into mini-columns with shared 
receptive fields (Buxhoeveden, 2002; Mountcastle, 1957). 

The connections between L4 and layer 6a (L6a) closely resemble 
the connections in our model (Figure 3, arrows 2 and 4). Thalamic 
input forms a relatively small percentage of L4 synapses; 
approximately 45% of its synapses come from L6a (Binzegger et 
al., 2004). The connections from L6a are weak (Harris and 
Shepherd, 2015; Kim et al., 2014). They connect to distal dendritic 
segments of L4 cells whereas thalamocortical afferents connect 
more proximally (Ahmed et al., 1994; Binzegger et al., 2004). L4 
cells also form a significant number of connections to cells in L6a 
(Binzegger et al., 2004). These biological details closely match our 
network model, where the location layer (putatively L6a) has a 
modulatory influence on the sensory input layer (putatively L4) 
which in turn can drive representations in the location layer. 

Our location layer also requires a motor input. Experiments show 
that L5 cells in motor regions, such as M2, project to sensory 
regions, including layer 6 (Leinweber et al., 2017; Nelson et al., 
2013). Principal cells in Layer 6 of mouse V1 receive a direct 
projection from retrosplenial cortex that signal the angular velocity 
of horizontal rotation of the head (Vélez-Fort et al., 2018). There is 
also a potential indirect pathway through thalamocortical inputs that 
target layer 6 (Harris and Shepherd, 2015; Thomson, 2010). 
Thalamic relay cells receive input from layer 5 neurons that are 
presumed to be efference copies of motor commands sent 
subcortically (Chevalier and Deniau, 1990; Jones, 1998). Any of 
these direct or indirect pathways could serve as motor signals for 
path integration in L6. 

Our model draws inspiration from the grid and place cell systems 
in the hippocampal formation. Our location layer is modeled after 
grid cells. These cells project (Zhang et al., 2013) to place cells 

(O’Keefe and Dostrovsky, 1971) in the hippocampus. Areas of 
hippocampus containing place cells also project back to areas of 
entorhinal cortex containing grid cells (Rowland et al., 2013). Many 
place cells seem to represent item-place pairs, and these pairs are 
learned through experience (Komorowski et al., 2009), a 
phenomenon that is analogous to the learning of feature-location 
pairs in our sensory layer. 

Location representations in neocortex similar to grid cells are 
speculative but there is initial experimental support for grid-like 
codes in neocortex. fMRI experiments with humans performing 
tasks have led to activity signatures in prefrontal cortex that are 
similar to grid cell signals (Constantinescu et al., 2016; Julian et al., 
2018a). Direct cell recordings have also shown grid-like activity in 
frontal cortex (Doeller et al., 2010; Jacobs et al., 2013). These 
experiments are consistent with the hypothesis that grid-like cells 
are present in the neocortex and not just a phenomenon of the 
hippocampal formation. These grid cells were discovered by 
looking for cells that respond similarly to grid cells in the 
hippocampal formation; in the Testable Predictions section we 
predict that more grid-like cells will be found by looking for cells 
representing sensors’ locations relative to objects. 

In our model, primary sensory cortex represents the sensory input 
at locations in an external reference frame. This is consistent with 
results from (Saleem et al., 2018). As a mouse ran on a virtual track, 
the majority of recorded cells in primary visual cortex encoded the 
animal’s location on the track, even when the mouse received visual 
input that occurred at multiple points of the track. According to our 
model, in this task the visual cortex represented the location of a 
sensor (the mouse’s eye) relative to an object (the virtual track), and 
the cortex used the visual input to recall locations on the track while 
using the mouse’s movement to update these location 
representations. Their finding that the error in V1’s location 
representation matches the error in CA1’s location representation 
suggests that these two areas use the same path integration signals. 

Although additional experimental work is required, evidence 
suggests that L4 and L6a provide the best candidate populations 
for our sensory and location layers, respectively. 

DISCUSSION 

We have presented a two-layer neural network model for 
sensorimotor object recognition. By pairing sensory input with an 
object-centric representation of location, the model learns objects 
as spatial arrangements of sensory features. Both object learning 
and object recognition are independent of the particular order of 
movements and sensations. 

The model’s location layer contains modules that operate similarly 
to grid cell modules in the medial entorhinal cortex. The location 
modules represent the sensed location in the reference frame of the 
object. The location modules receive a movement input that updates 
and predicts new locations. The sensory layer combines the 
representation of location with sensory input to create 
representations of sensory inputs that are unique to objects and 
locations on those objects. 

Object recognition in our model occurs via a series of sensations 
and movements. A sensory input activates the set of locations where 
the input has been previously learned. The location layer updates 
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these locations based on motor input. The updated locations cause 
prediction in the sensory layer. The next sensory input narrows 
down possible locations and possible objects. In this way, a series 
of sensations and movements will allow the model to rapidly infer 
which object is being sensed. 

The model provides a concrete implementation of the location 
signal introduced in our earlier model (Hawkins et al., 2017) and 
proposes a mechanism for how sensory input and motor input 
work together.  

Can grid cell modules support unions 

In our model we treat a grid cell module as a black box with well-
known and previously documented properties. Our model is 
agnostic regarding the internal dynamics and mechanisms that 
create the grid cell properties. However, we gave grid cell modules 
an additional property that is not typically noted in grid cells: 
support for unions. The grid cell modules in our model can activate, 
maintain, and shift multiple bumps of activity simultaneously. 
Various models of grid cell dynamics could be plugged into this 
model, but this union property introduces a new requirement for 
these models. 

Several models have been proposed to explain grid cell dynamics 
(Giocomo et al., 2011). Recurrent grid cell models have received 
more empirical support (Yoon et al., 2013) than models in which 
grid cells establish their responses independently of each other. In 
recurrent models, grid cells determine their activity using velocity 
input and connections to other grid cells, either directly or via 
interneurons. A well-known recurrent model is the continuous 
attractor network (Burak and Fiete, 2009; Fuhs and Touretzky, 
2006) which performs robust path integration and offers a simple 
explanation for the origin of the hexagonal firing fields. Another 
explanation for the origin of these fields is that they are an optimal 
code for locations which is naturally learned by neural learning 
rules. This argument has appeared in two lines of research. In path 
integration models, (Banino et al., 2018) and (Cueva and Wei, 
2018) found that recurrent neural networks trained to perform path 
integration naturally develop grid cells, although neither report the 
network developing the full rhombus of grid cells at each scale. 
Setting path integration aside, (Kropff and Treves, 2008), (Dordek 
et al., 2016), and (Stachenfeld et al., 2017) showed that cells 
performing Hebbian learning on place cell activity would naturally 
learn periodic firing fields similar to those of grid cells. 

The continuous attractor model is so named because it has a 
continuous manifold of stable states. If the network activates a 
representation that isn’t within this manifold of stable 
representations, the activity will move to the nearest stable state. In 
typical continuous attractor networks, a union is not a stable state 
and the network will collapse a union of bumps into a single bump. 
It’s an open question whether it’s possible to have a continuous 
attractor with stable union states. In this paper we’ve shown that it’s 
theoretically advantageous for grid cell modules to work with 
unions. The attractor dynamics are appealing in part because they 
explain the hexagonal firing fields, but as mentioned, those may be 
explainable as the natural result of a recurrent neural network 
learning a location code. 

Modeling the internal mechanisms of the location layer is an area 
for future research.  

Egocentric vs. object-centric coordinates 

Sensors such as eyes and skin detect features in a viewer-centric or 
egocentric coordinate frame. It is inefficient to learn an object’s 
features in egocentric coordinates as the system will need to learn 
the object at every shifted location and rotated orientation. Our 
model represents location using grid cell-like modules, and, like 
grid cells in the entorhinal cortex, cortical grid cells represent 
locations relative to the external object being observed. 

Converting from an egocentric reference frame to an object-centric 
reference frame is therefore necessary. If reference frames are based 
on Cartesian coordinates then it is necessary to establish origin 
points and the conversion, as outlined in (Marr and Nishihara, 
1978), is complex. Grid cell representations avoid much of this 
complexity. Reference frames based on grid cells do not have an 
origin. Grid cells represent locations and features relative to each 
other as opposed to relative to an origin. 

However, representing objects with grid cells still requires knowing 
the orientation of the sensor and features relative to the object. Our 
model does not yet have a representation of orientation. As a result, 
our model will only recognize an object if the object is at its learned 
orientation relative to the sensor. An extended version of our model 
could incorporate orientation using analogs to head-direction cells 
(Taube et al., 1990). Grid cells represent the animal’s location on a 
cognitive map, whereas head-direction cells represent the animal’s 
orientation relative to the cognitive map. When an animal moves, 
grid cell modules move their bump of activity depending on the 
orientation of the animal. Similarly, we expect the neocortex to 
represent the orientation of sensors relative to the reference frame 
of the sensed object, and this orientation will influence how sensor 
movement translates into the movement of bumps in cortical grid 
cell modules. This extended model would be able to learn 
orientation-invariant models of objects as well as handle sensors 
that rotate with respect to objects. 

2D vs. 3D objects 

We have described our model using 2D grid cell modules to learn 
2D objects, however, the neocortex is capable of learning 3D 
objects. Our model should work with 3D objects provided the 
location code represents 3D locations relative to an object. How the 
entorhinal cortex represents 3D space is an active area of research 
(Jeffery et al., 2015). Our team is currently working on extending 
our model to include 3D representations and orientation. 

Relationship to other models 

Our model identifies objects using the relative location of sensory 
features. Objects are disambiguated over time through successive 
sensations and movements. In contrast, most existing models of 
object recognition involve a strictly feedforward spatial hierarchical 
system (DiCarlo et al., 2012; Riesenhuber and Poggio, 1999; Serre 
et al., 2007; Yau et al., 2009). In these models each level detects the 
presence of increasingly abstract features in parallel until a 
complete object is recognized at the top of the hierarchy. Our model 
implies that each level of a hierarchy might be more powerful than 
previously assumed. In (Hawkins et al., 2017) we discussed how 
spatially separated sensory inputs (across multiple cortical columns 
each computing a location signal) can cooperate in parallel to 
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recognize objects, and some of the implications on hierarchy. Our 
model suggests a path for integrating sensorimotor behavior into a 
hierarchical system, and accounts for the many inter and 
intracortical connections that are not explained by a purely 
feedforward model. A more detailed study integrating our model 
into a full hierarchical system is a topic for future research. 

There is significant literature on sensorimotor integration and the 
learning of internal models in the context of skilled motor behavior 
(Wolpert et al., 2011; Wolpert and Ghahramani, 2000). These have 
primarily focused on learning motor dynamics and kinematic 
control, including reaching and grasping tasks. Our model focuses 
on the more structured object recognition paradigm, but there are 
many high-level similarities with this body of literature. Our 
location layer is highly analogous to the forward models posited to 
exist in motor control (Wolpert et al., 2011).  In both cases the 
current state is updated using a motor efference copy to compute 
the next state. In both these models, this is an estimate of the state 
that informs predictions (arrow 2 in Figure 3) and is then combined 
with sensory input to produce the current state (arrows 3 and 4 in 
Figure 3). The primary difference is that our model recognizes a set 
of structured objects rather than motion trajectories. The neural 
mechanisms are also significantly different. Nevertheless it is 
intriguing that the same ideas can be applied to both situations and 
may reflect a more general design pattern in the brain. An in-depth 
exploration of this relationship is a topic for future research. 

Our model provides an alternate explanation for predictive 
processing in visual cortex. Existing models of saccadic remapping 
suggest that it occurs by shifting attended parts of the image across 
visual cortex (Wurtz, 2008). This explanation requires every part of 
the retinotopic map to be connected to every other part, either 
horizontally or through the feedforward input, and it requires using 
the eye movement information to enable a small subset of these 
connections. In our model, each patch of visual cortex computes the 
location of a patch of retina relative to the attended object, then uses 
this location to predict sensory input. As the eyes saccade over a 
static object, our model would not require any horizontal shifting of 
information within the visual cortex. Thus this paper suggests a 
model of saccadic remapping that does not require every patch of 
visual cortex to be related to every other patch via long distance 
connections. Implementing this extended model is a topic for future 
research. 

A recent article (Keller and Mrsic-Flogel, 2018) proposed a neural 
circuit for using a signal to form predictions and represent 
prediction error. This is a general-purpose circuit that can consume 
any type of prediction signal. In the present study we have presented 
a particular type of prediction signal – locations – and how they are 
updated. We combined this signal with a different neural 
mechanism for prediction (Hawkins and Ahmad, 2016), but it 
would also be possible to use locations as prediction signal with 
Keller and Mrsic-Flogel’s mechanism. The two mechanisms differ 
in how they represent prediction error. In our model, when an input 
matches a prediction, the network activates a sparse representation 
of the input in this particular context, whereas a mismatch causes 
the network to activate a dense representation of the input in many 
different possible contexts. Keller and Mrsic-Flogel’s model 
represents sensory stimuli and prediction error using two different 
populations of cells. 

Others have emphasized the importance of sensorimotor processing 
in how we perceive different sensory modalities differently. 
(O’Regan and Noë, 2001) use the example of holding a bottle and 

seeing a bottle. They propose that your conscious perception of the 
bottle via a sensory modality comes from your mastery of that 
modality, from being able to predict what you will feel as you move 
your hand over the bottle or what you will see as you move your 
eyes over the bottle. In this paper we have not focused on conscious 
perception, but our model does propose how the brain represents 
the bottle in different sensory modalities in such a way that it will 
make predictions in response to movements. We think the idea of 
object-specific location representations is quite compatible with 
this view of perception. 

A recent article from our lab (Hawkins et al., 2019) proposed a 
location-based framework for understanding the neocortex. There 
we described how models of objects can be related to one another 
by representing displacements between grid cells, enabling 
representations of compositional objects. In the present paper we 
provide a neural mechanism for learning object models that fit into 
this approach to compositionality. This is one building block of a 
larger theory in which locations are key computational primitives 
of the neocortex. 

Testable Predictions  

Our model makes a number of experimentally testable predictions. 
We expand on the predictions from (Hawkins et al., 2017). 

1. The neocortex uses analogs of grid cell modules to represent 
locations relative to objects. The cell activity in a module 
moves through a manifold of representations as the attended 
location moves relative to an object. For example, in 
somatosensory areas, cells will respond selectively when the 
animal’s finger is at particular locations relative to an attended 
object. Just as entorhinal grid cell modules use the same map 
for every environment, the cells of a single module use the 
same manifold of representations for every object. This map 
has limited size, and hence it will perform some form of 
wrapping at its edges. 

2. The neocortex uses a population code of multiple modules to 
represent object-specific locations. 

3. These modules are in Layer 6 of the neocortex. 
4. The projection from Layer 6 to Layer 4 modulates which cells 

in Layer 4 become active. If Layer 6 input is experimentally 
inhibited, activity in Layer 4 will become denser. 

5. The connection from Layer 4 to Layer 6 can drive the Layer 6 
cells to become active, but this only occurs when the animal 
receives an unpredicted input. 

MODEL DETAILS 

Each module has a fixed number of cells which each have a fixed 
phase in the rhombus. Gaussian bumps of activity move over these 
cells. A cell is considered active if its firing rate is sufficiently high. 
In this section, we walk through the details of these calculations. 

Each module contains 𝑤 ∗ 𝑤 cells. Each cell 𝑐 has a constant phase 
𝜙W⃗ .. We partition the 2D range [0,1) × [0,1) into 𝑤 ∗ 𝑤 ranges of 
equal area and set each cell’s 𝜙W⃗ . to the center of one of these ranges. 
Because these modules use basis vectors separated by 60° (Eq. (3)), 
when mapped onto physical space these cells form a rhombus and 
they pack together in a hexagonal formation. 
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The normalized firing rate of a cell 𝑐 caused by bump 𝑏, denoted 
𝑟.,�, is equal to the Gaussian of the distance between them. 

Gaussian(𝑑) = 	𝑒b
��
T��	 (10) 

𝑟.,� = Gaussian �Distanced𝜙W⃗ ., 	𝜙W⃗ �e�	 (11) 

Distance(𝜙W⃗ 3, 𝜙W⃗ �) represents the shortest distance between the cell 
and the bump on the phase rhombus. Computing this distance 
requires changing the basis so that each 𝜙W⃗  is a point on a rhombus 
rather than a point on the [0,1) × [0,1) square. 𝜎 specifies the size 
of the bump relative to the rhombus, which we discuss later. 

When there are multiple bumps, the firing rates from each bump are 
combined as if each rate encodes a probability of an event. The 
combined firing rate encodes a probability of the “or” of those 
events. 

𝑟. = 1 −�d1 − 𝑟.,�e
�

	 (12) 

To compute module 𝑖’s active cells 𝑨9
123,:, we compute each cell’s 

firing rate and check whether it is above the active firing rate 𝑟�3�4<=. 

𝑨9
|}.,:,. = 	 C1, 𝑟. ≥ 𝑟�3�4<=

0, otherwise 	 (13) 

We choose 𝑟�3�4<= using a readout resolution parameter 𝛿𝜙 which is 
common in grid cell models (Fiete et al., 2008; Sreenivasan and 
Fiete, 2011). 

𝑟�3�4<= = Gaussian �
𝛿𝜙
2 ∗

2
√3
¡	 (14) 

The readout resolution 𝛿𝜙 approximately specifies the diameter of 
the range of phases that a bump encodes. Because modules are 2D, 
if the readout resolution is 1/4 then the bump can encode 
approximately 16 possible positions in the rhombus. The 
multiplicative factor of 2/√3 accounts for the fact that when circles 
pack together in hexagonal formation, they leave some area 
uncovered; this factor expands the circles to overlap and cover this 
area. With a single bump, changing the 𝜎 parameter has no effect 
on the model, because the 𝛿𝜙 parameter has complete control over 
what fraction of the cells are considered active. 𝜎 becomes relevant 
when there are multiple bumps. The wider these bumps are, the 
more they’ll combine and cause interstitial cells’ firing rates to rise 
above 𝑟�3�4<=. 

We vary 𝜎 and 𝛿𝜙 as follows. Our baseline parameters mimic the 
sparsity of rat entorhinal grid cell modules. We set 𝜎 to 0.18172, a 
number we obtained by fitting a 2D Gaussian to the firing fields 
generated by the model in (Monaco and Abbott, 2011). We set 𝛿𝜙 
to a conservative estimate of 1/3. In this configuration, we assign 
the network 6x6 cells, and a bump always activates at least 2x2 
cells. When we test the network with more cells, we assume that the 
bump remains a fixed size relative to the cells, i.e. that the bump is 
smaller relative to the size of the module, and we scale down 𝜎 and 
𝛿𝜙 accordingly. For example, with 12x12 cells, we use 𝜎/2	 and 

𝛿𝜙	/	2. By varying the parameters in this way, a single bump 
always activates between 4 and 7 cells, depending on where the 
bump is centered relative its local neighborhood of cells, and as we 
vary the number of cells we’re effectively varying the number of 
cells that the bump doesn’t activate. 

During learning, only the cell with the highest firing rate is 
associated with the sensed feature. (When a sensed feature activates 
a cell, it activates a bump centered on the cell via Eq. (7), activating 
the cells around it.) This means this model’s learning resolution is 
twice as precise as the readout resolution. Because sensed features 
are associated with cells that represent a range of phases, there’s 
always some uncertainty in the phase recalled by sensory input. If 
the learned resolution weren’t more precise than the readout 
resolution, the bump of active cells would need to expand to 
account for this uncertainty, and the effective readout resolution 
would be half as precise. Using fixed-sized bumps, achieving a 
particular readout resolution – that is, having a bump encode a range 
of phases with a particular diameter – requires the learning 
resolution to be at least twice as precise as this readout resolution. 

The ideal classifier in Figure 7B stores all objects as 2D arrays. 
During inference, it uses the first sensed feature to find all possible 
locations on all objects with that feature, and it stores these as 
candidate locations. With each subsequent movement it updates all 
of the candidate locations. Any updated candidates that are not valid 
locations on objects or contain features that don’t match the new 
sensed feature are removed from the candidate list. Once there is 
only a single location left, inference is successfully completed. 

The bag of features detector stores a set of features for each 
learned object. It does not keep track of how many times features 
occur, just the set of unique features present somewhere on the 
object. During inference, another set keeps track of which features 
have been sensed so far. Once there is only one object that 
contains all of the sensed features, inference is successfully 
completed. If there are multiple objects that contain all features 
once all locations on the object being tested have been visited, 
then the object cannot be uniquely classified. 

Recurrent dynamics 
This network contains a recurrent loop, so there is potential for 
additional recurrent dynamics after Stage 4 of a given timestep. 
However, because the input in Stage 2 is modulatory and never 
drives cells to become active, the network generally converges after 
Stage 4. We found that simulating these dynamics occasionally 
allowed the network to recognize objects with one fewer sensation. 
To keep the model and the notation simple, in this paper after Stage 
4 the simulation advances to the next timestep, and Stage 1 repeats 
with the next sensory input. 

Code availability 
All of the source code for this model and these simulations can be 
found at https://github.com/numenta/htmpapers. 
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Supplementary figures 

 

 

 

Figure S1. Varying the object statistics, the model’s breaking point varies significantly relative to number of learned objects. The 
breaking point is much more consistent relative to the number of locations recalled by object features. In these charts we use a single 
model and test on 6 different distributions of objects. The model uses 10 modules with 10x10 cells per module. (Left) The network’s 
capacity depends on the statistics of objects. The network’s performance begins to break down after a certain number of objects, and 
this breaking point can vary by orders of magnitude with different object distributions. (Right) This breaking point varies significantly 
less when described in terms of “number of locations recalled by a sensation” rather than “number of objects learned”. Using the same 
data from the first chart, for each object we measure the total number of occurrences of the object’s rarest feature, and we plot 
recognition accuracy against this number. With each of these object distributions, the model reaches its breaking point when the 
number of recalled locations is within a small interval – conservatively, between 7 and 15. There is still some variation due to the 
statistics of the object’s other features (not just its rarest feature), but the number of occurrences of the rarest feature provides a good 
first approximation for whether the network will recognize the object. (Object descriptions) Each object set had 100 unique features 
and 10 features per object, except where otherwise noted. The first three sets generate objects using the same strategy as all the other 
simulations, varying the parameters. The last three use different strategies. Object Set 1: baseline. Object Set 2: 40 unique features 
rather than 100. Object Set 3: 5 features per object rather than 10. Object Set 4: Every feature occurs the same number of times, +/- 1, 
rather than each object being randomly selected set of features with replacement. Object Set 5: Bimodal distribution of features, 
probabilistic. Divide features into two equal-sized pools, choose features from the second pool more often than features from the first. 
Object Set 6: Bimodal distribution of features, enforced structure. The features are divided equally into pools. Each object consists of 
one feature from the first pool and nine from the second. 
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