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    Calibration and uncertainty analysis is necessary to perform the best estimation and uncertainty 

identification of hydrological models. This paper uses the Soil and Water Assessment Tool-Calibration 

and Uncertainly Procedures (SWAT-CUP) model to analyze the uncertainty of SWAT model in a 

Japanese river catchment. The GLUE and SUFI-2 techniques used in this analysis show quite good results 

with high value of R2 as 0.98 and 0.95 for monthly simulation. Daily simulation results during calibration 

and validation are also good with R2 as 0.86 and 0.80. For uncertainty results, the 95% prediction 

uncertainty (95PPU) brackets very well with the observation. The p-factors of uncertainty analysis for the 

calibration and validation periods are 92% and 94%. The calibration result by using GLUE shows better 

than that by using SUFI-2. However, the processing time of the GLUE approach is longer than SUFI-2 

approach when they were run in the SWAT-CUP. The uncertainty analysis indicates that the parameters 

of effective hydraulic conductivity in main channel alluvium (CH_K2) and base-flow alpha factor for 

bank storage (ALPHA_BNK) play important roles for calibration and validation of SWAT model.  
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1. INTRODUCTION  

 
   With the physics-based, distributed hydrologic 

models widely applied for managing the flood 

events and water resource in the world, the 

calibration and uncertainty analysis of those 

hydrological models is complex with the limitations 

of the input data, the complexity of the information 

of hydrological processes, and uncertainty in the 

physical basis of a river catchment. Overestimation 

of uncertainty can result in over-design of 

mitigation measures, while underestimation of 

uncertainty can lead to inadequate preparation for 

potential situations. The fine calibration and 

uncertainty analysis is required for the successful 

application of SWAT model1),2),3). 

   The Soil and Water Assessment Tool (SWAT) 4) 

is a physics-based, long-term, and distributed 

hydrological model. As an excellent assessment 

model for hydrological modeling and water resource 

management, the SWAT model has been applied 

worldwide. Many of the applications have been 

driven by the needs of various government agencies, 

particularly in the U.S.5),6) and the European Union, 

which require direct assessments of anthropogenic, 

climate change, and other influences on a wide 



 

 

range of water resources or exploratory assessments 

of model capabilities for potential future 

applications. Specially, there are several successful 

applications on studying the impact of climate 

change on water resources in India, assessing water 

supply and sedimentation issues in the Yellow River 

of China7), and assessing water availability in the 

African continent8). 

   There are some researches about parameter 

estimation9), split-parameter structure10), and 

automatic calibration11) of hydrological models 

which have been done in the previous studies. The 

calibration of the SWAT model has been studied in 

multi-sites using a single-objective optimization 

method and the multi-objective method 12). A 

multi-objective automatic calibration of SWAT 

model by using NSGA-II is presented by Bekele and 

Nicklow13). Calibration of SWAT model based on 

satellite data provided a new approach to solve the 

lack of reliable data14). A combined method by using 

Genetic Algorithms and Bayesian Model Averaging 

were used to provide a practical and flexible tool to 

attain reliable deterministic simulation and 

uncertainty analysis of SWAT15). 

   The main objectives of this research are to 

assess the calibration and uncertainty of the SWAT 

model in the upper stream of the Yoshino River, and 

to compare two uncertainty analysis methods. In 

addition, we compare the performances of the 

estimation and computational efficiency for both 

Generalized Likelihood Uncertainty Estimation 

(GLUE) and the Sequential Uncertainty Fitting 

(SUFI-2). 

 

2. STUDY SITE & DATA COLLECTION  
 

   The study site is located at the upper stream of 

the Yoshino River, Kochi Prefecture, Japan. The 

Sameura Dam (Fig.1) is used for hydropower, flood 

control, tap water, and irrigation. The Yoshino River 

is the second longest river in the Shikoku Island, 

and spreads over the four prefectures of this island. 

Over 80% of the Yoshino River basin area is 

covered by forest, 15% is the land for agriculture, 

and 2% is urban area. It has a long history in flood 

control which started from 1585 of Edo period. 

After 1920, the dams and artificial channels were 

constructed to solve the drought problem in this 

area. The large economical loss was caused from the 

drought events in recent years.  

   The basin area of the upper stream in the 

Yoshino River is about 389 km2. The highest 

elevation is 1890 m, and the lowest elevation is 313 

m. The forest is covered 88%, the agriculture land is 

only 1.5% and the urban area is 0.1% in this 

catchment. The annual rainfall in the mountain area  

 
 

Fig.1 The boundary, river channel and digital elevation model 

(DEM) information of the Yoshino River upper stream 

 

of this catchment is 2500 to 3000 mm, and the 

rainfall period is concentrated in rainy season and 

typhoon season. The extreme historical recorded 

discharge in the Sameura Dam is 0 m3/s during the 

drought season and 4000 m3/s during the flood 

season. 

   In this study, we collected a digital elevation 

model (DEM), land use, soil type, channel network, 

observed discharge and AMeDAS data from the 

Japanese Ministry of Land, Infrastructure, Transport 

and Tourism (MLIT). The 50 m resolution DEM 

data (Fig.1) and 100-m land use data are obtained 

from the National and Regional Planning Bureau of 

MLIT. The channel network and soil type are 

obtained from the Land and Water Bureau of MLIT. 

Six years’ observed daily discharge data is used for 

the model calibration and validation.  

   As the input data for the weather generator of 

SWAT, the daily temperature, humidity, wind speed 

and precipitation data are used. We combined and 

transferred the original polygon land use data to the 

land use raster map by using ArcGIS9.3.   

 

3. METHODS  
 

(1) SWAT model 

   The SWAT model is continuously developed 

and refined by the U.S. Department of Agriculture 

(USDA) – Agricultural Research Service (ARS) and 

scientists at universities and research agencies 

around the world. It is a long-term, continuous 

simulation watershed model designed to evaluate 

the impacts of management conditions on water 

yield, sediment yield, and non-point source loadings 

in the watershed which is divided into a number of 

sub-basins called hydrologic response units (HRUs) 

in partition. All the input data such as land use map, 

soil map, DEM and so on are overlapped in order to 

produce HRUs, and each HRU is assumed to be 

spatially uniform.  

   There are two major divisions for the simulation 

of the watershed hydrology in SWAT. The land 



 

 

phase of hydrology cycle is the first division. The 

amount of water, sediment, nutrient and pesticide 

loadings to the main channel in each subbasin is 

controlled by this hydrology cycle. The routing 

phase of the hydrology cycle is the second division 

which can be defined as the movement of water, 

sediment and so on through the channel network of 

the watershed to the outlet. 

   The water balance equation is the base of the 

hydrology cycle simulation in SWAT: 
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        (1)                  

where SWt is the final soil water content (mm), SW0 

is the initial soil water content on day i (mm), t is 

the time (days), Rday is the amount of precipitation 

on day i (mm), Qsurf is the amount of surface runoff 

on day i (mm), Ea is the amount of 

evapotranspiration on day i (mm), wseep is the 

amount of water entering the vadose zone from the 

soil profile on day i (mm), Qgw   is the amount of 

return flow on day i (mm H2O).  

 

(2) SWAT-CUP model  

   SWAT-CUP (Calibration and Uncertainty 

Procedures) is developed for integrating various 

calibration and uncertainty analysis programs of 

SWAT model. In this program, it includes five 

approaches such as Sequential Uncertainty Fitting 

(SUFI-2)16),17), Generalized Likelihood Uncertainty 

Estimation (GLUE)18), Parameter Solution 19), Mark 

chain Monte Carlo20), and Particle Swarm 

Optimization for the calibration or uncertainty 

analysis. SUFI-2 is the algorithm for calibration of 

SWAT model. GLUE is a common method for the 

global sensitivity analysis. Generally, GLUE and 

SUFI-2 can provide the widest marginal parameter 

uncertainty intervals of model parameters among the 

five approaches. Therefore, the SUFI-2 and GLUE 

methods were applied in this study. The brief 

descriptions and procedures of SUFI-2 and GLUE 

are given as below. 

a) SUFI-2 

   The parameter uncertainty is calculated from all 

the input and output source uncertainties such as the 

uncertainty in the input rainfall data, the user land 

use and soil type, parameters, and observed data, in 

SUFI-2. The simulation uncertainty is quantified by 

the 95% prediction uncertainty (95PPU) which is 

referred to as the p-factor. The 95PPU is calculated 

at the 2.5% and 97.5% levels of the cumulative 

distribution function of the output variable obtained 

by Latin hypercube sampling. The p-factor (the 

percent of observations bracketed by the 95PPU) 

and the r-factor are calculated as following Eq. (2) 
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where 
M

ti
y %5.97,  and 

M

ti
y %5.2,  are the upper and low 

boundary of the 95PPU. obs  is the standard 

deviation of the observed data. 

   The best calibration and parameter uncertainty is 

measured by the basis of the closeness of the 

p-factor to 100% (i.e. all the observations bracketed 

by the prediction uncertainty) and the r-factor to 1 

(i.e., achievement of rather small uncertainty band) 

22). If the two factors are in satisfactory values, a 

uniform distribution in the parameter hypercube is 

explained as the following parameter distribution. 

The goodness fit in SUFI-2 is quantified by the R2 

and Nash-Sutcliff (NS) coefficient between the 

observation data and the best simulation. 

b) GLUE 

   Generalized Likelihood Uncertainty Estimation 

(GLUE) which is an uncertainty analysis technique 

inspired by importance sampling and regional 

sensitivity analysis23). In GLUE, parameter 

uncertainty accounts for all sources of uncertainties, 

i.e., input uncertainty, structural uncertainty, 

parameter uncertainty and response uncertainty, 

because the likelihood measure value is associated 

with a parameter set and reflects all these sources of 

error and any effects of the covariation of parameter 

values on model performance implicitly24). The 

parameter uncertainty is counted by the likelihood 

weights of the behavioral parameter set. The 

likelihood weight of each behavioral parameter set 

is calculated as the following Eq.(3): 
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where L(θ) is a large number of parameter sets 

which are randomly sampled from the prior 

distribution and each parameter set. N is the number 

of behavioral parameter sets. 

   In this research, R2 and Nash-Sutcliffe 

objectives are applied for uncertainty measures, and 

the 95PPU is also used for presenting the 

uncertainty of the output variable. The most 

frequently used likelihood measure for GLUE is the 

Nash-Sutcliffe coefficient (NS): 
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where n is the number of the observed data points, 

and 
,it

y and )(
,
M

ti
y  represent the observation and 

model simulation with parameters θ at time ti, 

respectively, and y  is the average value of the 

observations. 

 



 

 

4. RESULT AND DISCUSSION 

 
   In this research, the calibration period is from 

2003 to 2005, and the validation period is from 2006 

to 2008. In order to calibrate and validate the SWAT 

model by using the observed stream flow data, we 

selected 10 parameters such as Initial SCS runoff 

curve number (CN2), Base-flow alpha factor 

(ALPHA_BF), Groundwater delay time 

(GW_DELAY), Manning's "n" value for the main 

channel (CH_N2), Effective hydraulic conductivity 

in main channel alluvium (CH_K2), Base-flow 

alpha factor for bank storage (ALPHA_BNK), 

Available water capacity of the soil layer 

(SOL_AWC), Saturated hydraulic conductivity 

(SOL_K), Moist bulk density (SOL_BD), and 

Snowfall temperature (SFTMP) based on the 

sensitivity analysis of these parameters for the 

discharge calibration through SWAT-CUP model. 

 

(1) Monthly calibration and validation 

   The best estimation result is obtained from the 

GLUE uncertainty analysis method. The time series 

of the simulated and observed monthly stream flow 

is shown in Fig.2. It shows a good estimation of 

base-flow in the calibration period (2003-2005). The 

simulated discharge has been overestimated in the 

March and April of 2004. The observed stream flow 

in the September of 2004 is higher than the 

simulated stream flow. The river discharge in 2003 

and 2005 has been reproduced very well (Fig.2).  

   The simulated and observed peak discharge in 

2005 shows the best result. The scatter plot of 

monthly stream flow for the calibration period is 

drawn in Fig.3, which shows a well fitting 

relationship between observation and simulation 

with 0.98 of likelihood measure R2 closed to 1. 

   The simulated monthly discharge for validation 

period is also conducted in this research. For the 

highest peak discharge, the simulated discharge 

performs very well comparing with the observed 

discharge. For the other peak discharges, the 

simulated ones are slightly higher than the observed 

ones. It shows a fine fitting with a 0.95 R2 

likelihood measure value between the estimation 

discharge and observed discharge in Fig.4. 

 

(2) Daily calibration and validation 

   The simulated daily stream flow in the 

calibration period presents a fine result closing to 

the observed data. The R2 and NS coefficients of the 

best simulation result in GLUE are about 0.86 

(Fig.5) and 0.85, respectively. An extreme peak 

daily discharge which is about 2800 m3/s was found 

in this calibration period. The estimation result of 

this extreme discharge is shown in a well fitting          

 
Fig.2 Time series of monthly river discharges (2003-2005) 

 

 
Fig.3 Scatter plot of monthly river discharges (2003-2005) 

 

 
Fig.4 Scatter plot of monthly river discharges (2006-2008) 

 

with the observed discharge. The simulated peak 

discharge in the most periods of the calibration 

performs very well. 

   For the validation, the estimated result also 

performs very well, and the coefficient of the 

simulated discharge was obtained as about 0.8 in the    

R2 likelihood measure (Fig.6) and 0.73 in the NS 

likelihood measure. 
 

(3) Uncertainty analysis and discussion 

   The threshold value of GLUE uncertainty 

analysis method is selected to be 0.7. For example, 

if the simulations with NS values larger than 0.7 are 

behavioral, otherwise they are non-behavioral. In 

the GLUE method, the sample sizes of GLUE 

simulation are given 1000, 5000, 10000, 20000. The 

sample size of this uncertainty analysis is based on 

5000. The 95PPU of the model result for calibration 

is shown in Fig.7. Most of the 95PPU are bracketed 

by the observation and best simulation. In the 
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base-flow part in Fig.7, the 95PPU is shown very 

clearly. The p-factor of the uncertainty analysis is 

92% during the calibration period and 94% during 

validation period. 

   The uncertainty analysis of daily river discharge 

during validation period is shown in Fig.8. The 

95PPU does not fit the observed river discharge well 

in the peak discharge of August 2006. However, the 

base flow has been reproduced well. 

   As for SUFI-2, five hundred was chosen as the 

sample size since similar results were obtained if the 

sample sizes which are greater than 500 were 

applied. As for GLUE, the suggested sample size in 

SWAT-CUP model is the value of more than 5000. 

In this study, five thousand was finally selected by 

using the trial and error method. As results, the 

95PPU brackets 93% of the observations during the 

whole calibration period. The 95PPU is quite 

suitable to bracket the observations in 2003, 2005, 

2007 and 2008, while are somehow overestimated 

or underestimated in 2004 and 2006. It means there 

is a lot of uncertainty in the calculation of recession 

parts by SWAT. 

   The fitted parameter values are quite different in 

the GLUE and SUFI-2 approaches. The fitted CN2 

value in SUFI-2 is 78, but that in GLUE is 62. The 

best estimated value of ALPHA_BF in GLUE is 

about 0.89 which is four times larger than that in 

SUFI-2. The parameters of CH_K2 and 

ALPHA_BNK have much impact on the model 

sensitivity. The best estimated values of CH_K2 and 

ALPHA_BNK are 123.32 and 0.25, respectively.   

   For the highest peak discharge during the 

calibration period, the result from GLUE method is 

better than that from SUFI-2. The results of the 

likelihood measure R2 during the calibration period 

are in the same value reached to 0.86 of GLUE and 

SUFI-2, but the results of NS likelihood measure are 

0.85 of GLUE and 0.84 of SUFI-2. During the 

validation period, the NS likelihood measure of 

GLUE and SUFI-2 are 0.73 and 0.69. According to 

this result, GLUE performances a better result in 

validation than SUFI-2. The marginal parameter 

intervals of GLUE are wider than those of 

 

 
Fig.5 Scatter plot of daily river discharges (2003-2005) 

 
Fig.6 Scatter plot of daily river discharges (2006-2008) 

 

 
Fig.7 Uncertainty analysis of daily river discharges during 

calibration period (95PPU is the 95% prediction uncertainty 

band which is calculated at the 97.5% and 2.5% levels of the 

cumulative distribution function of the output variables). 

 

 
Fig.8 Uncertainty analysis of daily river discharges during 

validation period. 

    

SUFI-2 because GLUE considers parameter 

correlations while SUFI-2 does not. SUFI-2 is 

limited to find one of many regions in a 

multidimensional parameter space. The processing 

time of GLUE is relatively longer than SUFI-2 in 

the same computing condition. This is partly 

because the sample size of GLUE (=5000) is much 

larger than that of SUFI-2 (=500). 
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5. CONCLUSIONS 

 
   This study performed a fine result of calibration 

and uncertainty analysis in the upper stream of the 

Yoshino River. The results with the likelihood 

measure R2 and NS are 0.86 and 0.85 during the 

calibration period, and 0.80 and 0.73 during the 

validation period. The 95PPU brackets with the 

observation in the calibration and validation periods. 

The comparison of GLUE and SUFI-2 applied in 

this Japanese river catchment suggested that the 

result from GLUE had the best estimation, 

especially during the validation period. The GLUE 

application led to the widest parameter uncertainty 

intervals of the model parameters. The SUFI-2 

method can be run with the smallest sample size and 

in a high processing time. However, further efforts 

are required to conduct the sensitivity analysis of 

each parameter of the SWAT model in application 

to Japanese river catchments. 
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