
1 

 

A novel k-mer set memory (KSM) motif representation improves 
regulatory variant prediction  
Yuchun Guo1, Kevin Tian1, Haoyang Zeng1, Xiaoyun Guo1, David Kenneth Gifford1* 

 
1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 
Cambridge, MA 02139, USA 
* Corresponding author, gifford@mit.edu 

Additional Footnotes: 
Present address for Kevin Tian:  Department of Computer Science, Stanford University, Stanford, 
CA 94305 

 

ABSTRACT  
The representation and discovery of transcription factor (TF) sequence binding specificities is 
critical for understanding gene regulatory networks and interpreting the impact of disease-
associated non-coding genetic variants.  We present a novel TF binding motif representation, the 
K-mer Set Memory (KSM), which consists of a set of aligned k-mers that are over-represented at 
TF binding sites, and a new method called KMAC for de novo discovery of KSMs.  We find that 
KSMs more accurately predict in vivo binding sites than position weight matrix models (PWMs) 
and other more complex motif models across a large set of ChIP-seq experiments.  KMAC also 
identifies correct motifs in more experiments than four state-of-the-art motif discovery methods. 
In addition, KSM derived features outperform both PWM and deep learning model derived 
sequence features in predicting differential regulatory activities of expression quantitative trait loci 
(eQTL) alleles.  Finally, we have applied KMAC to 1488 ENCODE TF ChIP-seq datasets and 
created a public resource of KSM and PWM motifs.  We expect that the KSM representation and 
KMAC method will be valuable in characterizing TF binding specificities and in interpreting the 
effects of non-coding genetic variations. 
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INTRODUCTION 
The binding of transcription factors (TFs) to specific short DNA sequences enables the precise 
control of gene expression in space and time.  A TF binding motif is a short DNA sequence or 
sequences that a TF recognizes.  We define the motif discovery task to be the identification of 
DNA sequences that are directly recognized by a TF, and thus are located at the site of binding 
where they mechanistically interact with a TF.  Thus, our definition of a TF binding motif excludes 
co-factor motifs and other sequence features that are not immediately proximal to the site of TF 
binding.  

Motifs are often used to identify preferential genome binding locations for a factor.  Computational 
identification of TF binding sites are essential in deciphering transcriptional regulatory networks 
(Spellman et al. 1998; Lee et al. 2002; Kim and Park 2011).  In addition, certain genetic variants 
associated with human diseases and phenotypic traits alter regulatory DNA sequences that are 
recognized by TFs (Maurano et al. 2012). Therefore, accurate TF binding motifs are critical to 
characterize TF binding differences between alleles and to identify the upstream regulators of 
non-coding variants (Claussnitzer et al. 2015).  The advent of high throughput technologies such 
as ChIP-seq (Johnson et al. 2007) and protein binding microarrays (PBM)(Berger et al. 2006) 
have made a large amount of data available for the computation of in vivo and in vitro TF binding 
specificities.  Computational methods for TF motif discovery remains an active and important area 
of investigation (Zambelli et al. 2012) and continues to inspire research into new approaches 
(Weirauch et al. 2013; Tompa et al. 2005).   

Currently, there is no single standard for TF binding motif representation (Hughes 2011).  The 
most widely used motif model is the position weight matrix (PWM) (Stormo 2000).  However, the 
PWM model assumes that each base position contributes independently to binding probability 
and thus is unable to represent inter-base dependencies.  Although PWM models provides a good 
approximation of protein-DNA interactions for many TFs (Benos et al. 2002; Zhao and Stormo 
2011), dependencies between nucleotides at different positions in TF binding sites have been 
observed (Man and Stormo 2001; Bulyk et al. 2002; Berger et al. 2006; Maerkl and Quake 2007).  
In addition, a PWM is a highly compact and lossy representation.  Therefore, in practice, PWMs 
fail to capture the full complexity of TF binding specificities in high throughput data.  

K-mer based motif representations, which capture the exact bound sequences and thus preserve 
positional dependences if they exist, have been explored as alternatives to the PWM 
representation.  Early work used individual over-represented k-mers to represent and discover 
TF binding motifs (van Helden et al. 1998; Tompa 1999).  MotifCut connects k-mers into a graph 
and represents a motif as the maximum density subgraph, which is a set of k-mers that exhibit a 
large number of pairwise similarities (Fratkin et al. 2006).  Recently, bags of k-mers (Ghandi et al. 
2014) or clusters of k-mers (Setty and Leslie 2015) were used with binary classifiers for 
discriminating bound versus unbound sequences. However, the k-mer based representations of 
gkm-SVM (Ghandi et al. 2014) and seqGL (Setty and Leslie 2015) represent not only the DNA 
binding of a particular TF, but also other aspects such as chromatin accessibility and co-binding 
factor motifs.  Thus gkm-SVM and seqGL fall outside of our definition of TF motif discovery.  In 
addition, in these recent approaches, overlapping k-mers were implicitly assumed to be 
independent and were combined additively to score sequences.  This independent assumption 
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does not reflect the non-additive combinations of overlapping k-mers at a given site for binding, 
leading to an inaccurate representation of motifs.   

More complex models accounting for positional dependencies have also been proposed, but they 
are rarely used in practice because they are computationally intensive and require more data to 
properly estimate the model’s parameters and may overfit if data are limited (MacIsaac and 
Fraenkel 2006; Zambelli et al. 2012). For example, The TF flexible model (TFFM) uses a hidden 
Markov model based framework to capture interdependencies of successive nucleotides and 
flexible length of the motif (Mathelier and Wasserman 2013).  The sparse local inhomogeneous 
mixture (Slim) uses a soft feature selection approach to optimize the dependency structure and 
model parameters (Keilwagen and Grau 2015).  Recently, deep neural network (deep learning) 
based approaches have been applied to predict TF binding with improved accuracy (Alipanahi et 
al. 2015; Zhou and Troyanskaya 2015). However, the distributed representation of deep learning 
models is more difficult to interpret mechanistically.  We will compare deep learning based models 
with motif-based models for predicting the effect of non-coding genetic variants.  

In addition, recent studies showed that proximal sequences flanking TF motifs may strongly affect 
the DNA shape and hence TF binding (Gordân et al. 2013; Levo and Segal 2014).  Therefore, a 
motif model that preserves the base positional dependences in the motif and includes proximal 
flanking bases may improve the performance of PWM models and current k-mer based models.   

In this paper, we present a novel motif representation that preserves the inter-position 
dependencies and includes the flanking k-mers, called K-mer Set Memory (KSM), and a de novo 
motif discovery method, K-Mer Alignment and Clustering (KMAC).  A KSM consists of a set of 
aligned k-mers that are over-represented at factor binding sites and that can be combined non-
additively to accurately represent binding sites in new sequences.  We show that KSM models 
predict in vivo TF binding more accurately than the PWM and the more sophisticated TFFM 
(Mathelier and Wasserman 2013) and Slim (Keilwagen and Grau 2015) models.  In addition, 
predictive models based on KSM motifs outperforms those based on PWM motifs and deep 
learning derived sequence features in predicting differential regulatory activities of expression 
quantitative trait loci (eQTL) alleles.  KMAC outperforms several state-of-the-art methods in 
correctly finding the known motifs from a large set of ChIP-seq data.  Together, these results 
demonstrate that the KSM is a more accurate motif representation than the PWM and other 
representations for modeling TF binding and characterizing non-coding genetic variants. 
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RESULTS 
The KSM motif representation 
A TF’s K-mer Set Motif (KSM) is the set of over-
represented k-mers (gapped and ungapped 
words of length k) that are contained in the 
binding sites for the TF and have consistent 
offsets relative to the center of the binding sites 
(Figure 1A).  The individual k-mers in a KSM are 
called component k-mers.  A typical KSM may 
contain several hundred to several thousand 
component k-mers.  Each component k-mer is 
annotated with a center offset and its 
presence/absence in each positive and 
negative training sequence.  Unlike a PWM that 
assumes positional independence, KSM 
component k-mers are exactly matched to a 
query sequence being searched for a motif 
(Figure 1B).  By requiring exact k-mer matches, 
a KSM preserves dependences among 
positions in the observed sequences.  Long 
specific sequences are modeled when 
component k-mers overlap with each other 
(Figure 1A).  

Each component k-mer is required to be over-
represented in the TF bound sequences 
(positive sequences) relative to the unbound 
sequences (negative sequences).  We define 
the “sequence hit count” of a motif as the 
number of sequences containing the motif in 
the training sequence set, which is similar to the 
zero-or-one-per-sequence mode of MEME (Bailey and Elkan 1994).  The over-representation of 
a component k-mer is evaluated by computing a hypergeometric p-value (HGP) (Barash et al. 
2001): 
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where N is the total number of positive and negative training sequences, N+ is the number of 
positive training sequences, n is the number of positive and negative training sequences 
containing the motif (positive and negative hit count), and n+ is the number of positive training 

 
Figure 1.  The KSM motif representation.  (A) A KSM consists 
of a set of similar and consistently aligned component k-mers.  
The k-mers are extracted from a set of sequences aligned at the 
binding sites.  Each k-mer has an offset that represent its relative 
position in the sequence alignment, and is associated with the 
IDs of the positive/ negative training sequences that contain the 
k-mer (total counts are shown). The base C highlighted in yellow 
represents the expected binding position. (B) An example of 
matching KSM motifs in a query sequence. (C) Color chart 
representation of 2183 sequences bound by Oct4 that match the 
Oct4 KSM motif. Each row represents a 23bp sequence. Rows 
are sorted by the KSM motif matches.  Green, blue, yellow and 
red indicate A, C, G and T. An Oct4 PWM motif is shown above 
the sequences.  (D) The KSM motif logo of Oct4 and the PWM 
logos of Sox2 and Oct4. 
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sequences containing the motif (positive hit count).  In this work, the component k-mers are 
required to have a HGP less than 10-3. 

The offset of a component k-mer is defined as the offset of the first base of the k-mer relative to 
the expected binding center position, which is estimated during the motif discovery process (see 
below).  For the Oct4 example, the expected binding position is the middle position of the binding 
site, i.e. base C (Figure 1A).  When searching for a KSM motif in a query sequence (see next 
section), the offsets of the matched component k-mers can be used to align and group the k-mers 
that share the same expected binding positions into KSM motif instances called k-mer groups 
(Figure 1B).  

A KSM’s representation of a large set of overlapping k-mers allows a KSM to capture the full 
complexity of TF binding specificities as well as the effect of the flanking bases, leading to a richer 
representation than the PWM and other consensus sequence representations (Stormo and Zhao 
2010).  For example, the Oct4 bound sequences also contains a Sox2 motif, which has been 
shown to have a strict spacing with Oct4 motif in mouse embryonic stem cells (Chew et al. 2005; 
Guo et al. 2012).  The PWM motif learned from these sequences does not capture the existence 
of the Sox2 motif because the Sox2 motif only exists in a small subset of the sequences (Figure 
1C).  In contrast, the Oct4 KSM motif was able to capture the Sox2 motif through component k-
mers such as TTTNTCATG and TTTGTCAT that overlap with both Oct4 and Sox2 motifs.  To 
elucidate the complexities of the TF binding specificities, we compute a KSM motif logo to 
graphically represent the motif as a set of PWM motif logos that each summarize a component k-
mer and its sequence context.  From the KSM motif logo of Oct4, the existence of Sox2 motif can 
be easily observed (Figure 1D). 

KSM motif matching and scoring 
To search for KSM motif instances in a query sequence, all of a KSM’s component k-mers are 
simultaneously searched using the Aho-Corasick algorithm for efficient multi-pattern search (Aho 
and Corasick 1975).   

The k-mer matches in a query sequence are grouped into KSM motif instances based on their 
respective expected binding locations (Figure 1B), which are computed using the matched 
position of the k-mer and the KSM offset of the k-mer.  We define a “k-mer group” (i.e. KSM 
motif instance) as the subset of component k-mers in the KSM model that occur in the query 
sequence and that are mapped to the same expected binding position on the sequence.  

The hit count for a k-mer group cannot be obtained by simply summing the hit count of all the 
matching component k-mers, because the component k-mers are overlapping and a simple or 
weighted summation will not give an accurate count that re-capitulates the information in the 
training data.  Thus the “k-mer group hit count” is defined as the number of all the training 
sequences that contain at least one of the matched k-mers in the k-mer group.  In this formulation, 
overlapping k-mers are not combined additively as previous approaches (Ghandi et al. 2014; 
Setty and Leslie 2015), but in a non-additive manner that more accurately re-capitulates the 
contribution of these k-mers as a whole.  Unlike the PWM motif instances, the KSM motif 
instances of the same motif may have different lengths because the length depends on the 
matched component k-mers and their relative positions.   
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The “KSM score” of a k-mer group is then defined as the odds ratio, which is a measure of 
association (Cornfield 1951; Edwards 1963): 

where N+ and N- are the total numbers of positive and negative training sequences, respectively; 
n+ and n- are the k-mer group positive and negative hit counts, respectively.  To avoid divided-by-
zero error, a small pseudo-count is added to the counts.  If no component k-mer is matched in 
the query sequence, the KSM score of the sequence is 0. 

KMAC motif discovery 
The K-Mer Alignment and Clustering (KMAC) method discovers both KSM and PWM motifs from 
a given set of positive (motif enriched) and negative sequences (motif depleted).  If not provided, 
a negative sequence set is generated by randomly shuffling the positive sequences while 
preserving the di-nucleotide frequencies.  KMAC can efficiently analyze the top 10,000 sequences 
from an assay and thus can learn weak signals.  KMAC applies to sequences from in vivo TF 
ChIP-seq/ChIP-chip data or sequences of predicted elements from epigenomic data. 

KMAC learns a KSM by aligning the positive sequences and computing the consistently aligned 
over-represented k-mers.  KMAC uses values of k from 5 to 13 unless otherwise directed.  For 
each value of k, KMAC discovers both KSM and PWM motifs as described below.  All the motifs 
are then compared with each other and similar motifs are merged.  Thus, the final list of motifs 
may be derived from different values of k, allowing KMAC to capture motifs with different lengths.  
KMAC motif discovery consists of four steps (Figure 2A):  

Step 1:  KMAC selects a set of enriched k-mers and clusters them.  K-mers with k exact bases 
and 0-4 contiguous gap bases are considered. The number of positive and negative sequences 
that contain instances of each possible k-mer are counted, treating each k-mer and its reverse 
complement as a single k-mer.  A HGP is computed to evaluate the significance of enrichment 
for each k-mer.  KMAC then clusters the enriched k-mers using a density-based clustering method 
(Rodriguez and Laio 2014).  Levenshtein distance (Levenshtein 1966) is used to quantify the 
distance between two k-mers.  KMAC then takes each of the top ranked k-mer cluster centers as 
the seed k-mers for the next phase.  With the density-based clustering approach, a k-mer may 
belong to different k-mer clusters and thus contribute to different motifs, allowing KMAC to 
unbiasedly discover multiple motifs.  This is in contrast to the typical mask-and-discover approach 
used by existing methods such as MEME (Bailey and Elkan 1994) and Homer (Heinz et al. 2010), 
which is biased in that the subsequently discovered motifs have a smaller sequence space. 

Step 2:  Each cluster center k-mer is used as a seed k-mer. This seed k-mer and similar k-mers 
with a one-base mismatch are used to initialize the KSM, which is then used to match and align 
the positive training sequences.   

Step 3:  A new KSM and its corresponding PWM motif are generated from a 2*k window around 
the middle of the seed k-mer using the alignment.  To compute the offsets of the component k-
mers, a reference position in the alignment, the expected binding position, is estimated as the 
median of the center positions of the aligned sequences.  

Odds ratio = !"	/(&"'!")
!)	/(&)'!))
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Figure 2.  KMAC motif discovery outperforms other methods when detecting motifs in ChIP-seq data.  (A) KMAC motif 
discovery schematic. Step 1: Over-represented k-mers with length k are clustered using density-based clustering. Bars 
represent the k-mers while red bars represent the cluster center exemplars.  Step 2: A cluster center is used as a seed 
k-mer. The seed k-mer and k-mers with a one-base mismatch are used to match and align the sequences.  Step 3: A 
pair of KSM and PWM motifs are extracted from the aligned sequences.  Step 4: The KSM and PWM motifs are used 
to match and align the sequences.  Step 3 and 4 are repeated until the significance of the motifs stops to improve.   
(B)  The motif discovery performance of KMAC is compared to the motif discovery performance of various motif-finders 
on 209 ENCODE ChIP-seq experiments. 

Step 4:  The KSM and PWM motifs are used to match and align the sequences.  The KSM motif 
is first used to match the sequences and then the PWM motif is used to match the rest of the 
sequences.  This allows KMAC to include more k-mers, especially at the initial iterations when 
the KSM consists only a few component k-mers.  If multiple motif matches are found in a sequence, 
the match with the highest score is used. 

Step 3 and 4 are repeated alternately until the significance of the motifs stops to improve.  The 
significance of a motif is evaluated as the sum of partial area under receiver operating 
characteristic (pAUROC) (up to a false positive rate of 0.1, fpr<=0.1) scores of the KSM and PWM 
motifs (Ma et al. 2013; McClish 1989).  We choose the pAUROC because typically only the area 
at false positive rate less than or equal to 0.1 is of interest for realistic motif matching.  

Finally, all the discovered motifs are ranked by the sum of KSM and PWM pAUROC scores. 

KMAC outperforms other motif discovery methods in discovering known DNA-
binding motifs 
We tested KMAC’s ability to discover biologically relevant DNA binding motifs in data from the 
ENCODE project (The ENCODE Project Consortium 2012).  We used a set of 209 TF ChIP-seq 
experiments and associated controls comprising 78 distinct TFs that were profiled in one or more 
cell lines by the ENCODE project and for which validated DNA binding motifs exist in public 
databases (Weirauch et al. 2014).  We chose this large collection of experiments because we 
expected that they would be representative of the typical range of ChIP-seq data noise and 
sequencing depth.  We used KMAC and four state-of-the-art methods, MEME (Bailey and Elkan 
1994) , MEME-chip(Machanick and Bailey 2011), Homer (Heinz et al. 2010), and Weeder2 
(Zambelli et al. 2014) to analyze DNA sequences derived from these ChIP-seq data.  The most 
significant motifs from each analysis were compared to corresponding known binding motifs of 
the same TFs using STAMP (Mahony et al. 2007).  We found that KMAC outperforms other 
methods in rediscovering the known motifs in the public database cisBP (Weirauch et al. 2014) 
(Figure 2B).  When allowing each method to make multiple motif predictions, KMAC performs 
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better than or equal to the other methods.  In addition, the running time of KMAC is similar to that 
of Weeder2, and is much faster (about 4x-30x) than the other methods (Table S1).   

KSMs outperform PWMs in predicting in vivo TF binding 
We compared the performance of KSMs versus PWMs in predicting in vivo TF binding using the 
ENCODE ChIP-seq datasets.  We found that the KSM outperforms the PWM in discriminating TF 
bound sequences (positive sequences) from randomly generated sequences and unbound 
genomic sequences near the binding sites (negative sequences). 

First, we trained KSM and PWM motifs using a subset of TF GABP-bound sequences in human 
K562 cells, and used the motif 
scores to discriminate held-out 
GABP-bound sequences from 
negative randomly shuffled 
sequences. We found that the KSM 
outperforms three PWMs learned by 
KMAC, MEME, and Homer, 
respectively, from the same set of 
sequences (Figure 3A).  To 
understand why the KSM performs 
better than the PWM, we next 
studied the sequences and scores 
of the GABP motif matches.  We 
found that for the same PWM motif 
match scores, the KSM scores of 
the matches in the positive 
sequences are generally higher 
than the KSM scores of those in the 
negative sequences (Figure 3B).  
The higher KSM scores in the 
positive sequences are contributed 
by the overlapping k-mers that are 
often present in the positive 
sequences but are less present in 
the negative sequences.  These 
results are consistent with the 
observation that the length of the 
motif matches in the positive sequences are longer than the length in the negative sequences 
(Figure S1).  Therefore, the KSM is able to use the flanking sequences to further discriminate real 
bound sequences from the random sequences when they have identical PWM matches.  In 
addition, we found cases that some sites in the negative sequences are scored highly by the 
PWM but not by the KSM.  For example, CACTTGCGG is only one base different from the 
consensus sequence CACTTCCGG and has a PWM score of 6.67, which is about 60% of the 
maximum PWM score for GABP motif.  However, CACTTGCGG does not occur in the entire 

 
Figure 3.  KSM outperforms PWM in predicting in vivo TF binding in held-
out data.  (A) The partial ROC performance of KSM, KMAC PWM, MEME 
PWM, and Homer PWM for predicting ChIP-seq binding of GABP in K562 
cells.  (B) Scatter plot comparing the mean KSM scores of positive 
sequences and mean KSM scores of negative sequences that 
corresponds to the same PWM scores in the K562 GABP dataset. Each 
point represents a set of sequences that have the same PWM score.  (C) 
Scatter plot comparing the median partial AUROC (fpr<=0.1) values of 
KSM and PWM for predicting ChIP-seq binding for 43 TFs.  (D) Similar to 
(C), but comparing KSM and PWM in the same cell type (red) or across 
cell type (blue) in 19 TFs. 
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GABP bound sequence set, suggesting this single base difference cannot be tolerated by GABP.  
The KSM score for the CACTTGCGG site is 0 because it has no exact match to the KSM.  This 
highlights the limitation of the positional independence assumption of the PWM representation 
and that the KSM is able to overcome this limitation.   

We then extended the comparison between the KSM and the PWM to 103 datasets where the 
correct primary motifs were found and that have sufficient number of binding sites.  Here the KSM 
and PWM motifs were both learned from the same KMAC motif discovery runs to ensure that the 
performance differences are from the motif representation but not from the motif discovery 
procedures. Similar to previous work (Mathelier and Wasserman 2013), we compare the 
performance between two methods by computing the score ratios between the methods on the 
same datasets. Two methods are considered performing differently if the score ratio is less than 
0.95.  In 94 out of 103 experiments, the KSMs perform better than the PWMs in predicting TF 
binding in held-out data, while the PWMs do not perform better in any of the experiments (Figure 
3C).  Across all the datasets, the KSM representation significantly outperforms the PWM 
representation (p=1.53e-18, paired Wilcoxon signed rank test).  We also tested using flanking 
sequences as negative sequences, and obtained similar results (p=4.44e-15, paired Wilcoxon 
signed rank test) (Figure S2).   

We also found that a KSM does not overfit the training data and is able to generalize across cell 
types.  Because a KSM consists of hundreds to a few thousand k-mers, one legitimate concern 
is that it may overfit the training data.  Overfitting would cause good performance on the training 
cell type but poor performance on a new cell type.  To address this concern, we conduct a cross-
cell-type analysis.  For 19 unique TFs that are both profiled in different cell types by the ENCODE 
project, including a diverse list of CTCF, NRSF, YY1, USF, PU.1, E2F6, c-Jun, ETS1, etc., we 
trained KSM and PWM motifs from one cell type (K562) and predicted binding for another cell 
type (GM12878 or H1-hESC).  We found that KSMs significantly outperformed PWMs in the cross-
cell-type prediction (p=0.000132 for same cell type, and p=0.000132 for cross cell-type preditions, 
paired Wilcoxon signed rank test) (Figure 3D). The KSM predictions across the cell types perform 
similarly to the KSM predictions in the same cell type (p>0.05, paired Wilcoxon signed rank test). 

Taken together, these results suggest that the KSM is a more accurate motif representation than 
the PWM model. 

KSM outperforms complex motif models in predicting in vivo TF binding 
We next compared the KSM representation with two complex motif models that have been shown 
to be more accurate than the PWM model.  The TF flexible model (TFFM) is a hidden Markov 
model based framework that captures interdependencies of successive nucleotides and flexible 
length of the motif (Mathelier and Wasserman 2013).  The sparse local inhomogeneous mixture 
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(Slim) uses a soft feature selection 
approach to optimize the 
dependency structure and model 
parameters (Keilwagen and Grau 
2015).  We trained TFFM and Slim 
models on the same subset of 
sequences as the KSMs and used 
the motif scores to predict on the 
rest of the sequences.  The KSMs 
perform better than the TFFMs in 
predicting TF binding in 39 
experiments, worse in 4 
experiments, and similarly in 60 
experiments (Figure 4A).  Across all 
the datasets, the KSM significantly 
outperforms the TFFM representation (p=2.03e-5, paired Wilcoxon signed rank test).  Similarly, 
the KSMs perform better than Slim in predicting TF binding in 43 experiments, worse in 22 
experiments, and similarly in 38 experiments (Figure 4A).  Across all the datasets, the KSM 
significantly outperforms the Slim representation (p=1.79e-3, paired Wilcoxon signed rank test).  
In addition, the motif scanning time of KMAC is only 2-3 times of the PWM scanning time, and is 
much less (about 20x-80x) than that of the Slim and TFFM models (Table S2).  	

In summary, the KSM is more accurate at discriminating TF bound sequences from randomly 
generated sequences than the conventional PWM and the more sophisticated TFFM and Slim 
motif representations, suggesting that the KSM is a more precise motif representation. 

Incorporating DNA shape features improves in vivo TF binding prediction 
We next investigate whether incorporating DNA shape features with KSM can further improve the 
in vivo TF binding prediction.  DNA shape features inside the motif and at the flanking bases of 
the motifs have been shown to improve TF binding prediction with the PWM and the TFFM 
(Mathelier et al. 2016).  Because the KSM may capture DNA shape information implicitly through 
the k-mers that it contains, it is of interest to know how much the explicit DNA shape information 
can further improve the prediction accuracy of the KSM motifs and how does the improvement 
compare with the improvement from incorporating DNA shape information with the PWM. 

Similar to previous work (Mathelier et al. 2016), we trained gradient boosting classifiers (Friedman 
2001) to predict TF binding with four different set of features: KSM score, KSM score + DNA 
shape, PWM score, and PWM score + DNA shape.  We constructed datasets that consist of 
101bp positive sequences around the 10,000 top-ranked ChIP-seq binding events and 101bp 
negative randomly shuffled sequences.  We accessed the performance of the classifiers through 
the average area under precision-recall curve (AUPRC) metrics from 10-fold cross validation (CV).  
For each CV set, we learned KSM and PWM motifs from the training set, verified that the motifs 
matched known motifs in the public cisBP database (Weirauch et al. 2014), and then selected 
only the sequences that contains both KSM and PWM motif matches to construct balanced 
training and testing sets for the classifiers. For this analysis, all the positive and negative 

 
Figure 4.  KSM outperforms complex motif models in predicting in vivo 
TF binding.  (A) Scatter plot comparing the mean partial AUROC 
(fpr<=0.1) values of KSM and TFFM for predicting in vivo binding in 103 
TF ChIP-seq experiments.  Each point represents a ChIP-seq dataset.  
(B) Similar to (A), but comparing KSM and Slim. 
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sequences contain motifs and thus the prediction task is more challenging than using un-selected 
sequences.  The KSM and PWM motif scores and DNA shape features were then used to 
construct four types of features.   

We found that incorporating DNA shape features (110 features) with a KSM or PWM motif score 
(1 feature) improves the in vivo TF binding prediction across all the datasets we tested (Figure 
5A, S3, and S4), consistent with previous findings (Mathelier et al. 2016).  In addition, 
incorporating shuffled DNA shape features does not improve the prediction upon the KSM/PWM 
motif score alone (Figure S5), suggesting that information encoded in the shape features 
contributes to the prediction. Remarkably, factors such as CTCF, MafK and MafF achieve high 
accuracy (AUPRC=0.965~0.975) with the KSM/PWM and DNA shape (31bp) combined features.   

Without the DNA shape features, KSM score alone performs much better than PWM score alone 
in most of the experiments (Figure 5A), especially for AP-1 factors such as c-Jun, c-Fos, JunB, 
JunD, and FOSL1.  Incorporating the DNA shape features appears to make up most of the 
differences between the KSM and PWM motifs.  Although KSM + shape (31bp) features results 

 
Figure 5.  Incorporating DNA shape features improves in vivo TF binding prediction.  (A) AUPRC performance 
comparison among models trained with various set of features: KSM, PWM, KSM + DNA shape, and PWM + DNA 
shape.  (B) Feature importance measures from the gradient boosting models across all the ChIP-seq datasets show 
that the KSMs contribute more to the prediction than the PWMs. Horizontal dashed line indicates the average feature 
importance for 1+110 features in the motif + 31bp DNA shape models.  (C) Scatter plot comparing the AUPRC 
performance between KSM + 11bp DNA shape and PWM + 11bp DNA shape features, each point is a ChIP-seq 
dataset.  (D) Similar to (C), but with 21bp DNA shape features. 
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in classifiers with slightly higher AUPRC scores than PWM + shape (31bp) features overall 
(p=0.005, paired Wilcoxon signed rank test), the absolute differences are very small (Figure 5A).  
With the DNA shape features, the performance gains of the KSMs are much smaller than those 
of the PWMs. This finding is consistent with further analysis on the feature importance metrics 
from the classifier with motif + shape features.  In the KSM + shape models for all the datasets, 
the feature importance of the KSM score is much higher than the maximum importance value of 
all the shape features (p=5.46e-16, paired Wilcoxon signed rank test) (Figure 5B), suggesting that 
the KSM consistently contributes more than any single shape feature to predict TF binding.  In 
contrast, in the PWM + shape models, the feature importance of the PWM score is comparable 
to (p>0.05, paired Wilcoxon signed rank test) and in some cases lower than the maximum 
importance value of all the shape features (Figure 5B).  These results suggest that the PWM 
suffers from information loss and relies more on the shape features to predict TF binding, and the 
KSMs have captured additional sequence information, including some information represented 
by the DNA shape features.   

To further understand the effect of DNA shape features from the bases inside the motif and those 
from the flanking bases, we also tested DNA shape features from 21bp and 11bp sequences 
around the motif positions.  For most of the TFs we tested, the 11bp shape features are sufficient 
to cover the motif cores, and the 21bp shape features cover some additional flanking bases.  With 
the 21bp shape features, KSM + shape models perform similarly to the PWM + shape models 
(Figure 5D).  In contrast, with the 11bp shape features, KSM + shape models significantly 
outperform the PWM + shape models (p=5.63e-16, paired Wilcoxon signed rank test) (Figure 5C).  
These results suggest that the shape information from the motif cores is not sufficient to make up 
the differences between the KSM and the PWM.  The additional information captured by the KSM 
may partly come from the k-mers that covers the flanking bases.  For most of the datasets, for 
both the KSM and the PWM, incorporating DNA shape information from a larger region around 
the motif consistently results in better prediction (Figure S3 and S4). However, 31bp shape 
features only performs slightly better than the 21bp shape features (Figure S3 and S4), 
suggesting shape features further than 21bp may not add much additional benefits. 

KSM enables accurate prediction of causal regulatory variants 
With the superior performance of the KSM representation on predicting in vivo TF binding, we 
next tested whether sequence features derived from KSM motifs would enable more accurate 
prediction of the effects of non-coding genetic variants on the activities of the regulatory 
sequences that harbor the genetic variants.   

We used an ensemble model (Zeng et al. 2017) that included KSM motif features from 87 TF 
ChIP-seq datasets and deep learning based features  to achieve the best performance in “eQTL-
causal SNPs” open challenge (Kreimer et al. 2017) in the Fourth Critical Assessment of Genome 
Interpretation (CAGI 4).  The challenge was to predict the experimental results of thousands of 
regulatory elements that contains eQTL alleles (reference and alternative) from a massively 
parallel reporter assay in GM12878 cells (Tewhey et al. 2016).  

Here, we used the same computational framework, a LASSO regression model to predict reporter 
expression of the reference and alternative alleles and an ensemble model to classify whether 
the two alleles have different regulatory activities (Zeng et al. 2017), to evaluate the performance 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/130815doi: bioRxiv preprint first posted online Apr. 26, 2017; 

http://dx.doi.org/10.1101/130815
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

of different types of sequence features.  
We constructed KSM motif features and 
PWM features from motifs discovered by 
MEME and Homer, respectively, from 209 
TF ChIP-seq datasets (The ENCODE 
Project Consortium 2012).  The 
performance of the predictions using 
different set of sequence features was 
evaluated using AUPRC and AUROC.  
We found that the KSM features 
(AUPRC=0.479, AUROC=0.668) 
outperform Homer PWM (AUPRC=0.434, 
AUROC=0.629) and MEME PWM 
(AUPRC=0.408, AUROC=0.619) in 
predicting differential reporter expression between the two alleles (Figure 6A and S6A).  We next 
compared KSM motif features with the features derived from DeepBind (Alipanahi et al. 2015), a 
deep learning model trained on 927 TF ChIP-seq datasets, and DeepSEA (Zhou and 
Troyanskaya 2015), a deep learning model trained on 919 epigenomic datasets.  We found that 
KSM features outperform DeepBind (AUPRC=0.432, AUROC=0.608) and DeepSEA features 
(AUPRC=0.396, AUROC=0.628) in predicting differential reporter expression between the two 
alleles (Figure 6B and S6B).  In addition, the KSM features offer better interpretability than deep 
learning features because the predictive KSM features are directly linked to their corresponding 
TFs.  The combined KSM and DeepBind features achieved the best AUPRC (0.483), 
outperforming the KSM or DeepBind features alone, although the AUROC (0.647) of the 
combined features is worse than that of the KSM.  The combined KSM and DeepBind features or 
KSM features alone both outperform all the CAGI 4 methods that use features such as PWMs, k-
mers, epigenomic signals, chromatin state annotations, and evolutionary conservation (Kreimer 
et al. 2017).  These results highlight the value of accurate motif models in the characterization of 
non-coding variants.  

A new public resource of KSM and PWM motifs 
Finally, we have created a public resource of KSM and PWM motifs by applying KMAC to 1488 
ENCODE transcription factor ChIP-seq datasets. 

DISCUSSION 
We have demonstrated that k-mer set memory (KSM) representations are better at predicting 
transcription factor in vivo binding than PWMs and the more complex TFFM and Slim models.  In 
addition, sequence features derived from KSMs outperform those derived from PWMs and deep 
learning models for predicting the effect of non-coding genetic variants.  Given that most 
computational methods that involves TF binding motifs use the PWM representation, the accuracy 
gain from replacing the PWM with the KSM will likely be wide spread. 

A KSM represents factor binding specificity as a set of aligned k-mers that are found to be over-
represented at factor binding sites.  An important feature of the KSM is that it captures the relative 

 
Figure 6.  KSMs predicts allele-specific differences in regulatory 
activity better than PWMs and deep learning derived features. 
(A) PRC performance of KSM and PWM motif representations 
in predicting differential regulatory activities of eQTL alleles.  
The numeric values in the legend are the AUPRC values.  (B) 
Similar to (A), KSM, DeepBind, DeepSEA derived features and 
other CAGI 4 open challenge methods. 
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positions among the k-mers, thus allowing overlapping k-mers to be assembled into k-mer groups 
for accurate identification and scoring of motif instances.  We showed that, with contribution from 
the overlapping k-mers, the KSM gives TF bound sequences higher scores than the random 
sequences when they have the same PWM score, highlighting the value of positional information 
among the k-mers for recapitulating in vivo TF binding.   

The KSM is a representation for the DNA binding motif of a single TF. To increase the probability 
that a KSM represents the sequence mechanistically associated with a particular TF, KMAC uses 
a narrow window around binding sites to extract component k-mers and requires the component 
k-mers to be aligned with each other.  Thus, the KSM is different from and not directly comparable 
to methods for alternate tasks that use k-mers associated with multiple TF motifs in machine 
learning models (Ghandi et al. 2014; Setty and Leslie 2015).  It will be interesting to build learning 
models with multiple KSM motifs learned from ChIP-seq or DNase-seq data and compare with 
the published k-mer-based learning methods. 

DNA shape at the flanking bases and the motif cores have been shown to important for TF binding 
(Abe et al. 2015; Levo and Segal 2014; Slattery et al. 2011).  We showed that incorporating DNA 
shape information further improves upon KSM motifs for predicting in vivo TF binding. The DNA 
shape features used in our analysis were derived from 5-mer sequences (Chiu et al. 2016).  
Therefore, the improvement from incorporating DNA shape features may come from the 
information in the 5-mer sequences that are not necessary shape-related information (Zhou et al. 
2015).  The 5-mer or shorter sequences may not be fully captured by the current KSM models 
that typically use longer k-mers (k=7~12).  In addition, our analysis suggested that the flanking k-
mers in the KSM representation contribute to the advantage of the KSM over the PWM; and 
incorporating DNA shape features from the motif-flanking bases further out (e.g. 21bp) showed 
better prediction accuracy. These results suggest that the KSM representation may be further 
improved by integrating the flanking bases, DNA shape information, or other short k-mer 
representations.  Although DNA shape information may augment the prediction accuracy of a 
motif, in practice, it is challenging to fully integrate the DNA shape information because of its size.  
For example, for a single motif feature, an additional 110 features are needed to encode the 31bp 
first-order DNA shape information, and the feature size doubles if second-order DNA shapes are 
considered.  For a comprehensive model that includes hundreds or more motifs, the large feature 
set size may lead to a high computation load and may cause the model to overfit.  Therefore, a 
more comprehensive motif model that integrates the DNA shape information around the motif 
could be valuable. 

Genome-wide association studies (GWAS) have made tremendous progress in linking numerous 
single nucleotide polymorphisms (SNPs) to human traits and diseases. However, finding the 
causal genetic variants has been challenging because the lead GWAS SNPs are in linkage 
disequilibrium with nearby SNPs and the majority of GWAS loci are in non-coding regions 
(Maurano et al. 2012; Schaub et al. 2012).  Computational approaches that identify TF binding 
altering genetic variants are important for meeting this challenge (Mathelier et al. 2015).  The 
KSM motif representation and the KMAC motif discovery method enables more accurate 
characterization and discovery of TF binding motifs.  Our results show that the KSM motif features 
outperform features derived from deep learning model in predicting the effect of non-coding 
genetic variants, suggesting that accurate and interpretable motif features may be more 
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appropriate for characterizing non-coding genetic variants than the deep learning features.  With 
large scale efforts such as the ENCODE project (The ENCODE Project Consortium 2012) profiling 
hundreds of TFs in diverse cellular conditions, a more comprehensive catalog of TF binding sites 
is now available for training new computational models.  We expect that the KSM representation 
and KMAC method will be valuable in characterizing TF binding specificities and in interpreting 
the effects of non-coding genetic variations. 

METHODS 
ChIP-seq datasets and TF binding motifs  
209 TF ChIP-seq datasets (from three ENCODE tier 1 cell types, K562, GM12878, and H1-hESC 
cells) that have known motifs in public databases were downloaded from the ENCODE project 
website (The ENCODE Project Consortium 2012).  TF binding motifs (PWMs) were downloaded 
from cisBP database (Homo_sapiens_2015_02_05)(Weirauch et al. 2014), which includes motif 
from the TRANSFAC (Matys et al. 2003), JASPAR (Sandelin et al. 2004), and Uniprobe (Berger 
et al. 2006) databases. 

Motif discovery performance comparison 
For the 209 ENCODE ChIP-seq data, KMAC and four other state-of-the-art de novo motif 
discovery methods, MEME v4.11 (Bailey and Elkan 1994), MEME-chip v4.11 (Machanick and 
Bailey 2011), Weeder 2.0 (Zambelli et al. 2014), and Homer (Heinz et al. 2010), were applied to 
discover motifs independently.  From the top 1000 peaks of each dataset, 100bp sequences 
centered on the peak summits were extracted, as suggested by the MEME Suite’s documentation 
based on the typical resolution of ChIP-seq peaks.  MEME was run with options “-dna -nmotifs 9 
-revcomp”, MEME-chip was run with options “-dna -norand -meme-nmotifs 5 -meme-maxsize 
1000000 -dreme-m 5 -spamo-skip -fimo-skip”, and Weeder2 was run with options “-O HS -
chipseq”.  All other parameters were the defaults specified by the authors. 

Discovered motifs (PWMs) were compared to known motifs in the public database cisBP 
(Weirauch et al. 2014) using STAMP (Mahony et al. 2007).  For KMAC, the PWM motifs 
discovered were used for comparison.  A motif with E-value less than 1e-5 was considered a 
match.  For each program, we counted the number of datasets that had a motif matching at least 
one known motif of that TF.  In some cases, the correct motifs were not matched by the first motif 
that a method outputs, but by the second or later motifs.  Therefore, we compared the motif-
finding performance using the top 1, top 2, and top 3 motifs.  

TF in vivo binding prediction performance comparison 
We compared KSM, PWM, Slim (Keilwagen and Grau 2015) and TFFM (Mathelier and 
Wasserman 2013) motif models in predicting in vivo TF ChIP-seq binding sites.  For each set of 
bound sequences from a TF ChIP-seq experiment (positive sequences), we generated random 
shuffled sequences by preserving di-nucleotide frequencies (shuffled negative sequences).  We 
also generate an alternative set of negative sequences by taking the genomic sequences 200bp 
away from the TF binding site (flanking negative sequences).  
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We first discover motifs from randomly subsampled 5000 positive sequences (training set) using 
KMAC, Homer, MEME, the Jstacs library for Slim (Keilwagen and Grau 2015), and the Python 
TFFM framework (Mathelier and Wasserman 2013).  For Slim, additional shuffled negative 
sequences with signal=0 were provided for motif discovery.  For TFFM, two kinds of models 
(FIRST_ORDER and DETAILED) were constructed by using the primary PWM motifs discovered 
by MEME for initialization.  The results from two TFFM models were similar.  We report only 
results from the DETAILED model. 

For each method, the motif scores of the top ranking primary motif are then used to discriminate 
5000 held-out positive and negative sequences (test set).  In order to compare performance 
across multiple motif representations, we used 113 datasets where the primary motifs discovered 
by all the methods/representations match a known motif for the same TF in the public database 
cisBP (Weirauch et al. 2014).  For the different motif representations discovered from the same 
set of sequences, their performance in predicting ChIP-seq TF binding sites on the held-out data 
was evaluated using a partial AUROC (McClish 1989) up to a false positive rate of 0.1, which 
typically falls in the range of realistic motif matches.  We repeated this procedure five times and 
used the mean partial AUROC score of each ChIP-seq experiment or each TF to compare 
performance. 

We assessed the significance for the improvement of predictive power when comparing two 
models using the Wilcoxon signed rank tests. The function signrank() In MATLAB software 
(MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 
United States) was used.   

TF binding prediction with motif and DNA shape 
From the ENCODE ChIP-seq datasets that contains at least 10,000 binding events, we construct 
datasets that include 101bp positive sequences around the 10,000 top-ranked binding sites of 
each ChIP-seq dataset and 101bp negative sequences generated by randomly shuffling the 
positive sequences while preserving the di-nucleotide frequencies.  We accessed the 
performance of the classifiers through 10-fold cross validation (CV).   

For each CV dataset (9,000 training sequences and 1,000 testing sequences), we learned KSM, 
PWM motifs from training set using KMAC and use the top-ranked motif for the subsequent 
analysis.  Discovered PWM motifs were compared to known motifs in the public database cisBP 
(Weirauch et al. 2014) using STAMP (Mahony et al. 2007).  To avoid the differences due to motif 
discovery, we used 87 experiments that all 10 CV sets produced the correct primary motif of the 
corresponding TF. Then we constructed motif score and DNA shape features by scanning for 
both the KSM and PWM motifs on the sequences, and generated DNA shape features from 
sequences around the motif matches.  To ensure that the sequences contain motifs and sufficient 
sequence to generate DNA shape features, we used a selection criteria that require the 
sequences (both positive and negative, training and testing) to contain both KSM and PWM motif 
matches and have at least 31bp sequence around the motif match positions.  Because negative 
sequences typically contain less motif matches than positive sequences, we generated multiple 
set of negative sequences with different random seeds such that the positive and negative 
sequence set that meet the selection criteria have the same number of sequences (i.e. balanced 
dataset). 
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DNA shape features were generated using the DNAshapeR R/Bioconductor package (Chiu et al. 
2016).  For this study, we only used the first-order shape features: HelT, MGW, ProT, and Roll.  
We generated 3 different set of DNA shape features from 31bp, 21bp, and 11bp sequences 
around the motif (KSM or PWM) positions. 

We used the GradientBoostingClassifier in the Python scikit-learn module (Pedregosa et al. 2011) 
(version 0.18) to train, and apply gradient boosting classifiers to DNA sequences. Features used 
in the classifiers were vectors composed of motif score (KSM or PWM) (size=1), and the four first-
order DNA shape features at each nucleotide (size=~4n).  The feature matrix was standardized 
column-wise.  The parameters for the classifier were: learning_rate=0.1, max_depth=4, 
n_estimators=500.  We tested other parameter settings and the performances are similar.  The 
feature importance value for each feature were obtained from the GradientBoostingClassifier 
method.  The feature values were normalized to sum to 1.  

The probabilities generated by gradient boosting classifiers were used to compute AUPRC 
performance metrics using the MATLAB software (MATLAB and Statistics Toolbox Release 
2016b, The MathWorks, Inc., Natick, Massachusetts, United States).  The mean value of the 
AURRC from the 10 CV sets of each dataset is presented. 

Predicting the effect of regulatory variants 
We used the EnsembleExpr (https://github.com/gifford-lab/EnsembleExpr/) computational 
framework as described in (Zeng et al., 2016).  Briefly, sequence features were generated by 
taking the maximum motif score of each motif on the training and testing sequences.  LASSO 
regression models were trained to predict the reporter expression levels for each allele, and an 
ensemble of binary classification models with regularization tuned by cross-validation was trained 
to predict whether the two alleles have different expression levels. In this work, 5 set of sequence 
features were derived from KSM motifs, MEME PWM motif, and Homer PWM motifs learned from 
209 ENCODE TF ChIP-seq datasets, and from the pre-trained DeepBind (Alipanahi et al. 2015) 
and DeepSEA model (Zhou and Troyanskaya 2015). 

Software availability 

The KSM and KMAC free software can be downloaded from 
(http://groups.csail.mit.edu/cgs/gem/kmac/). 
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