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Theory and implementation of a real-time

extension to the π-calculus⋆

Ernesto Posse Juergen Dingel

School of Computing – Queen’s University
Kingston, Ontario, Canada

{eposse,dingel}@cs.queensu.ca

Abstract. We present a real-time extension to the π-calculus and use it
to study a notion of time-bounded equivalence. We introduce the notion
of timed compositionality and the associated timed congruence which are
useful to reason about the timed behaviour of processes under hard con-
straints. In addition to this meta-theory we develop an abstract machine
for our calculus based on event-scheduling and establish its soundness
w.r.t. the given operational semantics. We have built an implementation
for a realistic language called kiltera based on this machine.

1 Introduction

The π-calculus [8] has become one of the most recognizable formal models of con-
currency which allows the description of mobile processes. In order to model real-
time mobile systems, a few process algebras have extended the π-calculus with
an explicit notion of time including the TDπ-calculus [11], the πt-calculus [1],
and the πRT -calculus [7]. In general, process algebras have been used to identify
suitable notions of behavioural equivalence between processes to reason about
their behaviour. In the context of real-time systems, time is essential to the
comparison of system behaviours. Nevertheless, to the best of our knowledge,
suprisingly little attention has been given to time-sensitive process equivalences
for timed π-calculi.

Perhaps the most comprehensive study of timed equivalences for timed π-
calculi are found in [3], [1], [6] and [2]. The first three study extensions to the
π-calculus in which actions are associated with timers over discrete time. The
fourth supports dense-time. In [3] and [6] some forms of timed barbed bisimilarity
are studied, while [1] presents asynchronous bisimilarities and [2] explores some
late bisimilarities. Nevertheless, these equivalences are quite stringent, as they
require an exact match in the timing of the transitions of the processes being
compared, for all future behaviours, and as far in the future as the processes can
run. Real-time systems often are under hard constraints which require a system’s
response within a certain amount of time T . In this context all late responses
are failures and therefore we can restrict our equivalence checking to equivalence
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up-to time T . Furthermore, any reasonable equivalence must address the issue
of compositionality: when is it safe to replace one process by another in a timed
context? In this paper we define a time-bounded equivalence and show it to be
compositional in our timed variant of the π-calculus.

The definition of the semantics of our calculus follows the standard approach
and is given in terms of a Plotkin-style structural operational semantics (SOS).
However, the purpose of our work is not only to study the theory of timed, mobile
systems but also to provide a foundation for a realistic, executable, high-level
modelling language for such systems. To this end, we define an abstract machine
which complements the SOS of our calculus by describing execution at a level
of abstraction more suitable for implementation. We prove the soundness of the
machine w.r.t. the SOS. A distinguishing feature of our abstract machine is that
it is based on event-scheduling as used in discrete-event simulation [15]. Event-
scheduling does not iterate over all clock ticks whenever events are far apart
in time, unlike the discrete-time approach used by existing implementations of
timed π-calculi. We have validated the abstract machine via the implementation
of the language kiltera [9] which has been used for teaching (in graduate courses
at Queen’s and McGill universities) and the modelling and analysis of complex
systems such as automobile traffic simulation.

The contributions of this paper are: a process algebra that supports mobil-
ity and real-time with higher-level features such as pattern-matching; a formal
operational semantics, including a new timed observational equivalence, the no-
tion of timed compositionality and timed congruence; a sound abstract machine
based on event-scheduling with a working implementation.

Paper organization Section 2 introduces our calculus, its syntax, its oper-
ational semantics. Timed equivalence is studied in Section 3. Section 4 develops
the abstract machine. Section 5 concludes. For proofs see [10] and [9].

2 Timed, mobile processes: the πklt-calculus

We define our timed π-calculus, which extends the asynchronous π-calculus
with delays, time-value passing and unlike other variants, time observation and
pattern-matching.

Definition 1. (Syntax) The set P of πklt terms, the set E of expressions
and the set of patterns F are defined by the BNF below. Here P, Pi range
over process terms, x, y, ... range over the set of (channel/event or variable)
names, A ranges over the set of process names, E ranges over expressions,

and F ranges over patterns. Process definitions have the form: A(x1, ..., xn)
def
=

P . n ranges over floating point numbers, s ranges over strings, and f ranges over

function names, with function definitions having the form: f(x1, ..., xn)
def
= E,

and the index set I is a subset {1, ..., n} ⊆ N.

P ::=
√ | x!E | ∑i∈I xi?Fi@yi.Pi | νx.P
| ∆E.P | P1 ‖ P2 | A(x1, ..., xn)



E ::= ∅ | n | true | false | “s” | x
| 〈E1, ..., Em〉 | f(E1, ..., Em)

F ::= ∅ | n | true | false | “s” | x | 〈F1, ..., Fm〉
Expressions E are either constants (∅ represents the null constant), variables
(x), tuples of the form 〈E1, ..., Em〉 or function applications f(E1, ..., Em). Pat-
terns F have the same syntax as expressions, except that they do not include
function applications.

The process
√

simply terminates. The process x!E is a trigger ; it triggers an
event x with the value of E. Alternatively, we can say that it sends the value
of E over a channel x. The expression E is optional: x! is shorthand for x!∅.
A process of the form

∑

i∈I βi.Pi is a listener, where each βi is a guard of the
form xi?Fi@yi. This process listens to all channels (or events) xi, and when xi is
triggered with a value v that matches the pattern Fi, the corresponding process
Pi is executed with yi bound to the amount of time the listener waited, and
the alternatives are discarded1. The suffixes Fi and @yi are optional: x?.P is
equivalent to x?y@z.P for some fresh names y and z. The process νx.P hides
the name x from the environment, so that it is private to P . Alternatively, νx.P
can be seen as the creation of a new name, i.e., a new event or channel, whose
scope is P . We write νx1, x2, ..., xn.P for the process term νx1.νx2....νxn.P . The
process ∆E.P is a delay: it delays the execution of process P by an amount of
time equal to the value of the expression E.2 The process P1 ‖ P2 is the parallel
composition of P1 and P2. We write Πi∈IPi for P1 ‖ · · · ‖ Pn. The process

A(y1, ..., yn) creates a new instance of a process defined by A(x1, ..., xn)
def
= P ,

where the ports x1, ..., xn are substituted in the body P by the channels (or
values) y1, ..., yn.

Timeouts are obtained as a derived construct: the process term (
∑

i∈I βi.Pi)
E
⊲

Q represents a listener process with a timeout. If after an amount of time deter-
mined by the value of the expression E, none of the channels have been triggered,
control passes to Q. We define this term as follows:

(Σi∈Iβi.Pi)
E
⊲ Q

def
= νs.((Σi∈Iβi.Pi + s?.Q) ‖ ∆E.s!)

The local event s can be thought of as the timeout event. Also, as in the asyn-
chronous π-calculus [5], an output with a continuation x!E.P is syntactic sugar

1 Note that to enable an input guard it is not enough for the channel to be triggered:
the message must match the guard’s pattern as well. Pattern-matching of inputs
means that the input value must have the same “shape” as the pattern, and if
successful, the free names in the pattern are bound to the corresponding values of
the input. For example, the value 〈3, true, 7〉 matches the pattern 〈3, x, y〉 with the
resulting binding {true/x, 7/y}. The scope of these bindings is the corresponding Pi.

2 The value of E is expected to be a non-negative real number. If the value of E is
negative, ∆E.P cannot perform any action. Similarly, terms with undefined values
(e.g., ∆(1/0).P ) or with incorrectly typed expressions (e.g., ∆true.P ) cause the
process to stop. Since the language is untyped we do not enforce these constraints
statically.



for x!E ‖ P . Other useful extensions include the term matchE with F1 →
P1 | · · · |Fn → Pn which is syntactic sugar for νx.(x!E ‖ x?F1.P1+· · ·+x?Fn.Pn),
and the conditional term if E then P elseQ which is shorthand for matchE with

true→ P | false→ Q.
The suffix @yi of input guards is inherited from Timed CSP, but it is absent

in all other timed variants of the π-calculus. This construct gives the calculus
the power to measure the timing of events, and determine future behaviour
accordingly.

An example: testing server response times We illustrate the language with
a short example. Consider a simple device to measure a server’s response time
to some query. To begin the test, the device (D) waits for a signal b from some
client. The client provides a maximum response time t and four channels q, a, r,
and m. The channels q and a are links to the server, where the device will send
the query (q) and where it will expect the answer (a). The channel r is where
the client expects to observe the response time. After sending a sample query to
the server, the device waits for a response. If the server fails to respond within t
seconds, the device will trigger a timeout event (m). We can model this testing
system as follows:

D(b)
def
= b?〈t, q, a, r,m〉.q!.(a?@e.r!e.D(b))

t
⊲ m!.D(b)

A model of a server, abstracting its internal execution, could be given by

S(q, a, u)
def
= q?.∆u.a!.S(q, a, u). A client that uses D to test between two servers

succesively and then decides to interact with the fastest is modelled as follows:

C(q1, a1, q2, a2, b)
def
= νr1,m1, r2,m2.(b!〈5, q1, a1, r1,m1〉 ‖ b!〈5, q2, a2, r2,m2〉

‖ r1?e1.r2?e2. if e1 < e2 thenC ′(q1, a1)

elseC ′(q2, a2)

‖ m1?.C ′(q2, a2) +m2?.C ′(q1, a1))

This client asks the testing device to test two servers (whose channels are
parameters to the client). If both servers respond within 5 seconds (r1 and r2)
the client selects the smaller response time and becomes C ′ which interacts with
the corresponding server only. If it receives a timeout event for either server, it
selects the other one. The complete system could be modelled as follows:

νq1, a1, q2, a2, b.
(

S(q1, a1, 3.2) ‖ S(q2, a2, 4.1) ‖ D(b) ‖ C(q1, a1, q2, a2, b)
)

Operational semantics We now define the semantics formally. Let N denote
the set of all possible names (including channel names). Let V denote the universe
of possible values including booleans, real numbers, strings, tuples of values and
channel names, and B ⊆ V is the set of basic constants (i.e., non-tuple values).
We write n(v) for the set of all channel names occurring in the value v. To
simplify the presentation we assume we have a function eval : E → V that



given an expression returns its value.3 A sequence of names or values x1, ..., xn
is abbreviated as x̃. We denote with fn(P ) the set of free names of P (i.e.,
names not bound by either ν or an input guard). A substitution is a function
σ : N → V. We write {V1/x1, ..., Vn/xn} or {Ṽ/x̃} for the substitution σ where
σ(x1) = V1, ..., σ(xn) = Vn and σ(z) = z for all z 6∈ {x1, . . . , xn}. We write
dom(σ) for {x1, ..., xn}. Furthermore, we write σ[V/x] for substitution update4.
Substitution is generalized to processes as a function σ : P → P in the natural
way performing the necessary renamings to avoid capture of free names as usual.
We write Pσ for σ(P ) denoting the process where all free occurrences of each
x in σ have been substituted by σ(x). We denote with M the set of all name
substitutions. We write P ≡α Q if Q can be obtained from P by renaming of
bound names. We use R

+
0 to denote the non-negative reals.

Pattern matching is formally defined by a function match : F × V ×M →
M⊎ {⊥} which takes as input a pattern, a datum (i.e., a concrete value) and
a substitution and returns either a new substitution which extends the original
substitution with the appropriate bindings, or ⊥ if the datum does not match the
pattern. The substitution provided as input is used to ensure that all occurrences
of a variable in a tuple match the same data. For a formal definition of this
function see [10].

Any well-defined semantics must ensure that processes which are structurally
equivalent behave in the same way. We now define such an equivalence relation,
called structural congruence.

Definition 2. (Structural congruence over process terms) The relation
≡⊆ P × P is defined to be the smallest congruence over P which satisfies the
following axioms: 1) if P ≡α P ′ then P ≡ P ′; 2) νx.

√ ≡ √; 3) νx.νy.P ≡
νy.νx.P ; 4) (P, ‖,√) is an abelian monoid; 5) if x /∈ fn(P ) then P ‖ νx.Q ≡
νx.(P ‖ Q); and 6) if A(x1, ..., xn)

def
= P then A(y1, ..., yn) ≡ P{y1/x1, ..., yn/xn}.

A timed labelled transition system or TLTS, is a transition system in which we
distinguish between transitions due to actions and evolution (passage of time).
Formally, a TLTS is a tuple (S,L,→, ) where S is a set of states, L is a set of
labels,→⊆ S×L×S is a transition relation and ⊆ S×R

+
0 ×S is an evolution

relation. A rooted TLTS (S, s0,L,→, ) is a TLTS with a distinguished initial

state s0. We write s
a→ s′ for (s, a, s′) ∈→ and s

d
 s′ for (s, d, s′) ∈ . We write

s
a→ to mean that ∃s′ ∈ S. s a→ s′.

Definition 3. (Process transitions and evolution) The meaning of a πklt
term P0 is a rooted TLTS (P, P0,A,→, ) where A is the set of action labels
described below and the relations →⊆ P ×A× P and  ⊆ P × R

+
0 × P are the

smallest relations satisfying the inference rules in Table 1. The elements of A
are actions of the form τ (silent action), x?u (reception), x!u (trigger), or x!νu
(bound trigger) where u is a value. We let α range over A. We write bn(α) for

3 We do not need a name environment, as all expressions will be closed, since the
appropriate substitutions of free names are performed before evaluation takes place.

4 σ[V/x](x)
def
= V and σ[V/x](y)

def
= σ(y) if x 6= y.



(trig) x!E
x!eval(E)−−−−−−→ √ (del) if eval(E) = 0 then ∆E.P

τ−→ P
(ch) if σ = match(Fi, v, ∅) 6= ⊥ then

∑

i∈I
xi?Fi@yi.Pi

xi?v−−−→ Piσ[0/yi]
(new) if P

α−→ P ′ and x 6∈ n(α) then νx.P
α−→ νx.P ′

(par) if P
α−→ P ′ and bn(α) ∩ fn(Q) = ∅ then P ‖ Q α−→ P ′ ‖ Q

(comm) if P
x!v−−→ P ′ and Q

x?v−−→ Q′ then P ‖ Q τ−→ P ′ ‖ Q′

(open) if P
x!u−−→ P ′ and x 6∈ n(u) then νũ.P

x!νu−−−→ P ′ with ũ = n(u)

(close) if P
x!νu−−−→ P ′ and Q

x?v−−→ Q′ then P ‖ Q τ−→ νũ.(P ′ ‖ Q′) with ũ = n(u)

(cngr) if P
α−→ P ′, P ≡ Q and P ′ ≡ Q′ then Q

α−→ Q′

(tidle)
√ d
 
√

(ttrig) x!E
d
 x!E

(tch)
∑

i∈I
xi?Fi@yi.Pi

d
 
∑

i∈I
xi?Fi@yi.Pi{yi+d/yi}

(tnew) if P
d
 P ′ then νx.P

d
 νx.P ′

(tdel) if 0 6 d 6 eval(E) then ∆E.P
d
 ∆(E − d).P

(tpar) if P
d
 P ′ and Q

d
 Q′ then P ‖ Q d

 P ′ ‖ Q′

(tcngr) if P
d
 P ′, P ≡ Q and P ′ ≡ Q′ then Q

d
 Q′

Table 1. Process transitions and evolution.

the set of bound names of the action α, namely bn(x?u) = bn(x!νu)
def
= n(u),

bn(x!u) = bn(τ)
def
= ∅. We impose an additional constraint on the TLTS to

guarantee maximal progress (urgency of internal actions):

if P
τ−→ then P 6d for all d > 0

The rules (ch) and (tch) in Table 1 are of particular interest. The rule (tch)
states that a listener can let time pass by, incrementing the variables yi according
to the elapsed time. The rule (ch) states that when an event xi is triggered with
a value that matches the corresponding pattern, the process Pi is selected with
the appropriate bindings, in particular yi is bound to 0 as any waiting time has
already been taken into account and added by previous applications of the (tch)
rule.

Example Let us revisit the server response time example. Consider the execu-
tion of the device D(b) when it receives a request to test the first server with
links q1 and a1. In the given example this server takes 3.2 seconds to respond.
Then the testing device will have the following execution (in this example we
explicitly expand the timeout construct):

D(b)
b?〈5,q1,a1,r1,m1〉−−−−−−−−−−−→ q1!.(a1?@e.r1!e.D(b))

5
⊲ m1!.D(b)

q1!∅−−−→ (a1?@e.r1!e.D(b))
5
⊲ m1!.D(b)

≡ νs.((a1?@e.r1!e.D(b) + s?.m1!.D(b)) ‖ ∆5.s!)
3.2
 νs.((a1?@e.r1!(e+ 3.2).D(b) + s?.m1!.D(b)) ‖ ∆(5− 3.2).s!)
a1?∅−−−→ νs.(r1!(0 + 3.2).D(b) ‖ ∆(5− 3.2).s!)
r1!3.2−−−→ νs.(D(b) ‖ ∆(5− 3.2).s!)

1.8
 νs.(D(b) ‖ ∆0.s!)
τ−→ νs.(D(b) ‖ s!) ≡ D(b)



3 Timed equivalence

As explained in the introduction, all behaviours that violate hard response-
time constraints of real-time systems are considered failures. Therefore we can
weaken our comparison criteria to behaviours up to a given deadline. Consider

the following processes: A1
def
= (a?.P )

3
⊲ Q and A2

def
= (a?.P )

5
⊲ Q. Before time 3,

both A1 and A2 have exactly the same transitions (a?) and evolutions. If we
have a hard constraint requiring interaction before 3 time units, we don’t care
about their behaviour beyond time 3, and so it makes sense to identify the two
processes up-to time 3. Nevertheless, these systems cannot be identified under
standard notions of bisimilarity. To see this, recall the definition of timeout. We

can see that A1 has the following execution: A1
3
 (a?.P )

0
⊲ Q

τ−→ τ−→ Q but this

cannot be matched by A2: A2
3
 (a?.P )

2
⊲ Q 6τ−→ . Hence, A1 and A2 cannot be

identified by any of the existing timed bisimilarities for timed π-calculi, such as
those in [3], [1], [6] or [2] or bisimilarities that match evolution directly (i.e.,

P
d
 P ′ implies Q

d
 Q′ with P ′ bisimilar to Q′).

In [13], Schneider introduced a notion of timed bisimilarity up-to time T to
compare the behaviour of Timed CSP processes. A good notion of observational
equivalence is one which satisfies the property that whenever two processes are
identified, no observer or context can distinguish between them. Such a prop-
erty is satisfied by an equivalence relation which is preserved by all combinators
or operators of the language, in other words, by a congruence relation (com-
positionality). Unfortunately Schneider’s equivalence is not a congruence in the
context of timed π-calculi, because, as ground bisimilarity, it is not preserved by
listeners (input). In the theory of the π-calculus several alternative definitions
of bisimilarity have been explored to ensure compositionality. Sangiorgi’s open
bisimilarity [12] has the desired feature: it is a congruence for all π-calculus op-
erators. This suggests the following equivalence for dense-time π-calculi which
combines Schneider’s timed bisimilarity with Sangiorgi’s open bisimilarity.

Definition 4. (Open timed-bisimulation) Let S be a set of terms in some
language equipped with a notion of substitution, where substitutions are functions
σ : S → S. Let (S,L,→, ) be a TLTS over S. A relation B ⊆ S × R

+
0 × S,

is called an open timed-simulation if for all t ∈ R
+
0 , whenever (P, t,Q) ∈ B

then, for any substitution σ : S → S and any d ∈ R
+
0 such that d < t :

1. ∀α ∈ L.∀P ′ ∈ S. Pσ α−→ P ′ ⇒ ∃Q′ ∈ S. Qσ α−→ Q′ ∧ (P ′, t, Q′) ∈ B
2. ∀P ′ ∈ S. Pσ d P ′ ⇒∃Q′ ∈ S. Qσ d Q′ ∧ (P ′, t− d,Q′) ∈ B

If B and B−1 are open-timed simulations, then B is called an open-timed-

bisimulation. Let -
def
= {(P, u,Q) ∈ S × R

+
0 × S | ∃B.B is an open timed-

bisimulation & (P, u,Q) ∈ B}. For any given t ∈ R
+
0 , let -t

def
= {(P,Q) ∈ S ×

S | (P, t,Q) ∈-}.



Remark 1. For any t ∈ R
+
0 , -t is an equivalence relation and - is the largest

open timed-bisimulation.

With this definition we can now establish that A1 -3 A2 for the processes A1

and A2 defined above.

Proposition 1. For any TLTS M = (S,L,→, ), any t, u ∈ R
+
0 , and any

P, P ′, P ′′ ∈ S:

1. If P -t P
′ then for any u 6 t, P -u P

′; and
2. if P -t P

′ and P ′ -u P
′′ then P -min{t,u} P

′′.

Timed compositionality Now we focus on the compositionality properties of
open timed-bisimilarity. First, we have that it is closed under substitutions:

Lemma 1. For any substitution σ, and any t ∈ R
+
0 , if P -t Q then Pσ -t Qσ.

As mentioned above, a good observational equivalence should be a congruence.
However, as we have argued, we only care about the observable behaviour up-to
some time T , which means that the equivalence must be preserved by our opera-
tors only up to that time. Hence we are after a notion of timed-compositionality,
characterized by a timed-congruence, which we now formally define:

Definition 5. (Timed-congruence) Given some set S, and a ternary relation

R ⊆ S × R
+
0 × S, we define R’s t-projection to be the binary relation Rt

def
=

{(p, q) ∈ S×S | (p, t, q) ∈ R}. R is called a t-congruence iff Rt is a congruence.
R is called a timed-congruence if it is a t-congruence for all t ∈ R

+
0 . R is called

a timed-congruence up-to u iff it is a t-congruence for all 0 6 t 6 u.

Open timed-bisimilarity satisfies the following stronger property which we obtain
using Lemma 1:

Lemma 2. For any P, P ′, Q,Q1, ..., Qn ∈ P, and any t ∈ R
+
0 , if P -t P

′ then:

1. ∆E.P -t+e ∆E.P
′ where e = eval(E)

2. νx.P -t νx.P
′

3. P ‖ Q -t P
′ ‖ Q

4. x?F@y.P +
∑n

i=1 βi.Qi -t x?F@y.P ′ +
∑n

i=1 βi.Qi where each βi is of the
form xi?Fi@yi.

The immediate consequence, which follows from Proposition 1 and Lemma 2, is
timed-compositionality:

Theorem 1. -t is a timed-congruence up-to t and - is a timed-congruence.

We also obtain the following properties as a consequence of Lemma 2, which guar-
antees equivalence up to the least upper bound of the pairwise time-equivalences:

Corollary 1. For any families of terms {Pi ∈ P}i∈I and {Qi ∈ P}i∈I , if for
each i ∈ I, Pi -ti Qi then

1.
∏

i∈I Pi -min{ti|i∈I}

∏

i∈I Qi
2.
∑

i∈I xi?Fi@yi.Pi -min{ti|i∈I}

∑

i∈I xi?Fi@yi.Qi



4 An abstract machine for the πklt-calculus

We now turn our attention to the executable semantics of πklt.

4.1 Abstract machine specification

Our abstract machine is similar to Turner’s abstract machine for the π-calculus
[14], but unlike Turner’s, we have to take evolution over real-time and pattern-
matching into account. As mentioned in the introduction, the abstract machine
is based on event-scheduling, which, unlike discrete-time algorithms, does not
require idle iteration cycles at times when no events are scheduled. The key idea
is to treat each πklt term as a simulation event to be executed by an event-
scheduler (and not to be confused with a communication event in the language
itself). Such event scheduler forms the heart of our abstract machine.

The global queue The event-scheduler contains a queue of simulation events
(terms) to be executed, but rather than store them all in a single linear queue, we
divide them into time-slots, i.e., sequences of all simulation events to be executed
at a given instant in time. Hence the global event queue is a time-ordered queue
of time-slots, each of which is a queue of terms. We describe the operation of
our abstract machine by showing how it evolves in these two “dimensions” of
time: the “vertical dimension” which corresponds to the execution of all terms
in a single time-slot, and the “horizontal dimension”, which corresponds to the
advance in time, i.e., the progress of the global queue.

Definition 6. (Global queue) The set R of global queue states, ranged over
by R, is defined by the following BNF, where T ranges over the set T of time-
slots:

R ::= (t1, T1) · (t2, T2) · · · · · (tn, Tn) | 〈〉
T ::= P1 :: P2 :: · · · :: Pm | ǫ

where each Pi ∈ P, each ti ∈ R
+
0 , and for each i > 1, ti < ti+1.

Event observers and the heap Multiple processes can trigger and/or listen
to the same channel. Hence we need to keep track of each of these requests in an
observer set5, containing observers, i.e., requests to either send a message over
a channel or listen to it. We also define the heap, which is a map associating
each channel name to its observer set.

Definition 7. (Channel observers and heap) The set of channel observers,
ranged over by O, observer sets, ranged over by Q and the set H of heaps,
ranged over by H, are defined by the following BNFs:

O ::= !v | ?(F, y, P, t, c)

Q ::= {O1, O2, · · · , On} | ∅
H ::= x1 7→ Q1, x2 7→ Q2, ..., xm 7→ Qm | ǫ

5 Analogous to “channel queues” in Turner’s terminology.



where v ∈ V, F ∈ F , P ∈ P, and t ∈ R
+
0 . We denote H{x 7→ Q} for the

heap where the entry for x is updated to Q. We extend this notation to indexed
sets: H{xi 7→ Qi}i∈I stands for H{x1 7→ Q1} · · · {xn 7→ Qn} for I = {1, ..., n}.
Observers of the form !v are output observers, and denote an attempt to send
a value v over the given channel. Observers of the form ?(F, y, P, t, c) denote
input observers, with a pattern F to match, elapsed-time variable y, body P to
execute when a message arrives and which start listening at time t. This tag t is
necessary in order to assign the correct elapsed-time to y once interaction occurs.
Such time-stamp is not present in Turner’s machine, since his is “time agnostic”.
The last item, c, is a tag used to identify the original πklt listener, so that
each branch of a listener

∑

i∈I xi?Fi@yi.Pi will have an observer ?(Fi, yi, Pi, t, c)
sharing the same identifier c. This is also absent from Turner’s machine, since
he does not implement the choice operator.

Unlike Turner’s machine, any given non-empty observer set can contain both
inputs and outputs simultaneously, because it is possible that the value sent over
a channel does not match any of the patterns of the available input observers
and thus the corresponding output observer must be suspended with the existing
inputs on the same observer set. Hence the following auxiliary definitions will
be useful to extract the relevant observers from a set.6

Definition 8. Given an observer set Q, we denote:

inputs(Q)
def
= {O ∈ Q |O is of the form ?(F, y, P, t, c)}

outputs(Q)
def
= {O ∈ Q |O is of the form !v}

patt(?(F, y, P, t, c))
def
= F tag(?(F, y, P, t, c))

def
= c val(!v)

def
= v

inms(v,Q)
def
= {(O, σ) |O ∈ inputs(Q), σ = match(patt(O), v, ∅), σ 6= ⊥}

outms(F,Q)
def
= {(O, σ) |O ∈ outputs(Q), σ = match(F, val(O), ∅), σ 6= ⊥}

The last two functions give us the set of observers and bindings for successful
matches between a value v (resp. a pattern F ) and the patterns (resp. values)
available as input (resp. output) observers in the set.

We also need the ability to remove input observers from all branches of a
listener once a branch has been triggered. To this end, we define the following
which removes all c tagged inputs from an observer set Q:

withdraw(Q, c)
def
= {O ∈ inputs(Q) | tag(O) 6= c}∪ outputs(Q)

which we use to define the following function that removes all such inputs
anywhere in the heap7:

rall(ǫ, c)
def
= ǫ and

rall((H,x 7→ Q), c)
def
= rall(H, c), x 7→ withdraw(Q, c)

6 We assume the standard set theoretical operations for observer sets: e.g., Q ∪ {O}
denotes the observer set that adds O to Q, Q\O is the set that results from removing
O from Q, O ∈ Q tests for membership, etc.

7 This definition is inefficient since it traverses the entire heap. In practice, the in-
put observers contain a list of pointers to the relevant heap entries to remove the
alternatives efficiently.



Executing time-slots We now describe the “vertical dimension” of time, i.e.,
the execution of terms within one time-slot.

Definition 9. (Time-slot execution) The behaviour of time-slots at a time
t ∈ R

+
0 is defined as the smallest relation →t⊆ (H×T )× (H×T ) satisfying the

rules below:
(nil) (H,

√
:: T )→t (H,T )

(res) (H, νx.P :: T )→t (H{k 7→ ∅}, P{k/x} :: T ) with k fresh
(sp1) (H, (P1 ‖ P2) :: T )→t (H,T :: P1 :: P2)
(sp2) (H, (P1 ‖ P2) :: T )→t (H,T :: P2 :: P1)
(out-f) if H(x) = Q and inms(eval(E), Q) = ∅ then

(H,x!E :: T )→t (H{x 7→ Q ∪ {!eval(E)}}, T )
(out-s) if H(x) = Q and (?(F, y, P, u, c), σ) ∈ inms(eval(E), Q) 6= ∅ then

(H,x!E :: T )→t (rall(H, c), Pσ[t−u/y] :: T )
(inp-f) if ∀i ∈ I.H(xi) = Qi, outms(Fi, Qi) = ∅ and c fresh, then

(H,
∑

i∈I xi?Fi@yi.Pi :: T )→t (H{xi 7→ Qi ∪ {?(Fi, yi, Pi, t, c)}}i∈I , T )
(inp-s) if ∃i ∈ I.H(xi) = Qi and (O, σ) ∈ outms(Fi, Qi) 6= ∅ then

(H,
∑

i∈I xi?Fi@yi.Pi :: T )→t (H{xi 7→ Qi\O}, Piσ[0/yi] :: T )

(inst) if A(x̃)
def
= P then (H,A(ṽ) :: T )→t (H,T :: P{ṽ/x̃})

The rule (nil) simply ignores a terminated process. The (sp) rules break a par-
allel composition into its components and spawn their execution in the current
time-slot in an arbitrary order. Unlike Turner’s machine, this is non-deterministic.
The (res) rule allocates a new spot for the new channel, and initializes its ob-
server set to empty.

The (out-f) rule describes the case when a message is sent over x and
there is no matching listener in x’s observer set (output failure). In this case we
simply add a new trigger observer to x’s observer set and continue. The (out-s)
rule (output success) applies when there is a matching observer O with σ being
the resulting bindings. In this case, we remove all observers belonging to the
matching listener (those tagged with c), and then execute the body P of the
observer, applying the substitution σ extended with the binding of the elapsed
time variable y to the difference between the current time t and the time u
when the receiver started listening. Note that since there might be more than
one successful match, the choice is non-deterministic, contrasting again with
Turner’s machine.

The rules (inp-s) and (inp-f) are the dual of (out-s) and (out-f). In rule
(inp-f), when attempting to execute a listener, if there are no matching triggers
in the relevant observer sets, we simply add the appropriate observers to the
corresponding observer sets. Note that the added observers are tagged with the
current time t, and with the same tag c. On the other hand, in rule (inp-s),
one of the branches succeeds in matching the pattern with an observer O and
binding σ. In this case, we remove the output observer from the event’s observer
set and execute the body of the corresponding branch, applying the substitution
σ and binding yi to 0, since the listener did not have to wait.

Finally, the rule (inst) deals with process instantiations. This simply assumes
the set of process definitions is available, and schedules the execution of the body



of the definition by replacing its parameters by the arguments provided by the
instantiation.

Note that there is no rule associated with the ∆ operator. We specify its
behaviour in the description of the global scheduler below.

Global event scheduler Now we can define the behaviour of the global event
scheduler. For this purpose we will assume we have a function insort : R

+
0 ×

P × R → R (formally defined in [10]) which, given a time, inserts a term in
the appropriate time-slot in the global queue, preserving the order of time-slots
w.r.t. their time-stamps.

Definition 10. (Scheduler) The behaviour of the scheduler is given by the
smallest relations →֒0, →֒1, →֒2⊆ (H × R) × (H × R) which satisfy the rules
below:

(ts) if (H,T )→t (H ′, T ′) and T 6= ǫ then (H, (t, T ) ·R) →֒0 (H ′, (t, T ′) ·R)

(adv) (H, (t, ǫ) ·R) →֒1 (H,R)

(sch) (H, (t,∆E.P :: T ) ·R) →֒2 (H, insort(t+ eval(E), P, (t, T ) ·R))

The rule (ts) states that as long as there are terms in the current time-slot
then they are executed. The (adv) rule states that when the current time-slot
is empty, execution moves on to the next available time-slot. Finally, the (sch)
rule describes the behaviour of the delay operator: to execute ∆E.P , the value
d of E is computed and P is inserted at time t+ d (where t is the current time).
Note that P is inserted in (t, T ) ·R because the value of E may be 0. This may
create a new time-slot, if there was none at time t+ d.

Example We illustrate the abstract machine with a sample execution. Consider

the processes Q
def
= ∆3.2.x!1 and P

def
= x?1@e.P1 where P1

def
= ∆(5 − e).P2 for

some P2. Suppose that the current time is, for example, 7. The execution of the
time-slot containing only νx.(P ‖ Q), assuming the heap is initially empty (just
to simplify notation) is:

(ǫ, (7, νx.(P ‖ Q)))
→֒0 (k 7→ ∅, (7, (P ‖ Q){k/x})) (res)+(ts)

≡ (k 7→ ∅, (7, (P{k/x} ‖ Q{k/x})))
→֒0 (k 7→ ∅, (7, P{k/x} :: Q{k/x})) (sp1)+(ts)
→֒0 (k 7→ {?(1, e, P1{k/x}, 7, c)}, (7, Q{k/x})) (inp-f)+(ts)
≡ (k 7→ {?(1, e, P1{k/x}, 7, c)}, (7, ∆3.2.k!1))
→֒2 (k 7→ {?(1, e, P1{k/x}, 7, c)}, insort(7 + 3.2, k!1, (7, ǫ))) (sch)
≡ (k 7→ {?(1, e, P1{k/x}, 7, c)}, (7, ǫ) · (10.2, k!1))
→֒1 (k 7→ {?(1, e, P1{k/x}, 7, c)}, (10.2, k!1)) (adv)
→֒0 (k 7→ ∅, (10.2, P1{k/x}{10.2−7/e})) (out-s)+(ts)
≡ (k 7→ ∅, (10.2, ∆(5− 3.2).P2{3.2/e}{k/x}))
→֒2 (k 7→ ∅, (10.2, ǫ) · (12, P2{3.2/e}{k/x})) (sch)
→֒1 (k 7→ ∅, (12, P2{3.2/e}{k/x})) (adv)



Here we used (sp1) which selected the left process P to be executed first.
This resulted in registering the input observer in k’s observer set. If we had used
(sp2) instead, then Q would have been executed first, resulting in the scheduling
happening first, but P would remain in the time-slot for time 7, and thus it would
be executed before advancing in time.

4.2 Soundness

We now establish that reductions in our abstract machine correspond to valid
πklt executions, following the same approach from [14]. To do this, we first encode
the states of our abstract machine as πklt terms, in particular we need to encode
the heap, its observer sets, time-slots and the global queue. We use x ∈ H to
denote that there is an entry for x in the heap H.

Definition 11. (Encoding the machine state) The set of triggers in the
heap entry for x and the set of all triggers in the heap are given by:

triggers(Q, x)
def
= {x!v | !v ∈ outputs(Q)}

alltriggers(H)
def
=
⋃

x∈H triggers(H(x), x)
The set of branches of a listener with tag c is given by:

branches(H, c, t)
def
=
⋃

x∈H alts(H(x), c, x, t) where

alts(Q, c, x, t)
def
= {x?F@y.P{y+(t−u)/y} | ?(F, y, P, u, c) ∈ inputs(Q)}

The set of all listeners in the heap is given by:

alllisteners(H, t)
def
= {∑ branches(H, c, t) | c ∈ alltags(H)}

where

alltags(H)
def
=
⋃

x∈H tags(H(x)) and

tags(Q)
def
= {tag(O) |O ∈ inputs(Q)}

The encoding of the heap H at time t, is given by:

JHKt
def
= (
∏

alllisteners(H, t)) ‖ (
∏

alltriggers(H))
The encoding of the time-slot T = P1 :: P2 :: · · · :: Pn is:

JT K
def
= P1 ‖ P2 ‖ · · · ‖ Pn

The encoding of a heap/time-slot pair at time t is:

J(H,T )Kt
def
= JHKt ‖ JT K

The encoding of the global queue R = (t1, T1) · (t2, T2) · ... is given by:

JRK
def
= JT1K ‖ ∆(t2 − t1).JT2K ‖ · · · ‖ ∆(tn − t1).JTnK

The encoding of the machine state (H,R) is defined as:

J(H,R)K
def
= νx1, ..., xk.(JHKcurtime(R) ‖ JRK)

where {x1, ..., xk} are the names of entries in the heap H and curtime((t, T ) ·
R)

def
= t is the time-stamp of the first time-slot.

Note that to create a single listener we have to quantify over the possible entries
in the heap. This is because each branch of a listener may listen to different
channels, and therefore, the corresponding input observers may be dispersed over
multiple heap entries. The use of tag c allows us to identify all input observers



which belong to the same listener. Also, note that the definition alts which gives
us an alternative branch of a listener, substitutes y+ (t− u) for y in P , where t
is the current time and u is the time-stamp of the input observer, i.e., when the
listener began listening. This is because the encoding corresponds to taking a
“snapshot” of the machine’s state at time t, but each listener may have registered
at some time u 6 t so we have to take the already elapsed time into account. The
encoding JRK for the global queue considers the first time-slot to represent the
current one, so all future time-slots are delayed relative to the current time t1.

Now we establish our result (we write =⇒ for (
τ−→ ) ≡ ∪ ≡).

Lemma 3. If (H,T )→t (H ′, T ′) then J(H,T )Kt =⇒ J(H ′, T ′)Kt

Theorem 2. (Abstract machine soundness)

1. If (H,R) →֒0 (H ′, R′) then J(H,R)K =⇒ J(H ′, R′)K

2. If (H,R) →֒1 (H ′, R′) then J(H,R)K
d
 J(H ′, R′)K with d = t2 − t1 where

R = (t1, T1) · (t2, T2) · ...
3. If (H,R) →֒2 (H ′, R′) then J(H,R)K ≡ J(H ′, R′)K

5 Conclusions

We have introduced the πklt-calculus, a timed extension to the asynchronous
π-calculus which adds some high-level features such as pattern-matching. We
have given an operational semantics in terms of timed-labelled transition sys-
tems, and developed a basic theory of time-bounded congruence. We developed
an abstract machine for the calculus and established its soundness with re-
spect to the operational semantics. To the best of our knowledge this is the
first use of event-scheduling (as used in simulation) as a language interpreter.
We have implemented the πklt-calculus in a language called kiltera (available at
http://www.kiltera.org) which is based on the described abstract machine.
Moreover, it extends πklt with primitives for distributed computing, allowing
processes to be sent to remote sites and have site-dependent behaviour.

Aside from differences in the particular choice of operators, the most closely
related work, to the best of our knowledge, is found in [3], [1], [6] and [2]. As men-
tioned before the first three consider only discrete-time variants of the π-calculus
and all deal with stringent notions of timed equivalence which do not take into
account time bounds. Furthermore, the equivalences in [3] are not shown to be
congruences. In fact, we suspect that these equivalences are not congruences,
for the same reasons that strong, ground bisimilarity is not a congruence in the
π-calculus, or (non-open) timed-bisimilarity is not a congruence in πklt: they are
insensitive to values over channels. The other papers deal with congruences, but
they are sensitive to behaviours beyond time-bounds, distinguishing processes
that should be identified when considering hard constraints.

In terms of execution, to the best of our knowledge, there is no other abstract
machine for a timed π-calculus, and the only other implementation is that of the
TDπ-calculus [4]. This implementation is quite different from ours, both in terms



of the execution model and architecture. Firstly, it uses of a clock-tick model
rather than event-scheduling. Secondly, instead of using an abstract machine,
it translates the source language (TiMo) to Java code, and thus depends on
the Java run-time system and additional libraries. There are further differences
regarding distributed execution, but these fall outside the scope of this paper.
For a more detailed comparison with this and other related work, we refer the
reader to [10].

There are several possible future lines of research including the development
of a type system, weaker notions of equivalence and refinement relations with ap-
propriate axiomatizations, as well as symbolic methods to help analyze systems.
The mentioned extension of πklt and kiltera to distribution will be described in
a future paper.
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