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Abstract 

Analysis and simulations are performed for  a simplified model 
of a commercially available variant of the skateboard, known 
as the Snakeboard’. Although the model exhibits basic gait 
patterns seen an a large number of locomotion problems, the 
analysis tools currently available do not apply to this prob- 
lem. The dificulty lies primarily i n  the way i n  which the non- 
holonomic constraints enter into the system. As  a first step 
towards understanding systems represented by OUT model we 
present the equations of motion and perform some controlla- 
bility analysis fo r  the snakeboard. W e  also perform numerical 
simulations of possible gait patterns which are characteristic 
of snakeboard locomotion. 

Introduction 

This paper investigates a simplified model of a commercially 
available derivative of a skateboard known as the Snake- 
board. The Snakeboard (Figure 1) allows the rider to propel 
him/herself forward without having to make contact with the 
ground. This motion is roughly accomplished by coupling a 
conservation of angular momentum effect with the nonholo- 
nomic constraints defined by the condition that the wheels 
roll without slipping. Snakeboard propulsion is discussed in 
more detail in Section 1. 

We study this model for several reasons. First, the snake- 
board’s means of locomotion has not appeared in prior stud- 
ies of robotic locomotion. Numerous investigators have stud- 
ied and successfully demonstrated quasi-static multi-legged 
locomotion devices (161. Others have considered and imple- 
mented various forms of undulatory, or “snake-like,’’ locomo- 
tion schemes [6], [4]. Beginning with Raibert [13], hopping 
robots have received considerable attention as well [8, 10, 11. 
Bipedal walking and running has also been an active area of 
research [9, 71. In all of these cases except [l], the robotic 
locomotion devices are largely anthropomorphic or zoomor- 
phic. The method of locomotion used for the snakeboard is 
significantly different from all of these approaches and does 
not appear to have a direct biological counterpart. There is, 
however, some similarity to the undulatory motion of snakes, 
and it is hoped that this research will provide insight into 
other areas of locomotion which make use of constraints aris- 
ing through ground contact. 

Despite its unique features, the mechanics of the snake- 
board’s movement has several properties which we believe to 
be common to many forms of locomotion. In Section 4, the 
simplified snakeboard model is shown to exhibit a number of 
gaits, each of which generates a net motion in a certain di- 
rection by performing loops in the controlled variables. This 
general method of locomotion (i.e., generating net motions 
by cycling certain control variables) appears to be generic 

‘The name Snakeboard has been trademarked. 

to most methods of locomotion, including walking, running, 
parallel parking, undulating, and sidewinding. 

Superficially, the snakeboard appears to be closely re- 
lated to other robotic systems with nonholonomic constraints, 
where cyclic motions in the control space of the vehicle can 
cause net motion in the constrained directions (see [ll] for an 
introduction and references). However, the dynamics of our 
model of the Snakeboard do not fit into the principal fibre 
bundle structure which has been used to study some non- 
holonomic systems [2]. The snakeboard seems to represent a 
class of systems for which current analysis tools do not pro- 
vide any assistance. Thus, the snakeboard model: (1)  is an 
interesting problem in nonholonomic mechanics; (2) repre- 
sents an unexplored class of systems which may be used for 
locomotion; and (3) serves as a motivating example for the 
development of new frameworks for exploring the relationship 
between nonholonomic mechanics and locomotion. 

In Section 1 we give a detailed description of the Snake- 
board and how it is used. We also present our simplified 
model which is intended to capture the essential features of 
the Snakeboard. In Section 2 we present Lagrange’s equations 
for the snakeboard and describe a control law which allows 
us to follow specified inputs exactly. Since the snakeboard is 
modeled as a constrained control system, it is possible to ex- 
amine controllability and thereby determine whether we may 
reach all points in our state space. This analysis is presented 
in Section 3. In Section 4 the above mentioned gaits are pre- 
sented and analysed. The failure of the snakeboard to fit into 
a principal bundle formulation is discussed in Section 5. In- 
cluded in this discussion is the introduction of possible tools 
suggested by recent research which may make the problem 
more tractable. 

rear front 
wheel Footpads wheel 

Figure 1: The Snakeboard 

1. The Snakeboard and a simplified model 

The Snakeboard consists of two wheel-based platforms upon 
which the rider is to place each of his feet. These platforms 
are connected by a rigid coupler with hinges at each platform 
to allow rotation about the vertical axis. See Figure 1. To 
propel the snakeboard, the rider first turns both of his feet 
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lie in ker{w' , w2}, where 

w1 = -sin(+b t e)& + COS(4b + 0)dy - 1COs(db)d6 

w2 = - sin(4j + B ) ~ X  +  COS(^^ + e)dy + I cos(4f)de 

2. Dynamics and control of the snakeboard 

(1.3) 

(1.4) 

To investigate the dynamics of the snakeboard we use La- 
grange's equations which, for constrained and forced systems, 
are given by 

back wheels L 
Figure 2: The simplified model of the Snakeboard 

in. By moving his torso through an angle, the Snakeboard 
moves through an arc defined by the wheel angles. The rider 
then turns both feet so that they point out, and moves his 
torso in the opposite direction. By continuing this process 
the Snakeboard may be propelled in the forward direction 
without the rider having to touch the ground. 

Our simplified model of the Snakeboard is shown in Fig- 
ure 2. We will use the term snakeboard to refer to this model, 
but will distinguish the model from the commercially avail- 
able Snakeboard by using italics and capitals to describe the 
latter. As a mechanical system the snakeboard has a con- 
figuration space given by Q = S E ( 2 )  x s' x s' x s'. Here 
SE(2)  is the group of rigid motions in the plane, and we 
are thinkin of this as describing the position of the board 
itself. By & we mean the group of rotations on R 2 .  The 
three copies of s1 in Q describe the positions of the rotor and 
the two wheels, respectively. As coordinates for Q we shall 
use (2, y, e,$, &,, 4f) where (z, y, e) describes the position of 
the board with respect to a reference frame (and so are to be 
thought of as an element of S E ( 2 ) ) ,  $ is the angle of the rotor 
with respect to the board, and &,, and are, respectively, 
the angles of the back and front wheels with respect to the 
board. we will frequently refer to  the variables ($,db,ff) 
as the controlled variables since they are the variables which 
are rider inputs in the actual Snakeboard. Parameters for the 
problem are: 

m 
J 
J ,  
Jw 

I 

: the mass of the board, 
: the inertia of the board, 
: the inertia of the rotor, 
: the inertia of the wheels (we assume 

them to be the same), and 
: the length from the board's centre of 

mass to  the location of the wheels. 

The wheels of the snakeboard are assumed to roll with- 
out lateral sliding. This condition is modeled by constraints 
which may be shown to be nonholonomic. At the back wheels 
the constraint assumes the form 

- sin(4b + 0);  + cos(+a + e)$ - I COS(db)d = 0. 
(1.1) 

Similarly at the front wheels the constraint appears as 

- sin(4j + e);   COS(^^ + 0 ) ~  + lcos(4f)8 = 0. 
(1.2) 

Alternatively one can write the constraints as the kernel of 
two differential oneforms. To be specific, all velocities must 

Here XI,. . . , A, are the Lagrange multipliers, w l , ,  . . , wm are 
the constraint one-forms, and 7 1 , .  . . ,r,, are the external 
forces. The first term on the right hand side of Lagrange's 
equations may be regarded as an external force applied to the 
system to ensure that the constraints are satisfied. As such, 
the Lagrange multipliers are a part of the solution to the 
problem. See [12] for a discussion of Lagrangian mechanics 
in this vein. We will only consider torques on the controlled 
variables 4, 4 b 1  and 4f. The Lagrangian for the snakeboard 
is 

1 1 1 
2 2 2 

L = - m ( k 2  + iz) + -Jdz  + - J 7 ( d  + + 

where (u1 , u2, u3) are the input torques in the ($, ( b b ,  4f) di- 
rections, respectively. 

Since the rider of the Snakeboard typically propels him- 
self by performing cyclic motions with his feet and torso, it 
was deemed desirable to  devise a control law which would 
allow one to follow any curve, t I+ ($ ( t ) ,  d b ( t ) ,  df(t)), in the 
controlled variables. It turns out that such a control law is 
derivable with some manipulation of Lagrange's equations. 
We outline some of this manipulation in the proof of the fol- 
lowing proposition. 

Proposition 2.1 Let t I+ ( $ ( t ) , d b ( t ) , d f ( t ) )  be a piece- 
wise smooth curve. Then there exists a control law t * 
(ul(t), uz(t) ,u3(t))  30 that the ($ ,bb ,df )  components of 
the sohtron t o  Lagrange's equations are given by t I+ 

(@(t)i h ( t ) ,  dt(t))* 

Proof In Lagrange's equations, (2.1)-(2.6), and in the con- 
straints, (1.1) and ( 1 2 ) ,  regard ($, $b, 4f) as known functions 
oft. Substituting (2.4)-(2.6) into (2.3) qves 
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Substituting this expression back into (2.4)-(2.6) gives an ex- 
pression of the form 

B u  = P( t )  + N(t)X (2.8) 

where U = (ul,uz,u3), X = (Xl,XZ), B E R3"' is a known 
constant matrix, P t E w3 is a known time-dependent vec- 
tor, and N ( t )  E R'" is a known time-dependent matrix. 
Now observe that we may write (2.1), (2.2), and (2.7) as 

M t ' +  WT(z,t)X = f .  (2.9) 

Here z = (z,y,@), f = (O,O,-ul -u2 -u3), M E R3"3 is 
a known constant invertible matrix, and W(z , t )  E w Z x 3  is a 
known time-dependent matrix function of z. The constraints 
appear as 

W ( z ,  t ) i  = 0. (2.10) 

Using (2.9) and (2.10) we may derive 

X = ( W M - ' W T ) - ' ( W M - '  f + f i t ) .  (2.11) 

Since ( u ~ , u z , u ~ )  appear linearly in f ,  we can replace 
W M - I  f with an equivalent representation which is linear 
in the control torques, U :  

W M - ' f  = Cu, (2.12) 

where C ( z , t )  E RZx3.  Finally, using (U), (2.11) and (2.12) 
we arrive at  the formula 

u(z, i , t )  (B - N ( W M - ' W T ) - ' C ) - '  * 

( P  + N ( W M - ' W T ) - ' f i t )  (2.13) 

for the feedback control law which follows a specified trajec- 
tory in (+, 46, #Jf). The matrices that need to be inverted may 
be shown to be invertible except at isolated configurations. 

3. Controllability of the snakeboard 

As a control system, one would like to show that the snake- 
board is controllable in the following sense: Given two con- 
figurations q1,qz E S E ( 2 )  of the board, there exists an input 
t I+ (uI(t),uz(t),ug(t)) which steers the system from rest at 
q1 to being at rest at qz. To prove that the snakeboard is 
so controllable we first reduce the system from a problem in 
mechanics to a problem in kinematics. In doing so we reduce 
the problem to one of finding paths in the configuration vari- 
ables which lie in a certain distribution. The answer to this 
problem is then given by Chow's theorem which states that 
a path lying in the distribution may be found which connects 
two points if the distribution is maximallyinvolutive (see 151). 

From (2.13) we have a control law which allows us to follow 
any path in the controlled variables, (+, + b ,  +f), we desire. It 
turns out that this is enough to  allow us to follow any path 
in the variables (z, y, 8,  &,, q5f) which satisfy the constraints. 

Proposition 3.1 Let c: t ct ( z ( t ) ,  y(t), e( t ) ,  +b(t), +f( t ) ) .  be 
a piecewise smooth cume so that db(t) # + f ( t )  and so that 
c'(t) E ker{w1,w2} for all t. Then there ezists a control law 
t c) (u~(t),uz(t),us(t)) so that the (Z,Y,@,db,df) compo- 
nents of the solution to Lagrange's equations are given b y  
t +t ( z ( t ) ,  Y(t), e ( t ) ,  db(t), +f(t))* 

Proof We shall use notation similar to that in the proof of 
Proposition 2.1 although the objects will be different. First 
let (z, y, 8,  + b ,  tf) be regarded as known functions of t in La- 
grange's equations and be such that they satisfy the con- 
straints. This immediately specifies uz(t) and u3(t) from (2.5) 
and (2.6), respectively. If we denote s = (z,y) we may 
write (2.1) and (2.2) as 

(3.1) M i  + WT(t)X = 0 

where M E R Z x 2  is a known constant invertible matrix, 
W ( t )  E wZx2 is the time-dependent matrix given by 

[ cos(db(t) + e ( t ) )  cos(+f(t) + e( t ) )  1 ' W ( t )  = -sin(+b(t) + e ( t ) )  -sin(+f(t) + e ( t ) )  

and X = (XI,&). The constraint equations may be written 
as 

W(t ) i  = R(t)  (3.2) 

where R( t )  E R2 is a known time-dependent vector. Equa- 
tions (3.1) and (3.2) may be combined to obtain 

X = ( W M - ' W T ) - ' ( f i i  - k(t))  

U1 = P ( t )  + N(t)X 

(3.3) 

(3.4) 

From (2.7) we have a relation of the form 

where P ( t )  is a known function o f t ,  and N ( t )  E h!'"' is a 
known time-dependent matrix. Now we use (3.3) and (3.4) 
to get 

ul(t) = P ( t )  + N ( t ) ( W M - ' W T ) - ' ( f i i  - k(t)). 
Combining this with uz(t) and u3(t) as determined above, we 
obtain the proposition. 

Note the matrix W ( t )  is invertible if and only if qh,(t) # 
4f (t) .  H 

As the proof illustrates, the configurations where +b = df 
cause problems because W is singular at such configurations. 
Because of these difficulties, one can only track trajectories 
which go through configurations where +b = q5f and B = 0. 

Proposition 3.1 now allows us to consider controllability of 
the nonholonomic system 

4 = Ul9l(Y) + U 2 9 2 ( Q )  + u3g3(q)  (3.5) 
where q = (Z,y,e,C$b,+f), and {g l ,g2 ,93}  forms a basis for 
the distribution defined by ker{w',w2} (see (1.3) and (1.4)). 
As a basis we use 

91 = (O,O,O,LO) 
92 = (O,O,O, 0,1)  
9 3  = (-l(cosdb COS(6f + e )  + COS'$f COS(+) + e ) ) ,  

- [(cos 4 b  sin(4f + e )  + cos +f sin(&, + e)), 
sin(db - df) ,  070) 

These vector fields may be shown to span a distribution of 
rank 3 except when r#Ib = +f = f7r/2 where the rank drops 
by 1. The drop in rank at these points is reflected by there 
being two directions of admissible motion for the board at 
these configurations. A simple computation gives 

[g1 ,9s ]  = (I(cos(4j + e )  sinr#Ib + cos r#If sin(+b + e)), 
- [(cos +f cOS(6b + e )  - sin +b  COS(+^ + e ) ) ,  
cos(+b - df),o,  O) 

[g2,93] = (i(cOS(+b + 0 )  sindf +COS+, sin(+! + e)), 
- I(c0s $b COS(& + e )  - sin +f COS(#Jb + e)), 
- COs(4b - +f),O,o) 
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The vector fields (91 , 92, gs, Is1 ,gs], [gz, 931) may shown to 
span TPQ except at isolated points. Thus, excluding this set 
of points, the control system given by (3.5) is controllable by 
Chow’s theorem. 

4. Gaits for the snakeboard 

By performing various types of loops in our controlled vari- 
ables, we found that it was possible to generate gaits for the 
snakeboard. We will loosely call a gait a periodic motion in 
the controlled variables which results in a net displacement 
of the snakeboard. 

The use of periodic motions in some variables for trajectory 
generation has been well studied for nonholonomic systems. 
For example, Tilbury, Murray, and Sastry, [lq, use sinusoids 
to generate motion in a system with n trailers. Although 
our system is not directly analogous to the class of systems 
for which sinusoids have proven to be useful, observations of 
actual Snakeboard riders suggest that sinusoidal inputs pro- 
vide a good starting point for our investigations. We consider 
paths in the controlled variables of the form 

t C )  (a+ sin(w+t + & ) , a b  sin(wat + P b ) ,  

af sin(wjt + P j ) ) .  (4.1) 

A gait will be referenced by a triple (&,&,is) of integers 
where i l  = w+, i2 = Wb,  and is = Wf.  All of the gaits 
we discuss will have = is, P b  = f l f ,  and a b  = -af. This 
corresponds to typical gaits in the Snakeboard where the rider 
moves his feet in opposing motions. 

In the gait simulations below, the following parameters 
were used: m = 6 kg, J = 0.016 kg.ma, J ,  = 0.072 kg-m’, 
J ,  = 0.0013 kg.m2, and 1 = 0.2 m. These values reflect pos- 
sible choices which would make physical sense for a working 
model of the Snakeboard. In discussing these gaits, the snake- 
board is assumed to have its initial condition at the origin in 
the state space. Thus “forward” motion is in the x-direction, 
and “transverse” motion is in the y-direction. 

2.5 I 
1.5 - 

......................... 
-0.5 

2.2 
1.8 
1.4 
1 

0.6 

0 5 10 15 20 25 30 35 40 45 50 

Time (sec) 

Figure 3: Time histories of the controls and z for the (1,1,1) 
gait 

The ‘‘’drive” gait: (1,1,1) 
The drive gait is used to move the snakeboard in the x- 
direction and is determined by the frequencies (1,1,1). Fig- 
ure 3 shows plots of the controlled variables and x, and Fig- 
ure 4 shows the position of the centre of mass of the snake- 
board along the trajectory for the (1,1,1) gait. 

0.5 s i n t u v d  
0.15 

-0.15’ ’ ’ ’ ’ ’ ’ ’ I 
-1 -0.5 0 0.5 1 1.5 2 2.5 3 

x position (m) 

Figure 4: Position of the centre of mass for the (1,1,1) gait 

The following parameters were fixed at the indicated values 
for the analysis of the (1,1,1) gait. 

a b , - U f :  0.3 rad 
wa,wf : 1 rad/sec 
Pb,Pf : 0 rad 
a+ 
w+ 
p+ 

: 0.7 rad (unless otherwise specified) 
: 1 rad/sec (unless otherwise specified) 
: 0 rad (unless otherwise specified) 

If one fixes the rotor phase angle ,B+ at 0 the snakeboard will 
be propelled in the negative s-direction. Changing this phase 
angle to 7r will result in motion in the positive 2-direction. 
Figure 5 shows the result of varying from -7r/2 to  7r/2.  
Notice that if the rotor moves 90° out of phase with the 
wheels, then almost no motion is observed in the 2-direction. 

16 

14 

12 - - 
.! 1 0 -  

...................... 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Phase angle (rad) 

Figure 5: Distance traveled in the (negative) z-direction vs 
/3+ for the (1,1,1) gait 

Frequency ratios around (1,1,1) were also investigated, 
but, for generating net motion in the z-direction, the (1,1,1) 
gait was determined to be superior. In Figure 6 we see the re- 
lationship between distance traveled in the s-direction versus 
W+ near the operating point w+ = 1. Four different simulation 
times, T, are shown. A similar analysis was also performed 
for a wider range of frequencies which demonstrated that the 
(l,l, 1) gait generated more motion in the x-direction than 
any other frequency ratios. 

The final parameter study was done on a+, the amplitude 
of the rotor swing. The results are shown in Figure 7. No- 
tice that for large amplitudes and long simulation times the 
distance traveled begins to decrease. This is a result of the os- 
cillations in the y-direction becoming large enough to cause 
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BO r 1 

40 

-10 ‘ I 
0.85 0.9 0.95 1 1.05 1.1 1.15 

Frequency (rad/sec) 

Figure 6: Distance traveled in the r-direction vs w+ for the 
(1, 1, 1) gait 

Q 
0.5 8 irJerval 

0.04 

0.09 I 

-0 07 -0.06 -0 05 -0.04 -0.03 -0 02 -0 01 0 

x position (m) 

Figure 8: Position of the centre of mass for the (2,1,1) gait 
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Figure 9: Magnitude of rotation vs W J .  for the (2,1,1) gait 
Figure 7: Distance traveled in the r-direction vs a+ for the 
(1, 191) gait 

the board to  actually turn around. Thus one cannot just 
increase the run time and input magnitude to  get longer dis- 
tances traveled in the (1, 1 , l )  gait. 0 

The “rotate” gait: (2,1,1) 
The rotate gait generates net motion in the @-direction by 
using frequencies (2,1,1). A trace of the centre of mass of 
the board is shown in Figure 8. 

The following parameters were fixed at the indicated values 
for the analysis of the (2,1,1) gait. 

a b , - U f :  1 rad 
W b , W f  : 1 rad/sec 
P b , P f  : 0 rad 
a+ : 1 rad 
w+ 
PJ. : 0 rad 

: 2 rad/sec (unless otherwise specified) 

The relationship between the net angle of rotation and the 
phase angle, P+, is much the same as was observed in the 
(1,1,1) gait. That is to say, if the rotor and wheels are out of 
phase, no net motion is produced in the @-direction. The re- 
sult of varying the frequency ratio around the operating point 
of (2,1,1) is shown in Figure 9. If one increases the ampli- 
tude, U+, for the (2,1,1) gait, the resulting net displacement 
in @ will always increase, unlike the situation in the (1, 1 , l )  
gait. 0 

The “parking” gait: (3,2,2) 
The final gait that was studied is that resulting from the 
frequency ratios (3,2,2). In this gait a net displacement is 
produced in the y-direction. The position of the centre of 
mass is shown in Figure 10. 

The following parameters were fixed for the analysis of the 
(3,2,2) gait. 

a b , - U f :  1 rad 
W b , W f  : 2 rad/sec 
Palp,  : Orad 
a+ : 1 rad 
w+ 
p+ : 0 rad 

: 3 rad/sec (unless otherwise specified) 

The relationships between distance traveled in the y- 
direction versus the phase angle, P+, and the amplitude, a+, 
are much the same as in the (1,1,1) gait. The distance trav- 
eled in the y-direction versus the frequency is shown in Fig- 
ure 11. 0 

Of course, there is further analysis yet to be performed on 
these gaits. Possible avenues of investigation will certainly 
include looking at cases where the wheels are driven out of 
phase, particularly 90 out of phase (which has been seen as 
a working gait used in the actual Snakeboard); where only one 
of the wheels is driven (i.e. q5f = 0 is fixed); and where the 
amplitude of the wheel oscillations is decreased as forward ve- 
locities increase (to reduce the oscillations seen in Figure 4). 
Future research may also include more extensive parameter 
sweeps than those described in this section, as well as the pos- 
sible use of a variable inertia rotor (which would correspond 
to the rider’s ability to move his arm’s in and out). 
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Figure 10: Position of the centre of mass for the (3,2,2) gait 
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Figure 11: Distance traveled in the d i r e c t i o n  vs a+ for the 
(3 ,2 ,2)  gait 

5. Discussion 

The Snakeboard example presented in this paper points to a 
number of future directions of research in the areas of loco- 
motion and nonholonomic mechanics. While the Snakeboard 
shares a number of properties with other mechanical systems, 
the unique way in which motion is generated in this particular 
example has raised many new questions. 
In some cases there is a natural principal bundle structure 

present, in which the geometry of the system can be studied 
by considering the lifting of paths in a certain base space into 
the total space. Roughly speaking, for these systems one can 
write the constraints as 

n - k  

i; = a;j(r)ij i = 1, .  . . , IC, (5.1) 
j=l 

where q = ( r , s )  E R " - k ~ R k  represents asplittingofthe coor- 
dinates into base variables, r ,  and fibre variables, s. For such 
systems, one can generate paths for the system by specifying 
an initial condition and a path r ( t ) .  The complete trajectory 
of the system is then determined by lifting the base path via 
equation (5.1) to a path in the fibre variables. For engineer- 
ing systems, the base space is usually the space of controlled 
variables and hence r(t) can be arbitrarily specified. For ex- 
ample, in a mobile robot one can take the base space to be 
the angular variables for the wheels. The fibre variables are 
the remaining configuration variables in the system and the 
velocity of the path in the base space gives a unique velocity 
for the fibre variables via the constraints. 

For the snakeboard, a first-order lifting property is not pos- 
sible. To see why this is so, suppose that a set of independent 
constraints of the form 

6 - A(r)+ = 0 (5.2) 

where 

= ($, db, d'f) 
8 = (z,Y,e) 
A(r) E RSX3 

were present. Then, if we begin with the base space variables 
a t  the origin and traverse a path which returns the base space 
variables to  the origin and keeps them there (i.e., so that i = 0 
after some time T), it follows that the time-derivatives of the 
fibre variables must be zero (i.e., i = 0 after the same time 
T). However, this is not the case since it is possible to get the 
snakeboard moving in the forward direction while returning 
all control variables to the origin. Thus no such constraint 
can occur. 

Note, however, that we can alternatively split the con- 
figuration variables into ( r , s ) ,  where r = ( @ , $ , d ' b , t $ f )  and 
s = (z,y). With this splitting the system fits into the form 
of (5.1). This formulation fails due to the fact that we cannot 
follow arbitrary paths in the base variables (e, $, d b ,  df), and 
have control of only three of the four control directions. 

Current research by Bloch, et al. (see [3] and references 
therein), suggests a new framework for analysing this prob- 
lem. The tools described in that paper utilise variational 
principles in order to blend the group invariance found in 
the unconstrained fibre bundle case with constraints which 
are nonholonomic. By using these tools, it is possible to  de- 
scribe motion along the fibre as being driven by a "pseudo- 
momentum" term. This would differ from the traditional con- 
cept of momentum in that the "pseudo-momentum" would 
not be conserved, but instead would vary from point to point 
via a differential equation. 

For the snakeboard, we can be somewhat more explicit, 
though this work is currently in progress and as such the 
exact formulation has not been settled upon. What we have 
found, however, is that by splitting the variables as above, 
with s = (z,y,e) and r = ($,4b,d'f), we can arrive at an 
alternative expression relating the base and fibre variables, 
As mentioned above, the direct relationship expressed in (5.2) 
is not possible, but instead we can employ the momentum 
expression as a coupling term. 

Let p denote the constrained momentum, defined to be 
the momentum along trajectories which lie in the constraint 
distribution and are tangent to the group orbits (which are 
parameterised by (2, y, e)). Then, assuming the base vari- 
ables to be the controlled variables, the differential equations 
governing the fibre and momentum terms take the form 

where g represents the lifted grgup action of SE(2)  acting on 
velocities along the fibre. Notice that the fibre dependence 
of them equations occurn only in t h i n  lifted action. Thus, 
the solution to  the momentum equation requires knowledge 
only of the path in the base space and the initial momentum. 
The momentum in turn provides the coupling which drives 
the motion along the fiber. Thus, in the case of the snake- 
board, the process of lifting to  the fiber is a two step process: 
first, the momentum is determined from the motion in the 
controlled variables, and second, the motion along the fiber 
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is found using this information. Present work on the snake- 
board has sought to further refine these relationships along 
with those developed in [3], and has provided valuable insight 
into the general problem of nonholonomic constraints in the 
presence of group symmetries. 

An additional direction for future investigations is to ex- 
amine the use of tools from geometric mechanics for studying 
other locomotion systems. A related piece of work is that of 
Shapere and Wilczek, who studied the locomotion of amoeba 
in highly viscous fluids [15]. They showed that it was possible 
to describe this motion using ideas from geometric mechan- 
ics and gauge theory. Following their lead, we have begun 
to investigate the possible use of geometric mechanics, and 
in particular the role of connections, in understanding other 
locomotion problems. 

Finally, in terms of the snakeboard itself, there are a num- 
ber of interesting questions related to  motion planning. For 
example, one would like to  be able to  generate a set of in- 
puts which moved the snakeboard from its starting configu- 
ration to  some other given configuration. Many of the meth- 
ods which have been developed for doing this for nonholo- 
nomic systems do not apply here since the system cannot 
be described solely in terms of a set of (Pfaffian) velocity 
constraints. Another direction for study is the optimal gen- 
eration of inputs given finite energy considerations, similar to 
the work performed by Wilczek and Shapere (see [14]). 

6. Summary 

In this paper we have analysed gait patterns for a simplified 
model of the Snakeboard. We have found that while these 
gait patterns resemble those seen in many locomotion prob- 
lems, previously used analysis techniques are not applicable 
to our model. The reason for the failure of the available tools 
is that the nonholonomic constraints couple with the natural 
inputs differently than is often seen. For this reason we feel 
that our model of the Snakeboard is representative of an inter- 
esting and important class of systems both in nonholonomic 
mechanics and in locomotion. 
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