
Research Article
A Systematic Hardware Sharing Method for Unified
Architecture Design of H.264 Transforms

Po-Hung Chen,1 Hung-Ming Chen,2 and Ing-Chao Lin3

1Department of Electronic Engineering, National Formosa University, No. 64, Wenhua Road, Huwei Township,
Yunlin County 632, Taiwan
2Department of Computer Science and Information Engineering, National Taichung University of Science and Technology,
No. 129, Section 3, Sanmin Road, North District, Taichung City 404, Taiwan
3Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, University Road,
Tainan City 701, Taiwan

Correspondence should be addressed to Po-Hung Chen; paul@nfu.edu.tw

Received 16 July 2014; Accepted 7 September 2014

Academic Editor: Stephen D. Prior

Copyright © 2015 Po-Hung Chen et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multitransform techniques have been widely used in modern video coding and have better compression efficiency than the single
transform technique that is used conventionally.However, every transformneeds a corresponding hardware implementation, which
results in a high hardware cost for multiple transforms. A novel method that includes a five-step operation sharing synthesis and
architecture-unification techniques is proposed to systematically share the hardware and reduce the cost of multitransform coding.
In order to demonstrate the effectiveness of the method, a unified architecture is designed using the method for all of the six
transforms involved in the H.264 video codec: 2D 4 × 4 forward and inverse integer transforms, 2D 4 × 4 and 2 × 2 Hadamard
transforms, and 1D 8 × 8 forward and inverse integer transforms. Firstly, the six H.264 transform architectures are designed at a low
cost using the proposed five-step operation sharing synthesis technique. Secondly, the proposed architecture-unification technique
further unifies these six transform architectures into a low cost hardware-unified architecture.The unified architecture requires only
28 adders, 16 subtractors, 40 shifters, and a proposed mux-based routing network, and the gate count is only 16308. The unified
architecture processes 8 pixels/clock-cycle, up to 275MHz, which is equal to 707 Full-HD 1080 p frames/second.

1. Introduction

Video coding standards commonly use transform coding
techniques—discrete cosine transforms (DCTs) are widely
used in image and video compression standards, such as
JPEG [1], MPEG-1/2 [2, 3], and MPEG-4 [4]. Unlike the
DCTs used in previous standards, H.264 [5] uses integer
transform matrices for coding, so there is no mismatch
between the forward and inverse transforms [6, 7] and
the complexity is significantly less than that for a DCT.
H.264 also provides a specific transform for each prediction
mode, and blocks of size 16 × 16 down to 4 × 4 pixels can
be used for motion prediction. The prediction modes are
organized in a tree-structured manner, which allows flexible
combination of different motion compensation block sizes
inside a 16 × 16-pixel macroblock. Therefore, H.264 achieves

better compression, but it also requires an enormous number
of computations.

H.264 requires the computation of three transforms, 8 ×
8, 4 × 4 integer transforms, and 4 × 4 Hadamard transforms
used in the luma component, and two transforms, 4 × 4
integer transforms and 2 × 2 Hadamard transforms, for
the chroma components. Every transform of H.264 needs
a corresponding hardware implementation, which results in
a high hardware cost for all of the transforms involved.
In recent years, some transform architectures for H.264
encoder/decoder that reduce the hardware cost have been
proposed. In general, for low cost multiple transforms of
video codecs, hardware sharing is themost suitable technique
[8–26]. In [8–13], all of the 4 × 4 transforms are realized as a
shared architecture. In [14], 2D 4 × 4 and 2 × 2 transforms
are implemented in a FPGA and integrated in a multicore

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 258613, 14 pages
http://dx.doi.org/10.1155/2015/258613



2 Mathematical Problems in Engineering

Step 1: put rows with the
same coefficients into the

same group

A H.264 transform matrix
multiplication

All the H.264 transform
FOSS architectures

Five-step operation sharing synthesis
Count decisions of the

unified architecture stages
and the shared nodes

Architecture-unification

Step 2: determine the
shared items of each group

Step 3: determine the same
operations between groups

Step 4: replace
multiplication by addition

and shift

Step 5: map each shared
item to an operation node

To get a FOSS architecture
of a H.264 transform

Node sharing of the unified
architecture for all FOSS

architectures

Operation and bit-width
decisions of a shared node

Low cost multiplexer
design for the mux-based

routing network

To get the unified architecture
for all the H.264

transform FOSS architectures

Figure 1: The proposed hardware sharing method.

embedded system. In [15, 16], pipeline shared architectures
for the 8 × 8 forward/inverse integer transform are demon-
strated. For decoder use only, [17, 18] demonstrate transform
processors for 8 × 8 and 4 × 4 inverse integer transforms
and a 4 × 4 Hadamard transform. A 2 × 2 Hadamard
transformhas even been embedded into a shared architecture
in [19, 20]. In [21–23], inverse transforms for a multistandard
decoder are proposed. In [24], a cost-sharing architecture
for an 8 × 8 integer cosine transform is proposed, which
supports multiple video encoders. In [25], a unique kernel
for multistandard video encoder transforms is presented
and a configurable butterfly array (CBA) is also proposed,
which supports both the forward transform and the inverse
transform in the unified architecture of the multistandard
video encoder in [26].

Although these studies demonstrate combined architec-
tures for multiple transforms, a single architecture has not
been designed for the whole set of forward and inverse trans-
forms for H.264 encoder and decoder. Therefore, this study
designs a unified architecture for the complete transform
functionality of a H.264 codec, while still maintaining the
low cost and high speed characteristics. In addition, sharing
the hardware for the same operations reduces the hardware
cost, and these studies use a hardware sharing technique
to reduce hardware cost. However, no systematic hardware
sharing method has been proposed in the literatures. This
paper proposed a novelmethod that includes a five-step oper-
ation sharing synthesis (FOSS) and architecture-unification

techniques, to systematically share the hardware and reduce
the cost of multitransform coding.

In order to design the low cost unified architecture, a
hardware sharing method is proposed, as shown in Figure 1.
Firstly, six transform architectures are designed for low cost,
using the proposed five-step operation sharing synthesis
(FOSS) technique. Secondly, these low cost FOSS archi-
tectures are merged into a single architecture, using the
proposed architecture-unification technique. The details of
these techniques are described in the later sections. Section 2
describes the FOSS architecture design that reduces the
hardware cost for each H.264 transform. Section 3 demon-
strates the unification of all the low cost transform FOSS
architectures into a single architecture, to eliminate the
redundant hardware.The complexity and performance of the
unified architecture are analyzed in Section 4, and Section 5
concludes the paper.

2. The Five-Step Operation Sharing
Synthesis Technique

This paper firstly describes a five-step operation sharing syn-
thesis (FOSS) technique and demonstrates the effectiveness
of this technique by building low cost 1D 8 × 8 inverse
integer transform and 2D 4 × 4 transform architectures. The
procedure for the FOSS technique is as follows.



Mathematical Problems in Engineering 3

Step 1. Put rows with the same coefficients into the same
group.

Step 2. Determine the same operations in each group.

Step 3. Determine the same operations between groups.

Step 4. Replace multiplication by addition and shift.

Step 5. Map each shared item to an operation node.
The basic idea is to systematically synthesize an archi-

tecture that shares all of the same operations in a matrix
multiplication to reduce the cost of hardware.

2.1. FOSS Architecture for a 1D 8 × 8 Inverse Integer Transform.
Taking 1D 8 × 8 inverse transform as an example, a low
cost architecture, called FOSS architecture, is designed using
the proposed FOSS technique. The 1D 8 × 8 inverse integer
transform is defined as

𝑍 = 𝐸
𝑖
𝑋𝐸
𝑇

𝑖
, (1)

where

𝐸
𝑖

=

[
[
[
[
[
[
[
[
[
[

[

1 1.5 1 1.25 1 0.75 0.5 0.375

1 1.25 0.5 −0.375 −1 −1.5 −1 −0.75

1 0.75 −0.5 −1.5 −1 0.375 1 1.25

1 0.375 −1 −0.75 1 1.25 −0.5 −1.5

1 −0.375 −1 0.75 1 −1.25 −0.5 1.5

1 −0.75 −0.5 1.5 −1 −0.375 1 −1.25

1 −1.25 0.5 0.375 −1 1.5 −1 0.75

1 −1.5 1 −1.25 1 −0.75 0.5 −0.375

]
]
]
]
]
]
]
]
]
]

]

.

(2)

𝐸
𝑖
is an 8 × 8 inverse integer transform matrix and 𝑋 is an
8 × 8 pixel block. 𝐸𝑇

𝑖
is the transpose matrix of 𝐸

𝑖
and 𝑍 is

an 8 × 8 matrix output of a 2D inverse integer transform.
Since the 2D transform is separable, by using the column-row
decompositionmethod, the computation can be converted to
1D row transform followed by a 1D column transform.These
operations can be represented as follows:

𝑍 = 𝐸
𝑖
𝑋𝐸
𝑇

𝑖
󳨐⇒ 𝑌 = 𝑋𝐸

𝑇

𝑖
󳨐⇒ 𝑍 = 𝐸

𝑖
𝑌. (3)

Therefore, a 2D transform can be calculated using two
steps.The first step is a 1D transform𝑌 = 𝑋𝐸𝑇

𝑖
and the second

step is the other 1D transform 𝑍 = 𝐸
𝑖
𝑌. The first row of 𝑋,

𝑋
0
∼ 𝑋
7
, multiplied by the inverse transform matrix equals

the first row of 𝑌, 𝑌
0
∼ 𝑌
7
, as shown in the following:

[
[
[
[
[
[
[
[
[
[

[

𝑌
0

𝑌
1

𝑌
2

𝑌
3

𝑌
4

𝑌
5

𝑌
6

𝑌
7

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

1 1.5 1 1.25 1 0.75 0.5 0.375

1 1.25 0.5 −0.375 −1 −1.5 −1 −0.75

1 0.75 −0.5 −1.5 −1 0.375 1 1.25

1 0.375 −1 −0.75 1 1.25 −0.5 −1.5

1 −0.375 −1 0.75 1 −1.25 −0.5 1.5

1 −0.75 −0.5 1.5 −1 −0.375 1 −1.25

1 −1.25 0.5 0.375 −1 1.5 −1 0.75

1 −1.5 1 −1.25 1 −0.75 0.5 −0.375

]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[

[

𝑋
0

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

]
]
]
]
]
]
]
]
]
]

]

.

(4)

The matrix multiplication in (4) requires 64 multiplica-
tions and 56 additions.This paper proposes a novel operation
sharing synthesis technique to reduce the hardware cost,
and the effectiveness of this technique is demonstrated by
applying this technique to a 1D 8×8 inverse integer transform.

Step 1. Put rows with the same coefficients into the same
group, to determine the sameoperations in the next stepmore
easily:

𝑌
0
= 𝑋
0
+ 1.5𝑋

1
+ 𝑋
2
+ 1.25𝑋

3
+ 𝑋
4
+ 0.75𝑋

5
+ 0.5𝑋

6
+ 0.375𝑋

7

𝑌
7
= 𝑋
0
− 1.5𝑋

1
+ 𝑋
2
− 1.25𝑋

3
+ 𝑋
4
− 0.75𝑋

5
+ 0.5𝑋

6
− 0.375𝑋

7

𝑌
3
= 𝑋
0
+ 0.375𝑋

1
− 𝑋
2
− 0.75𝑋

3
+ 𝑋
4
+ 1.25𝑋

5
− 0.5𝑋

6
− 1.5𝑋

7

𝑌
4
= 𝑋
0
− 0.375𝑋

1
− 𝑋
2
− 0.75𝑋

3
+ 𝑋
4
− 1.25𝑋

5
− 0.5𝑋

6
+ 1.5𝑋

7

𝑌
1
= 𝑋
0
+ 1.25𝑋

1
+ 0.5𝑋

2
− 0.375𝑋

3
− 𝑋
4
− 1.5𝑋

5
− 𝑋
6
− 0.75𝑋

7

𝑌
6
= 𝑋
0
− 1.25𝑋

1
+ 0.5𝑋

2
+ 0.375𝑋

3
− 𝑋
4
+ 1.5𝑋

5
− 𝑋
6
+ 0.75𝑋

7

𝑌
2
= 𝑋
0
+ 0.75𝑋

1
− 0.5𝑋

2
− 1.5𝑋

3
− 𝑋
4
+ 0.375𝑋

5
+ 𝑋
6
+ 1.25𝑋

7

𝑌
5
= 𝑋
0
− 0.75𝑋

1
− 0.5𝑋

2
+ 1.5𝑋

3
− 𝑋
4
− 0.375𝑋

5
+ 𝑋
6
− 1.25𝑋

7



4 Mathematical Problems in Engineering

Step 2. Determine the same operations in each group
and mark the shared operations using “(),” as shown
in the following:

𝑌
0
= (𝑋
0
+ 𝑋
2
+ 𝑋
4
+ 0.5𝑋

6
) + (1.5𝑋

1
+ 1.25𝑋

3
+ 0.75𝑋

5
+ 0.375𝑋

7
)

𝑌
7
= (𝑋
0
+ 𝑋
2
+ 𝑋
4
+ 0.5𝑋

6
) − (1.5𝑋

1
+ 1.25𝑋

3
+ 0.75𝑋

5
+ 0.375𝑋

7
)

𝑌
3
= (𝑋
0
− 𝑋
2
+ 𝑋
4
− 0.5𝑋

6
) + (0.375𝑋

1
− 0.75𝑋

3
+ 1.25𝑋

5
− 1.5𝑋

7
)

𝑌
4
= (𝑋
0
− 𝑋
2
+ 𝑋
4
− 0.5𝑋

6
) − (0.375𝑋

1
− 0.75𝑋

3
+ 1.25𝑋

5
− 1.5𝑋

7
)

𝑌
1
= (𝑋
0
+ 0.5𝑋

2
− 𝑋
4
− 𝑋
6
) + (1.25𝑋

1
− 0.375𝑋

3
− 1.5𝑋

5
− 0.75𝑋

7
)

𝑌
6
= (𝑋
0
+ 0.5𝑋

2
− 𝑋
4
− 𝑋
6
) − (1.25𝑋

1
− 0.375𝑋

3
− 1.5𝑋

5
− 0.75𝑋

7
)

𝑌
2
= (𝑋
0
− 0.5𝑋

2
− 𝑋
4
+ 𝑋
6
) + (0.75𝑋

1
− 1.5𝑋

3
+ 0.375𝑋

5
+ 1.25𝑋

7
)

𝑌
5
= (𝑋
0
− 0.5𝑋

2
− 𝑋
4
+ 𝑋
6
) − (0.75𝑋

1
− 1.5𝑋

3
+ 0.375𝑋

5
+ 1.25𝑋

7
)

Step 3. Determine the same operations between groups and
mark the shared operations using “(),” as shown in the
following:

𝑌
0
= (𝑋
0
+ 𝑋
4
) + (𝑋

2
+ 0.5𝑋

6
) + (1.5𝑋

1
+ 0.375𝑋

7
+ 1.25𝑋

3
+ 0.75𝑋

5
)

𝑌
7
= (𝑋
0
+ 𝑋
4
) + (𝑋

2
+ 0.5𝑋

6
) − (1.5𝑋

1
+ 0.375𝑋

7
+ 1.25𝑋

3
+ 0.75𝑋

5
)

𝑌
3
= (𝑋
0
+ 𝑋
4
) − (𝑋

2
+ 0.5𝑋

6
) + (0.375𝑋

1
− 1.5𝑋

7
− 0.75𝑋

3
+ 1.25𝑋

5
)

𝑌
4
= (𝑋
0
+ 𝑋
4
) − (𝑋

2
+ 0.5𝑋

6
) − (0.375𝑋

1
− 1.5𝑋

7
− 0.75𝑋

3
+ 1.25𝑋

5
)

𝑌
1
= (𝑋
0
− 𝑋
4
) − (𝑋

6
− 0.5𝑋

2
) + (1.25𝑋

1
− 0.75𝑋

7
− 1.5𝑋

5
− 0.375𝑋

3
)

𝑌
6
= (𝑋
0
− 𝑋
4
) − (𝑋

6
− 0.5𝑋

2
) − (1.25𝑋

1
− 0.75𝑋

7
− 1.5𝑋

5
− 0.375𝑋

3
)

𝑌
2
= (𝑋
0
− 𝑋
4
) + (𝑋

6
− 0.5𝑋

2
) + (0.75𝑋

1
+ 1.25𝑋

7
− 1.5𝑋

3
+ 0.375𝑋

5
)

𝑌
5
= (𝑋
0
− 𝑋
4
) + (𝑋

6
− 0.5𝑋

2
) − (0.75𝑋

1
+ 1.25𝑋

7
− 1.5𝑋

3
+ 0.375𝑋

5
)

Step 4. Replace multiplication by addition and shift. If the
coefficient is a second power, shift replaces multiplication.

For the other coefficients, addition, subtraction, and
shift are all needed to replace multiplication. The shared



Mathematical Problems in Engineering 5

operations are indicated using “(),” as shown in the
following:

𝑌
0
= (𝑋
0
+ 𝑋
4
) + (𝑋

2
+ 0.5𝑋

6
) + (𝑋

1
+ 0.5𝑋

1
) + (0.25 (𝑋

7
+ 0.5𝑋

7
)) + (0.25𝑋

3
+ 𝑋
3
) + (𝑋

5
− 0.25𝑋

5
)

𝑌
7
= (𝑋
0
+ 𝑋
4
) + (𝑋

2
+ 0.5𝑋

6
) − [(𝑋

1
+ 0.5𝑋

1
) + (0.25 (𝑋

7
+ 0.5𝑋

7
)) + (0.25𝑋

3
+ 𝑋
3
) + (𝑋

5
− 0.25𝑋

5
)]

𝑌
3
= (𝑋
0
+ 𝑋
4
) − (𝑋

2
+ 0.5𝑋

6
) + (0.25 (𝑋

1
+ 0.5𝑋

1
)) − (𝑋

7
+ 0.5𝑋

7
) + (0.25𝑋

3
− 𝑋
3
) + (𝑋

5
+ 0.25𝑋

5
)

𝑌
4
= (𝑋
0
+ 𝑋
4
) − (𝑋

2
+ 0.5𝑋

6
) − [(0.25 (𝑋

1
+ 0.5𝑋

1
)) − (𝑋

7
+ 0.5𝑋

7
) + (0.25𝑋

3
− 𝑋
3
) + (𝑋

5
+ 0.25𝑋

5
)]

𝑌
1
= (𝑋
0
− 𝑋
4
) − (𝑋

6
− 0.5𝑋

2
) + (𝑋

1
+ 0.25𝑋

1
) + (0.25𝑋

7
− 𝑋
7
) − (𝑋

5
+ 0.5𝑋

5
) + (0.25 (𝑋

3
+ 0.5𝑋

3
))

𝑌
6
= (𝑋
0
− 𝑋
4
) − (𝑋

6
− 0.5𝑋

2
) − [(𝑋

1
+ 0.25𝑋

1
) + (0.25𝑋

7
− 𝑋
7
) − (𝑋

5
+ 0.5𝑋

5
) + (0.25 (𝑋

3
+ 0.5𝑋

3
))]

𝑌
2
= (𝑋 − 𝑋

4
) + (𝑋

6
− 0.5𝑋

2
) + (𝑋

1
− 0.25𝑋

1
) + (0.25𝑋

7
+ 𝑋
7
) − (𝑋

3
+ 0.5𝑋

3
) − (0.25 (𝑋

5
+ 0.5𝑋

5
))

𝑌
5
= (𝑋
0
− 𝑋
4
) + (𝑋

6
− 0.5𝑋

2
) − [(𝑋

1
− 0.25𝑋

1
) + (0.25𝑋

7
+ 𝑋
7
) − (𝑋

3
+ 0.5𝑋

3
) − (0.25 (𝑋

5
+ 0.5𝑋

5
))]

The computation complexity for a 1D 8 × 8 inverse transform
is reduced from 64 multiplications and 56 additions in (4)
to 24 additions, 16 subtractions, and 18 shift operations in
(4), which can be directly mapped to a low cost hardware
architecture.

Step 5. Map each shared item to an operation node, where
𝑋
0
∼ 𝑋
7
and 𝑌

0
∼ 𝑌
7
are the inputs and outputs of the archi-

tecture, respectively, and 𝐴
0
∼ 𝐴
6
, 𝐵
0
∼ 𝐵
11
, and 𝐶

0
∼ 𝐶
11

represent the shared nodes. Only four stages are required for
the architecture, from input to output. Nodes𝐴

0
∼ 𝐴
11
, 𝐵
0
∼

𝐵
11
, 𝐶
0
∼ 𝐶
7
, and 𝑌

0
∼ 𝑌
7
are in the 1st, 2nd, 3rd, and 4th

stages, respectively. The operations for each stage of the 1D
8 × 8 inverse integer transform are summarized as follows.

Stage 1. Consider

𝐴
0
= 𝑋
1
+ (𝑋
1
≫ 1) , 𝐴

1
= 𝑋
7
+ (𝑋
7
≫ 1) ,

𝐴
2
= 𝑋
1
+ (𝑋
1
≫ 2) , 𝐴

3
= 𝑋
1
− (𝑋
1
≫ 2) ,

𝐴
4
= (𝑋
7
≫ 2) − 𝑋

7
, 𝐴

5
= (𝑋
7
≫ 2) + 𝑋

7
,

𝐴
6
= (𝑋
3
≫ 2) + 𝑋

3
, 𝐴

7
= (𝑋
3
≫ 2) − 𝑋

3
,

𝐴
8
= 𝑋
5
− (𝑋
5
≫ 2) , 𝐴

9
= 𝑋
5
+ (𝑋
5
≫ 2) ,

𝐴
10
= 𝑋
3
+ (𝑋
3
≫ 1) , 𝐴

11
= 𝑋
5
+ (𝑋
5
≫ 1) .

(5)

Stage 2. Consider

𝐵
0
= 𝑋
0
+ 𝑋
4
, 𝐵

1
= 𝑋
2
+ (𝑋
6
≫ 1) ,

𝐵
2
= 𝑋
0
− 𝑋
4
, 𝐵

3
= 𝑋
6
− (𝑋
2
≫ 1) ,

𝐵
4
= 𝐴
0
+ (𝐴
1
≫ 2) , 𝐵

5
= (𝐴
0
≫ 2) − 𝐴

1
,

𝐵
6
= 𝐴
2
+ 𝐴
4
, 𝐵

7
= 𝐴
3
+ 𝐴
5
,

𝐵
8
= 𝐴
6
+ 𝐴
8
, 𝐵

9
= 𝐴
7
+ 𝐴
9
,

𝐵
10
= 𝐴
11
+ (𝐴
10
≫ 2) , 𝐵

11
= 𝐴
10
− (𝐴
11
≫ 2) .

(6)

Stage 3. Consider

𝐶
0
= 𝐵
0
+ 𝐵
1
, 𝐶

1
= 𝐵
0
− 𝐵
1
,

𝐶
2
= 𝐵
2
− 𝐵
3
, 𝐶

3
= 𝐵
2
+ 𝐵
3
,

𝐶
4
= 𝐵
4
+ 𝐵
8
, 𝐶

5
= 𝐵
5
+ 𝐵
9
,

𝐶
6
= 𝐵
6
− 𝐵
10
, 𝐶

7
= 𝐵
7
− 𝐵
11
.

(7)

Stage 4. Consider

𝑌
0
= 𝐶
0
+ 𝐶
4
, 𝑌

1
= 𝐶
2
+ 𝐶
6
,

𝑌
2
= 𝐶
3
+ 𝐶
7
, 𝑌

3
= 𝐶
1
+ 𝐶
5
,

𝑌
4
= 𝐶
1
− 𝐶
5
, 𝑌

5
= 𝐶
3
− 𝐶
7
,

𝑌
6
= 𝐶
2
− 𝐶
6
, 𝑌

7
= 𝐶
0
− 𝐶
4
.

(8)

Using these operations for the four stages, the FOSS archi-
tecture for a 1D 8 × 8 inverse integer transform is obtained
as shown in Figure 2. In Figure 2, the “+” sign on the node
represents an addition and the node with the “−” sign
represents a subtraction. An arrow represents the data flow.
If an input coefficient or a coefficient of the arrows is a
second power, a shift operationis used. Note that the FOSS



6 Mathematical Problems in Engineering

architecture for a 1D 8×8 inverse integer transform processes
8 input pixels and outputs 8 transformed data in parallel.

2.2. The FOSS Architecture for a 2D 4 × 4 Inverse Integer
Transform. Take 2D inverse integer transform as the other
example to demonstrate more clearly the proposed FOSS
technique. The H.264 4 × 4 inverse integer transform is
defined as

𝑌 = 𝐶
𝑖
𝑋𝐶
𝑖

𝑇
, (9)

where

𝐶
𝑖
=

[
[
[

[

1 1 1 0.5

1 0.5 −1 −1

1 −0.5 −1 1

1 −1 1 −0.5

]
]
]

]

. (10)

Although 2D transforms are separable, the column-row
decomposition method is not used in this study. Instead, a
direct 2D transform method is used to eliminate the use of a
transpose register array, in order to reduce the latency. Firstly,
𝐶
𝑖
in (9) is replaced by (10), to produce the following 16 × 16

transform matrix:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑌
00

𝑌
01

𝑌
02

𝑌
03

𝑌
10

𝑌
11

𝑌
12

𝑌
13

𝑌
20

𝑌
21

𝑌
22

𝑌
23

𝑌
30

𝑌
31

𝑌
32

𝑌
33

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 0.5 1 1 1 0.5 1 1 1 0.5 0.5 0.5 0.5 0.25

1 0.5 −1 −1 1 0.5 −1 −1 1 0.5 −1 −1 0.5 0.25 −0.5 −0.5

1 −0.5 −1 1 1 −0.5 −1 1 1 −0.5 −1 1 0.5 −0.25 −0.5 0.5

1 −1 1 −0.5 1 −1 1 −0.5 1 −1 1 −0.5 0.5 −0.5 0.5 −0.25

1 1 1 0.5 0.5 0.5 0.5 0.25 −1 −1 −1 −0.5 −1 −1 −1 −0.5

1 0.5 −1 −1 0.5 0.25 −0.5 −0.5 −1 −0.5 1 1 −1 −0.5 1 1

1 −0.5 −1 1 0.5 −0.25 −0.5 0.5 −1 0.5 1 −1 −1 0.5 1 −1

1 −1 1 −0.5 0.5 −0.5 0.5 −0.25 −1 1 −1 0.5 −1 1 −1 0.5

1 1 1 0.5 −0.5 −0.5 −0.5 −0.25 −1 −1 −1 −0.5 1 1 1 0.5

1 0.5 −1 −1 −0.5 −0.25 0.5 0.5 −1 −0.5 1 1 1 0.5 −1 −1

1 −0.5 −1 1 −0.5 0.25 0.5 −0.5 −1 0.5 1 −1 1 −0.5 −1 1

1 −1 1 −0.5 −0.5 0.5 −0.5 0.25 −1 1 −1 0.5 1 −1 1 −0.5

1 1 1 0.5 −1 −1 −1 −0.5 1 1 1 0.5 −0.5 −0.5 −0.5 −0.25

1 0.5 −1 −1 −1 −0.5 1 1 1 0.5 −1 −1 −0.5 −0.25 0.5 0.5

1 −0.5 −1 1 −1 0.5 1 −1 1 −0.5 −1 1 −0.5 0.25 0.5 −0.5

1 −1 1 −0.5 −1 1 −1 0.5 1 −1 1 −0.5 −0.5 0.5 −0.5 0.25

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑋
00

𝑋
01

𝑋
02

𝑋
03

𝑋
10

𝑋
11

𝑋
12

𝑋
13

𝑋
20

𝑋
21

𝑋
22

𝑋
23

𝑋
30

𝑋
31

𝑋
32

𝑋
33

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (11)

Secondly, the FOSS technique is used for (11) to implement a
2D 4 × 4 inverse integer transform as shown in Figure 3.

The inputs for the FOSS architecture are 𝑋
00
∼ 𝑋
33
. The

outputs are 𝑌
00
∼ 𝑌
03
and 𝑌

30
∼ 𝑌
33
as stage 1 performs addi-

tions, and the outputs are 𝑌
10
∼ 𝑌
13
, 𝑌
20
∼ 𝑌
23
when stage 1

performs subtractions.
Similarly, the FOSS architectures for a 2D 2×2Hadamard

transform, a 2D 4×4 forward transform, a 2D 4×4Hadamard
transform, and a 1D 8 × 8 forward transform are designed in
the same procedure.

3. Architecture-Unification Technique

When all six FOSS architectures of H.264 transforms have
been obtained, the proposed architecture-unification proce-
dure described in the following is then used to construct a
shared architecture for the FOSS architectures.

3.1. Count Decisions of the Unified Architecture Stages and the
Shared Nodes. The unified architecture must have the largest
stage count of all of the FOSS architectures, because every
stage in each FOSS architecture must correspond to a stage
in the unified architecture (e.g., Figure 4). Figures 4(a) and
4(b) show FOSS architectures with four and three stages,
respectively. The stage count for a unified architecture must

be the largest stage count of the two FOSS architectures, if
the two FOSS architectures are to be unified. Figure 4(a) has
four stages and Figure 4(b) has three stages, so the unified
architecture must have four stages, as shown in Figure 4(c).

The stage counts for all FOSS architectures are not
identical. In order to unify FOSS architectures with different
stage counts, every FOSS architecture shares operation nodes
from stage one of the unified architecture. For example,
Figure 4(a) shows a four-stage FOSS architecture, where the
shared stages are from stage one to stage four and Figure 4(b)
is a three-stage FOSS architecture, where the shared stages are
from stage one to stage three, as shown in Figure 4(c).

In the unified architecture, the count for the shared nodes
in stage 𝑥 must be the maximum count for the operation
nodes of stage 𝑥 among all of the FOSS architectures, as
shown in Figure 5. In Figure 5(a), stage one has four nodes
and stage two has three nodes, and in Figure 5(b), stage one
has three nodes and stage two has four nodes. Therefore,
both stage one and stage two have four nodes in the unified
architecture, as shown in Figure 5(c).

3.2. Node Sharing in theUnifiedArchitecture forAll of the FOSS
Architectures. If 𝑁 transforms are to be unified, one of the
two inputs of a node in the unified architecture can have up
to𝑁 different input paths. In order to reduce the multiplexer



Mathematical Problems in Engineering 7

0.25
0.25

0.25
0.25

16-bit16-bit16-bit16-bit16-bit16-bit16-bit
X1 X0

X2

X0

X6

X4

X4

X1

X1

X3

X3
X5

X5

X5

X3

X7
X7

X7
A1

A2

A3

A4

A5

A6

A7

A8

A9

A11

A10

A0

Stage 1

Stage 2

Stage 2 Stage 3 Stage 4

B4 B0 C0

C1

C2

C3

C4

C5

C6

C7

B1

B2

B3

B5

B6

B7

B8

B9

B10

B11

Y0

Y3

Y1

Y2

Y7

Y4

Y6

Y5

−

−

−

−

−

−

−

−−

−

−

−

−−

−−

+

++

+

+

+

++

+++ +

+

+

+

+

+

+

+

+

+

+

+

+

0.5 X1

0.5 X7

0.5 X6

0.5 X2

0.5 X5

0.5 X3

0.25 X1

0.25 X1

0.25 X7

0.25 X7

0.25 X3

0.25 X3

0.25 X5

0.25 X5

Figure 2: A 1D 8 × 8 inverse integer transform.

overhead for input path switching, the number of input paths
must beminimized. In order to achieve this goal, the nodes of
the unified architecture are shared stage by stage, and every
node of a stage is compared for all architectures, using the
following procedure.

Step 1. If the nodes have two same input paths and the same
operation, go to Step 8.

Step 2. If the nodes have two same input paths but different
operations, go to Step 8.

Step 3. If the nodes have only one same input path and the
same operation, go to Step 8.

Step 4. If the nodes have only one same input path but
different operations, go to Step 8.

Step 5. If the nodes have one or two same input paths with
opposite position and their operations are both addition, go
to Step 8.

Step 6. If the nodes have not the same input path and have the
same operation, go to Step 8.

Step 7. If the nodes have two different input paths and
different operations, go to Step 8.

Step 8. The nodes share a node of the unified architecture.
Figure 6 shows an example of howanode is shared, for the

4 FOSS architectures. Figure 6(a) shows the input paths and
the operation nodes for a stage for the 4 FOSS architectures.
The transform, 𝑇

1
, shown in Figure 6(a) is used to label each

node, from top to bottom (𝐴
0
∼ 𝐴
3
), as shown in Figure 6(b).

The nodes of the 4 FOSS architectures (𝑇
1
∼ 𝑇
4
) share a node,

using this procedure, and the nodes that share a node use the
same label, as shown in Figure 6(b), which is also the number

0.5
0.5

0.5

0.5

0.5
0.5

0.5

0.5

16-bit 16-bit 16-bit 16-bit 16-bit

X00

X01

X02

X03

X20

X21

X22

X23

A1

A2

A3

A0

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

C0

C1

C2

C3

C4

C5

C6

C7

Y10
Y00

Y11
Y01

Y12
Y02

Y13
Y03

Y20
Y30

Y21
Y31

Y22
Y32

Y23
Y33

A4

A5

A6

A7

±

±

±

±

±

±

±

±

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Stage 1

Stage 2

Stage 3 Stage 4

1, 0.5 X10

1, 0.5 X11

1, 0.5 X12

1, 0.5 X13

0.5, 1 X30

0.5, 1 X31

0.5, 1 X32

0.5, 1 X33

Figure 3: A 2D 4 × 4 inverse integer transform.

of the shared nodes in the unified architecture, as shown in
Figure 6(c). Note that if any one of the inputs of a node in
Figure 6(c) has multiple input paths for different transform
modes, a multiplexer is required, to select a corresponding
input path.

3.3. Operation and the Bit-Width Decisions for a Shared Node.
In order to perform the operations of the correspondent
nodes for all FOSS architectures, it is necessary to determine
the operation for each shared node in the unified architecture.

If the operations for the nodes of the FOSS architectures
that share a node are all additions or all subtractions, the
operation for this shared node of the unified architecture
is addition or subtraction, respectively. If some operations
for the nodes of the FOSS architectures that share a node
are additions and some operations are subtractions, the
operations for this shared node are both subtraction and
addition. As shown in Figure 7, 𝐶

0
nodes are all adders in

all of the FOSS architectures, so a 𝐶
0
node is an adder in

the unified architecture. Similarly, 𝐶
2
is a subtractor. Because

the inputs for the correspondent operation nodes in different
FOSS architectures are seldom shifted with the same bits,
it is not efficient to share a shift operation in the unified
architecture.

In order to determine bit-width for a shared node of
the unified architecture, bit-widths of the nodes that share
a node must be determined first. In order to determine
the bit-width for a node of a FOSS architecture, both input
and output bit-widths for the FOSS architecture must be



8 Mathematical Problems in Engineering

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+
Stage 1 Stage 2 Stage 3 Stage 4

Input Output

(a)

+

+

+

+

+

+

+

+

+

+

+

+
Stage 1 Stage 2 Stage 3

Input Output

(b)

(b)
(a)

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

Input Output

Stage 1 Stage 2 Stage 3 Stage 4

(c)

Figure 4: Shared stages in the unified architecture: (a) a four-stage FOSS architecture, (b) a three-stage FOSS architecture, and (c) a unified
architecture for FOSS architectures (a) and (b), in which the first three stages are shared.

+

+

+

+

+

+

+

Stage 1 Stage 2

Input Output

(a)

+

+

+

+

+

+

+

Stage 1 Stage 2

Input Output

(b)

+

+

+

+

+

+

++

Stage 1 Stage 2

Input Output

(c)

Figure 5: Shared node counts for the unified architecture: (a) a FOSS architecture with 4 nodes in stage 1 and 3 nodes in stage 2, (b) a FOSS
architecture with 3 nodes in stage 1 and 4 nodes in stage 2, and (c) a unified architecture with 4 nodes in stage 1 and stage 2.

checked in the video standard specification, as shown in
Table 1. The input bit-width for a node in the current stage
is then determined according to the output dynamic range
that results from addition, subtraction, and the shift of the
nodes in the previous stage. Note that the dynamic range
accumulates stage by stage from input to output, for a FOSS
architecture. For the unified architecture, the bit-width of a
shared node is determined by the largest bit-width of all of
the nodes that share a node. As shown in Figure 8 the largest
bit-widths of input and output of the 𝐵

0
nodes in all of the

FOSS architectures are both 16 bits, so the input and output
bit-widths of the 𝐵

0
node in the unified architecture are both

16 bits.

3.4. The Design of a Low Cost Multiplexer Design for the Mux-
Based Routing Network. To share a node of the unified archi-
tecture for the operations of multiple transforms, additional
multiplexers are required to route a correspondent input path
for individual transformmode. If𝑁 transforms share a node,
each input of a node has a maximum of 𝑁 different input
paths and two additional 𝑁-to-1 multiplexers are deployed

in front of each node. If an input path is 𝐵-bit wide, an input
requires a 𝐵-bit, 𝑁-to-1 multiplexer. As shown in Figure 9,
one input of the shared node is 8-bit wide, so an 8-bit 6-to-
1 multiplexer is required to route one of the 6 input paths
to the input of the shared node. If a 1-bit 2-to-1 multiplexer
requires a hardware unit, as shown in Figure 10(a), a 1-bit
6-to-1 multiplexer requires 5 hardware units as shown in
Figure 10(b). Because an 8-bit 6-to-1 multiplexer requires
eight 1-bit 6-to-1 multiplexers, an 8-bit 6-to-1 multiplexer
requires 40 (8 × 5) hardware units.

In order to reduce the hardware cost and to alleviate
routing congestion in a VLSI physical design for amux-based
routing network for the unified architecture, the number
of input paths for a shared node must be minimized. The
multiplexer in Figure 9 is redesigned as a low cost and low
routing congestion multiplexer, as shown in Figure 11. In
Figure 9, there are two input paths, 𝑋

00
and 𝑋

01
, for one

input of a shared node, so an 8-bit 2-to-1 multiplexer is used
to select input path 𝑋

00
or 𝑋
01
. In addition, a 1-bit 6-to-1

multiplexer is used to select 0 or 1 for the selected line of
the 8-bit 2-to-1 multiplexer. Using an 8-bit 2-to-1 multiplexer
requires 8 hardware units and a 1-bit 6-to-1 multiplexer



Mathematical Problems in Engineering 9

+

+

+

+

+

+

+

+

+

X0
X1

X2
X3

X4
X5

X6
X7

X6
X7

X4
X5

X6
X3

X0
X1

X0
X4

X1
X5

X2
X6

X7
X3

X0
X1

X0
X1

X6
X7

X6
X7

X8
X9

T1 T2 T3 T4

−

− −

−

−

−

−

−

(a)

+

+

+

+

+

+

+

+

+

X0
X1

X0
X1

X6
X7

X6
X7

X0
X4

X1
X5

X2
X6

X3
X7

X6
X7

X4
X5

X6
X3

X0
X1

X0
X1

X2
X3

X4
X5

X6
X7

X8
X9

T1 T2 T3 T4

−

−−

−

− −

− −

A1

A1

A1A1

A0

A0A0

A0

A3

A3

A3 A3 A2

A2A2

A2

A4

(b)

+

+

X0
X4 X1

X0
X1

X1
X5

X3

X2
X3

X4
X7

X6

X6

X6

X7

X8
X9

−

A1

A2

A3

A4

A0

±

±

(c)

Figure 6: Sharing of a node in multiple FOSS architectures: (a) nodes of the same stage of different FOSS architectures, (b) determining
which nodes of the same stage to share a node in a unified architecture, and (c) shared nodes of the same stage in a unified architecture.

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X0∼X15 A0∼A11 B0∼B15 C0∼C7 F0∼F7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

Stage 1 Stage 2 Stage 3 Stage 4

−

−

−

−

−

−−

−−
−

−

−

−

−

−

−

−

−

−

−

−

4 × 4 forward 4 × 4 inverse

8 × 8 forward 8 × 8 inverse

8 × 8 forward 8 × 8 inverse

4 × 4 Hadamard

4 × 4 forward 4 × 4 inverse 4 × 4Hadamard

F0

C2

C2C2

C2C2

C0 C0

C0 C0C0

F1

F2

F3

F4

F5

F6

F7

Figure 7: The operation decision for a node in the unified architecture.

Table 1: The input and output bit-widths for each transform of H.264.

4 × 4 forward transform 4 × 4 inverse transform 8 × 8 forward transform 8 × 8 inverse transform
In Out In Out In Out In Out

Row transform 9 12 16 16 9 12, 13 16 16
Column transform 12 15 16 16 13 16 16 16

4 × 4 forward Hadamard 4 × 4 inverse Hadamard 2 × 2 forward Hadamard 2 × 2 inverse Hadamard
In Out In Out In Out In Out

Row transform 16 16 16 16 16 16 16 16
Column transform 16 16 16 16 16 16 16 16



10 Mathematical Problems in Engineering

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+ +

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

F0

F1

F2

F3

F4

F5

F6

F7

M
ux

 b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

 b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

 b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

 b
as

ed
 ro

ut
in

g 
ne

tw
or

k

Stage 1 Stage 2 Stage 3 Stage 4

4 × 4 forward 4 × 4 inverse 4 × 4 Hadamard

8 × 8 forward 8 × 8 inverse2 × 2 Hadamard

10-bit 11-bit 16-bit

10-bit

10-bit 16-bit

16-bit 16-bit

16-bit

16-bit 16-bit

B0 B0 B0

B0 B0 B09-bit

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

X0∼X15 A0∼A11 B0∼B15 C0∼C7 F0∼F7

Figure 8: The bit-width decision for a node in the unified architecture.

+

3

8

8

8

8

8

8

8

S

4 × 4 forward

8 × 8 forward

4 × 4 inverse

8 × 8 inverse

2 × 2 Hadamard

4 × 4 Hadamard

X00

X00

X00

X00

X00

X01

Figure 9: An 8-bit 6-to-1 multiplexer.

requires 5 hardware units, giving a total of 13 (8+5) hardware
units. The cost of the multiplexer in Figure 11 is 67.5% that of
the multiplexer in Figure 9.

The multiplexers required for a shared node result not
only in extra hardware cost, but also in routing congestion for
the unified architecture.The number of input paths for a 1-bit
6-to-1 multiplexer is 11, as shown in Figure 10(b), and that for
an 8-bit 6-to-1 multiplexer is 88, as shown in Figure 9, which
could cause clustering of the routing wires in particular areas.
The routing congestion can be mitigated using the proposed
multiplexer design, wherein the number of input paths is
only 33, as shown in Figure 11. In addition, a good floor plan
that uniformly distributes the multiplexers around the chip
can disperse the routing wires. Note that additional latency
is incurred by the multiplexers of the routing network that
serialize the operations for different transform modes.

3.5. The Architecture-Unification Technique for All the H.264
Transform FOSS Architectures. The architecture-unification
technique consists of count decisions for the unified archi-
tecture stages and the shared nodes, node sharing for the
unified architecture for all FOSS architectures, the operation
and the bit-width decisions for a shared node, and the design
of a low cost multiplexer for the mux-based routing network.
When this process is used for all of the H.264 transform
architectures designed using the FOSS technique, Figure 12
shows the unified architecture for 2D 2 × 2 Hadamard
transform, 2D 4 × 4 forward transform, 2D 4 × 4 inverse
transform, 1D 8 × 8 forward transform, and 1D 8 × 8 inverse
transform FOSS architectures.

4. Complexity and Performance Analysis

4.1.TheComputational Complexity of theOriginal Transforms,
the FOSS Architectures, and the Unified Architecture. The
computational complexities of the original transforms, the
FOSS architectures, and the unified architecture are analyzed.
The computational complexities of the original transforms
and the FOSS architectures are compared inTables 2 and 3. As
shown in Table 2, a total of 844 adders and 912 multipliers are
needed for all of the six original H.264 transforms. However,
only 24 sub/adders, 96 adders, 84 subtractors, and 60 shifters
are needed for all of the six FOSS architectures that reduce
the cost by sharing the same operations and by replacing
the multipliers by adders and shifters, as shown in Table 3.
The computational complexities of the FOSS architectures
and the unified architecture are compared in Tables 3 and 4.
Table 4 shows the computational complexity of the unified



Mathematical Problems in Engineering 11

X0

X1

S

Y

(a)

X0

X1

X2

X3

X4

X5

Y

S0

S1

S3

S0

S0

(b)

Figure 10: (a) A 1-bit 2-to-1 multiplexer. (b) A 1-bit 6-to-1 multiplexer.

0 0 0 0 0 1

+

3
Selection of six

transforms

8

8

X00

X01

Figure 11: A low cost multiplexer design for the mux-based routing
network.

Table 2: The computational complexity of the original transforms
for H.264.

Adder Multiplier
1D 8 × 8 forward 56 64
1D 8 × 8 inverse 56 64
2D 4 × 4 forward 240 256
2D 4 × 4 inverse 240 256
2D 4 × 4 Hadamard 240 256
2D 2 × 2 Hadamard 12 16
Total 844 912

architecture, which only requires 28 adders, 16 subtractors,
and 40 shifters and needs no sub/adders.

4.2. The Hardware Cost and Performance of the FOSS Archi-
tectures and the Unified Architecture. In order to implement
the unified architecture, a front-end cell-based design flow
is employed for logic design, simulation, and verification of
VLSI implementation. The proposed FOSS architectures and
the unified architecture are firstly realized using Verilog RTL

Table 3: The computational complexity of the FOSS architectures
for H.264 transforms.

Sub/adder Adder Subtractor Shifter
1D 8 × 8 forward 0 20 16 10
1D 8 × 8 inverse 0 24 16 18
2D 4 × 4 forward 8 16 16 16
2D 4 × 4 inverse 8 16 16 16
2D 4 × 4 Hadamard 8 16 16 0
2D 2 × 2 Hadamard 0 4 4 0
Total 24 96 84 60

Table 4: The computational complexity of the unified architecture
for H.264 transforms.

Adder Subtractor Shifter
Unified architecture 28 16 40

code, and then a ModelSim EDA tool is used for the RTL
functional simulation. Synopsys Design Compiler is used
for logic synthesis and the standard cell library used is the
UMC 0.18 𝜇m Artisan cell library. The hardware cost and
the performance of the FOSS architectures and the unified
architecture are analyzed. The gate count is calculated using

Gate Count = Synthesized area/NAND gate area. (12)

Because transform matrix multiplication uses different
hardware architectures, the gate counts for the original trans-
forms are not known. Table 5 shows the gate counts for the
FOSS architectures and Table 6 shows those for the unified
architecture, which has the gate count that is 36% less than the
total gate count of all of the six FOSS architectures. Because
the six FOSS architectures share the unified architecture,
using the proposed architecture-unification technique, the
number of gates saved for an individual transform is not
known, but the total number of gates saved is the only way



12 Mathematical Problems in Engineering

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

F0

F1

F2

F3

F4

F5

F6

F7

Stage 1 Stage 2 Stage 3 Stage 4

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

M
ux

-b
as

ed
 ro

ut
in

g 
ne

tw
or

k

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

X0∼X15 A0∼A11 B0∼B15 C0∼C7 F0∼F7

Figure 12: The unified architecture for all H.264 transforms.

Table 5: A comparison of the gate count, frequency, latency, and
throughput for H.264 transform FOSS architectures.

Gate
count

Freq.
(MHz) Latency Throughput

(pixels/cycle)
1D 8 × 8 forward 2853 313 1 8
1D 8 × 8 inverse 5096 292 1 8
2D 4 × 4 forward 4299 306 1 8
2D 4 × 4 inverse 5821 285 1 8
2D 4 × 4 Hadamard 5437 302 1 8
2D 2 × 2 Hadamard 1032 385 1 4
Total 25438 N/A N/A N/A

Table 6: The gate count, frequency, latency, and throughput for the
unified architecture.

Gate
count

Freq.
(MHz) Latency Throughput

(pixels/cycle)

Unified architecture 16308 275 1 Listed in
Table 7

to measure the total reduction in hardware cost that results
from the unification technique.

Since there is no register in either the FOSS architectures
or the unified architecture, the critical path is the longest
path of all of the paths from the input to the output of the
architecture. The frequency is the reciprocal of the critical
path. Because of the delay due to the mux-based routing
network, the critical path for the unified architecture is
slightly longer than that for any FOSS architecture. In other
words, the frequency of the unified architecture is lower
than that of any FOSS architecture. The frequency range of

Table 7: The throughput for the unified architecture for H.264
transforms.

Freq. Throughput (pixels/cycle)
1D 8 × 8 forward 275MHz 8
1D 8 × 8 inverse 275MHz 8
2D 4 × 4 forward 275MHz 8
2D 4 × 4 inverse 275MHz 8
2D 4 × 4 Hadamard 275MHz 8
2D 2 × 2 Hadamard 275MHz 4

the FOSS architectures is from 285MHz to 385MHz, while
the unified architecture still processes up to 275MHz, as
shown in Tables 5 and 6. Since there is no register in either the
FOSS architectures or the unified architecture, the latencies
are all one clock cycle. The throughput for the 2D 2 × 2
Hadamard transform FOSS architecture is 4 pixels/cycle, but
those of the other transform FOSS architectures are all 8
pixels/cycle.

5. Conclusion

In this paper, a systematic hardware sharing method that
allows a unified architecture for H.264 transforms is pre-
sented. A FOSS architecture design technique is presented
to reduce the hardware cost for each H.264 transform. The
basic idea is to systematically synthesize architecture, to
share all of the same operations in a matrix multiplication,
and to allow a reduction in hardware cost. In total 844
adders and 912 multipliers are required for all of the six
H.264 transform matrix multiplications. However, only 24
sub/adders, 96 adders, 84 subtractors, and 60 shifters are



Mathematical Problems in Engineering 13

required for all of the six FOSS architectures, which reduces
the cost by sharing the same operations and by replacing all
of the multipliers by adders and shifters. When all of the six
FOSS architectures of the H.264 transforms are determined,
an architecture-unification design flow is then proposed that
unifies all of the low cost transform FOSS architectures into a
single architecture to eliminate the redundant hardware. The
unified architecture only requires 28 adders, 16 subtractors,
40 shifters, and the proposed mux-based routing network.
The gate count for the unified architecture is 16308, which
is 36% less than the total gate count for all of the six FOSS
architectures. The frequency range of the FOSS architectures
is from 285MHz to 385MHz, while the unified architecture
still processes up to 275MHz. Since there is no register in
either the FOSS architectures or the unified architecture,
the latencies are all one clock cycle. Throughput for the
2D 2 × 2 Hadamard transform is 4 pixels/cycle, but those
of the other transforms are all 8 pixels/cycle. In addition,
the proposed hardware sharing method can also be used to
construct a unified architecture for multitransform coding
of other international video coding standards, such as VC-
1, MPEG-1/2/4, and even the next generation high efficiency
video coding (HEVC) that allows a reduction in hardware
cost.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] “Coding of still pictures,” ISO/IEC JTC 1/SC 29/WG 1, 2009.

[2] Video Coding Standard, “Information technology—coding of
moving pictures and associated audio for digital storage media
at up to about 1,5 Mbit/s—part 2: video,” ISO/IEC 11172-2
MPEG-1, 1993.

[3] “Video coding standard, information technology—generic cod-
ing of moving pictures and associated audio information:
video,” ISO/IEC 13818-2 MPEG-2, 1995.

[4] Video Coding Standard, “Information tchnology—coding of
audio-visual objects—part 2: visual,” ISO/IEC 14496-2 MPEG-
4, 2004.

[5] A. Puri, X. Chen, and A. Luthra, “Video coding using the
H.264/MPEG-4 AVC compression standard,” Signal Processing:
Image Communication, vol. 19, no. 9, pp. 793–849, 2004.

[6] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,
“Low-complexity transform and quantization in H.264/AVC,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 598–603, 2003.

[7] S. Gordon, D. Marple, and T. Wiegand, “Simplified use of 8 ×
8 transforms—updated proposal and results,” in Proceedings of
the 11th Meeting JVTK028, Munich, Germany, March 2004.

[8] T. Wang, Y. Huang, H. Fang, and L. Chen, “Parallel 4×4
2D transform and inverse transform architecture for MPEG-4
AVC/H.264,” in Proceedings of the IEEE International Sympo-
sium on Circuits and Systems, pp. 800–803, May 2003.

[9] Z.-Y. Cheng, C.-H. Chen, B.-D. Liu, and J.-F. Yang, “High
throughput 2-D transform architectures for H.264 advanced
video coders,” in Proceedings of the IEEEAsia-Pacific Conference
on Circuits and Systems (APCCAS ’04), pp. 1141–1144, December
2004.

[10] K.-H. Chen, J.-I. Guo, K.-C. Chao, J.-S. Wang, and Y.-S. Chu,
“A high-performance low power direct 2-D transform coding
IP design for MPEG-4 AVC/H.264 with a switching power
suppression technique,” in Proceedings of the IEEE VLSI-TSA
International Symposium on VLSI Design, Automation and Test
(VLSI-TSA-DAT ’05), pp. 291–294, April 2005.

[11] H.-Y. Lin, Y.-C. Chao, C.-H. Chen, B.-D. Liu, and J.-F. Yang,
“Combined 2-D transform and quantization architectures for
H.264 video coders,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’05), pp. 1802–1805,
Kobe, Japan, May 2005.

[12] K.H.Chen, J. I. Guo, and J. S.Wang, “Ahigh-performance direct
2-D transformcoding IPdesign forMPEG-4AVC/H.264,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
16, no. 4, pp. 472–483, 2006.

[13] C.-P. Fan, “Fast 2-dimensional 4 × 4 forward integer transform
implementation for H.264/AVC,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 53, no. 3, pp. 174–177, 2006.

[14] T. Dias, S. López, N. Roma, and L. Sousa, “Scalable unified
transform architecture for advanced video coding embedded
systems,” International Journal of Parallel Programming, vol. 41,
no. 2, pp. 236–260, 2013.

[15] J. A. Michell, J. M. Solana, and G. A. Ruiz, “A high-throughput
ASIC processor for 8×8 transform coding in H.264/AVC,”
Signal Processing: Image Communication, vol. 26, no. 2, pp. 93–
104, 2011.

[16] M. Sharma, H. D. Tiwari, and Y. B. Cho, “Low cost high
throughput pipelined architecture of 2-D 8× 8 integer trans-
forms for H.264/AVC,” International Journal of Electronics, vol.
100, no. 8, pp. 1033–1045, 2013.

[17] Y. K. Lai and Y. F. Lai, “A reconfigurable IDCT processor
architecture for video coding applications,” in Proceedings of
the International Conference on Manufacturing and Engineering
Systems (MES ’09), pp. 469–472, December 2009.

[18] C.-P. Fan and G.-A. Su, “Efficient low-cost sharing design of fast
1-D inverse integer transform algorithms for H.264/AVC and
VC-1,” IEEE Signal Processing Letters, vol. 15, pp. 926–929, 2008.

[19] Y.-C. Chao, H.-H. Tsai, Y.-H. Lin, J.-F. Yang, and B.-D. Liu, “A
novel design for computation of all transforms in H.264/AVC
decoders,” in Proceedings of the IEEE International Conference
onMultimedia and Expo (ICME ’07), pp. 1914–1917, July 2007.

[20] G.-A. Su and C.-P. Fan, “Low-cost hardware-sharing architec-
ture of fast 1-D inverse transforms for H.264/AVC and AVS
applications,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 55, no. 12, pp. 1249–1253, 2008.

[21] H. Qi, Q. Huang, and W. Gao, “A low-cost very large scale
integration architecture for multistandard inverse transform,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
57, no. 7, pp. 551–555, 2010.

[22] C.-P. Fan, C.-H. Fang, C.-W.Chang, and S.-J.Hsu, “Fastmultiple
inverse transforms with low-cost hardware sharing design for
multistandard video decoding,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 58, no. 8, pp. 517–521, 2011.



14 Mathematical Problems in Engineering

[23] M. Martuza and K. A. Wahid, “Low cost design of a hybrid
architecture of integer inverse DCT for H. 264, VC-1, AVS, and
HEVC,” VLSI Design, vol. 2012, Article ID 242989, 10 pages,
2012.

[24] K. A. Wahid, M. Martuza, M. Das, and C. McCrosky, “Efficient
hardware implementation of 8 × 8 integer cosine transforms for
multiple video codecs,” Journal of Real-Time Image Processing,
vol. 8, no. 4, pp. 403–410, 2013.

[25] C.-Y. Huang, L.-F. Chen, and Y.-K. Lai, “A high-speed 2-D
transform architecture with unique kernel for multi-standard
video applications,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’08), pp. 21–24, May
2008.

[26] S. Shen, W. Shen, Y. Fan, and X. Zeng, “A unified for-
ward/inverse transform architecture for multi-standard video
codec design,” IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, vol. 96, no. 7, pp.
1534–1542, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


