
The SLAM Toolkit

Thomas Ball and Sriram K. Rajamani

Microsoft Research
http://www.research.microsoft.com/slam/

1 Introduction

The SLAM toolkit checks safety properties of software without the need for
user-supplied annotations or abstractions. Given a safety property to check on
a C program P , the SLAM process [4] iteratively refines a boolean program
abstraction of P using three tools:

– C2bp, a predicate abstraction tool that abstracts P into a boolean program
BP(P, E) with respect to a set of predicates E over P [1,2];

– Bebop, a tool for model checking boolean programs [3], and
– Newton, a tool that discovers additional predicates to refine the boolean

program, by analyzing the feasibility of paths in the C program.

Property violations are reported by the SLAM toolkit as paths over the pro-
gram P . Since property checking is undecidable, the SLAM refinement algorithm
may not converge. We have applied the SLAM toolkit to automatically check
properties of device drivers taken from the Microsoft Driver Development Kit.
While checking for various properties, we found that the SLAM process con-
verges to a boolean program that is sufficiently precise to validate/invalidate
the property [4].

Several ideas behind the SLAM tools are novel. C2bp is the first automatic
predicate abstraction tool to handle a full-scale programming language with
procedure calls and pointers, and perform a sound and precise abstraction. Be-
bop is the first model checker to handle procedure calls using an interprocedural
dataflow analysis algorithm, augmented with representation tricks from the sym-
bolic model checking community. Newton uses a path simulation algorithm in
a novel way, to generate predicates for refinement.

2 Overview and Example

We introduce the SLAM refinement algorithm and apply it to a small code exam-
ple. We have created a low-level specification language called Slic (Specification
Language for Interface Checking) for stating safety properties. Figure 1(a) shows
a Slic specification that states that it is an error to acquire (or release) a spin
lock twice in a row. There are two events on which state transitions happen —
returns of calls to the functions KeAcquireSpinLock and KeReleaseSpinLock.

We wish to check if a temporal safety property ϕ specified using Slic is
satisfied by a program P . We have built a tool that automatically instruments
the program P with property ϕ to result in a program P ′ such that P satisfies

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 260–264, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://www.research.microsoft.com/slam/


The SLAM Toolkit 261

state {

enum { Unlocked=0, Locked=1 }

state = Unlocked;

}

KeAcquireSpinLock.return {

if (state == Locked)

abort;
else

state = Locked;

}

KeReleaseSpinLock.return {

if (state == Unlocked)

abort;

else
state = Unlocked;

}

enum { Unlocked=0, Locked=1 }

state = Unlocked;

void slic_abort() {
SLIC_ERROR: ;

}

void KeAcquireSpinLock_return() {
if (state == Locked)

slic_abort();

else

state = Locked;
}

void KeReleaseSpinLock_return {

if (state == Unlocked)
slic_abort();

else

state = Unlocked;

}
(a) (b)

Fig. 1. (a) A Slic Specification for Proper Usage of Spin Locks, and (b) Its
Compilation into C Code.

ϕ iff the label SLIC ERROR is not reachable in P ′. In particular, the tool first
creates C code from the Slic specification, as shown in Figure 1(b). The tool
then inserts calls to the appropriate Slic C functions in the program P to result
in the instrumented program P ′.

Now, we wish to check if the label SLIC ERROR is reachable in the instru-
mented program P ′. Let i be a metavariable that records the SLAM iteration
count. The first iteration (i = 0) starts with the set of predicates E0 that are
present in the conditionals of the Slic specification. Let Ei be some set of pred-
icates over the state of P ′. Then iteration i of SLAM is carried out using the
following steps:

1. Apply C2bp to construct the boolean program BP(P ′, Ei). Program
BP(P ′, Ei) is guaranteed to abstract the program P ′, as every feasible execu-
tion path p of the program P ′ also is a feasible execution path of BP(P ′, Ei).

2. Apply Bebop to check if there is a path pi in BP(P ′, Ei) that reaches the
SLIC ERROR label. If Bebop determines that SLIC ERROR is not reachable,
then the property ϕ is valid in P , and the algorithm terminates.

3. If there is such a path pi, then we use Newton to check if pi is feasible in
P ′. There are two outcomes: “yes”, the property ϕ is violated by P and the
algorithm terminates with an error path pi; “no”, Newton finds a set of
predicates Fi that explain the infeasibility of path pi in P ′.

4. Let Ei+1 := Ei ∪ Fi, and i := i + 1, and proceed to the next iteration.

Figure 2(a) presents a snippet of (simplified) C code from a PCI device
driver. Figure 2(b) shows the instrumented program (with respect to the Slic



262 Thomas Ball and Sriram K. Rajamani

void example() {

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

req = devExt->WLHV;

if(req && req->status){
devExt->WLHV = req->Next;

KeReleaseSpinLock();

irp = req->irp;
if(req->status > 0){

irp->IoS.Status = SUCCESS;

irp->IoS.Info = req->Status;

} else {
irp->IoS.Status = FAIL;

irp->IoS.Info = req->Status;

}

SmartDevFreeBlock(req);

IoCompleteRequest(irp);
nPackets++;

}

} while(nPackets!=nPacketsOld);

KeReleaseSpinLock();

}

void example() {

do {

KeAcquireSpinLock();
A: KeAcquireSpinLock_return();

nPacketsOld = nPackets;

req = devExt->WLHV;

if(req && req->status){
devExt->WLHV = req->Next;

KeReleaseSpinLock();

B: KeReleaseSpinLock_return();

irp = req->irp;
if(req->status > 0){

irp->IoS.Status = SUCCESS;

irp->IoS.Info = req->Status;

} else {
irp->IoS.Status = FAIL;

irp->IoS.Info = req->Status;

}

SmartDevFreeBlock(req);

IoCompleteRequest(irp);
nPackets++;

}

} while(nPackets!=nPacketsOld);

KeReleaseSpinLock();
C: KeReleaseSpinLock_return();

}
(a) Program P (b) Program P ′

Fig. 2. (a) A snippet of device driver code P , and (b) program P ′ resulting from
instrumentation of program P due to Slic specification in Figure 1(a).

specification in Figure 1(a)). Calls to the appropriate Slic C functions (see
Figure 1(b)) have been introduced (at labels A, B, and C).

The question we wish to answer is: is the label SLIC ERROR reachable in
the program P ′ comprised of the code from Figure 1(b) and Figure 2(b)? The
first step of the algorithm is to generate the initial boolean program. A boolean
program [3] is a C program in which the only type is boolean.

For our example, the inital set of predicates E0 consists of two global predi-
cates (state = Locked) and (state = Unlocked) that appear in the conditionals
of the Slic specification. These two predicates and the program P ′ are input
to the C2bp (C to Boolean Program) tool. The translation of the Slic C code
from Figure 1(b) to the boolean program is shown in Figure 3. The translation
of the example procedure is shown in Figure 4(a). Together, these two pieces of
code comprise the boolean program BP(P ′, E0) output by C2bp.



The SLAM Toolkit 263

decl {state==Locked},
{state==Unlocked} := F,T;

void slic_abort() begin

SLIC_ERROR: skip;
end

void KeAcquireSpinLock_return()

begin
if ({state==Locked})

slic_abort();

else

{state==Locked},
{state==Unlocked} := T,F;

end

void KeReleaseSpinLock_return()
begin

if ({state == Unlocked})

slic_abort();

else
{state==Locked},

{state==Unlocked} := F,T;

end

Fig. 3. The C code of the Slic specification from Figure 1(b) compiled by C2bp
into a boolean program.

As shown in Figure 3, the translation of the Slic C code results in the
global boolean variables, {state==Locked} and {state==Unlocked}.1 For every
statement s in the C program and predicate e ∈ E0, the C2bp tool determines
the effect of statement s on predicate e and codes that effect in the boolean
program. Non-determinism is used to conservatively model the conditions in
the C program that cannot be abstracted precisely using the predicates in E0,
as shown in Figure 4(a). Many of the assignment statements in the example
procedure are abstracted to the skip statement (no-op) in the boolean program.
The C2bp tool uses an alias analysis to determine whether or not an assignment
statement through a pointer dereference can affect a predicate e.

The second step of our process is to determine whether or not the label
SLIC ERROR is reachable in the boolean program BP(P ′, E0). We use the Bebop
model checker to determine the answer to this query. In this case, the answer is
“yes” and Bebop produces a (shortest) path p0 leading to SLIC ERROR (specified
by the sequence of labels [A, A, SLIC ERROR]).

Does p0 represent a feasible execution path of P ′? The Newton tool takes a
C program and a (potential) error path as an input. It uses verification condition
generation to determine if the path is feasible. If the path is feasible, we have
found a real error in P ′. If the answer is “no” then Newton uses a new algorithm
to identify a small set of predicates that “explain” why the path is infeasible.
In the running example, Newton detects that the path p0 is infeasible, and
returns a single predicate (nPackets = npacketsOld) as the explanation for the
infeasibility.

Figure 4(b) shows the boolean program BP(P ′, E1) that C2bp produces on
the second iteration of the process. This program has one additional boolean

1 Boolean programs permit a variable identifier to be an arbitrary string enclosed
between “{” and “}”.



264 Thomas Ball and Sriram K. Rajamani

void example()

begin

do
skip;

A: KeAcquireSpinLock_return();

skip;

if (*) then
skip;

B: KeReleaseSpinLock_return();

skip;

if (*) then
skip;

else

skip;

fi
skip;

fi

while (*);

skip;

C: KeReleaseSpinLock_return();
end

void example()

begin

do
skip;

A: KeAcquireSpinLock_return();

b := T;

if (*) then
skip;

B: KeReleaseSpinLock_return();

skip;

if (*) then
skip;

else

skip;

fi
b := b ? F : *;

fi

while (!b);

skip;

C: KeReleaseSpinLock_return();
end

(a) Boolean program BP(P ′, E0) (b) Boolean program BP(P ′, E1)

Fig. 4. The two boolean programs created while checking the code from Fig-
ure 2(b).

variable (b) that represents the predicate (nPackets = nPacketsOld). The as-
signment statement nPackets = nPacketsOld; makes this condition true, so in
the boolean program the assignment b := T; represents this assignment. Using
a theorem prover, C2bp determines that if the predicate is true before the state-
ment nPackets++, then it is false afterwards. This is captured by the assignment
statement in the boolean program “b := b ? F : *”. Applying Bebop to the
new boolean program shows that the label SLIC ERROR is not reachable.

References

1. T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate ab-
straction of C programs. In PLDI 01: Programming Language Design and Imple-
mentation, 2001.

2. T. Ball, A. Podelski, and S.K. Rajamani. Boolean and cartesian abstractions for
model checking C programs. In TACAS 01: Tools and Algorithms for Construction
and Analysis of Systems, LNCS 2031, 2001.

3. T. Ball and S.K. Rajamani. Bebop: A symbolic model checker for Boolean programs.
In SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130. 2000.

4. T. Ball and S.K. Rajamani. Automatically validating temporal safety properties of
interfaces. In SPIN 01: SPIN Workshop, LNCS 2057, 2001.


	Introduction
	Overview and Example

