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Introduction. Among the various questions about topologies on Riesz

spaces, there is a particularly important one which arises out of Daniell's

work on integration. The present paper will be centered around this ques-

tion, but will not be confined to it. Daniell [5] considers a space V whose

elements are real-valued functions on an abstract set £ and which is closed

under the natural linear and lattice operations. He starts with a positive

linear functional £ on V (that is, £/^0 whenever/(x) ^0 for all xEE) en-

dowed with the property that/B(x) 1f(x) pointwise implies £/„—»£/. Daniell

extends £ from V to a larger class of functions in such a way that the ex-

tended £ satisfies the theorem of Lebesgue: Under suitable conditions of

boundedness, if /„—»/ pointwise and the £/B are defined, Ff is defined and

£/„—>£/. It follows that the extended £ is the integral corresponding to a

measure on E.

In accordance with the work of Daniell, we call a positive linear func-

tional £ on Fan integral if it has the property: /„"["/ pointwise implies

Ffn—>£/. By an integral we mean any functional which is the difference of

two positive integrals.

The relationship of the set of integrals to the set of all functionals was

considered by Riesz [10, p. 206]. He considered the class of positive func-

tionals which exceed no positive integral other than zero. He showed that

any positive functional may be expressed as the sum of a functional of this

class and an integral.

The result of Riesz employs what is essentially the notion of a direct

sum. Of course we may replace that notion by the equivalent one of a projec-

tion. The problem is considered from this point of view by Gordon and Lorch

7 J. Suppose the functions in V are bounded. We define a norm on V by

|/|| =l.u.b.lSB |/(*)| • Suppose V is a Banach space, i.e. suppose V is com-

plete in its norm. Let V* be the space of all continuous linear functionals on

V. Then these authors prove there is a unique projection £ (i.e. an idem-

potent linear mapping) of V* into itself with the properties that:

(a) The range of £ is precisely the set of integrals.

(b) 0g££/^Ff whenever £^0 and/^0.
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They give an explicit formula for PFf in terms of P and/.

This question has also been considered by H. Bauer [l], who retains

Riesz's point of view. Bauer replaces the space of functions by a lattice and

the linear functionals by valuations. He uses arbitrary monotone directed

sequences, in the manner indicated below, instead of monotone pointwise

convergent sequences. In these circumstances he establishes the existence of

direct sum decompositions. In another paper relating to other matters, he

gives a formula which may be interpreted as the formula for PFf referred to

above [2, p. 455].

We may look upon the situation described above as being roughly as fol-

lows : We have a vector space of functions V with a topology. This gives rise

to the space V* of all linear functionals which are continuous over V. A

submanifold of V* (above the integrals) is singled out by the requirement

that the functionals of this submanifold be continuous over V in another

topology. In the case of integration, the topology is not precisely defined; it

is hinted at by the condition of continuity :/„ f /=>F/B—>F/. The results above

then state that we have in this special situation a projection of the manifold

of all functionals onto the manifold of those continuous in the second topol-

ogy. The question to which the Daniell program gives rise (and to which we

alluded in the first paragraph of this paper) is to provide a proper setting

for the generalization of these results and to give necessary and sufficient

conditions for the existence and uniqueness of the projection.

The proper "space setting" seems clearly to be that V should be a topo-

logical Riesz space. The notion of a compatible topology on a Riesz space is

considered below. (Such topologies were also used by Roberts [ll] and by

Namioka [9]. Their main results are not relevant to our undertaking and

we shall not presuppose any of their work.)

The problem may be precisely stated as follows: Let a topological Riesz

space V he given. Let V* be the set of its continuous linear functionals. Sup-

pose there is given on V a second topology compatible with its Riesz space

structure. Let M be the subset of F* consisting of those functionals which are

continuous in the second topology, as well as the original one. When does

there exist a projection P defined on V* such that:

(a) The range of P is M.

(h) 0SPFfSFf whenever P^O and/^0.
We give a necessary and sufficient condition for the existence of such a

projection (see in particular Theorem 3.11).

As noted above, the integrals are not defined as the continuous functionals

for a genuine topology, but rather as the functionals satisfying a certain

continuity condition involving sequences. More precisely, a positive linear

functional P is an integral if Ff„—>0 whenever (/i, /2, • • • ) belongs to a cer-

tain collection of sequences S. S consists of those sequences such that /„ j 0

pointwise. Now let V be an arbitrary Riesz space and let V* be the set of
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linear functionals continuous in some compatible topology on V. Yet S be

an arbitrary collection of directed sequences of elements in V; let M he the

manifold of those linear functionals in V* which are S-continuous, that is,

such that {/,} lgrGS=>£/i^0. As before, we seek to determine whether there

exists a projection of V* onto M. This problem is given a solution by Theo-

rems 4.6 and 4.7. We shall show that there is a projection if each sequence

in S is bounded; thus any collection of bounded sequences leads to a projec-

tion. Conversely, if V, V* and a projection on V* are given, we can find a

collection S of bounded sequences such that the manifold M of S-continuous

functionals is precisely the range of the projection; thus any projection leads

to a collection of bounded sequences.

1. Compatible topologies on Riesz spaces(2). In this section we consider

the basic properties of Riesz spaces with compatible topologies. Some of the

results will be needed in the following sections and all of them will be relevant

there. Most of the material relates to questions involving duality and is of

interest in itself. Theorems 1.14 and 1.18 are especially important to the

present development.

Let F be a Riesz space. (I.e. V is a lattice ordered real vector space.) We

shall say that a topology is compatible with the Riesz space structure of V

provided the following axioms are satisfied:

Axiom 1. The topology is compatible with the vector space structure of V.

Axiom 2. The mapping/—>/+ of V into itself is continuous at 0.

Axiom 3. For each neighborhood £ of 0 there is a neighborhood £' of 0

with the following property:

If / G £', g E V   and   0 g g g /,    then   g E U.

A Riesz space endowed with a compatible topology will be called a topologi-

cal Riesz space: If V is a topological Riesz space, it has the following prop-

erty:

1.1. Theorem(3). The mappings (/, g)-*f\/g and (/, g)-+fAg of VX V-^V
are continuous.

Proof. We first show that the mapping/—*\f\ is continuous at 0. Clearly

f—*f~ — ( — /)+ is continuous at 0; hence/—>|/| =f++f~ is continuous at 0.

We next prove that the mapping /—>/+ is continuous everywhere. Let

gEV. Let £ be a neighborhood of g+. Then Wi = U—g+ is a neighborhood of

0. Let Wi be a neighborhood of 0 such that Wi— WiCWi. Let W3 be a neigh-

(*) The material of this section was described in [6].

(3) After the abstract of [6] was submitted, Namioka [9, pp. 18 and 40], showed that

the system of axioms above is equivalent to the following system:

Axiom 1': Same as Axiom 1.

Axiom 2': Same as Theorem 1.1.

Axiom 3': Each neighborhood of 0 contains a neighborhood U of 0 such that: If fEU,

gE V and 0 Sg£/, then gE U.
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borhood of 0 such that 0ShSkEW3 implies hEW2- By the preceding para-

graph, there is a neighborhood Wk of 0 such that | IF4| C W%. Let U' = WK+g.

We note U' is a neighborhood of g. Let fEU'. Then/—gEWk; thus \f—g\

EW3. We recall from [3, p. 220], that |/+-g+| S \f~g\ ■ Thus, since

0S(f+~g+)+S\f+-g+\s\f-g\EW3, (f+-g+)+EW2. Similarly (/+-g+)"
EW2. Thus/+-g+ = (/+-g+)+-(/+-g+)-GIF1. Thereforef+EWi +g+= U.
Thus, for every fE U', f+E U; hence /—>/+ is continuous at g for each gEV.

To prove the theorem, it is now enough to note /Vg=/+(g—/)+ and

fAg=f-(J-g)+;
Let Fbe a Riesz space with a topology given by a norm. Suppose ||/|| ^||g||

whenever OSfSg- Suppose also ||/+||g]|/|] for all/. Then the topology is

compatible with the Riesz space structure. Similarly, if the topology is given

by semi-norms each having the above properties, the topology is compatible.

1.2. Theorem. Every Hausdorff topological Riesz space is an ordered topo-

logical vector space.

Proof. The set of positive elements in V is closed because it is the inverse

image of 0 under the continuous mapping/—>(—/)+.

In view of the above theorem, the following theorem applies to Hausdorff

topological Riesz spaces:

1.3. Theorem. Let V be an ordered vector space and {/ijier be a directed

sequence of elements of V. Suppose f,Sfp whenever iSv. Let 3i, 52 be topologies

on V compatible with the ordered vector space structure of V. Then:

(a) If If A iei is ^-convergent to f,f,Sffor all i£7.
(b) If \f,} iei is ^-convergent to f and ftSg for all iEI, fSg.
(c) If {ft} «si is both ^-convergent to gi and ^-convergent to g2, gi=g2.

Proof, (a) Suppose/, is not Sf. Let U be a neighborhood of/. The set A

of all /7S;/, is closed ;fEA. U — A is thus a neighborhood of/. Hence f,EU—A

for all v sufficiently large. But/„£.4 for all v*2i; thus/,(££/—A for large v.

(b) The set A of all hSg is closed. f^EA for all i; hence fE A.
(c) By (a) we haveftSgi for all i. Hence, applying (b) to 32 instead of 3lf

we have g2Sgu Similarly giSg2~, thus gi=g2.

1.4. Theorem. Let Vi, F2 be topological Riesz spaces. Let c6t, <j>2 be mappings

of Vi into V2. Suppose that <j>2 is continuous at 0 and that <j>i is linear. Suppose

also that for each positive fE Vi, 0S<t>i(f) S<p2(f), and that <b2(0) =0. Then <pi is

continuous.

Proof. Let £7 be any neighborhood of 0 in V2. Let Pi, P2 be neighborhoods

of 0 in V2 such that Ui-U2E U. Let Ui (*' = 1, 2) be such that HOShSkEUi
then hE U{. Let Wi be the inverse image of U{ under the mapping/—»c62(/+);

let IF2 be the inverse image of U2 under the mapping /—>c62(/~). Let

W= Wi(~\W2. We note that IF is a neighborhood of 0 in Fi since IFi and W2
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are. Hence, to prove the theorem, it is enough to show <pi(W)CU. Let

fEW. We have 0^<j>i(f+) ^<p2 (f+)EUi since fE WC Wi. Thus <pi(f+)EUi.
Similarly 02(/-)G£2. Therefore <j>i(f)=d>i(f+-f-)=M+)-4>iit)eUi-Ui
CU.

1.5. Corollary. Let V be a topological Riesz space and Fit Fi be linear

functionals on V. If F2 is continuous and 0 ^ P ^ F2, then P is continuous.

1.6. Corollary. Let V be a topological Riesz space and P be a linear map-

ping of V into V. If P and I—P (I is the identity mapping of V onto V) are

positive, P is continuous.

Proof. / is continuous and 0^£^£

We now proceed to study continuous real linear functionals on a topo-

logical Riesz space V.

1.7. Lemma. If AC V is such that O^g^ffor all gEA and somefE V, then
A is bounded in the topological vector space sense.

Proof. Let U be any neighborhood of 0. Let U' be such that if O^h^k

and kEU' then hEU. For a>0 sufficiently small, afEU'. For every gEA,

O^ag^afEU', therefore a^4C£- Thus A is bounded.
We recall that a linear functional £ is called relatively bounded if, for

each positive fE V, the set {| £g| |g| ^/, gE V] is bounded; it has been

shown in [3, p. 245], that a functional is relatively bounded if and only if

it is the difference of two positive functionals.

1.8. Theorem. Every continuous linear functional on V is relatively

bounded.

Proof. Let £ be a continuous linear functional on V. YetfE V be positive.

Let A be the set of gE Vsuch that O^g^f. By the lemma, A is topologically

bounded. Since P is continuous, there is a neighborhood £ of 0 such that

\Fh\ <1 for all hEU. Since A is bounded, aACU for some a>0. Thus if

gEA, | Fg | =(l/a) | F(ag) \ <l/a since agEU. Therefore £ is relatively

bounded.

Since every continuous linear functional £ is relatively bounded, we

know that for each £ there are linear functionals F+, F~ such that £=£+

— F~. We now prove that F+ and F~ are continuous and thus establish that

the set of continuous linear functionals is a Riesz space.

1.9. Lemma. If F is a continuous linear functional on V, then F+, F~ are

continuous.

Proof. We recall from [3, p. 245], that £+/=l.u.b.0sBS/ Fg for/^0. It is

enough to prove F+ is continuous at 0. Let e>0 be given. Let £ be a neigh-

borhood of 0 such that | £/| <e/2 for all fE U. Let £' be a neighborhood of

0 such that if O^h^kEU', hEU. Yet Wu W2 be neighborhoods of 0 such
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that itfEWi,f+EU' and itfEW2,f~EU'. Let W=WiC\W2. Consider any
fE W. We note/+G U' and f~E U'. Thus if 0 SgSf+, gE U. Also if 0SgSt,
gE P. We have for all / E W: \ F+f\ = | P+/+ - F+f~\ = | l.u.b.0jSffS/+ Fg
-l.u.b.osl>£f- Fg\ g2|l.u.b.fl6C/ Pg| ^2(€/2)=e. Thus P+ is continuous at 0,

hence everywhere. Since F~ = F+ — F, F~ is continuous.

Recalling that a Riesz space is called completely reticulated if every set

bounded from above has a least upper bound, we prove the following theorem:

1.10. Theorem. The set V* of continuous linear functionals on a topological

Riesz space is a completely reticulated Riesz space.

Proof. We already know that F* is a Riesz space. Let A C V* be majorized

by FEV*; i.e. HSF for each HEA. Suppose A?*0. Pick any fixed GEA
and let B=A+G~. Then G+ = G+G~EA+G- = B. Also HSF+G~ ior each
HEB. Since the set F| of all relatively bounded linear functionals on V is

completely reticulated (see [10, p. 179]), there is a least upper bound KE V%

for B with respect to V%. We note that KSF+G~ since F+G~ is an upper

bound for B. Also O^G+^P since G+EB. Thus 0^P^F+G~ and F+G~
is continuous; hence K is continuous by Corollary 1.5, i.e. PG V*. Therefore

K is a least upper bound for B with respect to V*. It follows that K — G~E V*

is a least upper bound for A. Thus F* is completely reticulated.

Let V he a Riesz space. Let M be a set of positive linear functionals on

V. Then for each FEM the mapping/—*P|/| of V into the real numbers is a

semi-norm since:

P\f+g\   £F(\f\  + \i\) = P\f\ +F\i\    (sinceF^O),

F|«/|   = F(|«| |/|)=  |«|F|/|.

Let T be the set of all such semi-norms. Then T defines on V a topology in

which V is a locally convex topological vector space. We shall call this topol-

ogy the "Riesz space weak topology induced on V by M".

1.11. Lemma. The Riesz space weak topology induced on V by M is com-

patible with the Riesz space structure of V.

Proof. Axiom 1 is satisfied because the topology is defined by semi-

norms. We verify Axioms 2 and 3 simultaneously. Let U be a neighborhood

of 0. Then there is a U'EU, real numbers «i, • • • , aB>0, and functionals

Pi, • • • , FnEM such that/GP' if and only if P,|/| Sat lor all *. If OSf
SgEU', then P,|/| = FtfSPg = Ft\g\ Sat for all *'; i.e. fE U'EU. Axiom 3
is thus verified. Also, the mapping <f>:f—>/+ is such that <p(U')EU' since

Px\ 4>if) | = Pif+ = ^"<|/| f°r a'l i'< tnus we see that <p is continuous at 0, which

is Axiom 2.

1.12. Theorem. The Riesz space weak topology induced on V by M is the

coarsest topology in which V is a topological Riesz space and the functionals in

M are continuous.
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Proof. We first show that the functionals of M are continuous in this

topology. For each FEM, the mapping <p:f—*F\f\ is clearly continuous at 0,

d)(0)=0 and 0^Ff=d>(f) when/is positive. Thus by Theorem 1.4, Pis con-
tinuous.

Next let 3 be any topology compatible with the Riesz space structure of

V and such that the functionals in M are 3-continuous. Then, for each

FEM, the mapping/—»£|/| is 3-continuous. Thus 3 is clearly finer than the

Riesz space weak topology induced on V by M.

(We now investigate by means of two examples whether it is true that

the Riesz space weak topology induced on V by M is the weak topology in-

duced on V by M (i.e. the coarsest topology in which V is a topological vec-

tor space and the functionals in M are continuous). In one example the state-

ment will be true; in the other false. In each case, it will later be clear, by

Theorem 1.14, that M is the set of all positive continuous functionals on V.

In each case, the topology is Hausdorff. In both examples, V is the set of all

continuous functions on the closed interval [0, l], ordered in the usual way.

First, for each xE [0, l], let Fx he defined by Fxf=f(x). Yet FEM when-

ever £ is positive and there are Xi, • ■ ■ , xnE [0, l] such that F^FZl + • ■ •

+ FXn. We note that \Fj\ =\f(x)\ =Fx\f\ lor each fE V and xE[0, l].

Hence if FZFXl+ • • • +£*„, {/ | P|/| <a) Dfl?_, {/ | | F,j\ <a/n). It fol-
lows that, in this case, the two topologies mentioned above coincide.

Second, for each pair y, z£ [0, l] with y<z, let Fyz be defined by £„*/

=flf(x)dx. Yet FEM whenever £ is positive and there are yi, • • • , yB,

Zi, ■ • • , z»E[0, l] with y{<Zi such that F^FVlll+ ■ ■ ■ +FV„*„. Let fm(x)

= sin (2wmx), m = l, 2, • • • . Then £oi|/m| =/o|sin (2irmx)\dx = 2/Tr lor all

m. Thus /m-+>0 in the Riesz space weak topology induced on V by M. On

the other hand, |£»«/m| =|/„sin (2irmx)dx\ ^1/irm for all m, y, z. Thus

/m—>0 in the weak topology induced on V by M. Hence, in this case, the

topologies differ.)

1.13. Lemma. Let M be a set of positive functionals on V. Suppose p,

FiEM and a>0 imply Fi + FiEM and aFiEM. If U is a neighborhood of 0
in the Riesz space weak topology induced on V by M, there is an FE M such that

F\f\ ^1 implies fEU.

Proof. Clearly there are Pi, • • • , FnEM such that Ft\f\ ^1 for all i

implies fEU. Set £=P+ • • • +£„. Then FEM and for each i we have

P.-1/| *F,|/| + • • • + F.|/| =P|/|. Thus P|/| £1 implies fEU.
We recall that MC V is called a lattice ideal when:

(1) Af is a linear subspace of V, and

(2) If FEM, GEV and |G| '£ |p| , then GEM.

1.14. Theorem. Let V be a Riesz space. In order that there exist a topology

on V compatible with the Riesz space structure of V and such that M is the set

of all continuous linear functionals on V, it is necessary and sufficient that M
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be a lattice ideal in the space of all relatively bounded functionals on V.

Proof. Necessity. Suppose the topology exists. Let FEM, G be relatively

bounded and | G| S \ F\. Since FEM, F is continuous. Hence | P is continu-

ous by Lemma 1.9. Since 0^G+^|G| S | P| and 0 SG~ S \G\ S F\, G+and
G~ are continuous by Corollary 1.5. Therefore G is continuous.

Sufficiency. Suppose the condition is satisfied. We consider the Riesz

space weak topology induced on V by the positive elements of M. Suppose

FEM. Then P+, F~EMsince | P+| S \ F\ and | F~| S | P|. Thus F+, F~ are
continuous since they belong to M and are positive. Hence P is continuous.

Now suppose that G is a positive continuous functional on V. We seek

to show GEM. Since G is continuous, the set of/with | G/| S 1 is a neighbor-

hood of 0. Thus, by the lemma, there is an FEM such that P|/| ^1 implies

| G/| ^1. Consider any fixed positive/. For every a> Ff we have p|//a| ^g 1

since a>0 and/^0. Thus |G(//a)| gl; hence G/=|G/| Sa. Since this in-

equality holds for all a>Ff, GfSFf. Since this last inequality holds for all

positive/, GSF; i.e. \G\s\F\. Therefore GEM.
Now let G be an arbitrary continuous functional on V. Then G+ and G~

are continuous. By the previous paragraph G+, G~EM. Hence GEM. Thus

there is a topology compatible with the Riesz space structure of V and such

that the functionals in M are the only continuous linear functionals.

1.15. Corollary. There is a topology on V, compatible with the Riesz space

structure of V, such that every relatively bounded linear functional is continuous.

Let V be a topological Riesz space and F* be the set of all continuous

linear functionals on V. The Riesz space weak topology induced on V* by

the positive elements of V will be called the Riesz space weak* topology on

V*. (We note that a positive element of V is positive when regarded as a

functional on V*; however an element of V may be positive as a functional

on V* without being a positive element of V.)

1.16. Theorem. V* endowed with the Riesz space weak* topology is a

topological Riesz space.

Proof. We have already shown (Theorem 1.10) that V* is a Riesz space

and (Lemma 1.11) that the Riesz space weak* topology is compatible with

its Riesz space structure.

We next consider the strong topology on V*.

1.17. Lemma. Let A be a topologically bounded subset of V. Let

B = {/+|/G^4 } • Then B is topologically bounded.

Proof. A necessary and sufficient condition for a subset C of V to be

bounded is that for every sequence {/„} of elements of C, and every sequence

{a,,} of positive real numbers converging to 0, the sequence {a„/„} converge

to 0 [4, vol. 2, p. 6]. Let {/^} be any sequence of elements of B with/„G^4.
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Let }aBJ be any sequence of positive real numbers converging to 0. Then

a„/„—>0. Since the mapping/—>/+ is continuous, a„ff = (a„ff)+—*0. Therefore

B is bounded.

1.18. Theorem. The strong dual of a topological Riesz space is a topological

Riesz space. I.e. the strong topology on the set of continuous functionals is com-

patible with this set's Riesz space structure.

Proof. We have shown that the continuous linear functionals form a

Riesz space. We note that the polars of the topologically bounded sets of V

form a fundamental system of neighborhoods of 0 relative to the strong topol-

ogy.

We verify Axiom 3 first. Let £ be any strong neighborhood of 0. Then £

contains a neighborhood W of 0 such that W is the polar of a bounded set A

of V. I.e. IF consists of all £such that F/g 1 for all fEA. Let £ = [f+\fEA }.
Then B is bounded; hence the polar £' of £ is a neighborhood of 0. Now

suppose OgGgF and FEU'. Then Ffgl for all fEB. We have Gf=Gf+
-Gf-^Gf+^Ff+^1 for all/64. Hence G6H^C£. Thus we have found a
£' of the required kind.

We now verify Axiom 2. Starting with U, any neighborhood of 0, we find

W, A and B as before. Let C be the set of all g lor which an fEB exists with

O^g^f. It is clear, since Axiom 3 holds for V, that C is bounded. Let £' be

the polar of C. Then £gg 1 for all FE U', gEC. Yet FE U' and fEA. Then
/+ 6 B and 0 g g g /+ implies g 6 C. We have F+f = F+f+ - F+f~ g F+f+
= l.u.b.oses/+Fggl. Thus F+EW, the polar of A. Since WCU, we have

shown that for every £6 U', £+6 U. Thus the mapping F—>F+ is continuous

atO.

2. Projections on Riesz spaces. We now consider, from an algebraic point

of view, certain projections on a Riesz space. It is clear that these projections

are precisely the ones which correspond to direct sum decompositions of the

Riesz space. By such a decomposition we mean a decomposition in the sense

of linear spaces with the property that an element is positive if and only if its

components are both positive. We note that, in the case where the Riesz

space is endowed with a compatible topology, every algebraic direct sum de-

composition is a topological direct sum decomposition (Corollary 1.6).

Let V* be a Riesz space. (For example, V* may consist of all continuous

linear functionals on a topological Riesz space V. In that case V* is com-

pletely reticulated.) By an allowable projection we shall mean an idempotent

linear mapping P of V* into itself such that both P and I — P are positive.

We note that if P is an allowable projection, so is I — P. We shall write R(P)

for the range of P. The following theorem shows, among other things, that

an allowable projection is uniquely determined by its range.

2.1. Theorem. Let P be an allowable projection. Phen:

(a) Let P^0. Then P£=0 if and only if F has the property that whenever
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G^0 75 such that PG = G and F^G, then G = 0.

(b) Let P^O. Then PF = F if and only if F has the property that whenever

G2;0 is such that PG = 0 and F^G, then G = 0.

(c) Let P' be an allowable projection. 7/P(P') =RiP), then P'=P.

(d) Let P" be an allowable projection. If P" is 0 for the same F as P is 0,

thenP"=P.

Proof. See [7, pp. 471-472].

2.2. Corollary. If P is an allowable projection, FERiP) and OSGSF,

then GERiP).

2.3. Corollary. If P is an allowable projection and FERiP), Ihen

F+ERiP) and F~ERiP).

Proof. We have 0SF+SF++F~= | F\ = \PF\ = |PP+-PP"| SPF+
+PF-ERiP). Hence F+ER(P). Similarly, F~ER(P).

2.4. Corollary. If Pi, P2 are allowable projections and FER(Pi), then

P2FER(Pi).

Proof. Since FER(Pi), F+ER(Pi) and F~ER(Pi). Since 0^P2P+^P+
and 0^P2P-^P- P2F+ER(Pi) and P2F-ER(Pi). Hence P2F = P2F+
-P2P-GP(P.).

2.5. Theorem. Let Pi, P2 be allowable projections. Then PiSP2 (i.e.

PiFSP2Ffor all positive FE V*) if and only if R(Pf) CP(P2).

Proof. Suppose Pi^P2. Then I-Pi^I-P2. Thus if P^O and FERiPi),
0SiI-P2)FSiI-Pi)F = 0; i.e. FERiP2). If FERiPi) is arbitrary, P+

GP(Pi) and P-GP(Pi). Hence FERiP2).
Now suppose P(Pi)CP(P2). For any P^O, we have P2F^P2P!F = PiP

since P!PGP(Pi)CP(P2). Thus P2^Pi.

2.6. Theorem. Let Pi, P2 be allowable projections. Then PiP2 is an allow-

able projection and P(PiP2) = P(Pi)r\R(P!!).

Proof. If FERiPi)r\RiP2), PiP2F = PiF=F. For any FEV*, P2F

ERiP2); hence PiP2FERiPi)r\RiP2). It follows that PiP2 is idempotent

and that P1P2P=P if and only if FERiPi)T^RiP2). Clearly, PXP2 is positive

and linear. For any P^O, P1P2FSP2FSF since 7-Pi and 7-P2 are posi-

tive. Thus I — PiP2 is positive. Hence PiP2 has the required properties.

2.7. Corollary. .4rey two allowable projections commute.

2.8. Theorem. The set of all allowable projections on V* is a lattice with

Pi/\P2=PiP2 and Pi\/P2=Pi+P2-PiP2.

Proof. We note (7-Px)(7-P2) =7- (Pi+P2-PiP2). The theorem is then

obvious since the three statements Q1SQ2, RiQi)ERiQ2) and I—Qi^I—Q2
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are equivalent if C/i and Qi are any allowable projections.

Riesz [10, p. 182], proved the following theorem: Let M be a set of linear

functionals on a Riesz space V. Suppose whenever P, FiEM, there is an

FEM such that £^P, £^F2. Then for every positive/6 V:

(g.l.b. M)f = g.l.b. Ff.
FeM

(We note that this theorem can be proved by the method which will be used

to prove Theorem 2.9.)

2.9. Theorem. Let V* consist of all continuous linear functionals on V, a

topological Riesz space. Let (P be any nonempty set of allowable projections on

V*. Then <? has a g.l.b. P (in the set of all allowable projections). For every posi-

tive FEV* and every positive fE V:

PFf = gA.b. QFf

where Q is the set of all finite products of projections in (P. Also R(P) = Hoefp R(Q) ■

Proof. We first note that for each positive £6 V*, QF^O tor all QEQ.

Thus we may set PF = g.l.b.qsqQF for each positive £. Clearly P£6 V*

since 0^££g£ (Corollary 1.5). In this way we define a mapping £ of the

set of positive elements of V* into itself.

Before establishing the linearity of £, we note that ££/ = g.l.b.oeQ QFf

tor each FjSO and/^0. This statement follows from the theorem of Riesz

above; for if QyF, Q2FE {QP\ QEQ}; then QiQ^QiF, QiQ2F^Q2F and

QiQiFE{QF\QEQ}.
We now prove the linearity of P. It is clear that P(aF)=aPF for all

a^O and £^0. Let P, £2^0 be given. Let/^0 and e>0 be given. We can

find Qi, QiEQ such that PFi/S(?iFi/-e and PF2/^(?2F2/-e. Since QiQ2
^Qi and QiQi^Qi, PFJ^QiQiFJ-e and PFif^QiQiFif-e. Thus ££/
+ PFif ^ QiQiFif + QiQiFif - 2e = QiQ2(Fi + F2)f - 2e. Since QiQ2 E Q,
P(£i + Fi)f g QiQi(Fi + Ff)f g PFJ + PF2f + 2e. Since e is arbitrary,
P(Pi + Ff)f g PFJ + PFif. Now we note that

F(Fi + Fx)f = g.l.b. (QFif+QFif) £ g.l.b. QFif + g.l.b. QF2f

= PFif + PFif.

Joining this inequality to the previous one, we have P(Fi+Ff)f=PFif

+PF2f. Since/ is arbitrary, P(P + £2) =PPi+PP2.

Thus we may extend P to be a linear mapping of V* into itself. Clearly

P, as extended, is positive and I — P is positive.

Suppose that PGOqgCP R(Q) is positive. Then QF= F tor each QE&, and

hence for each QEQ- Thus ££=£. Hence if FECigetp R(Q) is arbitrary,

PF=F. For any P^O and QE<P, we have for each/^0, O^PFf^QFf since
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QEQ. Thus OSPFSQF. Since QFER(Q), PFER(Q). Since this statement
holds for any QE<?, PFE^QetP R(Q). It follows that P2F = PF for all P. It
also follows that R(P) =DQe(p R(Q). Hence P is a g.l.b. for (P.

2.10. Corollary. Let V* and (P be as above. Then (P has a l.u.b. P. For

every positive FE V* and positive fE V:

PFf = l.u.b. QFf

where Q consists of all projections of the form 7—(7 —Pi) • • • (7 —P„) with

Pi, • • • , PnG(P.

Proof. We apply the above theorem to the set of 7 — Q with QE&.

The following theorem tells whether a given subset of F* is the range

of a projection. Before stating the theorem, we recall that a subset M of a

completely reticulated Riesz space V* is called a band if:

(a) It is a lattice ideal, and

(b) Whenever M' is a subset of M which is majorized in V*, the l.u.b. of

M' is in M.

2.11. Theorem. 7e/ F* &e a completely reticulated Riesz space. Let MEV*.

There is an allowable projection P with R(P) = M if and only if M is a band.

Proof. We see in the usual way that the existence of a projection with

range M is equivalent to the existence of a direct sum decomposition of F*

with M for one summand. It follows from a theorem of Riesz that such a

decomposition exists if and only if M is a band [10, p. 185].

3. Topologies in relation to bands and projections. In this section, we first

characterize the bands in the dual of a topological Riesz space by proving

that the bands are precisely the closed ideals. We then consider whether it is

possible to decompose every relatively bounded linear functional into a con-

tinuous and an "anti-continuous" part; i.e. whether there exists a projection

of the set of relatively bounded functionals onto the set of continuous ones.

More generally, we determine (see Theorem 3.11) when there exists a projec-

tion of the functionals which are continuous in one topology onto those which

are also continuous in a second topology. The results of this section are stated

in terms of topologies and filters; those of the next section are stated, some-

what more simply, in terms of directed sequences.

Throughout the following discussion V is a Riesz space, with a com-

patible topology, and V* is the set of all continuous linear functionals on V.

We note that a suitable choice of topology for V will make V* the set of all

relatively bounded linear functionals on V (Corollary 1.15). We first char-

acterize the bands in V*.

3.1. Lemma. Let ME V* have least upper bound FE V*. Suppose whenever
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G, HEM there is a KEM such that K^G, K^H. Then F is in the closure

M of M in the Riesz space weak* topology on V*.

Proof. Let U be any Riesz space weak* neighborhood of £. Then there

is a positive/6 V such that every G for which | G — F\f^ 1 is in U (Lemma

1.13). Since £ is the l.u.b. of M, we know from a theorem of Riesz stated

above that Ff= l.u.b. aeM Gf. Thus we can find a GEM such that (F — G)f^l.

Since F^G, F-G^O; thus |G-£|/^1. Hence GEU as well as GEM;

i.e. UC\M^0. Since every neighborhood of £ meets M, FEM.

3.2. Lemma. Let B be a band in V*. Phen B is closed in the Riesz space

weak* topology on V*.

Proof. Since £ is a band, there is a projection £ of V* onto B such that

£ and I—P are positive (Theorem 2.11). P is continuous by Corollary 1.6.

Hence B is closed since it is the inverse image of 0 under the continuous

mapping I — P.

3.3. Theorem. Let BC V*. B is a band in V* if and only if B is a lattice

ideal closed in the Riesz space weak* topology on V*.

Proof. If £ is a band, we see from the definition of a band and the previous

lemma that £ is a closed ideal.

Conversely, suppose £ is a closed ideal. Let MCB be bounded from

above in V*. It we show that the least upper bound £ of Af is in B, the theo-

rem will be proved. Let M' he the set of all least upper bounds of finite sub-

sets of M. Clearly £ is the l.u.b. of M' as well as of M. Also clearly, M' has

the property that G\/HEM' whenever G, HEM'. Thus by Lemma 3.1,

FEM'. But M'CB and B is closed; hence FEB and the theorem is proved.

A filter on V will be called bounded from above if it contains a set U such

that there is an/6 V with £g/.

3.4. Lemma. Let B be a band in V*. Let FE V* be positive. Let U be the

set of fEV such that Ff^l. Suppose U belongs to every filter on V bounded

from above which converges to 0 in the Riesz space weak topology induced on V by

the positive elements of B. Then FEB.

Proof. We prove the lemma by finding, for each positive/6 V, a functional

GfEB such that F^G/ but Ff^G/f+1. Then we shall see that £ belongs to

the closure of the set of Gf; hence £ belongs to B.

For each positive GEB, let Ua denote the set of fE V such that G|/| £» 1.

Then the set of all Ua is a fundamental system of neighborhoods (i.e. a base

for the filter of neighborhoods) of 0 in the Riesz space weak topology induced

on V by the positive elements of B (Lemma 1.13).

Let fE V be fixed and positive. Let U'q be the set of elements of Ua

which are ^/. Since { Ug } is a fundamental system of neighborhoods of 0,

the filter generated by { U'q] converges to 0. Since this filter is bounded from
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above, it contains U; i.e. U contains one of the sets U'q since these sets form

a base for the filter. In other words, there is a positive FSEB such that

FgSI whenever F/\g\ g 1 and gSf-
Now consider any g with 0 S g Sf- We distinguish the cases Fjg ^ 1 and

P/g<l. Suppose first F/g^l. Then F,(g/Ffg) = l. Since OSg/FfgSgSf, we
see from the preceding paragraph that F(g/F/g) SI. Thus in this case

FgSF/g. Now consider the case where P/g<l. By the preceding paragraph,

in this case Fg S1. Combining our results, we see that in either case Fg

SFfg+l.
Let G, = F/\Ff. Since |G/| =FAFfSF,EB and B is a band, G,EB. We

note |G/-P| =F-Gf = F-F/\F,= (F-F,)+. We have (P-P/)g^l for all
g with OSgSf by the preceding paragraph. Hence we have (F—Ff)+f

= l.u.b.oiai,(F-F,)gSl. Thus |G/-P|/=(P-P/)+/^l.
Now let/ vary. Let A he the set of all G/ as/ ranges through all the posi-

tive elements of V. Let IF be any Riesz space weak* neighborhood of P. We

shall show WC\A^0; hence FEA. Since W—F is a neighborhood of 0,

there is a positive fE V such that \G — F\f SI implies GGIF (Lemma 1.13).
By the preceding paragraph, | G{ — F\fS 1. Hence GjEW as well as A. Thus

Af~\W7*0. Since B is closed, we have PG^CP-

Let the topology on V he called 3j. We also consider 32, a second topology

on V compatible with the Riesz space structure of V. Let V*. he the set of

3j-continuous linear functionals on V (*'=1, 2). We note that a functional P

belongs to F^CW^ if and only if it is continuous in the Riesz space weak

topology 3i2 induced on V by the positive elements of F^Pl F*2 (Theorem

1.14). Thus FE F3*HF£if and only if U= {/|/G V, FfS 1} is a 312-neighbor-
hood of 0; i.e. if and only if U belongs to every filter on V which 3i2-converges

to 0. In this way, these filters determine which functionals are in both F3l

and F£; in other words, which functionals are both 3i- and 32-continuous.

In some cases it is true that those of the filters which are bounded from

above suffice to determine whether a 3i-continuous functional is also 32-

continuous. More precisely, suppose there is a projection P, and P and 7 —P

positive, of F*t onto FjJjrW^; i.e. suppose ^CW^ is a band in F*,. It

follows from the preceding lemma that the ordered pair (3i, 32) of topologies

satisfies the following axiom:

Axiom Bl If FE F*, is positive, U= {/|/G V, Ff Si}, and U belongs to

every filter on V bounded from above which is 3i2-convergent to 0; then P

is 32-continuous.

We now consider the converse situation where suitable topologies are

given and the existence of a projection is to be established. Again V is a

Riesz space with a compatible topology. By V% we mean the set of all rela-

tively bounded linear functionals on V. It fE V, by Vif) we mean the set of

all open neighborhoods of/. If PC V, by U+ we mean the set of all positive

elements in U.
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We shall define a mapping £ of V% into itself. Let P6 Vr he fixed and

positive. Let/6 V be positive. We write:

Gf= l.u.b. (g.l.b. Fg).

We note that, for each £, 0£g.l.b.,er/+ Fg^Ff since/6 U+. Thus 0 gG/^Ff.

3.5. Lemma. The functional G is additive and positively homogeneous on the

positive elements of V.

Proof. Let/, g^O be given. Let e>0 be given. Let a = Gf+e/2, B = Gg

+ t/2. Pick UEV(f+g). There are neighborhoods £i, £2 of/, g respectively

such that Ui+UiCU. The definitions of a, 8 and G imply that there are

fiEUf, fiEW such that Ffx<a, £/2</3. We note/,+/26 £+ and F(fi+fi)
<a+fS. Thus g.\.b.heu+ Fh<a+8. Since this inequality holds for any

UEV(f+g), G(f+g)^a+P = Gf+Gg+e. Since e is arbitrary, G(f+g)

^Gf+Gg.
Now consider the mappings <j>(h) =h/\f and ip(h) =h — h/\f. We note both

d> and dj are continuous, <p(h)+d/(h) =h, <p(f+g) =f and d/(f+g) =g. For any

£i6*U(/) and £26,U(g) we can find Wu WiEV(f+g) such that d>(Wi)CUi
and ^(IF2)C£2. Let W=WiC\Wi. Then IFeiKZ+g). <p(IF)C£i and
d/(W)CU2. Since <p, i^ are positive mappings, we have <p(W+)CU?, dy(W+)

CUi+. We have:

Gif+g) ^ g.l.b. Fh = g.l.b. {F[4>(h)] + F[+(h)]}
h€W+ heW+

^ g.lh.F[4>(h)] + g.lh F[Hh)]
heVr heW+

^ g.l.b. Fk + g.l.b. Fk.
ieU+ tell*

Since this is true for any UiEV(f) and £26"U(g), G(f+g) ^Gf+Gg. Joining
this inequality to the previous one, we have G(f+g) =Gf+Gg.

We extend G to all of V by linearity. We note that G as extended is

positive and linear. We write TF = G; thus £ is a mapping of the set of

positive functionals into itself.

3.6. Lemma, If Pi, £2 are positive linear functionals, then T(Fi + Fi)
= TFi + TFi.

Proof. Let/^0 be given. For a given e>0, let U\, £26f(/) be such that

g.l.b.<,er/+Fig>££1/-eand g.l.b.,6P+ £2g> PF2f-e. Yet U=UiC\U2. Then

g.l.b.<,et/+Pg>£Pi/-£and g.l.b.,€p+ F2g>TF2g-e. Thusg.l.b.ee£;+ (Pi+P2)g

>TFif+TFif-2e. Therefore £(P1 + P2)/>£Pi/+££2/-2e. Since € is arbi-

trary, T(Fi + Fi)f^TFif+TFif.
Now consider the mapping <J?(g, h) =gf\h of FX V—>V. We note that this
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mapping is continuous and $(/,/)=/. Choose any UEVif). Then we can

find Ui, U2EV(f) such that $(PiX P2)CP. We note PPi/^g.l.b.oec+Pg,
TFtf^g.l.b..eUi F2h and #(Pi+X P2+)C U+. Thus

TFif+ TF2f S; g.l.b. Fig + g.l.b. F2h =     g.l.b.     (Fig + F2P)
jSi/j net/, „€t/7,net/,

£     gd.b.    (F, + F2)(g A h) =    g.l.b.    (F, + F2)[Hg, h)\
net/,,»6l/, uet/i.nef,

=      g.l.b.      (Fi + F2)£ ^ g.l.b. (Fi + F2)£.
te*(t/iXf,) ief/"1"

Since this inequality holds for all UEVif), TFif+TFif^TiFi+F2)f. This
inequality and that of the preceding paragraph establish that P(Pi + P2)/

= PPi/+ TF2f tor all /2t0, and hence for all /.

Thus we may extend P to all of Fjjj by linearity. P, as extended, is a

positive linear mapping of V\ into itself. P has the property that TFSF

for PSO.

3.7. Lemma. If FE V% is continuous, TF = F.

Proof. If P^O, it is clear from the definition of P that TF = F. For arbi-

trary F, it is enough to note that the continuity of P implies that F+ and F~

are continuous.

3.8. Lemma. T2 = T.

Proof. Pick FE V% and fE V both positive. We note

TFg =   l.u.b. (g.l.b. FA)

for all g^O. Let UEVif) and gGf/+. Then UEVig) and thus PPg
Stg.l.b.ner/+ Fh. Since this inequality holds for all gEU+, g.l.b.g£U+TFg

Si g.l.b.hev* Fh. Since this last inequality holds for all U E V(f),

l.u.b.uevw (g.l.b.jeC/+ TFg)^l.u.b.ueVw (g.l.b.net7+ Fh), i.e. T(TF)f^TFf.
Since this is true for all/S:0, TiTF)^TF. But, since PPStO,P(PP) STF.
Thus P(PP) = PP for all P^O, and hence for all FE V%.

Now suppose that V is endowed with two compatible topologies 3i, 32.

32 will play the role of the topology used in the preceding paragraphs. Let

V*. be the set of 3,-continuous linear functionals on V (7 = 1, 2). The preced-

ing discussion shows that there is a projection P on V*> such that: (a) T and

7—P are positive, and (b) TF=F if P is 32-continuous. We note | PF|

= |PP+-PP-| ^|PP+|+|PF-| =PP++PF-gP+ + p-=|p|. Thus, since
by Theorem 1.14 F*, is an ideal in V%, T maps F*x into itself. Therefore the

restriction of P to F3l is a projection on V*l and has the properties (a) and

(b) just mentioned. From now on, P stands for this restriction.

We consider the following axiom, which the ordered pair (3i, 32) may

satisfy:
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Axiom B2. If £6 V^ is positive, £= {/|/6 V, £/g 1}, and £ belongs to

every filter bounded from above which is 32-convergent to 0; then £ is 32-

continuous.

We note that Axiom B2 implies Axiom Bi, which was previously stated.

3.9. Lemma. Suppose Axiom B2 is satisfied. Then if FE V*x is positive

and TF = F, F is Si-continuous.

Proof. Let £= {/|/6 V, £/g 1}. It is enough to show that U belongs to

every filter bounded from above which is 32-convergent to 0. Let 9C be such

a filter. Since 9C is bounded from above, there are an XE 9C and an hE V such

that Xgh. We note h^O.

We have, using the definition of T,

0 = F(-h) + F(h) = F(-h) + TFh = F(-h) + l.u.b. ( g.l.b. Fk)

= l.u.b. ( g.l.b. F(k - h)) ■
fFe1)(») \ teW+ /

Thus there is a WEV(h) such that g.l.b.*e^+ F(k-h) ^ -1. We note

F(k-h)^-l for all kEW+. Let W'=h-W; then W' is a 32-neighborhood

of 0. ItfEW' and f£h, h-fEW+; thus F(-f)=F[(h-f)-h]^-l. Thus
there is a 32-neighborhood W' of 0 such that F/gl for all/6 W with/£h.

Since X is (^-convergent to 0, W'EX. Thus XfW'62C. It fEXP\W',

both fgh and fE W'; thus Ff^l. Hence UDXC\W'. Therefore £69C and
the lemma is proved.

3.10. Lemma. Suppose Axiom B2 is satisfied. Then if FEV*l and ££ = £,

£ is ^-continuous.

Proof. We have F=TF= TF+-TF~. £(££+) = ££+ and £(££-) = TF~;

thus ££+ and ££~ are continuous by the previous lemma.

3.11. Theorem. Let 3i, 32 be two compatible topologies on a Riesz space V.

Then a projection P on the set V*x of 3i-continuous linear functionals with the

properties:

(a) P and I—P are both positive, and

(h) The range of P is the set of functionals both 3i-continuous and Si-

continuous,

exists if and only if the ordered pair (3i, 32) satisfies Axiom Bi. If the projection

exists, it is unique and it is continuous in any topology on V*x compatible with

the Riesz space structure of V*v

Proof. Suppose first that (3i, 32) satisfies Axiom Bi. Let 3i2 be the Riesz

space weak topology induced on Fby the postitive functionals in V^CW*^

We note by Theorems 1.12 and 1.14 that the set of 3i2-continuous functionals
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is F*,P\ V^. Clearly, since (3i, 32) satisfies Axiom Bi, (3i, 3i2) satisfies Axiom

B2. Using 3]2 as the topology involved in the construction, construct P in

the manner described above; we take this P as P. It is clear from the previous

discussion that P satisfies (a) and (b).

Now suppose P satisfying (a) and (b) exists. We have previously noted

that Axiom Bx is satisfied. P is unique by Theorem 2.1 and continuous by

Corollary 1.6.

Each of the following theorems involves several topologies on V. 3„ with

any index i, will denote a topology on V compatible with the Riesz space

structure of V; V*t will denote the set of 3,-continuous linear functionals.

Pai-32 will stand for the unique projection, of the kind under consideration,

of F*, onto V^CWfy. (Pjj-aj does not always exist.)

3.12. Theorem. If 32 is finer than 3i and P^-^ exists, then P3l,33 exists

and is the restriction of P32..3, to V*r.

Proof. It is enough to note that Pa,-^ maps V*t into itself. We note

|PP| =|PP+-PP-| SPF++PF~SF++F-S\F\, where P denotes P^,
for each PG F*,. Since F3* is an ideal in V%, the theorem is proved.

3.13. Theorem. If 32 is finer than 3i and P^^ and P32-.3l exist, then

P3^3l exists and P3,-a1 = PV3iiV31-

Proof. The theorem is trivial.

3.14. Theorem. Let 3o be given. Let X be any collection of topologies 3, such

that P30-3, exists for each 3,G£. Then there is a topology 3i such that:

(a) A linear functional is Si-continuous if and only if it is continuous for

each 3,G£, and

(b) P3^3l exists.

Proof. The existence of a topology satisfying (a) is trivial (Theorem

1.14). We shall show that any such topology satisfies (b). Let

P = gj.b. P3o,3,
3.eS

By Theorem 2.9, P exists. This theorem also states that the range of P is

P*3.€St F*,. Thus P3o-3l exists.

3.15. Theorem. If P3J^33 and Ps,,^ both exist, then the restrictions of

these projections to V^C\ F3j are equal.

Proof. We apply Theorems 1.14 and 3.12.
4. Definition of topologies on Riesz spaces by means of sequences. The

preceding section dealt with topologies; however the results of Riesz [10,

p. 206]; Gordon and Lorch [7, p. 472]; and Bauer [l, p. 106], deal with

monotone sequences. (Bauer considered directed sequences.) Each of these
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results may be interpreted as establishing the existence of a projection. In

each case, the projection was one mapping a class of linear functionals onto

those functionals for which Ff,—»0 whenever {/,} l€i belongs to a certain set

of directed sequences. We determine in Theorems 4.6 and 4.7 exactly when

such a projection exists.

Let V be a Riesz space. We are interested in studying the linear func-

tionals £ on V which are such that Ff—>0 whenever {/,} ,<=/ is one of a desig-

nated collection of directed sequences of elements of V. (For example, the

G-integrals of Lorch [8] are characterized in this way.) It will be shown that

the relatively bounded functionals with the desired property are precisely

those which are continuous in a certain topology, in which V is a topological

Riesz space. (If the given collection of sequences does not satisfy the condi-

tions below, it is possible to modify this collection so that it will satisfy the

conditions but so that the set of functionals is not changed.)

We consider a set S of directed sequences of positive elements of V. The

sequences of S need not all have the same indexing set. We suppose, for con-

venience, that:

(1) If {/.}le/6S and {g.J.er are such that g,S/, for all i6£ then

{f,}.6z6S.

(2) For each/^0, the ordinary sequence (f,f/2,f/3, ■ • • )6§.

(3) If {/,}tSr6Sanda>0, then {a/.}lS,6S.
We begin by defining a set V+ ol subsets of the set of positive elements of

V. We define WEV+ if:

(a) For each {/,},er6S there is a ?6-f such that i^v implies f,EW, and

(b) W is convex.

We note that each element of V+ contains 0 since (0, 0, 0, • • • )6§. We note

next that the intersection of any two sets in V+ is in V+. Also if WEV+ and

a>0, then aWEV+.

We now define a set V of subsets of V by V= {W-W\ WEV+}. We

note that if £= W- W and WEV+, UD W since OEW; i.e. each element of

V contains an element of "D+. V is a filter base; to see this we note that each

element of V contains 0 and that (W-W)r\(W-W')DWC\W'-WC\W'

when W, W'CV. Also if £6*0 and a>0, then a£6°0.

Clearly the elements of V are symmetric and convex; we shall show that

they are also absorbent. Let £6t> and /6 V. Then there is a WEV+ such

that U=W-W. Since (/+, f+/2, f+/3, • • • ), (/-, f~/2, f~/3, • • • )6S and
WEV+, there is a positive integer n such that/+/wi f~/nEW. Thus f+/n

—f~/n=f/nE U; hence £ is absorbent.

Since the sets in V are convex, absorbent and symmetric, there is a unique

topology in which V is a locally convex topological vector space and 1) is a

fundamental system of neighborhoods of 0 [4, vol. 1, p. 57]. Since each ele-

ment of V contains an element of V+, it is clear that the sequences in S con-
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verge to 0 in this topology. From now on, we consider V to be endowed with

this topology, and proceed to show that V is a topological Riesz space.

(It is not in general true that V, with the topology defined above, is a

Hausdorff space. In particular cases, we can show that V is Hausdorff by

showing the existence of suitable continuous linear functionals.)

4.1. Lemma. Each neighborhood U of 0 contains a neighborhood U' of 0

with the following property: IffEU' and OSgSf, then gEU.

Proof. U contains a neighborhood Pi which belongs to V since V is a

fundamental system of neighborhoods of 0. We define IF, consisting of posi-

tive elements of V, as follows :/G IF if/Si 0 and there does not exist a g such

that O^gg/and gGPi- Clearly if fEW and OSgSf, then gGPi.
We show that IF is convex. Let/i,/2G W and f = af+fif2 with a, /3>0 and

a+/8 = l. Suppose fEW. Then there is a gGPi with OSgSf. We note

g = «(/iAg/«)+5{/2- [/2-g/^+(«/«(/iAg/«)]}. Let h=fAg/a and k=f2
-[f2-g//8 + («/|8)(/iAg/«)]. Then g=ah+pk. Clearly OShSfi since/,
gtQ and a>0. Also ah=iaf)AgSg. Thus k = il/P)ig-ah) ^0. We
note /3|/2-g//3+(a//3)(/1Ag/a)] =py2-g + (a/) Ag = (p/.+a/O A(g+/3/2) -g

^(/3/2+«/i)Ag-g=/Ag-g=g-g = 0. Thus fe=/2-[/2-g/fi+(a/5)(/1Ag/a)]
Sf2. We have OShSfiEW and 0g£^/2GJF Hence fe, ifeGPi. Since g=ah
+0k and Pi is convex, gEU. But gGPii therefore fE W and IF is convex.

Now suppose {/,} ,erG§. For each iG7 such that/,G W> we can choose a

gi G Pi such that 0 Sgi Sf,- For each i such that/,G IF, let g, =/,. By property

(1) of S, {g,| lSrGS. Hence, since Pi is a neighborhood of 0 and each sequence

in S converges to 0, there is a v such that g.GPi for all iStj>. Thus for all

t^ v, fEW. It follows that WEV+.
Since WEV+, W—W is a neighborhood of 0. Suppose fE W— W and

OSgSf. Then there are/,/2GIF such that/=/i—/2. We have, since/2=S0,

OSgSfSfE W. Hence gE UiEU. Thus IF- IF is a neighborhood of 0 with
the required property.

4.2. Lemma. The mapping f—>f+ of V into itself is continuous at 0.

Proof. Let U he any neighborhood of 0. Then, by the previous lemma,

there is a Pi such that if OSgSfG Pi, gEU. There is a U2EV such that

P2C Pi- Let WEV+ he such that U2 = W- W. Suppose/G U2. To prove the

lemma it is enough to show f+E U. Since fE U2 = IF— W, there are f, f2EW

such that/=/i-/2. Since fSf and OSf, we have 0Sf+SfEWEU2CUi.
Hence f+E U.

Thus we have shown that V, endowed with the topology defined above,

is a topological Riesz space.

4.3. Lemma. Let F be a linear functional on V and W= {/|/G F, f^0,

| Ff\ S1}. If WEV+, F is continuous.
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Proof. Let e>0 be given. Let  U=(e/2)(W-W). Clearly (2/e)UEV;

hence £ is a neighborhood of 0. Let/6 U; then there are g, hE W such that

/ = (e/2)(g - h). We have | £/|  = | (e/2)F(g - h)\  g (t/2)(\Fg\ + \Fh\)
^ (e/2) (1 + 1) =e. Since this inequality holds for every fEU, a neighborhood

of 0, the lemma is proved.

4.4. Theorem. Let V be a Riesz space and %be a set of directed sequences of

positive elements of V satisfying (1), (2) and (3) above. Then the topology de-

scribed above is compatible with the Riesz space structure of V. Furthermore, a

linear functional F on V is continuous if and only if { Ff, ] ,<=/ converges to 0

whenever {/,} lSj 6§-

Proof. We have already shown that the topology is compatible. Each of

the sequences in S converges to 0. Thus if P is continuous, {£/,} lGj converges

to 0 whenever {/,} l6/6§.

Suppose conversely that {£/,] ,ei converges to 0 whenever {/i},er6S-

Then for each {/,},er6S, there is a v such that |£/.| ^1 when i^v. Let

W={f\fEV,fZ0, \Ff\ gl}; then/, EW when i^v. Since IF is clearly con-
vex, the theorem follows from the preceding lemma.

We are interested in the existence of a projection of the kind studied

above. For this reason, we state Axiom B3:

Axiom B3. If P is a positive linear functional on V, U= {/|/6 V, Ff^l],

and £ belongs to every filter on V bounded from above which is convergent

to 0; then F is continuous.

Call the-topology we are considering 32. Then Axiom B3 may be stated

in the following alternative form:

Axiom B3. For each compatible topology 3i on V, the pair (3i, 32) satis-

fies Axiom B2.

4.5. Lemma. Suppose each of the sequences in S is bounded; i.e. for each

{/,} ,e/6§ there is anfE V such that ft^f for all lEI- Phen Axiom B3 is satis-

fied.

Proof. Let W = {f\f 6 U.f ^ 0}. Then IF = {f\f E V, Ff £ 1,/ ^ OJ
= [/|/6 V, | £/| ^1,/^OJ since F is positive. By Lemma 4.3, it is enough

to show IF6U+. Let {/,},e/6S; then this sequence is bounded from above.

Hence the filter associated with this sequence is bounded from above. This

filter converges to 0 since the sequence does. Thus £ belongs to the filter;

i.e. there is a vEI such that/,6£ for all l^v. Since all the/, are positive,

f,6 Wfor all t^v. Thus, since Wis clearly convex, WE°0+, which proves the

lemma.

4.6. Theorem. Let V* be the set of continuous functionals on V in any com-

patible topology. Suppose S consists of bounded sequences. Then there is a projec-

tion P (with P and I — P positive) of V* onto the set of FEV* for which

{/.} ,6/6S implies F/,-»0.
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Proof. The theorem follows at once from the lemma and Theorem 3.11.

4.7. Theorem. Let V* be the set of continuous functionals on V in any

compatible topology. Suppose P is a projection of V* with P and I — P positive.

Then there is a collection S of bounded directed sequences such that FEV* is in

the range of P if and only if Ff,—»0/or each {/,} ,e/GS.

Proof. We apply Theorem 3.11. Let 3i be the given topology on F. Let

32 be the Riesz space weak topology induced on V by the positive elements

in the range of P; thus the range of P consists of the 32-continuous func-

tionals. By Theorem 3.11, Axiom B! is satisfied. Clearly 3i2, in the notation

of the axiom, = 32. This topology is the only one to figure in the remainder of

the proof.

Let X he a filter bounded from above converging to 0. Then there is a

ZG9C which is bounded from above. Let X'= {X\XEX, XEZ}. Then we

may regard X' as a directed set ordered by inclusion; i.e. X^Y il XEY.

For each XEX', choosefxEX; thus we obtain a directed sequence {/xjxegr,'.

Clearly this sequence converges to 0 and is bounded from above. Thus

{fx \xeX' converges to 0 and is bounded. We let S be the set of all sequences

{fx jxegc which can be obtained in this way for all choices of X, Z and the

fx.
Now suppose FE V* is positive and such that F/x—>0 tor every {fx}xex'

GS. Let P={/|/GF, Ff Si}. If we show that U belongs to every filter
bounded from above which converges to 0, it will follow from Axiom Bi that

P is continuous. Let X be bounded from above. Suppose UE%- Then for

each XEX, X<X_U. Let X' be as in the preceding paragraph. For each

XEX', we can choose fxEX with fxEU. Then {/x}xe9c'GS, but P/x>l

for all XEX'. This is impossible since we have F/r—>0 and KFfx = Ffx

— Ffx S Ffx- Thus PG X and P is continuous; i.e. P belongs to the range of P.

Conversely, if P belongs to the range of P, P is continuous; hence F/x—»0

tor each {f+ jxegc'GS since the sequences in S converge to 0. This completes

the proof.
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