TOPOLOGIES AND PROJECTIONS ON RIESZ SPACES

BY
HUGH GORDON()

Introduction. Among the various questions about topologies on Riesz
spaces, there is a particularly important one which arises out of Daniell’s
work on integration. The present paper will be centered around this ques-
tion, but will not be confined to it. Daniell [5] considers a space V whose
elements are real-valued functions on an abstract set E and which is closed
under the natural linear and lattice operations. He starts with a positive
linear functional F on V (that is, Ff=0 whenever f(x) 20 for all x€E) en-
dowed with the property that f,(x) T f(x) pointwise implies Ff,— Ff. Daniell
extends F from V to a larger class of functions in such a way that the ex-
tended F satisfies the theorem of Lebesgue: Under suitable conditions of
boundedness, if f,—f pointwise and the Ff, are defined, Ff is defined and
Ff,—Ff. It follows that the extended F is the integral corresponding to a
measure on E.

In accordance with the work of Daniell, we call a positive linear func-
tional F on V an integral if it has the property: f, Tf pointwise implies
Ff,—Ff. By an integral we mean any functional which is the difference of
two positive integrals.

The relationship of the set of integrals to the set of all functionals was
considered by Riesz [10, p. 206]. He considered the class of positive func-
tionals which exceed no positive integral other than zero. He showed that
any positive functional may be expressed as the sum of a functional of this
class and an integral.

The result of Riesz employs what is essentially the notion of a direct
sum, Of course we may replace that notion by the equivalent one of a projec-
tion. The problem is considered from this point of view by Gordon and Leorch
[7]. Suppose the functions in V are bounded. We define a norm on V by
|lfll =Lu.b..ck | f(x)|. Suppose V is a Banach space, i.e. suppose V is com-
plete in its norm. Let V* be the space of all continuous linear functionals on
V. Then these authors prove there is a unique projection P (i.e. an idem-
potent linear mapping) of V* into itself with the properties that:

(a) The range of P is precisely the set of integrals.

(b) 0= PFf< Ff whenever F=0 and 0.
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They give an explicit formula for PFf in terms of F and f.

This question has also been considered by H. Bauer [1], who retains
Riesz’s point of view. Bauer replaces the space of functions by a lattice and
the linear functionals by valuations. He uses arbitrary monotone directed
sequences, in the manner indicated below, instead of monotone pointwise
convergent sequences. In these circumstances he establishes the existence of
direct sum decompositions. In another paper relating to other matters, he
gives a formula which may be interpreted as the formula for PFf referred to
above [2, p. 455].

We may look upon the situation described above as being roughly as fol-
lows: We have a vector space of functions V with a topology. This gives rise
to the space V* of all linear functionals which are continuous over V. A
submanifold of V* (above the integrals) is singled out by the requirement
that the functionals of this submanifold be continuous over V in another
topology. In the case of integration, the topology is not precisely defined; it
is hinted at by the condition of continuity: f, T f= Ff,— Ff. The results above
then state that we have in this special situation a projection of the manifold
of all functionals onto the manifold of those continuous in the second topol-
ogy. The question to which the Daniell program gives rise (and to which we
alluded in the first paragraph of this paper) is to provide a proper setting
for the generalization of these results and to give necessary and sufficient
conditions for the existence and uniqueness of the projection.

The proper “space setting” seems clearly to be that V should be a topo-
logical Riesz space. The notion of a compatible topology on a Riesz space is
considered below. (Such topologies were also used by Roberts [11] and by
Namioka [9]. Their main results are not relevant to our undertaking and
we shall not presuppose any of their work.)

The problem may be precisely stated as follows: Let a topological Riesz
space V be given. Let V* be the set of its continuous linear functionals. Sup-
pose there is given on V a second topology compatible with its Riesz space
structure. Let M be the subset of V* consisting of those functionals which are
continuous in the second topology, as well as the original one. When does
there exist a projection P defined on V* such that:

(a) The range of P is M.

(b) 0= PFf<Ff whenever F=0 and f20.

We give a necessary and sufficient condition for the existence of such a
projection (see in particular Theorem 3.11).

As noted above, the integrals are not defined as the continuous functionals
for a genuine topology, but rather as the functionals satisfying a certain
continuity condition involving sequences. More precisely, a positive linear
functional F is an integral if Ff,—0 whenever (fi, f2, - - - ) belongs to a cer-
tain collection of sequences $. § consists of those sequences such that f, | 0
pointwise. Now let V be an arbitrary Riesz space and let V* be the set of
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linear functionals continuous in some compatible topology on V. Let 8 be
an arbitrary collection of directed sequences of elements in V; let M be the
manifold of those linear functionals in V* which are $-continuous, that is,
such that {f.}.crE8=Ff,—0. As before, we seek to determine whether there
exists a projection of V* onto M. This problem is given a solution by Theo-
rems 4.6 and 4.7. We shall show that there is a projection if each sequence
in 8 is bounded; thus any collection of bounded sequences leads to a projec-
tion. Conversely, if V, V* and a projection on V* are given, we can find a
collection 8 of bounded sequences such that the manifold M of $-continuous
functionals is precisely the range of the projection; thus any projection leads
to a collection of bounded sequences.

1. Compatible topologies on Riesz spaces(?). In this section we consider
the basic properties of Riesz spaces with compatible topologies. Some of the
results will be needed in the following sections and all of them will be relevant
there. Most of the material relates to questions involving duality and is of
interest in itself. Theorems 1.14 and 1.18 are especially important to the
present development.

Let V be a Riesz space. (I.e. V is a lattice ordered real vector space.) We
shall say that a topology is compatible with the Riesz space structure of V
provided the following axioms are satisfied:

Ax1oM 1. The topology is compatible with the vector space structure of V.

AxioMm 2. The mapping f—f* of V into itself is continuous at 0.

AxioM 3. For each neighborhood U of 0 there is a neighborhood U’ of 0
with the following property:

felU,g€EV and 0=Zg=<f, then g€ U.

A Riesz space endowed with a compatible topology will be called a topologi-
cal Riesz space. If V is a topological Riesz space, it has the following prop-
erty:

1.1. THEOREM(3). The mappings (f, g) —fVg and (f, ) =f/\gof VX V-V
are continuous.

Proof. We first show that the mapping f—+| f | is continuous at 0. Clearly
f—=f~=(—f)* is continuous at 0; hence f—»lf[ =f+-4f= is continuous at 0.

We next prove that the mapping f—f* is continuous everywhere. Let
g& V. Let U be a neighborhood of g+. Then W, = U—gt is a neighborhood of
0. Let ¥, be a neighborhood of 0 such that W,— W,C W,. Let W; be a neigh-

() The material of this section was described in [6].

(%) After the abstract of [6] was submitted, Namioka [9, pp. 18 and 40], showed that
the system of axioms above is equivalent to the following system:

Axiom 1’: Same as Axiom 1.

Axiom 2': Same as Theorem 1.1.

Axiom 3': Each neighborhood of 0 contains a neighborhood U of 0 such that: If f&E U,
gE Vand 0<Sg=<f, then g U.

License or copyright restrictions may apply to redistribution; see https:/iwww.ams.org/journal-terms-of-use



532 HUGH GORDON [March

borhood of 0 such that 0<% <k& W; implies k& W,. By the preceding para-
graph, there is a neighborhood W, of 0 such that | W| C Ws. Let U’ = Wy+g.
We note U’ is a neighborhood of g. Let f& U’. Then f—g& Wy; thus If gl
EWs;. We recall from [3, p. 220], that |f+—g+| ]f gl Thus, since
0= (fr—ghtS|fr—g| =|f—gl €Wy (Fr—gh)*EW,. Similarly (f+—g*)~
EW,. Thus ft—gt=(ft—gH)t—(fr—g")~EW,. Therefore ft&cW;4gt="U.
Thus, for every fEU’, f+& U; hence f—f* is continuous at g for each g€ V.

To prove the theorem, it is now enough to note f\Vg=f+(g—f)* and
fAg=f—(f—g™*

Let V be a Riesz space with a topology given by a norm. Suppose |lf” = ”g”
whenever 0<f=<g. Suppose also ||f*|| <||f|| for all f. Then the topology is
compatible with the Riesz space structure. Similarly, if the topology is given
by semi-norms each having the above properties, the topology is compatible.

1.2. THEOREM. Every Hausdorff topological Riesz space is an ordered topo-
logical vector space.

Proof. The set of positive elements in V is closed because it is the inverse
image of 0 under the continuous mapping f—(—f)*.

In view of the above theorem, the following theorem applies to Hausdorff
topological Riesz spaces:

1.3. THEOREM. Let V be an ordered vector space and { f.} er be a directed
sequence of elements of V. Suppose f.<f, whenever t=v. Let 3,, 3, be topologies
on V compatible with the ordered vector space structure of V. Then:

(@) If {f.}.er is 3i-convergent to f, f. =f for all L& 1.

(b) If {f.}.cr is Bi-convergent to f and f.<g for all &I, f<g.

(c) If {f.{.cr ts both 3,-convergent to g1 and 3s-convergent to g, g1=_g»

Proof. (a) Suppose f, is not <f. Let U be a neighborhood of f. The set 4
of all k= f.is closed; f&EA. U—A is thus a neighborhood of f. Hence f,c U—A4
for all » sufficiently large. But f,EA4 for all v =; thus f, U—A4 for large ».

(b) The set 4 of all k=g is closed. f, &4 for all «; hence fEA.

(c) By (a) we have f,<g, for all «. Hence, applying (b) to 3, instead of 3,
we have go<g. Similarly g1 <g.; thus g1=g,.

1.4. THEOREM. Let V1, V; be topological Riesz spaces. Let ¢1, ds be mappings
of Vi into V. Suppose that ¢, is continuous at 0 and that ¢ is linear. Suppose
also that for each positive fE Vi, 0 Sd1(f) <¢2(f), and that $2(0) =0. Then ¢, is

continuous.

Proof. Let U be any neighborhood of 0 in V,. Let Ui, U: be neighborhoods
of 0in Vysuch that U;— UsC U. Let U! (=1, 2) be such thatif 0<h<kE U/
then hE U,. Let Wi be the inverse image of U{ under the mapping f—¢2(f*);
let W, be the inverse image of U/ under the mapping f—¢.(f~). Let
W =W\ W, We note that W is a neighborhood of 0 in V; since W; and W,
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are. Hence, to prove the theorem, it is enough to show ¢, (W)CU. Let
fEW. We have 0=¢:(f*) <S¢ (ff)&€ U since f€ WC Wi. Thus ¢ (f*) € UL
Similarly ¢:(f~) € Uz. Therefore ¢1(f) =di(ft—f~) =1 (fH) —u(f) E U1 — U,
CcUu.

1.5. CoROLLARY. Let V be a topological Riesz space and F,, F, be linear
functionals on V. If F, is continuous and 0 < F1 = F,, then F, is continuous.

1.6. COROLLARY. Let V be a topological Riesz space and P be a linear map-
ping of Vinto V. If P and I —P (I s the identity mapping of V onto V) are
positive, P is continuous.

Proof. I is continuous and 0P =<1I.
We now proceed to study continuous real linear functionals on a topo-
logical Riesz space V.

1.7. LEMMA. If ACV is such that 0 =g <f for all g€ A and some fEV, then
A is bounded in the topological vector space sense.

Proof. Let U be any neighborhood of 0. Let U’ be such that if 0k =<k
and 2€ U’ then k€ U. For a>0 sufficiently small, af EU’. For every g& 4,
0=ag=<afc U’, therefore a4 CU. Thus 4 is bounded.

We recall that a linear functional F is called relatively bounded if, for
each positive fE€ V, the set {|Fg| | |g| =f, g€V} is bounded; it has been
shown in [3, p. 245], that a functional is relatively bounded if and only if
it is tife difference of two positive functionals.

1.8. THEOREM. Every continuous linear functional on V is relatively
bounded.

Proof. Let F be a continuous linear functional on V. Let f& V be positive.
Let A be the set of g& V such that 0<g=<f. By the lemma, 4 is topologically
bounded. Since F is continuous, there is a neighborhood U of 0 such that
| Fr| <1 for all REU. Since 4 is bounded, @A C U for some a>0. Thus if
gEA, ]Fgl =(1/a)| F(ag)l <1/a since ag& U. Therefore F 1is relatively
bounded.

Since every continuous linear functional F is relatively bounded, we
know that for each F there are linear functionals F*, F~ such that F=Ft
— F~. We now prove that F+ and F~ are continuous and thus establish that
the set of continuous linear functionals is a Riesz space.

1.9. LEMMA. If F is a continuous linear functional on V, then F*+, F~ are
continuous.

Proof. We recall from [3, p. 245], that F+f=1Lu.b.og,<s Fg for f=0. It is
enough to prove F* is continuous at 0. Let ¢>0 be given. Let U be a neigh-
borhood of 0 such that | Ff| <e/2 for all fE U. Let U’ be a neighborhood of
0 such that if 0=h<k€ U’, h& U. Let Wi, W, be neighborhoods of 0 such
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that if fEW,, fr& U’ and if fEW,, f~€U’. Let W= Wi\ W,. Consider any
fEW. Wenote ffc U’ and f~€U’. Thus if 0Zg=f*, g€ U. Alsoif 0=Zg=f,
g € U. We have for all f € W: | Ftf| = | Ftf* — Ftf~| = |Lu.b.og,ss* Fg
—Lu.b.ogyes Fg| §2|l.u.b.,eu Fg| <2(e/2) =e¢. Thus F* is continuous at 0,
hence everywhere. Since F~=Ft—F, F~ is continuous.

Recalling that a Riesz space is called completely reticulated if every set
bounded from above has a least upper bound, we prove the following theorem:

1.10. THEOREM. The set V* of continuous linear functionals on a topological
Riesz space is a completely reticulated Riesz space.

Proof. We already know that V* is a Riesz space. Let A C V* be majorized
by FEV*; i.e. HZF for each HEA. Suppose A # . Pick any fixed GEA
and let B=A4A+G~. Then Gt=G+G~ €4 +G~=B. Also HZ F+G~ for each
HEB. Since the set V§ of all relatively bounded linear functionals on V is
completely reticulated (see [10, p. 179]), there is a least upper bound K € V}
for B with respect to Vi. We note that K < F+G~ since F+G~ is an upper
bound for B. Also 0=G+=K since Gt&€B. Thus 0=K=<F+G~ and F+G~
is continuous; hence K is continuous by Corollary 1.5, i.e. K& V*. Therefore
K is a least upper bound for B with respect to V*. It follows that K—G-& V*
is a least upper bound for 4. Thus V* is completely reticulated.

Let V be a Riesz space. Let M be a set of positive linear functionals on
V. Then for each FE M the mappingf—>F|f| of V into the real numbers is a
semi-norm since:

Flf+g| =F(f] + |g|l)=F|f] +F|g| (since F = 0),
Flof| =F(|e| |f])=|a|F|s].

Let T' be the set of all such semi-norms. Then I'" defines on V a topology in
which V is a locally convex topological vector space. We shall call this topol-
ogy the “Riesz space weak topology induced on V by M”.

1.11. LEMMA. The Riesz space weak topology induced on V by M is com-
patible with the Riesz space structure of V.

Proof. Axiom 1 is satisfied because the topology is defined by semi-
norms. We verify Axioms 2 and 3 simultaneously. Let U be a neighborhood
of 0. Then there is a U'CU, real numbers ay, - - -, &, >0, and functionals
F, - - -, F.€M such that fEU’ if and only if F;|f| Sa; for all i. If 0<f
<gE U, then Fi|f| = F;fSFig=Fi|g| Sa. for all 4; i.e. f€U'CU. Axiom 3
is thus verified. Also, the mapping ¢: f—f* is such that ¢(U’)C U’ since
F;|¢(f)| =F.~f+§F.~|f| for all 7; thus we see that ¢ is continuous at 0, which
is Axiom 2.

1.12. THEOREM. The Riesz space weak topology induced on V by M is the
coarsest topology in which V is a topological Riesz space and the functionals in
M are continuous.
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Proof. We first show that the functionals of M are continuous in this
topology. For each FE M, the mapping ¢: f—F | f | is clearly continuous at 0,
¢(0) =0 and 0= Ff=¢(f) when f is positive. Thus by Theorem 1.4, F is con-
tinuous.

Next let 3 be any topology compatible with the Riesz space structure of
V and such that the functionals in M are 3-continuous. Then, for each
F& M, the mapping f—)F[f| is 3-continuous. Thus J is clearly finer than the
Riesz space weak topology induced on V by M.

(We now investigate by means of two examples whether it is true that
the Riesz space weak topology induced on V by M is the weak topology in-
duced on V by M (i.e. the coarsest topology in which V is a topological vec-
tor space and the functionals in M are continuous). In one example the state-
ment will be true; in the other false. In each case, it will later be clear, by
Theorem 1.14, that M is the set of all positive continuous functionals on V.
In each case, the topology is Hausdorff. In both examples, V is the set of all
continuous functions on the closed interval [0, 1], ordered in the usual way.

First, for each x€ [0, 1], let F, be defined by F.f=f(x). Let FE M when-
ever F is positive and there are x4, - - -, x,& [0, 1] such that FSF, + - - -
+F.,. We note that IFJI =|f(x)| =F,|f for each fEV and x€ [0, 1].
Hence if FSF,+ - - - +F., {f| Flf| <a} DNy {f] | Faif| <a/n}. It fol-
lows that, in this case, the two topologies mentioned above coincide.

Second, for each pair y, 2&[0, 1] with y<z, let F,, be defined by F,.f
= [f(x)dx. Let FEM whenever F is positive and there are ¥, - - *, Y,
2, - -+, 2.€[0, 1] with y,<z; such that FSF,,+ - - - +F,... Let fu(x)
=sin (2mmx), m=1, 2, - - - . Then Fq|fn| =f3|sin (2rmx)|dx=2/x for all
m. Thus f,+0 in the Riesz space weak topology induced on V by M. On
the other hand, |Fy.fm| =|/2sin (2rmx)dx| <1/xm for all m, y, z. Thus
f=»—0 in the weak topology induced on V by M. Hence, in this case, the
topologies differ.)

1.13. LEMMA. Let M be a set of positive functionals on V. Suppose Fi,
F,&e M and a>0 imply F,+F.EM and aFLE M. If U is a neighborhood of 0
in the Riesz space weak topology induced on V by M, there is an FE M such that
F|f| =1 implies fE U.

Proof. Clearly there are Fi, - - -, FA€EM such that Fi|f| <1 for all 4
implies fEU. Set F=F,+ - - - +F,. Then FEM and for each ¢ we have
Filf| sRl|f|+ - - - +F.|f| =F|f|. Thus F|f| <1 implies fE U.

We recall that MCV is called a lattice ideal when:

(1) M is a linear subspace of V, and

(2) If FEM, GEV and |G| <| F|, then GEM.

1.14. THEOREM. Let V be a Riesz space. In order that there exist a topology
~on V compatible with the Riesz space structure of V and such that M is the set
of all continuous linear functionals on V, it is necessary and sufficient that M
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be a lattice ideal in the space of all relatively bounded functionals on V.

Proof. Necessity. Suppose the topology exists. Let FE M, G be relatively
bounded and |G| £| F|. Since FE M, F is continuous. Hence | F| is continu-
ous by Lemma 1.9. Since 0 <G+ < |G| | F| and 0=6-=|G| £| F|, G+ and
G~ are continuous by Corollary 1.5. Therefore G is continuous.

Sufficiency. Suppose the condition is satisfied. We consider the Riesz
space weak topology induced on V by the positive elements of M. Suppose
FEM. Then F+, F-€ M since | F+| £| F| and | F-| | F|. Thus F+, F- are
continuous since they belong to M and are positive. Hence F is continuous.

Now suppose that G is a positive continuous functional on V. We seek
to show GE M. Since G is continuous, the set of f with | Gf| <1 is a neighbor-
hood of 0. Thus, by the lemma, there is an FE M such that F|f| =1 implies
IGfI <1. Consider any fixed positive f. For every a> Ff we have Flf/al =<1
since >0 and f20. Thus |G(f/a)| £1; hence Gf=|Gf| Sa. Since this in-
equality holds for all a> Ff, Gf < Ff. Since this last inequality holds for all
positive f, GEF; i.e. |G| <| F|. Therefore GE M.

Now let G be an arbitrary continuous functional on V. Then G* and G~
are continuous. By the previous paragraph G+, G"E€ M. Hence G& M. Thus
there is a topology compatible with the Riesz space structure of ¥ and such
that the functionals in M are the only continuous linear functionals.

1.15. CoRrROLLARY. There is a topology on V, compatible with the Riesz space
structure of V, such that every relatively bounded linear functional is continuous.

Let V be a topological Riesz space and V* be the set of all continuous
linear functionals on V. The Riesz space weak topology induced on V* by
the positive elements of V will be called the Riesz space weak* topology on
V*. (We note that a positive element of V is positive when regarded as a
functional on V*; however an element of ¥V may be positive as a functional
on V* without being a positive element of V.)

1.16. THEOREM. V* endowed with the Riesz space weak* topology is a
topological Riesz space.

Proof. We have already shown (Theorem 1.10) that V* is a Riesz space
and (Lemma 1.11) that the Riesz space weak* topology is compatible with
its Riesz space structure.

We next consider the strong topology on V*.

1.17. LEMMA. Let A be a topologically bounded subset of V. Let
B={f+|fEA}. Then B is topologically bounded.

Proof. A necessary and sufficient condition for a subset C of V to be
bounded is that for every sequence { f,,} of elements of C, and every sequence
{a.} of positive real numbers converging to 0, the sequence {a,.fn} converge
to 0 [4, vol. 2, p. 6]. Let {f./} be any sequence of elements of B with f,E4.
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Let {a,.} be any sequence of positive real numbers converging to 0. Then
a,f,—0. Since the mapping f—f* is continuous, o, f5 = (@nfa)*—0. Therefore
B is bounded.

1.18. THEOREM. The strong dual of a topological Riesz space is a topological
Riesz space. 1.e. the strong topology on the set of continuous functionals is com-
patible with this set's Riesz space structure.

Proof. We have shown that the continuous linear functionals form a
Riesz space. We note that the polars of the topologically bounded sets of V
form a fundamental system of neighborhoods of 0 relative to the strong topol-
ogy. :

We verify Axiom 3 first. Let U be any strong neighborhood of 0. Then U
contains a neighborhood W of 0 such that W is the polar of a bounded set 4
of V. L.e. Wconsists of all Fsuch that Ff<1 for all fEA. Let B={f+|f€4}.
Then B is bounded; hence the polar U’ of B is a neighborhood of 0. Now
suppose 0SG=<F and FEU’'. Then Ff<1 for all f€B. We have Gf=Gf*
—Gf-=GftsFft=<1 for all f€EA. Hence GEWCU. Thus we have found a
U’ of the required kind.

We now verify Axiom 2. Starting with U, any neighborhood of 0, we find
W, A and B as before. Let C be the set of all g for which an fEB exists with
0=g<=f. Itis clear, since Axiom 3 holds for V, that C is bounded. Let U’ be
the polar of C. Then Fg=<1 for all FEU’, g&€C. Let FE U’ and f&EA. Then
ff€Band 0 £ g < ftimplies g € C. We have Ftf = Ftft — Fif~- < Fift
=lLu.b.og,ss* Fg<1. Thus FtEW, the polar of A. Since WCU, we have
shown that for every FE U’, F*€ U. Thus the mapping F—F* is continuous
at 0.

2. Projections on Riesz spaces. We now consider, from an algebraic point
of view, certain projections on a Riesz space. It is clear that these projections
are precisely the ones which correspond to direct sum decompositions of the
Riesz space. By such a decomposition we mean a decomposition in the sense
of linear spaces with the property that an element is positive if and only if its
components are both positive. We note that, in the case where the Riesz
space is endowed with a compatible topology, every algebraic direct sum de-
composition is a topological direct sum decomposition (Corollary 1.6).

Let V* be a Riesz space. (For example, V* may consist of all continuous
linear functionals on a topological Riesz space V. In that case V* is com-
pletely reticulated.) By an allowable projection we shall mean an idempotent
linear mapping P of V* into itself such that both P and I—P are positive.
We note that if P is an allowable projection, so is I — P. We shall write R(P)
for the range of P. The following theorem shows, among other things, that
an allowable projection is uniquely determined by its range.

2.1. THEOREM. Let P be an allowable projection. Then:
(a) Let F20. Then PF=0 if and only if F has the property that whenever
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G 20 is such that PG=G and F2G, then G=0.

(b) Let F=0. Then PF=F if and only if F has the property that whenever
G =0 s such that PG=0 and F=G, then G =0.

(c) Let P’ be an allowable projection. If R(P')=R(P), then P'=P.

(d) Let P be an allowable projection. If P is O for the same F as P s 0,
then P =P.

Proof. See [7, pp. 471-472].

2.2. CoROLLARY. If P is an allowable projection, FER(P) and 0SG=F,
then GER(P).

2.3. CorOLLARY. If P 1is an allowable projection and FER(P), then
F+&R(P) and F-ER(P).

Proof. We have O<F+<F++F =|F|=|PF|=|PF+—PF-|<PF*+
+PF-E€R(P). Hence F*&ER(P). Similarly, F-ER(P).

2.4. COROLLARY. If Pi, P, are allowable projections and FER(P,), then
P,FER(Py).

Proof. Since FER(P,), FfFER(P:) and F-ER(P,). Since 0 P,Ft<F*
and OéPzF_éF‘—, PzFWER(Pl) and PzF_ER(Pl). Hence P2F=P2F"
— P, F-ER(Py).

2.5. THEOREM. Let P,, P, be allowable projections. Then P, =P, (i.e.
P\F £ P,F for all positive FE V*) if and only if R(P1) CR(P).

Proof. Suppose Py < P,. Then I — P, 21— P,. Thus if F=0 and FER(P)),
0S(I—P;)FS(I—P,)F=0; i.e. FER(P,). If FER(P:) is arbitrary, F*
ER(P:) and F-ER(P;). Hence FER(Py).

Now suppose R(P;) CR(P;). For any F=0, we have P,F =2 P,P,F=P,F
since P1F€R(P1) CR(Pz). Thus Pz%Pl.

2.6. THEOREM. Let Py, P, be allowable projections. Then PP, is an allow-
able projection and R(P1P;) =R(P:)NR(Ps).

Proof. If FER(P\)NR(P;), PiP;F=P,F=F. For any FEV* P,F
ER(P,); hence PP, FER(P,)N\R(P;). It follows that P,P, is idempotent
and that P,P;F=F if and only if FER(P,)N\R(P.). Clearly, P,P, is positive
and linear. For any F=0, P,P,F<P,F=<F since I —P, and I —P; are posi-
tive. Thus I — P, P, is positive. Hence PP, has the required properties.

2.7. COROLLARY. Any two allowable projections commute.

2.8. THEOREM. The set of all allowable projections on V* is a lattice with
Pl/\P2=P1P2 and P1VP2=P1+P2—P1P2.

Proof. We note (I — P,)(I —P;) =1— (P,+P;— P, P,). The theorem is then
obvious since the three statements Q) <Q;, R(Q1) CR(Q:) and I—Q1=I—Q,
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are equivalent if ¢ and Q, are any allowable projections.

Riesz [10, p. 182], proved the following theorem: Let M be a set of linear
functionals on a Riesz space V. Suppose whenever F;, Fo& M, there is an
FE M such that FE F,, F<F,. Then for every positive fE V:

(gl.b. M)f = glb. Ff.
FeM

(We note that this theorem can be proved by the method which will be used
to prove Theorem 2.9.)

2.9. THEOREM. Let V* consist of all continuous linear functionals on V, a
topological Riesz space. Let ® be any nonempty set of allowable projections on
V*. Then ® has a g.l.b. P (in the set of all allowable projections). For every posi-
tive FE V* and every positive fEV:

PFf = glb. QFf
(0=19]

where Q is the set of all finite products of projections in ®. Also R(P) =Ngecp R(Q).

Proof. We first note that for each positive FE V*, QF=0 for all Q€q.
Thus we may set PF=g.lb.geg QF for each positive F. Clearly PFE V*
since 0= PF<F (Corollary 1.5). In this way we define a mapping P of the
set of positive elements of V* into itself.

Before establishing the linearity of P, we note that PFf=g.l.b.qeg QFf
for each F=0 and f=0. This statement follows from the theorem of %iesz
above; for if QiF, Q.FE& {QF|Q€Q}; then Q1Q.=Q\F, 01Q:F<Q.F and
0.0.Fe{QF|0€e}.

We now prove the linearity of P. It is clear that P(aF)=aPF for all
a20and F=0. Let F;, Fo=0 be given. Let f=0 and €>0 be given. We can
find @1, :€Q such that PF,f2Q,Fif—e and PF,f=Q,F,f—e. Since 0.0,
éQl and Qleng, PFlngleFlf—e and PszngQzef—e. Thus PFlf
+ PFf 2 QuQ:Fif + QiQeFaf — 2e = QiQa(F1 + Fa)f — 2e. Since Q1Q: € 9,
P(F1 + Fo)f = QiQx(Fy, + Fa)f < PFif + PFyf + 2e. Since € is arbitrary,
P(F, 4+ F,)f £ PFf + PF,f. Now we note that

eeQ eeQ eeQ

= PF\f + PFf.

Joining this inequality to the previous one, we have P(F,+F,)f=PFf
+PFf. Since f is arbitrary, P(F,+F;) =PF,+PF,.

Thus we may extend P to be a linear mapping of V* into itself. Clearly
P, as extended, is positive and I — P is positive.

Suppose that FENge@ R(Q) is positive. Then QF = F for each QE@®, and
hence for each Q€@. Thus PF=F. Hence if FENge@ R(Q) is arbitrary,
PF=F. For any FZ0 and Q& @®, we have for each f=0, 0 < PFf< QFf since
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Q€Q. Thus 0= PF=QF. Since QFER(Q), PFER(Q). Since this statement
holds for any Q€ ®, PFENge@ R(Q). It follows that P2F=PF for all F. It
also follows that R(P) =Ngec@ R(Q). Hence P is a g.1.b. for @.

2.10. CorROLLARY. Let V* and ® be as above. Then ® has a l.u.b. P. For
every positive FE V* and positive fEV:

PFf = lLub. QFf
0eQ

where § consists of all projections of the form I—(I—Py) - - - (I—P,) with
Pl) A 'sPne(P-

Proof. We apply the above theorem to the set of I—Q with QE@.

The following theorem tells whether a given subset of V* is the range
of a projection. Before stating the theorem, we recall that a subset M of a
completely reticulated Riesz space V* is called a band if:

(a) It is a lattice ideal, and

(b) Whenever M’ is a subset of M which is majorized in V*, the l.u.b. of
M’ is in M.

2.11. THEOREM. Let V* be a completely reticulated Riesz space. Let M C V*.
There is an allowable projection P with R(P)= M if and only if M is a band.

Proof. We see in the usual way that the existence of a projection with
range M is equivalent to the existence of a direct sum decomposition of V*
with M for one summand. It follows from a theorem of Riesz that such a
decomposition exists if and only if M is a band [10, p. 185].

3. Topologies in relation to bands and projections. In this section, we first
characterize the bands in the dual of a topological Riesz space by proving
that the bands are precisely the closed ideals. We then consider whether it is
possible to decompose every relatively bounded linear functional into a con-
tinuous and an “anti-continuous” part; i.e. whether there exists a projection
of the set of relatively bounded functionals onto the set of continuous ones.
More generally, we determine (see Theorem 3.11) when there exists a projec-
tion of the functionals which are continuous in one topology onto those which
are also continuous in a second topology. The results of this section are stated
in terms of topologies and filters; those of the next section are stated, some-
what more simply, in terms of directed sequences.

Throughout the following discussion V is a Riesz space, with a com-
patible topology, and V* is the set of all continuous linear functionals on V.
We note that a suitable choice of topology for V will make V* the set of all
relatively bounded linear functionals on V (Corollary 1.15). We first char-
acterize the bands in V*.

3.1. LEMMA. Let MC V* have least upper bound FC V*. Suppose whenever
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G, HEM there is a KE M such that K=G, K2 H. Then F is in the closure
M of M in the Riesz space weak* topology on V*.

Proof. Let U be any Riesz space weak* neighborhood of F. Then there
is a positive f& V such that every G for which IG—-FIfél is in U (Lemma
1.13). Since F is the lL.u.b. of M, we know from a theorem of Riesz stated
above that Ff=1.u.b.gen Gf. Thus we can find a GE M such that (F—G)f=1.
Since F2G, F—G20; thus |G—F|f<1. Hence GEU as well as GE M;
i.e. UNM#= . Since every neighborhood of F meets M, FEM.

3.2. LEMMA. Let B be a band in V*. Then B is closed in the Riesz space
weak* topology on V*,

Proof. Since B is a band, there is a projection P of V* onto B such that
P and I—P are positive (Theorem 2.11). P is continuous by Corollary 1.6.
Hence B is closed since it is the inverse image of 0 under the continuous
mapping [ —P.

3.3. THEOREM. Let BC V*. B is a band tn V* if and only if B is a lattice
ideal closed in the Riesz space weak™ topology on V*.

Proof. If B is a band, we see from the definition of a band and the previous
lemma that B is a closed ideal.

Conversely, suppose B is a closed ideal. Let M CB be bounded from
above in V*. If we show that the least upper bound F of M is in B, the theo-
rem will be proved. Let M’ be the set of all least upper bounds of finite sub-
sets of M. Clearly F is the L.u.b. of M’ as well as of M. Also clearly, M’ has
the property that G\VHE M’ whenever G, HEM'. Thus by Lemma 3.1,
FEM'. But M'CB and B is closed; hence FEB and the theorem is proved.

A filter on V will be called bounded from above if it contains a set U such
that there is an fE V with U<f.

3.4. LEMMA. Let B be a band in V*, Let FE V* be positive. Let U be the
set of fEV such that Ff=1. Suppose U belongs to every filter on V bounded
from above which converges to 0 in the Riesz space weak topology induced on V by
the positive elements of B. Then F&B.

Proof. We prove the lemma by finding, for each positive f& V, a functional
G;EB such that F=G; but Ff=G;f+1. Then we shall see that F belongs to
the closure of the set of G;; hence F belongs to B.

For each positive GE B, let Ug denote the set of f€ V such that G|f| <1.
Then the set of all Ug is a fundamental system of neighborhoods (i.e. a base
for the filter of neighborhoods) of 0 in the Riesz space weak topology induced
on V by the positive elements of B (Lemma 1.13).

Let fEV be fixed and positive. Let Ug be the set of elements of Ug
which are <f. Since { U¢} is a fundamental system of neighborhoods of 0,
the filter generated by { U} converges to 0. Since this filter is bounded from
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above, it contains U;i.e. U contains one of the sets Ug since these sets form
a base for the filter. In other words, there is a positive F;&B such that
Fg=<1 whenever F,|g| =1 and g=f.

Now consider any g with 0=<g=<f. We distinguish the cases Fyg=1 and
F;g<1. Suppose first F;g=1. Then F;(g/F;g)=1. Since 0=g/F;g<g=f, we
see from the preceding paragraph that F(g/Fsg)<1. Thus in this case
Fg =< F;g. Now consider the case where F;g<1. By the preceding paragraph,
in this case Fg=1. Combining our results, we see that in either case Fg
= Fg+1.

Let G;=FAF;. Since |G;| =FAF;<F,€B and B is a band, G;EB. We
note |G;—F| =F—G;=F—F/\Fy=(F—F;)*. We have (F—F)g<1 for all
g with 0=Sg=f by the preceding paragraph. Hence we have (F—F;)*f
=l.wb.og,ss (F—F)g=1. Thus |G,— F|f=(F-F)*f<1.

Now let f vary. Let 4 be the set of all G, as f ranges through all the posi-
tive elements of V. Let W be any Riesz space weak* neighborhood of F. We
shall show WNA4 # &; hence FEA. Since W—F is a neighborhood of 0,
there is a positive f& V such that |G—F[f§1 implies GEW (Lemma 1.13).
By the preceding paragraph, |G,—F | f=1. Hence G;&W as well as A. Thus
ANW = &. Since B is closed, we have FEA CB.

Let the topology on V be called 3;. We also consider 3;, a second topology
on V compatible with the Riesz space structure of V. Let V3 be the set of
J;-continuous linear functionals on V (:=1, 2). We note that a functional F
belongs to Vz N V3, if and only if it is continuous in the Riesz space weak
topology 3;; induced on V by the positive elements of V3N V3, (Theorem
1.14). Thus FE VANV if and only if U= {f|fEV, Ff<1} is a Si-neighbor-
hood of 0;i.e. if and only if U belongs to every filter on V which Jj2-converges
to 0. In this way, these filters determine which functionals are in both V;’;':
and V3,; in other words, which functionals are both 3;- and J:-continuous.
In some cases it is true that those of the filters which are bounded from
above suffice to determine whether a 3;-continuous functional is also Jz-
continuous. More precisely, suppose there is a projection P, and P and I —P
positive, of Vi onto VANVE; ie. suppose VANV3, is a band in V3, It
follows from the preceding lemma that the ordered pair (31, 32) of topologies
satisfies the following axiom:

Axtom B,. If FE V3 is positive, U= {f|fEV, Ff<1}, and U belongs to
every filter on V bounded from above which is Ji;-convergent to 0; then F
is 3;-continuous.

We now consider the converse situation where suitable topologies are
given and the existence of a projection is to be established. Again V is a
Riesz space with a compatible topology. By Vi we mean the set of all rela-
tively bounded linear functionals on V. If f€ V, by U(f) we mean the set of
all open neighborhoods of f. If UCV, by U+ we mean the set of all positive
elements in U.
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We shall define a mapping T of V} into itself. Let FE V} be fixed and
positive. Let f& V be positive. We write:

Gf = l.u.b.( 1b. F )
/ veVW» %el]+ £

We note that, for each U, 0=g.l.b.;ev* Fg = Ff since f€ U*. Thus 0= Gf < Ff.

3.5. LEMMA. The functional G is additive and positively homogeneous on the
positive elements of V.

Proof. Let f, g=0 be given. Let ¢>0 be given. Let a=Gf+¢/2, B=Gg
+e¢/2. Pick UEU(f+g). There are neighborhoods U, Uk of f, g respectively
such that U,+ U,CU. The definitions of «, 8 and G imply that there are
Hhe Ut & U such that Ffi<ea, Ff;<B. We note fi+f.E Ut and F(fi+f2)
<a+pB. Thus g.l.b.sey+ FR<a+pB. Since this inequality holds for any
vev(f+g), G(f+g) =a+B=Gf+Gg+e Since € is arbitrary, G(f+g)
=Gf+Gg.

Now consider the mappings ¢(k) =k /A\f and ¢ (k) =k —h Af. We note both
¢ and ¢ are continuous, ¢ (k) +y¥ (k) =k, ¢(f+g) =f and Y (f+g) =g. For any
U,€0(f) and U,E€V(g) we can find W,, W.€V(f+g) such that ¢(W,) C U,
and Y(Wo)CU, Let W=WN\W, Then WEU(f+g), ¢(W)CU, and
Y(W)C Us. Since ¢, ¢ are positive mappings, we have ¢(W+) C Uit, y(W+)
C Ust. We have:

G(f +8) 2 glb, Fi = g1b. {Fle()] + Flym)]}
z glb, Flp(m)] + glLb. Fly(w)]

2 glb. Fk + g.l.b. Fk.

keU, teU,

Since this is true for any U1€V(f) and U.€V(g), G(f+g) =2Gf+Gg. Joining
this inequality to the previous one, we have G(f+g) =Gf+Gg.

We extend G to all of V by linearity. We note that G as extended is
positive and linear. We write TF=G; thus T is a mapping of the set of
positive functionals into itself.

3.6. LEMMA. If Fy, F, are positive linear functionals, then T(F+ F)
=TF1+TF2.

Proof. Let f=0 be given. For a given €>0, let U, U.€V(f) be such that
glb.,evf Fig>TF f—e and g.lb.,ev} Fog>TFyf—e. Let U= UiNU,. Then
g.lbevt Fig>TF f—eand g.l.b.,cy* Fog> TFyg—e€. Thusg.l.b.,cv* (Fi+ Fa)g
> TF\f+TF.f—2e. Therefore T(Fi+ F.)f > TF,f+ TF,f —2¢. Since € is arbi-
trary, T(Fy+Fo)f = TFif 4 TF,f.

Now consider the mapping ®(g, k) =g/\h of VX V—V. We note that this
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mapping is continuous and ®(f, f) =f. Choose any U&U(f). Then we can
find Uy, U.€V(f) such that (U, X U,) CU. We note TF,f=g.lLb.ev} Fig,
TF,fzg.lb.,ev} Foh and ®(Uir X Uf) CU™*. Thus

TFyj+ TFyf = glb. Fig+ glb. Fah = glb. (Fig + Fh)
9€U; hel;

gevl 'hGU’

z glb, it F)GARN = glb. (Fi+ F)[3(, 0]

oeUy ,hely 1.h€U,

= glb. (Fi+ F)k 2 glb. (F1+ Fo)k.
Eed (Uy XUj) reUt

Since this inequality holds for all UEV(f), TFif+TF.f= T(F,+ Fy)f. This
inequality and that of the preceding paragraph establish that T'(Fi+4 F.)f
=TF,f+ TF.f for all f=0, and hence for all f.

Thus we may extend T to all of V} by linearity. T, as extended, is a
positive linear mapping of Vj into itself. T has the property that TF<F
for F=0.

3.7. LEMMA. If FE V} is continuous, TF=F.

Proof. If F=0, it is clear from the definition of T that TF=F. For arbi-
trary F, it is enough to note that the continuity of F implies that F* and F~
are continuous.

3.8. LEMMa, T%=T.
Proof. Pick FE V} and f€ V both positive. We note

TFg = lLu.b. (g.l.b.Fh)
Welw \ reWt

for all g=0. Let UEV(f) and g&U*. Then UEU(g) and thus TFg
=g.l.b.scut Fh. Since this inequality holds for all g€ U+, g.lb.,cvt TFg
= g.l.beut Fh. Since this last inequality holds for all U & U(f),
l.u.b.Ue*U(/) (g.l.b.,ey*' TFg) —>_-1.ll.b.Uef0(/) (glb}.e(]"‘ Fh), ie. T(TF)f; TFf
Since this is true for all f=0, T(TF)=TF. But, since TFz0,T(TF) =TF.
Thus T(TF) =TF for all F=0, and hence for all FE V.

Now suppose that V is endowed with two compatible topologies 3;, J,.
3, will play the role of the topology used in the preceding paragraphs. Let
V35, be the set of J;-continuous linear functionals on V (=1, 2). The preced-
ing discussion shows that there is a projection T on V} such that: (a) T and
I—T are positive, and (b) TF=F if F is J,-continuous. We note ITF |
=|TF+—TF-| £|TF*| +|TF-| =TF++TF-<F+*+F-=|F|. Thus, since
by Theorem 1.14 V3 is an ideal in Vi, T maps V3, into itself. Therefore the
restriction of T to V3, is a projection on V3 and has the properties (a) and
(b) just mentioned. From now on, T stands for this restriction.

We consider the following axiom, which the ordered pair (3, 3;) may
satisfy:
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AxioM B,. If FE V3 is positive, U= {f|fEV, Ff<1}, and U belongs to
every filter bounded from above which is J.-convergent to 0; then F is J.-
continuous.

We note that Axiom B, implies Axiom B;, which was previously stated.

3.9. LEMMA. Suppose Axiom B, is satisfied. Then if FE V3 is positive
and TF=F, F is 3;-continuous.

Proof. Let U= {f|f€V, Ff<1}. It is enough to show that U belongs to
every filter bounded from above which is J;-convergent to 0. Let & be such
a filter. Since X is bounded from above, there are an X & X and an & V such
that X <h. We note £=0.

We have, using the definition of T,

0= F(—h) + F(h) = F(—h) + TFh = F(—hk) + lLu.b. ( g.lb. Fk)
weDm) \ teW?*

= Lu.b. (g.l.b. F(k — h)) .
WeOm \ reW?
Thus there is a WEU(h) such that g.lb.ewt F(k—h)= —1. We note
F(k—h)= —1 for all k& W+, Let W =h—W; then W’ is a 3;-neighborhood
of 0. If fEW’ and f<h, h—fE W+; thus F(—f)=F[(h—f)—h]= —1. Thus
there is a J.-neighborhood W’ of 0 such that Ff<1 for all f& W’ with f<h.
Since & is J;-convergent to 0, W€ X. Thus XNW'E€x. If fEXNW’,
both f<h and fEW’; thus Ff<1. Hence UDXNW'’. Therefore UEX and
the lemma is proved.

3.10. LEMMA. Suppose Axiom B, is satisfied. Then if FE V3, and TF=F,
F is 3-continuous.

Proof. We have F=TF=TF+—TF-. T(TF*)=TFtand T(TF)=TF—;
thus TF* and TF- are continuous by the previous lemma.

3.11. THEOREM. Let 3;, 3, be two compatible topologies on a Riesz space V.
Then a projection P on the set V}; of 3i-continuous linear functionals with the
properties:

(a) P and I—P are both positive, and

(b) The range of P is the set of functionals both 3i-continuous and 3s-

continuous,
exists if and only if the ordered pair (3., 3,) satisfies Axiom B,. If the projection
exists, it is unique and it is continuous in any topology on V3, compatible with
the Riesz space structure of V3,

Proof. Suppose first that (3, 3,) satisfies Axiom B;. Let J;2 be the Riesz
space weak topology induced on V by the postitive functionals in V5N V3,.
We note by Theorems 1.12 and 1.14 that the set of J;;-continuous functionals
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is V3N V3, Clearly, since (3;, J;) satisfies Axiom By, (3;, 312) satisfies Axiom
B.. Using J;2 as the topology involved in the construction, construct T in
the manner described above; we take this T as P. It is clear from the previous
discussion that P satisfies (a) and (b).

Now suppose P satisfying (a) and (b) exists. We have previously noted
that Axiom B, is satisfied. P is unique by Theorem 2.1 and continuous by
Corollary 1.6.

Each of the following theorems involves several topologies on V. 3,, with
any index ¢, will denote a topology on V compatible with the Riesz space
structure of V; V3 will denote the set of 3,-continuous linear functionals.
Pj .5, will stand for the unique projection, of the kind under consideration,
of V3, onto ViNV3,. (Ps, .3 does not always exist.)

3.12. THEOREM. If 3, is finer than 3, and Pj,.;, exists, then Py .5 exists
and is the restriction of Py,.5, to V3.

Proof. It is enough to note that Py_.; maps V3 into itself. We note
| PF| =|PFt+—PF-| SPF++PF-<F++F-<|F|, where P denotes Py,.g,
for each FE V3. Since V3 is an ideal in V%, the theorem is proved.

3.13. THEOREM. If 3; is finer than 3, and Py .5 and Pj, .5 exist, then
P53*31 exists and P33,31=P33..31P3‘..32.

Proof. The theorem is trivial.

3.14. THEOREM. Let 3, be given. Let T be any collection of topologies 3, such
that Py .5, exists for each 3. &X. Then there is a topology 31 such that:

(@) A linear functional is 3\-continuous if and only if it is continuous for
each 3,EX, and

(b) P30*5l exists.

Proof. The existence of a topology satisfying (a) is trivial (Theorem
1.14). We shall show that any such topology satisfies (b). Let
P = g.l.b. P;;o.,gl.
3.€T

By Theorem 2.9, P exists. This theorem also states that the range of P is
Ny,ex V3, Thus Py .5 exists.

3.15. THEOREM. If Pyi.; and Py both exist, then the restrictions of
these projections to V;lf\ V3, are equal.

Proof. We apply Theorems 1.14 and 3.12.

4, Definition of topologies on Riesz spaces by means of sequences. The
preceding section dealt with topologies; however the results of Riesz [10,
p. 206]; Gordon and Lorch [7, p. 472]; and Bauer [1, p. 106], deal with
monotone sequences. (Bauer considered directed sequences.) Each of these
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results may be interpreted as establishing the existence of a projection. In
each case, the projection was one mapping a class of linear functionals onto
those functionals for which Ff,—0 whenever {f.}.cr belongs to a certain set
of directed sequences. We determine in Theorems 4.6 and 4.7 exactly when
such a projection exists.

Let V be a Riesz space. We are interested in studying the linear func-
tionals F on V which are such that Ff,—0 whenever {f.}.cs is one of a desig-
nated collection of directed sequences of elements of V. (For example, the
G-integrals of Lorch [8] are characterized in this way.) It will be shown that
the relatively bounded functionals with the desired property are precisely
those which are continuous in a certain topology, in which V is a topological
Riesz space. (If the given collection of sequences does not satisfy the condi-
tions below, it is possible to modify this collection so that it will satisfy the
conditions but so that the set of functionals is not changed.)

We consider a set 8 of directed sequences of positive elements of V. The
sequences of § need not all have the same indexing set. We suppose, for con-
venience, that:

(1) If {f.}.er€S and {g.}.er are such that g,<f, for all +&1, then
{ £ } LGIES-

(2) For each f=0, the ordinary sequence (f, f/2, f/3, - - - )ES.

(3) If {f.}.e1€8 and a>0, then {of.}.crCS.

We begin by defining a set U of subsets of the set of positive elements of
V. We define W& if:

(a) For each {f.}.crE€S there is a »&1I such that «=» implies f,E W, and

(b) W is convex.

We note that each element of Ut contains 0 since (0, 0, 0, - - - )ES. We note
next that the intersection of any two sets in V% is in U+, Also if WEU+ and
a>0, then aWE&UH.

We now define a set U of subsets of V by V={W—W|wWev+}. We
note that if U=W—W and WEU+, UD W since 0€ W; i.e. each element of
U contains an element of U+, U is a filter base; to see this we note that each
element of U contains 0 and that (W—W)N\(W'—W)DWNW' —WNW’
when W, W/ CV. Also if UE and >0, then aUE&.

Clearly the elements of U are symmetric and convex; we shall show that
they are also absorbent. Let UEU and f& V. Then there is a W&Vt such
that U=W—W. Since (f*, f*/2, f*/3, - ), (¢~ f~/2,f/3, - -)ES and
W&V, there is a positive integer # such that ft/n, f~/nEW. Thus ft/n
—f~/n=f/nE& U; hence U is absorbent.

Since the sets in U are convex, absorbent and symmetric, there is a unique
topology in which V is a locally convex topological vector space and V.is a
fundamental system of neighborhoods of 0 [4, vol. 1, p. 57]. Since each ele-
ment of U contains an element of U+, it is clear that the sequences in § con-
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verge to 0 in this topology. From now on, we consider V to be endowed with
this topology, and proceed to show that V is a topological Riesz space.

(It is not in general true that V, with the topology defined above, is a
Hausdorff space. In particular cases, we can show that V is Hausdorff by
showing the existence of suitable continuous linear functionals.)

4.1. LEMMA. Each neighborhood U of O contains a neighborhood U’ of 0
with the following property: If fE U’ and 0<g=f, then g€ U.

Proof. U contains a neighborhood U; which belongs to U since U is a
fundamental system of neighborhoods of 0. We define W, consisting of posi-
tive elements of V, as follows: f&E W if f =0 and there does not exist a g such
that 0=<g=f and g& U,. Clearly if fEW and 0=<g=<f, then g€ U,.

We show that W is convex. Let fi, fo& W and f =af1 +8f: with @, >0 and
a+B=1. Suppose f&EW. Then there is a g U, with 0=g=<f. We note
g=a(fiNg/a) +B{fr— [fo—g/B+(a/B)(fig/a)]}. Let k=fi/\g/ox and k=f:
—[fo—g/B+(a/B)(fiNg/a)]. Then g=ah-+Bk. Clearly 0<h=<f; since fi,
220 and a>0. Also ak=(afi) \g=g. Thus k=(1/B8)(g—ahk)=0. We
note B[fo—g/B+(a/B)(fig/a)]=Bfr—g+(afi) Ag= Bfe+af) A(g+Bf2) —¢
Z (Bfetafi) ANg—g=fA\e—g=g—g=0. Thus k=fo— [fa—g/B+(/B)(fig/e)]
=f.. We have 0Zh<fi&cW and 0=k=<f,€W. Hence k, k& U,. Since g=ah
+Bk and U, is convex, g& U,. But g U,; therefore fEW and W is convex.

Now suppose {f‘} .er&8. For each +&1T such that f,& W, we can choose a
g.& Uy such that 0 =g, =f.. For each ¢ such that f,EW, let g, =f.. By property
(1) of 8, {g. } .e1E8. Hence, since U, is a neighborhood of 0 and each sequence
in 8 converges to 0, there is a » such that g, & U, for all «=». Thus for all
=y, f EW. It follows that W&V,

Since WEU+, W—W is a neighborhood of 0. Suppose f&EW—W and
0=g=f. Then there are fi, f2E W such that f=f; —f.. We have, since f;=0,
0=g=f=<fi€W. Hence g€ UiC U. Thus W—W is a neighborhood of 0 with
the required property.

4.2. LEMMA. The mapping f—f* of V into itself is continuous at 0.

Proof. Let U be any neighborhood of 0. Then, by the previous lemma,
there is a U; such that if 0=Sg=<f€ U, g&U. There is a U,E such that
U.C Uy Let W&V be such that U;=W — W. Suppose f& U,. To prove the
lemma it is enough to show f+& U. Since f& U;= W— W, there are fi, f,EW
such that f=fi—f,. Since f<fi; and 0=f, we have 0<f+<fi€c WC U,C U..
Hence ft& U.

Thus we have shown that V, endowed with the topology defined above,
is a topological Riesz space.

4.3. LEMMA. Let F be a linear functional on V and W= {f|f€ V, f=0,
| Ff| =1}. If WEU*, F is continuous.
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Proof. Let €¢>0 be given. Let U=(e/2)(W—W). Clearly (2/e)UESV;
hence U is a neighborhood of 0. Let f& U; then there are g, & W such that
f=(e/2)(g — k). We have | Ff| = [(¢/2)F(g — b)| = (¢/2)(| Fe| + | Fh|)
=<(e¢/2)(1+1) =e. Since this inequality holds for every f& U, a neighborhood
of 0, the lemma is proved.

4.4. THEOREM. Let V be a Riesz space and 8 be a set of directed sequences of
positive elements of V satisfying (1), (2) and (3) above. Then the topology de-
scribed above is compatible with the Riesz space structure of V. Furthermore. a
linear functional F on V s continuous if and only if {Ff‘} .er converges to 0
whenever {f.}‘eres.

Proof. We have already shown that the topology is compatible. Each of
the sequences in 8 converges to 0. Thus if F is continuous, { Ff.}.er converges
to 0 whenever {f‘} c1E8.

Suppose conversely that {Ff.}.cr converges to 0 whenever {f.}.c1ES.
Then for each {f.}.ct€8, there is a » such that |Ff,| <1 when ¢=v. Let
W= {flfe V,f=0, | Ffl <1}; then f,E W when ¢ =v. Since W is clearly con-
vex, the theorem follows from the preceding lemma.

We are interested in the existence of a projection of the kind studied
above. For this reason, we state Axiom Bj:

Axiom B;. If F is a positive linear functional on V, U= {fIfE V, Ff£1 } ,
and U belongs to every filter on V bounded from above which is convergent
to 0; then F is continuous.

Call the-topology we are considering J;. Then Axiom B; may be stated
in the following alternative form:

Axiom B{. For each compatible topology 3, on V, the pair (3;, 3;) satis-
fies Axiom B,.

4.5. LEMMA. Suppose each of the sequences in S is bounded; i.e. for each
{f‘ } 1 &8 there is an fEV such that f.<f for all \&I. Then Axiom B; is satis-
fied.

Proof. Let W = {f|f € U,f 2 0}. Then W = {f|f € V, Ff < 1,f = 0}
={flfeV, | Ff| =1, =0} since F is positive. By Lemma 4.3, it is enough
to show WEU*. Let {f.}.c1ES; then this sequence is bounded from above.
Hence the filter associated with this sequence is bounded from above. This
filter converges to 0 since the sequence does. Thus U belongs to the filter;
i.e. there is a ¥&1I such that f,&€ U for all «2v. Since all the f, are positive,
f. €W for all v2v. Thus, since W is clearly convex, W& U+, which proves the
lemma.

4.6. THEOREM. Let V* be the set of continuous functionals on V in any com-
patible topology. Suppose 8 consists of bounded sequences. Then there is a projec-
tion P (with P and I—P positive) of V* onto the set of FEV* for which
{£.} .1 €S implies Ff.—0.
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Proof. The theorem follows at once from the lemma and Theorem 3.11.

4.7. THEOREM. Let V* be the set of continuous functionals on V in any
compatible topology. Suppose P is a projection of V* with P and I — P positive.
Then there is a collection $ of bounded directed sequences such that FEV* is in
the range of P if and only if Ff,—0 for each { f‘} 1 E8.

Proof. We apply Theorem 3.11. Let 3; be the given topology on V. Let
3, be the Riesz space weak topology induced on V by the positive elements
in the range of P; thus the range of P consists of the J;-continuous func-
tionals. By Theorem 3.11, Axiom B, is satisfied. Clearly 3Ji, in the notation
of the axiom, =J,. This topology is the only one to figure in the remainder of
the proof.

Let X be a filter bounded from above converging to 0. Then there is a
Z& % which is bounded from above. Let X' = {X|Xeac, XCZ}. Then we
may regard X’ as a directed set ordered by inclusion; i.e. XV if XCY.
For each X €/, choose fx € X ; thus we obtain a directed sequence {fx}xeq
Clearly this sequence converges to 0 and is bounded from above. Thus
% f% } xeqr converges to 0 and is bounded. We let 8 be the set of all sequences
f% § xeq which can be obtained in this way for all choices of &, Z and the
fx.

Now suppose FE V* is positive and such that Ffx—0 for every {fx}xeq
€s. Let U={f|fEV, Ff<1}. If we show that U belongs to every filter
bounded from above which converges to 0, it will follow from Axiom B, that
F is continuous. Let & be bounded from above, Suppose U& X. Then for
each X€x, XQU. Let X’ be as in the preceding paragraph. For each
Xex’, we can choose fx&X with fx& U. Then {f;{}x.ggrres, but Ffx>1
for all XEx'. This is impossible since we have Fff—0 and 1<Ffx=Ff%
— Ffx S Fff. Thus UE X and F is continuous; i.e. F belongs to the range of P.

Conversely, if F belongs to the range of P, F is continuous; hence Fff—0
for each {f% } xeqr €S since the sequences in § converge to 0. This completes
the proof.
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