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ABSTRACT
Background: Schizophrenia is a heterogeneous mental disorder with a variety of symptoms. Although, there are no
pathognomonic abnormalities in brains of schizophrenia patients, recent years have witnessed research progresses in
revealing pathologic changes in cellular and molecular levels. Objective: This article reviewed recent human studies
showing neuroimmune alterations in schizophrenia patients and offered explanations for roles of neuroinflammation
in the pathogenesis of schizophrenia by citing some of experimental  data  from  non-human studies. The focus of
this   review   was   put   on   pharmacological   and   therapeutic   evidence   pointing   to   a   recommendation   of
anti-inflammatory treatment for patients with schizophrenia. Particularly, it provided compelling evidence supporting
an anti-inflammatory effect of antipsychotics by reviewing a relatively large body of studies in the categories of in vitro,
animals and humans. Conclusion: Then, it reviewed recent clinical trials with minocycline, a second-generation
tetracycline, or the selective COX-2 inhibitor celecoxib. Most of these clinical trials provided promising results of
superior beneficial treatment effects as the consequence of co-administration of standard antipsychotic  drugs  and
anti-inflammatory compounds, compared with antipsychotic drugs alone.

Key words: Schizophrenia, neuroinflammation, antipsychotics, minocycline, celecoxib

Pharmacologia 6 (8): 438-453, 2015

INTRODUCTION
Schizophrenia is a heterogeneous mental disorder

with a variety of symptoms that can be categorized into
positive symptoms, negative symptoms and cognitive
impairments. The heterogeneity of this disease is also
exemplified by the involvement of many players in the
etiopathogenesis of it, including a number of genes being
reported to be abnormal in their structure and functions
in the patients1 and environmental factors, such as social
stress, drug  abuse  and  infections,  which  may induce
or exacerbate the manifestations of schizophrenia2.
Although, the clinical manifestations of schizophrenic
patients  have been well-documented,  it  is  still  an
open question as to what happened in brains of the
patients. Indeed, there are no pathognomonic
abnormalities in brains of schizophrenia patients.
Nevertheless, recent years have witnessed research
progresses in revealing pathologic changes in cellular and
molecular levels in schizophrenia patients. The most
notable pathological evidence found in patients  points
to the existence of neuroinflammation in  schizophrenia.
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This article reviewed recent human studies presenting
neuro inflammation data in schizophrenia patients and
focused on pharmacological and therapeutic evidence. It
also offered explanations for roles of neuroinflammation
in the pathogenesis of schizophrenia by citing some of
experimental data from non-human studies. 

ASSOCIATION BETWEEN INFECTIONS AND
SCHIZOPHRENIA

A significant association between prenatal maternal
infection and increased risk of schizophrenia in the
offspring has been demonstrated in a variety of
epidemiological studies. It has been repeatedly described
that off-springs, whose mother were infected during
pregnancy, in particular in the second trimester,
developed schizophrenia later 3-5. Increased risk for
developing psychoses later on was also detected after
infection of the Central Nervous System (CNS) in early
childhood4,6-9. In a recently published 30 year
population-based study, having an autoimmune disease
or a prior hospitalization for serious infection increased
the risk of developing schizophrenia by 29 and 60%,
respectively10.  The  infectious  agents  implicated  in  the
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association between infections and schizophrenia
include; influenza4,11, rubella12, measles13, polio14 and
herpes simplex viruses15, as well as bacterial pathogens
causing sinusitis, tonsillitis and pneumonia16, genital
and/or reproductive infections17 and the protozoan
parasite Toxoplasma gondii18,19. It seems that the link
between infections  and  enhanced  schizophrenia  risk
is not pathogen-specific. It is likely that common
immunological factors interact with other schizophrenia
risk factors, such as genetic predisposition, thus increase
the risk of developing schizophrenia. In support of this
hypothesis, a DNA microarray study has shown the
increased expression of genes related to immune and
chaperone function in the prefrontal cortex in
schizophrenia20. Another two genome-wide studies have
shown the association of schizophrenia with markers in
the MHC (major histocompatibility complex) region21,22.
This region spans more than 200 genes, many of which
encode key regulators of immune system function, such
as the Human Leukocyte Antigen (HLA) genes, TNF
superfamily genes and complement cascade genes23. 

SCHIZOPHRENIA PATIENTS SHOW
NEUROIMMUNE ALTERATIONS
Microglia activation: In the CNS, microglia and
astrocytes are the major immune-competent cells
regulating both the induction and limitation of
inflammatory processes24-26. Post-mortem studies have
reported microglia activation and increased microglia
cellular density at least in subpopulations of individuals
with schizophrenia27-29. Similarly, HLA-DR positive
microglia increased in hippocampus of paranoid
schizophrenia patients versus residual schizophrenia and
controls30.

The density of MHC-II positive cells
morphologically resembling microglia also significantly
increased in schizophrenia patients in a recent study31.
By means of PET and using [11C]-(R)-PK11195, a
peripheral benzodiazepine receptor ligand that can be
used for the imaging of activated  microglia  cells and
thus neuroinflammation, microglia activation  was seen
in the grey matter of  patients  with  schizophrenia
within the first 5 years after the onset of disease32. In
another study, a significantly higher binding potential of
[11C]-(R)-PK11195, indicative of neuroinflammation,
was found in the hippocampus of schizophrenic patients
compared to healthy volunteers33. However, in a more
recent  study,  which  took  advantage  of  a novel
second-generation   TSPO   (the   translocator  protein

18 kDa expressed by activated microglia)  radio-ligand
N-acetyl-N-(2-[18F]fluoroethoxybenzyl)-2-phenoxy-5-
pyridinamine ([18F]-FEPPA) to evaluate whether there
is increased neuroinflammation in patients with
schizophrenia, no significant difference in
neuroinflammation indexed as [18F]-FEPPA VT was
observed between the patients and controls in either gray
or white matter regions34. The authors suggested that
neuroinflammatory processes might take place early in
disease progression or had been affected by antipsychotic
treatment.

Astroglial histopathology: Initial morphological
studies on astrocytes in schizophrenia have reported
signs of gliosis indicated by increased density of
astrocytes in various cortical areas, the hippocampus and
the periaqueductal grey matter35-39. However, no
evidence for schizophrenia-related astrogliosis was found
in later studies that applied other techniques to localize
and quantify astrocytes40-46. Instead, some of recent
studies reported astrocyte loss in various cortical and
subcortical areas of brains of schizophrenia patients42,45.
These  inconsistent  findings  are  thought   to   be
related to the following issues: (1) Major Depressive
Disorder (MDD) comorbidity, which is more often
associated with glia loss, (2) Age variation, because older
patients  showed  many  more   GFAP-positive
cells41,47,48, (3) Regional49 and cortical layer variability42,
(4) Treatment  with  antipsychotics  and (5) Disease
state, exemplified by a study in which patients with
schizophrenia  were  divided   into   demented   and
non-demented subtypes, those with dementia
demonstrated  significantly  greater   numbers   of
GFAP-positive astrocytes than those without dementia50.
In line with this finding, a recent  study  reported
S100B-immunopositive glia elevation in paranoid, but
not residual schizophrenia51. If go further, we may
suggest that astroglial histopathology exists in part or a
subgroup of schizophrenia patients. This suggestion
coincides with the report in a recent study with clear
evidence of astrogliosis in a subset of people with
schizophrenia52. 

Cytokine alterations: Cytokines are key regulators of
inflammation. They are classified into pro-inflammatory
and anti-inflammatory ones. Pro-inflammatory
cytokines include; IL-1β, IL-2, IL-6, TNF-α and IFN-γ.
They are secreted primarily by microglia, Th1
lymphocytes and M1 phenotype monocytes/
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macrophages.  Anti-inflammatory  cytokines  include;
IL-4, IL-5 and IL-10. They are primarily secreted by
astroglia, Th2 lymphocytes and M2 phenotype
monocytes/ macrophages53,54. Pro-inflammatory
cytokines promote harmful  inflammation,  whereas
anti-inflammatory cytokines limit harmful inflammation
by converting the pro-inflammatory M1-phenotype into
the beneficial anti-inflammatory M2-phenotype and
promoting the neuroprotective microglial phenotype55,56. 

There is increasing evidence for aberrant cytokine
levels  in  both patients with schizophrenia and their
first-degree relatives, although results have not always
been consistent between individual studies. Of the early
studies, one example showed that IL-2 serum levels were
significantly lower and IL-1β and TNF-α were
significantly higher in schizophrenic patients compared
with healthy controls57. Another one reported that serum
levels of soluble IL-2 receptor (sIL-2R), IL-6 and IL-1
receptor antagonist (IL-1RA) in schizophrenia patients
were elevated and maintained at high levels throughout
the treatment period of 8 weeks58. In a meta-analysis,
which analyzed data from 62 studies involving a total
sample size of 2298 schizophrenia patients and 1858
healthy volunteers, schizophrenia patients had higher
levels of IL-1RA, sIL-2R and IL-6, but no significant
effect sizes were obtained for the other cytokines59. In a
subsequent review, IL-1β, IL-6 and TGF-β were
increased  in  both  acutely  relapsed  inpatients  and
first-episode psychosis and the changes were normalized
by antipsychotic treatment. These cytokines therefore
were referred  to  as state markers. In contrast, IL-2,
IFN-γ, TNF-α and sIL-2R appeared to be trait markers,
as levels of them remained high in acute exacerbations
following antipsychotic treatment60. In a recent study,
Song et al.61 reported high levels of IL-1β,  IL6  and
TNF-α in drug naïve-first episode schizophrenia
patients, when compared with healthy controls matched
for age, gender, smoking status and body mass index. In
a more recent study, which carried out standardized
multiplex immunoassay  analyses  of 9 cytokines in
serum from 180 antipsychotic-naïve first-episode
schizophrenia patients and 350 matched controls across
5 clinical cohorts, the levels of IL-1RA, IL-10 and IL-15
were increased significantly in patients across the
cohorts, whereas the levels of IL-1RA and IL-10 were
decreased in 32 patients, who had been followed up and
treated for 6 weeks with atypical antipsychotics.
Interestingly, the changes in IL-10 were significantly
correlated with the improvements in negative, general

and total symptom scores, suggesting that this cytokine
can be used as a potential treatment response biomarker
in schizophrenia62. 

THEORETICAL ROLES OF NEUROINFLA-
MMATION IN THE PATHOPHYSIOLOGY OF
SCHIZOPHRENIA

It is no doubt that neuroinflammation is an
important player in the pathophysiology of at least one
subtype of schizophrenia. However, it remains to be an
ongoing challenge to elucidate how neuroinflammation
plays its roles in the pathogenesis of schizophrenia. Here,
we introduced some of existing theories explaining the
roles of neuroinflammation and relating it to distinct
symptom classes of schizophrenia.

Neuroninflammation and CNS glutamate
dysfunction: As reviewed above, both astrocytes and
microglia are abnormal in schizophrenia. The interaction
between these two glial cell types has been hypothesized
to increase the production of quinolinic acid by
microglia and kynurenic acid (KYNA) by astrocytes63.
Elevated KYNA can inhibit NR1 subunit of the NMDA
Receptor (NMDAR) and α7 nicotinic acetylcholine
receptor (α7nAchR) 64, 65 thereby leading to decreased
NMDAR function and reduced α7nAchR-mediated
glutamate release. In support of this theory, KYNA has
been found to be elevated in the CSF of drug-naïve first
episode schizophrenia patients66, as well as in chronically
ill patients67. Therefore, KYNA provides a direct link
between neuroinflammation and hypoglutamatergic
neurotransmission in schizophrenia. Via the
inflammation-mediated modulation of the central
kynurenine pathway and the subsequent impairments in
NMDA  receptor-mediated  signaling, the enhanced
pro-inflammatory activity has been related to cognitive,
behavioral and psychiatric impairments65,68-72. 

Neuroinflammation and neurogenesis:
Neurogenesis is a complex process of generating new
neurons  from  neural  stem  or  progenitor  cells.
Newly-generated neurons in adulthood have a role in
synaptic plasticity and cognitive functioning and are
involved in psychiatric diseases, such as depression and
schizophrenia73,74. Abnormal neurogenesis has been
consistently reported in schizophrenia postmortem
studies75,76. Although, the mechanisms underlying the
abnormal neurogenesis in schizophrenia remain
unknown, neuroinflammation is thought   to  be  an 
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important  contributor.  Various pro-inflammatory
cytokines have individual effects on neurogenesis. For
example, IL-1β induces focal and sustained hippocampal
inflammation, resulting in severe depletion of
developing neuroblast and distorting the fate of neural
stem cells in the subventricular zone77. This cytokine
was also found to suppress cell proliferation in the
dentate gyrus78. Another example is IL-6, a most
important cytokine involved in microglial activity and
inflammatory response. A recent study of a sample of
patients with first onset psychosis reported that increased
IL-6 expression and higher salivary cortisol levels
predicted smaller hippocampal volumes and that a
history of childhood maltreatment was related to current
inflammatory markers79. It is suggested that  IL-6
inhibits adult neurogenesis by stimulating the
Hypothalamic-Pituitary-Adrenal (HPA) axis80 and by
acting on the IL-6 receptor or a common signal
transducer, glycoprotein 130 (gp130), in the dentate
gyrus81.

Neuroinflammation and apoptosis: Multiple lines of
evidence converge to implicate increased susceptibility to
apoptotic death in the pathophysiology of
schizophrenia82. Theoretically, inappropriate activation
of apoptosis may occur in both neurons and
oligodendrocytes (OLs). In neurons, sub-lethal apoptotic
activity can lead to a limited form of apoptosis in
terminal neurites and individual synapses to cause
elimination without cell death83,84. However, a same
factor may be lethal to OLs that provide supports and
protection to neurons. This point of view coincides with
the recent findings of reduced density and compromised
morphology of OLs as well as signs of deviant
myelination in schizophrenia patients85-87. In the
disruption of OL function and cell death, microglial and
pro-inflammatory cytokines play important roles. In
support of this, TNF-α has been shown to compromise
the growth of OLs and the expression of mRNA for
Myelin Basic Protein (MBP) in cultures88. In addition,
this cytokine inhibited the survival and proliferation of
OL progenitors and their subsequent differentiation into
mature myelinating phenotypes89. 

In addition to its effects on pro-inflammatory
cytokine secretion, infection and subsequent induction
of inflammatory responses are strongly associated with
oxidative stress, an imbalance between the production
and elimination of Reactive Oxygen Species (ROS).
Upon activation, innate immune cells secret ROS and

Reactive Nitrogen Species (RNS, such as nitric oxide)90.
Increased ROS, in turn, enhance microglial activation
and increase the production of pro-inflammatory
cytokines, via stimulating NF-κB91. By this pathological
positive feedback loop, oxidative stress is exacerbated and
perpetuated with the results of lipid peroxidation,
damages to membrane phospholipids and their
membrane-bound monoamine neurotransmitter
receptors and depletion of endogenous antioxidants54.

It should be pointed out that mitochondrial is a
major contributor to the oxidative stress and
neuroinflammation in schizophrenia. Supporting
evidence for this point includes; (1) Mitochondria are
crucial in regulating redox homeostasis, (2) Postmortem
studies have revealed abnormalities in mitochondria of
schizophrenia patients92,93, (3) Pro-inflammatory
cytokines, such as TNF-α, can impair mitochondrial
oxidative metabolism94, leading to increased ROS
production95, 96, (4) Mitochondrial impairment induced
by a short-term exposure to cuprizone, a cupper
chelator, produced oxidative stress97 and induced
neuroinflammation in C57BL/6 mice98. In the
meanwhile, these mice showed behavioral changes
relevant to some symptoms seen  in schizophrenia97,98

and (5) Ketamine was shown to induce mitochondrial
dysfunction, while produced behavioral changes99.
Moreover, social isolation rearing inhibited oxidative
metabolism and induced oxidative stress in rats100,101,
while it produced several behavioral outcomes similar to
those observed in humans with early life stress100-102.
Taken together, these previous studies suggest a
connection between mitochondrial dysfunction and
neuroinflammation in schizophrenia. 

ANTI-INFLAMMATORY EFFECTS OF
ANTIPSYCHOTICS

Given the association between inflammation and
schizophrenia, antipsychotics would be expected to have
an anti-inflammatory effect. Indeed, a large body of
evidence supports an anti-inflammatory effect of
antipsychotics. In the following we will summarize the
results  from  some  of such studies in the categories of
in vitro, animals and humans.

In vitro studies: In 1999, Moots et al. published a case
report, in which treatment of a patient with acute mania
by haloperidol was associated with marked improvement
in  activity  of  rheumatoid  arthritis103.  To explain this
in   vivo  anti-inflammatory   effect   of   haloperidol,   the
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authors examined the effects of this (typical)
antipsychotic on inflammatory cytokine release in vitro. 
Haloperidol  did inhibit lipopolysaccharide (LPS) 
stimulated  production  of   both IL-1β   and TNF-α  in 
cultured  peripheral   blood   cells   in   a dose dependent
manner.  This  pioneer  study  inspired a  number   of  
investigators   to   examine   possible anti-inflammatory 
  effects   of   antipsychotics. Kowalski et al.104 reported
the reduction of TNF-α and NO from LPS-activated
microglia in primary cultures treated with flupentixol
and trifluperidol. These two typical antipsychotic drugs,
plus chlorpromazine and loxapine (another two
antipsychotics) also reduced IL-1β and IL-2 release by
the LPS-activated microglia as shown in later
studies105,106. In addition, spiperone, another typical
antipsychotic, inhibited the production of NO, IL-1β
and TNF-α, from the LPS-activated microglia107. Similar
to typical antipsychotics, the atypical antipsychotic
olanzapine   inhibited   NO   secretion    from    the
LPS-activated microglia108. Risperidone, another atypical
antipsychotic, inhibited the productions of NO, IL-1β,
IL-6 and TNF-α from the IFN-γ activated microglia109.
Similar anti-inflammatory effects were also shown by
perospirone and quetiapine, another two atypical
antipsychotics110. In a recent study, both haloperidol and
risperidone inhibited the secretion of S100B following
IL-6 stimulation in C6 glioma cells111.

That both typical and atypical antipsychotics share
similar anti-inflammatory effects suggest the existence of
a pharmacological base that is unlikely related to the
binding affinity of these drugs to dopamine D2
receptors. Of the putative mechanisms, microglial
intracellular calcium (Ca2+) signaling was proposed to be
involved in the anti-inflammatory effects of atypical
antipsychotics112.  This  proposition  was  based  on   an
in vitro study in which pretreatment with the aripiprazole
antipsychotic attenuated the mobilization of intracellular
Ca2+ induced by IFN-γ and LPS in murine microglia113.
Intracellular Ca2+ is one  of  the  endogenous activators
of Protein Kinase C (PKC), which has been reported to
be an important initiator of the MAPK signaling pathway
in microglia. The activation of PKC affects MAPK
cascade proteins including ERK 1/2 and p38 MAPK114.
The latter plays a major  role  in  the  activation of
murine microglia by LPS, while ERK1/2 involves in the
microglia activation by IFN-γ115,116. Another mechanism
was exemplified in a study  with clozapine, which
exerted neuroprotective effect via the attenuation of
microglia activation through inhibition of NADPH
oxidase-generated ROS production117. 

Animal studies: Driven by the anti-inflammatory
effects of antipsychotics shown in in vitro and human
studies (see the following subsection in details), a few
recent animal studies have examined effects of some
antipsychotics  on  neuroinflammation  in  various
animal models of schizophrenia. In an early study,
Paterson et al.118 examined the levels of cytokine mRNAs
in rat brain after acute and chronic administration of
phencyclidine (PCP), in the presence and absence of
antipsychotic drugs. Both antipsychotic drugs and PCP
were shown to significantly reduce the levels of TNF in
the prefrontal cortex compared to vehicle-treated
animals, whilst other cytokines remained unchanged. In
LPS-treated mouse, a more relevant animal model
mimicking the neuroinflammation in schizophrenic
brains, the anti-inflammatory effect of antipsychotics,
including; clozapine, olanzapine, risperidone and
haloperidol, on serum cytokine levels was measured.
Atypical antipsychotics suppressed TNF-α and IL-6 and
up-regulated IL-10119. Similarly, chronic administration
of chlorpromazine or clozapine modulated the enhanced
levels of IL-1β, IL-2 and TNF-α  in the offspring of
LPS-treated female rats. The drugs also ameliorated the
deficit in prepulse inhibition (PPI) in the prenatally
LPS-treated rats120. In a recent study, a relatively lower
dose of LPS (0.5 mg kgG1 i.p.) was administered to young
adult rats to mimic the mild neuroinflammation, as seen
in brains of schizophrenia patients. In the LPS-treated
rats, risperidone normalized the increased inflammatory
parameters  and  restored  anti-inflammatory
pathways121. In another animal model of progressive
inflammatory and oxidative alterations induced by a
neonatal immune challenge, Wistar rats at postnatal
(PN) day 5-7 were administered the viral mimetic
polyriboinosinic-polyribocytidilic acid (polyI:C).
Clozapine was found to reverse microglial activation and
inducible nitric oxide synthase increase, while it
improved the accompanied deficits in PPI and working
memory in adult (PN 74) rats122. 

Of the antipsychotic drugs, quetiapine deserves to
be highlighted for its anti-inflammatory effect and
immunomodulatory capacity as shown in animal studies.
In the Myelin Oligodendrocytes Glycoprotein (MOG)
induced Experimental Autoimmune Encephalomyelitis
(EAE) mouse model of Multiple Sclerosis (MS),
quetiapine was shown to dramatically attenuate the
severity of EAE symptoms, diminish demyelination and
the infiltration of CD4+/CD8+ T cells, as well as
activation of local microglia in the spinal cord.
Additionally,  this   drug   attenuated   MOG35–55-specific
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immune response and inhibited effector T-cell
proliferation in EAE mice123. These results suggest that
quetiapine prevents mice from MOG-induced
demyelination by its immuno-modulatory action.

In line with this suggestion, we found that
quetiapine  ameliorated  the  neuro   inflammatory
events indicated by  astrogliosis,  microglia  activation
and  increased  proinflammatory   cytokines   in   brain
of  mouse   fed   with   cuprizone-containing   diet   for
7   days,   which   induced   oligodendrocyte  decrease
but not  demyelination  (unpublished  data).  The
cuprizone-induced demyelination in mouse has been
also used as an animal model of MS. In addition,
quetiapine was shown to stimulate proliferation and
maturation of oligodendrocytes124, increase antioxidant
defenses and scavenge free radicals125. For all these
capacities, clinical trials are justified to determine the
safety, tolerability and efficacy of quetiapine in MS126.

Human studies: Although, the aforementioned in vitro
and  animal studies strongly suggest the existence of
anti-inflammatory effects of antipsychotics, human
studies on the effect of antipsychotic treatment on
inflammation and more specifically on cytokine levels
have so far given mixed results. For example, in an early
study by Maes et al.127, higher plasma IL-6 in
schizophrenic patients was lowered after treatment with
neuroleptics; whereas the same group reported no effect
of chronic treatment with clozapine on this cytokine128.
However, a recent meta-analysis60 reported that
antipsychotic treatment significantly  decreases IL-1β,
IL-6 and TGF-β,  but increase   sIL-2R   and  IL-12
levels  in  schizophrenia  patients.  A  more   recent
meta-analysis showed that antipsychotic treatment
significantly increases plasma levels of sIL-2Rand
reduces the plasma levels of IL-1β and IFN-γ129.
Coinciding with the conclusions of these meta-analyses,
a most recent human study found that first-episode
psychosis patients had significantly higher levels of IL-6,
IL-10 and TNF-α than healthy controls. After
risperidone treatment, these three cytokines and
additionally IL-4 decreased significantly130. Similarly,
aripiprazole, another atypical antipsychotic drug,
significantly reduced plasma IL-1β, IL-6, TNF-α,
sTNF-R1, IL- 12, IL-23, IL-1Ra and IL-4. Interestingly,
the high clinical efficacy of this drug was linked to a
2.7% weight loss131. This effect on body weight may help
account for inconsistent effects  of antipsychotics on
pro-inflammatory cytokine levels. For example, effects

of clozapine and olanzapine on cytokine levels are closely
linked to weight gain132. This response of cytokines to
the body weight side effect of antipsychotic drugs was
elegantly demonstrated in a recent study in which levels
of IL-1β and IL-6 decreased in the first weeks of
risperidone treatment, but increased back to baseline
levels by the end of6 months treatment, which happened
alongside a steady weight gain133.

ANTI-INFLAMMATORY TREATMENT
STRATEGIES IN SCHIZOPHRENIA

In view of the apparent involvement of
inflammation   in  schizophrenia,  the  use  of
compounds with anti-inflammatory properties has
attracted increasing  attention  in  the pharmacotherapy
of this mental disorder. Indeed, recent clinical  trials
have   provided  promising  results  of  superior
beneficial  treatment  effects  as  the  consequence   of
co-administration of standard antipsychotic drugs and
anti-inflammatory compounds, compared with
antipsychotic drugs alone. The results of some recent
trials with these compounds are summarized as follows
by focusing on two of them.

Minocycline: Minocycline is a second-generation
tetracycline that exerts anti-inflammatory and
antimicrobial effects. It has excellent brain tissue
penetration, is well tolerated and is almost completely
absorbed when taken orally. This drug has been shown
to have a distinct neuroprotective profile134. It countered
the disruptive effects of NMDA antagonist on
visuospatial memory and sensorimotor gating135,
attenuated behavioral changes and the increase of
dopamine in the frontal cortex and striatum after
administration of MK801136 and improved cognitive
disturbances  induced  by  phencyclidine,  anther
NMDA receptor antagonist137. Furthermore,
minocycline attenuated  microglial   activation   in
mouse   brains  produced  by  methamphetamine  and 3,
4-methylendioxymethamphetamine138,139. These
preliminary findings in animal studies sparked interest in
minocycline’s potential for the aid of patients with
schizophrenia. 

Of the early human studies, Miyaoka et al.140 first
reported the antipsychotic effects of minocycline in two
patients with schizophrenia, followed  by  a 4 week
open-label study with 22 schizophrenia patients.
Treatment with minocycline (adjunct to antipsychotic
medication) caused no adverse events, but produced a
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clinical improvement on PANSS (positive and negative
syndrome scale), which was maintained at a follow-up
evaluation 4 weeks after the end of minocycline
treatment141. Similarly, a double blind, randomized
placebo-controlled study by Levkovitz et al.142

demonstrated that the add-on treatment of minocycline
has a beneficial effect on negative symptoms, cognitive
functions and general outcomes in early phase patients
with schizophrenia. In a recent randomized double-
blind placebo-controlled clinical trial, minocycline
benefitted negative symptoms in early schizophrenia143.
Despite of the above positive reports, a recent update of
efficacy of anti-inflammatory agents to improve
symptoms in patients with schizophrenia concluded that
minocycline showed no significant effect on symptom
severity144. This meta-analysis, however, only included
four randomized control led trials (RCTs), but excluded
all case reports including the recent ones, which showed
that minocycline augmentation of antipsychotic
treatment significantly reduced PANSS positive subscale
scores145, improved delusion and positive symptoms146

and successfully treated persistent negative symptoms in
schizophrenia147.  In  a  more  recent case  report,
Qurashi et al.148 described two cases in a UK mental
health service where minocycline was found to be useful
and well-tolerated as an augmentation agent with
clozapine in the improvement of previously resistant
positive and negative symptoms. Furthermore, a later
meta-analysis including two of RCTs149,150 published
after the first meta-analysis, concluded that minocycline
was superior to placebo for decreasing PANSS total
scores, PANSS negative subscale scores and PANSS
general subscale scores151. In line with the above
conclusion, two more recent RCTs produced results
supporting the effectiveness of minocycline, as an
adjuvant treatment with antipsychotic drugs for treating
negative symptoms of patients with schizophrenia152,153.
In addition to significantly reducing positive and
negative  symptoms,  when  compared  with placebo,
add-on of minocycline ameliorated the gray matter
volume decrease in the mid-posterior cingulate cortex
and in the precentral gyrus shown in the patients in the
placebo  group,  suggesting  that minocycline may
protect   against   gray  matter  loss  and  modulate
fronto-temporal areas involved in the pathophysiology of
schizophrenia153. 

Non-steroidal anti-inflammatory drugs (NSAIDs):
The   drugs  in  this  class  include  the  mixed  COX-1/2

inhibitor acetylsalicylic acid (aspirin) and the selective
COX-2 inhibitor celecoxib. Here we only reviewed the
recent clinical trials with celecoxib as an add-on to
antipsychotic drugs in treating schizophrenia.

In the first clinical trial conducted in patients with
acute exacerbation of schizophrenic psychosis, celecoxib
given in conjunction with risperidone was shown to be
superior to the antipsychotic alone in improving PANSS
scores154. The same authors also reported beneficial
effects of celecoxib add-on therapy on cognitive
symptoms in schizophrenia patients155. But the
subsequent studies by other groups  reported
inconsistent results. In a study by Akhondzadeh et al.156,
the   combination   of  risperidone  and  celecoxib
showed  a  significant  superiority  over  risperidone
alone in the treatment of positive symptoms, general
psychopathology symptoms as well as PANSS total
scores. But, in a study by Rapaport et al.157, celecoxib
augmentation of continuously ill outpatient subjects
with schizophrenia did not improve clinical symptoms
or measures of disability. The authors suggested that
previous reports of the benefit of celecoxib augmentation
for subjects with an acute psychotic exacerbation cannot
be extended to continuously symptomatic outpatients
with schizophrenia. Indeed, the results of a recent RCT
showed a superior therapeutic effect in the celecoxib
group compared to placebo in the treatment of early
stage schizophrenia53. Different reasons may be
responsible for this phenomenon, such as the duration
of disease and the anti-inflammatory therapy,
antipsychotic treatment with neuroleptics, or therapeutic
problems associated with chronic inflammation53.
Although, further studies are needed before a definite
conclusion can be accepted, a recent meta-analysis
concluded that celecoxib augmentation could be a
potentially useful strategy to reduce symptom severity in
schizophrenia158. 

CONCLUSION
Schizophrenia  is a complex and heterogeneous

brain disorder. Of the environmental factors,
neuroinflammation may induce or exacerbate the
manifestations  of  the  schizophrenia at least in a
subtype of patients. Some antipsychotic drugs show
immunomodulatory effects although inconsistent results
exist. Anti-inflammatory treatment strategies have
produced promising results in clinical trials with
schizophrenia  patients. More encouraging results of
anti-inflammatory treatment on schizophrenia are
expected, as  more  efforts  are being made to search new
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approaches of add-on of anti-inflammatory compounds
to antipsychotic drugs for the treatment of this severe
mental disorder. 
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