

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 43–54, 2010.
© IFIP International Federation for Information Processing 2010

Extending the Standard Execution Model of UML for
Real-Time Systems

Abderraouf Benyahia1,2, Arnaud Cuccuru2, Safouan Taha1, François Terrier2,
Frédéric Boulanger1, and Sébastien Gérard2

1 SUPELEC Systems Sciences (E3S) Computer Science Department,
91192 Gif-Sur-Yvette cedex, France

2 CEA LIST, 91191 Gif-Sur-Yvette cedex, France
{abderraouf.benyahia,safouan.taha,frederic.boulanger}@supelec.fr,

{arnaud.cuccuru,francois.terrier,sebastien.gerard}@cea.fr

Abstract. The ongoing OMG standard on the “Semantics of a Foundational
Subset for Executable UML Models” identifies a subset of UML (called fUML,
for Foundational UML), for which it defines a general-purpose execution
model. This execution model therefore captures an executable semantics for
fUML, providing an unambiguous basis for various kinds of model-based ex-
ploitations (model transformation, code generation, analysis, simulation, de-
bugging etc.). This kind of facility is of great interest for the domain of real
time systems, where analysis of system behavior is very sensible. One may
therefore wonder if the general-purpose execution model of fUML can be used
to reflect execution semantics concerns of real-time systems (e.g., concurrency,
synchronization, and scheduling.). It would practically mean that it is possible
to leverage on this precise semantic foundation (and all the work that its defini-
tion implied) to capture the precise execution semantics of real-time systems. In
this paper, we show that this approach is not directly feasible, because of the
way concurrency and asynchronous communications are actually handled in the
fUML execution model. However, we show that introducing support for these
aspects is technically feasible and reasonable in terms of effort and we propose
lightweight modifications of the Execution model to illustrate our purpose.

Keywords: fUML, MDD, Model Simulation, Concurrent systems, Real-time
systems.

1 Introduction

Profiles are the default UML extension mechanism for tailoring UML2 to specific
application domains, from both syntactic and semantic terms. Extending UML2 syn-
tax is well achieved, with explicit stereotype definitions capturing the syntactic exten-
sions. Unfortunately, the semantic extensions (potentially implied by a profile) have
not yet reached a similar degree of formalization. They usually take the form of a
natural language description, just like the semantic description of the UML2
metamodel. The informal nature of this description leaves the door open to several
(potentially contradictory) interpretations of a given model and does not lend itself to
unambiguous model-based exploitations. This is particularly critical when considering

44 A. Benyahia et al.

complex notions such as time and concurrency, which are central issues to the design
of real-time and embedded software.

Things should however evolve with the ongoing OMG standard on the semantics
of a foundational subset for executable UML models [2]. This standard indeed defines
a formal operational semantics for a subset of UML2 called fUML (foundational
UML). The operational semantics of fUML takes the form of an executable UML
model called “Execution Model” (that is to say, a UML model defined with elements
from the fUML subset1), which is precise enough to be considered as an interpreter
for fUML models. While foundational, this subset includes non-trivial mechanisms
carrying concurrent and asynchronous execution semantics, such as active objects
(i.e., objects with their own execution thread) and asynchronous communications via
signal passing. These notions are essential when considering concurrent real-time
systems, such as in the MARTE profile [1] (Modeling and Analysis of Real-Time and
Embedded systems) and in particular in its HLAM sub-profile (High Level Applica-
tion Modeling), which provides support for designing concurrent real-time systems
with extensions inspired by the concept of real-time active object [4][5][6].

Our long term objective is to reflect timed and concurrent execution semantics as
introduced in HLAM by extending the general-purpose Execution Model of fUML.
Ideally, this extension would first rely on fUML mechanisms for concurrency and
asynchronous communications, and then add support for time. This extended Exe-
cution Model would typically provide support for model-based simulation, a design
technique that has proven useful for rapid prototyping of real-time and embedded
systems [7][8].

While the rationale for this approach sounds quite obvious, we believe that it can-
not be directly put into practice. Our main obstacle concerns the way concurrency
(i.e., active objects) and asynchronous communications (i.e., via signals) are actually
supported. While the fUML specification of Execution Model leaves the door open to
support some slightly different execution paradigms by including a few explicit se-
mantics variation points (section 8.2.2 of [2]), no key variation points are defined
regarding concurrency and asynchronous communications. Furthermore, the Execu-
tion Model does not identify an explicit entity responsible (such as scheduler) for the
management of concurrent entities. In order to properly handle these aspects, some
modifications are needed in the Execution model. The main contribution of this article
is to propose such lightweight modifications. These propositions can be considered as
a first step towards our long-term objective: reflecting the execution semantics of
real-time systems by specializing the fUML execution model.

In section 2, we start by highlighting fUML limitations. In section 3, we discuss
works related to model-based simulation of concurrent systems. We show how prin-
ciples underlying these approaches could be integrated in the standard Execution
Model of UML. In section 4 we propose a modification of the Execution Model,
which mainly consists in introducing an explicit scheduler. Section 5 then concludes
this article and sets guidelines for future research.

1 In order to break circularity, some of the fUML elements have a formal axiomatic description.

 Extending the Standard Execution Model of UML for Real-Time Systems 45

2 Limitations of fUML Regarding Support for Concurrency and
Asynchronous Communications

As explained in the introduction to this article, fUML [2] formalizes the execution
semantics of a subset of the UML2 metamodel. Particularly, this subset contains
mechanisms for the description of concurrent systems (i.e., classes can be active. See
[12], section 13.3.8 for more details). It also includes support for the specification of
asynchronous communications (i.e., Signal, SendSignalAction, SignalEvent, see [12],
section 13.12.24, 11.3.45 and 13.3.25). The semantic formalization, called Execution
Model, takes the form of a UML model specified with the fUML subset itself, simply
by considering the fact that the fUML execution engine is a particular executable
fUML model. It defines the operational procedure for the dynamic changes required
during the execution of a fUML model. In the following section, we start by provid-
ing an overview of the Execution Model. Then, we discuss limitations of the Execu-
tion Model regarding the management of concurrent executions.

2.1 Overview the fUML Execution Model

The Execution Model has been defined following the Visitor design pattern [11],
where almost each class of the Execution Model has a relationship with a class from
the fUML syntax subset (except for a package called Loci, where classes Locus, Ex-
ecutor and ExecutionFactory are not visitors, and are just used for setting up the exe-
cution engine).

Each visitor class of the Execution Model basically provides an interpretation for
the associated fUML class, and therefore explicitly captures the corresponding execu-
tion semantics. Globally, the Execution Model can be considered as the model of an
interpreter for UML models specified with the fUML subset. Figure 1 illustrates a
part of this global architecture. It represents the relationship between syntactic ele-
ments of the fUML subset (left-hand side of Figure 1) and corresponding visitors of
the Execution Model (right-hand side part of Figure 1). For example, the execution
semantics associated with the concept of Class (which is part of the fUML subset) is
defined by the class Object from the execution model.

Fig. 1. The global architecture of execution model

46 A. Benyahia et al.

It is important to notice that the Execution Model exploits the mechanisms pro-
vided by fUML for concurrency and asynchronous communications. For example,
classes ObjectActivation (which encapsulates the execution of an event dispatch loop,
enabling a given active object to react to event occurrences) and ClassifierBehavio-
rExecution (which encapsulates the concurrent execution of the classifier behavior
associated with the type of an object) are active classes, i.e., classes whose instances
have their own thread of control. In principle, the Execution Model thus explicitly
captures the concurrent aspects of fUML execution semantics. In practice, however,
the management of concurrency is buried inside the architecture of the fUML Execu-
tion Model. Regarding our preliminary objective, this is an important limitation of the
fUML Execution Model: The place where concurrency is handled in the Execution
Model must be accessible and explicit, so that it can be conveniently tailored to the
needs of particular application domains. In the two following sections, we first dis-
cuss this limitation and its relationship with the usage of Java as a concrete notation
for the description of behavioral aspects of the fUML Execution Model (i.e., mainly,
behaviors associated with operations of classes from the Execution Model). Then, we
more generally discuss the absence, in the architecture of the Execution Model, of
explicit mechanisms for scheduling and synchronizing instances of concurrent entities
(i.e., active objects).

2.2 On the Actual Java Specification of the Execution Model

UML activities are the only behavioral formalism supported by fUML. In the Execu-
tion Model, they are practically used to specify the implementations of every opera-
tion and/or classifier behaviors. However, for significant behaviors, these diagrams
quickly become large and complex and thus hard to understand. Instead of using such
complex graphical notation (or defining from scratch a new textual notation for activi-
ties), the authors of the fUML specification have used Java as a concrete textual nota-
tion for capturing behavioral aspects of the Execution Model, respecting a strict “Java
to Activities” mapping (see. Appendix A of [2] for details).

In other words, Java statements should just be considered as a concrete and concise
textual syntax for UML activities. Nevertheless, the positive side effect regarding the
choice of Java is that the Execution Model takes an executable form, which could be
used as a model interpreter for UML models respecting the fUML subset. A reference
implementation is thereby provided by Model Driven Solutions [3]. However, the
“Java to Activities” mapping (defined in Appendix A of [2], and followed for the
definition of the Execution Model) does not consider native Java threading mecha-
nisms. fUML mechanisms related to concurrency and asynchronous communications
(e.g., active objects, signal emissions, etc.) are simply depicted using syntactic con-
ventions, with no explicit manifestation of the Java Thread API. For example, a call to
the operation _send() of class ObjectActivation (depicted in the right-hand side of
Figure 1) is the Java mapping for a SendSignalAction, which normally corresponds to
an asynchronous signal emission. Therefore, an interpreter strictly conforming to the
Java implementation of the Execution Model can only interpret fUML models as
sequential Java programs (e.g., a call to _send() remains a synchronous and blocking
Java call).

 Extending the Standard Execution Model of UML for Real-Time Systems 47

To be clear, the fact that the resulting Java implementation is mono-threaded and
purely sequential is not a fundamental issue per se. Indeed, as we will see in the Re-
lated Works section, most state-of-the-art simulation tools are also sequential and
mono-threaded. However, these tools include explicit mechanisms for simulating
concurrency, usually with a well indentified entity which is responsible for triggering
the execution of the various behaviors, according to a given scheduling policy. The
real issue with the current architecture of the Execution Model is that there are no
equivalent mechanisms, and that executions obtained via the Execution Model are
purely sequential. Let us illustrate this issue with a simple example.

The example illustrated in Figure 2 describes a simple application model that we
want to simulate using the fUML Execution Model. It contains two active classes (C1
and C2) whose instances will communicate via signal exchanges (S1 and S2). The
classifier behaviors of C1 and C2 are respectively described by activities C1Behavior
and C2Behavior. C1 asynchronously sends a signal S1 to C2, and then waits for a
reception of a signal S2 from C2. On the other side, C2 waits to receive a signal s1
from C1. After the reception, it asynchronously sends a signal S2 to C1.

Fig. 2. fUML model of a simple asynchronous system

Figure 3 shows a sequence diagram of a sequential execution trace respecting the
java statements of the operational fUML Execution Model. The hypothesis for this
execution trace is that two active objects c1:C1 and c2:C2 have been created, and that
c2 has been started before c12. Lifelines appearing in the sequence diagram of Figure 3
represent instances of classes from the fUML execution model. The interactions be-
tween these lifelines show how the model specified in Figure 2 is actually interpreted
by the fUML Execution Model (in this case, all the execution is carried out in one
thread).

On the right-hand side of Figure 3, the instance of ClassifierBehaviorExecution
represents the execution of the classifier behavior of c2. Once it is started, it performs
the AcceptEventAction. From the Execution Model standpoint, It consists in registering
an EventAccepter for S1 within a list of waiting event accepters (i.e., call to operation

2 Another fundamental limitation of this sequential Java interpretation is that it is non-

deterministic. The resulting execution trace will be different if c1 is started before c2.

48 A. Benyahia et al.

register()). It captures the fact that the execution of c2 is now waiting for an occurrence
of S1. However, the execution of c2 does not actually wait for an occurrence of S1
(i.e., with the strict interpretation of the Java statements, the ClassifierBehaviorExecu-
tion is not executed on its own thread). Instead, it returns to the main activity, which
continues the execution by starting the classifier behavior of c1. The execution flow of
c2’s ClassifierBehaviorExecution will be further continued, after an explicit notifica-
tion. On the left-hand side of Figure 3, when the classifier behavior of c1 starts (i.e.,
call to execute() emitted by the ActivityExecution), it executes the SendSignalAction.
The semantics associated with the SendSignalAction is captured in the execution model
by calling the operation send() of target object c2, which in turn calls the operation
send() of ObjectActivation. It results in adding a signal instance s1 to the event pool
associated with the object activation of c2.

:ClassifierBehavior
Execution

Handles the execution of
the classifier behavior of C1

:Object

Represents c2 in the
execution model

send(s1)

:ObjectActivation

send(s1)

eventPool:
SignalInstance [*]

add(s1)

:ClassifierBehavior
Execution

Handles the execution of
the classifier behavior of C2

-Match the signal with
eventAcceptersList
-If mach found, accept s1

register(eventAccepter)

Event accepter
for s1

dispatchNextEvent

_sendArrivalSignal()

accept(s1)
send(s2)

:ActivityExecution

Main

execute()

execute()

Register is an operation
of AcceptEventAction

Accept is an operation
of AcceptEventAction

Fig. 3. Execution trace from a sequential implementation of the Execution Model

In order to notify the ClassifierBehaviorExecution of c2 that a signal is available
for dispatch (and therefore that its execution flow can potentially be continued if there
is a matching EventAccepter), a call to _send(new ArrivalSignal()) is emitted, which
in turn causes a call to dispatchNextEvent(). This operation dispatches a signal from
the event pool and matches it against the list of waiting event accepters. If an event
accepter matches, a call to the accept operation of the AcceptEventAction is performed
and the classifier behavior of c2 continues the execution by sending signal S2 to c1.
The execution of this SendSignalAction results in a call to operation send() on target
object c1, which in turn implies the sequencing of operations described above.

Beyond these technical details, it is important to notice here that this sequential
propagation of operation calls will finally result in a valid execution trace (i.e., an exe-
cution trace respecting control and data dependencies expressed between actions in the
application model being simulated). Basically, once an action execution terminates, it

 Extending the Standard Execution Model of UML for Real-Time Systems 49

will simply trigger the execution of another action that can logically be executed after
it. The problem here is that the mechanisms which determine the next action to be
scheduled is buried inside the implementation of each ActionExecution visitor class. If
we want the Execution Model to be easily customizable for the real-time domain
(which is our primary objective), we clearly need to extract this scheduling aspect from
visitor classes, and add an explicit entity that would be responsible for scheduling the
execution of actions. Once the entity which is responsible for scheduling action execu-
tions is clearly identified, it can be easily specialized to capture various execution
schemes, corresponding to various execution semantics (i.e., semantics implied by a
profile definition). Perceptive readers may wonder whether the need for an explicit
scheduler is the consequence of the sequential Java implementation.

If we make abstraction of the actual Java statements and the way they would be in-
terpreted by a Java compiler (i.e., sequential propagation of synchronous and blocking
operation calls), the classifier behavior of each active object c1 and c2 is theoretically
started asynchronously and performed on its own thread. What is important to notice
is that active objects are simply started by the Execution Model, and finish their exe-
cution once their associated classifier behavior terminates. There is neither a well
identified entity in the Execution Model describing scheduling rules, nor synchroniza-
tion primitives that could be used by the scheduler to synchronize running active
objects (e.g., operations or signal receptions that could be associated with class Object
of the Execution Model depicted in Figure 1).

This architecture is not well suited to our primary objective: Specializing the Exe-
cution Model in order to reflect concerns of the real-time domain. For this purpose,
we believe that introducing an explicit and well-identified entity responsible for
scheduling active objects and/or action executions is mandatory, along with well-
identified primitives for synchronizing and scheduling concurrent entities. Existing
solutions (discussed in the next section) in model-based simulation of concurrent
systems could inspire the modifications required by the Execution Model.

3 Related Works

In the field of Hardware Description Languages (HDLs), designers have already been
facing the issue of simulating hardware systems (which are intrinsically concurrent)
on design platforms which are typically not concurrent. SystemC [9, 10] is a represen-
tative example of solutions put into practice in this domain in order to solve this issue.
It basically consists of a set of C++ extensions and class definitions (along with a
usage methodology), and a simulation kernel for executing them. These extensions
include handling of concurrent behaviors, time sequenced operations and simulation
support. The core of SystemC is based on an event-driven simulator, where processes
are behaviors and events are synchronization points that determine when a process
must be triggered. The SystemC scheduler controls the timing, the order of process
execution and handles event notifications. It provides primitives to synchronize and
notify processes (e.g., wait() and notify() primitives). Concretely, similar mechanisms
could be easily integrated in the fUML Execution Model, by adding a scheduler and
primitives like wait() and notify() (which would be associated with class Object).

50 A. Benyahia et al.

More generally, in the field of model-based simulation of concurrent systems, ge-
neric approaches such as Ptolemy [13] and ModHel'X [14] should also be considered.
Ptolemy focuses on modeling, simulation, and design of concurrent, real-time, em-
bedded systems. This approach is based on the notion of actors which communicate
through an interface which hides their internal behaviour and is composed of ports.
Models are built from actors and relations between their ports, with a director in
charge of interpreting the relations between ports and the values available on the
ports. The director of a model gives the execution semantics of the model as the rules
used to combine the behaviors of its component actors. In fact, a director may repre-
sent a family of execution semantics and may have parameters such as a scheduling
policy. Ptolemy comes with a number of directors ranging from Synchronous Data
Flow for discrete time signal processing to Continuous Time for modeling physical
processes. It supports a Discrete Event model of computation which is similar to the
execution model of SystemC, as well as a Process Network model of computation in
which asynchronous processes are synchronized on the availability of their inputs
(contrary to CSP, producing data is never blocking, only getting data may block a
process if the data is not yet available). In Ptolemy, actors are autonomous entities
with a behavior which may be executed in its own flow of control. However, in many
models of computation, actors are activated in sequence according to a static or dy-
namic schedule. What is important to notice here is that the Director / Actor architec-
ture of Ptolemy is flexible enough to support multiple models of computation, that is
to say multiple execution semantics. Regarding the fUML Execution Model, a similar
architecture could be adopted: Active objects and/or action executions could be con-
sidered as actors, and the explicit entity responsible for scheduling their execution
could be a kind of Ptolemy director. Defining a specialization of the Execution Model
for a given application domain (i.e., explicitly capturing the execution semantics im-
plied by a profile) would therefore basically come to extending corresponding classes
in the execution model, and overloading or implementing some of their operations.

Like Ptolemy, ModHel'X defines a unique generic simulation engine to support all
MoCs. Consequently, ModHel'X is well adapted for heterogeneous systems modeling.
It adopts a model-based approach where the whole behavior is represented by a set of
blocks, ports and unidirectional lines. A snapshot-based execution engine is proposed
for interpreting this structure. As described in [14], a model execution is a sequence
of snapshots. To compute each snapshot, the algorithm provides the model with in-
puts from the environment and builds an observation of the outputs, according to its
current state. This process has a generic structure: first, choose a component to ob-
serve, then observe its behavior in response to its inputs, and propagate this observa-
tion according to the relations within the model structure. This generic algorithm for
executing models relies on such primitive operations which can be refined for each
model of computation. The semantics of these operations define the semantics of the
model of computation. Indeed, ModHel’X has a more generic execution engine and
provides a finer grain description of models of computation than Ptolemy. Concretely,
we could also get inspiration of this architecture to modify the fUML Execution
Model. A class encapsulating the snapshot-based execution engine could be integrated
in the Execution Model, and specializing the Execution Model for a given application
domain would basically come to provide particular implementations for the opera-
tions described above.

 Extending the Standard Execution Model of UML for Real-Time Systems 51

Coupling with existing and more static approaches such as TimeSquare [16] could
also be considered. TimeSquare provides an environment for modeling and analyzing
timed systems. TimeSquare supports an implementation of the Time Model intro-
duced in the UML MARTE profile and the CCSL language (Clock Constraint Speci-
fication Language). It displays possible time evolutions as waveforms generated in
the standard VCD format. These evolutions constitute a scheduling trace.

TimeSquare takes as input an UML model and a CCSL model applied to the UML
model. The CCSL model is used to specify time constraints and apply a specific be-
havioral semantics on a model. The result produced by TimeSquare is a sequence of
steps (Scheduling Map) that can be used by external tools for analysis/simulation
purposes. Concretely, coupling the fUML Execution Model would mean that a CCSL
model must be generated for a given application model, and that the generated model
reflects the time and concurrent semantics of the application domain for which a pro-
file is defined. Scheduling maps generated by TimeSquare could then be “played” by
the Execution Model. Again, modifications in the architecture of the Execution Model
would be required, and would mainly consist in adding an explicit entity responsible
for triggering executions of active objects and actions, with respect to the scheduling
map generated by TimeSquare.

4 Introducing an Explicit Scheduler in the fUML Execution
Model

In section 2, we have shown that the executions performed by the fUML Execution
Model are purely sequential. We have highlighted the absence of an explicit entity
responsible for scheduling the execution of actions. We have identified in section 3
different approaches for modeling and simulation of concurrent systems. Each ap-
proach contains an entity and primitives to control behavior executions. We propose
in this section a lightweight modification of the Execution Model following this gen-
eral idea. The goal is to break the sequential execution and provide the ability to con-
trol the start of each action execution, in a way that can be easily overloaded (so that
it is possible to cope with multiple scheduling policies). We introduce for this purpose
an explicit scheduler into the Execution model, as illustrated in Figure 4.

Fig. 4. Description of the Scheduler in fUML Execution Model

52 A. Benyahia et al.

The class Scheduler manipulates a list of ActivityNodeActivation (i.e., this class
represents the visitor class of UML::Action) depicted by the property schedulingList,
which contains the list of all actions ready to execute (i.e., an action is ready to exe-
cute if all its control and data tokens are available). Scheduler offers several opera-
tions that can be used to control executions of actions. These operations are called in
the body of start () which actually start the behavior of the scheduler. The operation
selectNextAction() determines the next action to be executed, by extracting an ele-
ment from schedulingList, according to a given scheduling policy. The operation
updateSchedulingList () determines the potential successors for the last executed
action (i.e., with respect to control and data dependencies within the executed activ-
ity) and adds them to the scheduling list.

To capture several scheduling policies that could correspond to different execution
semantics, we rely on the strategy pattern proposed by the Execution model, itself
based on the class SemanticStrategy (for more details about the strategy pattern, see
[11]). In the fUML execution model, SemanticStrategy is used to address semantic
variation points of UML, with a refinement of this class for each semantic variation
point of UML (e.g., there is a class called GetNextEventStrategy, which is introduced
to address the UML semantic variation point related to the selection of an event from
an object’s event pool). Fixing a given semantic variation point then comes to refine
the corresponding strategy class, by providing an implementation for the operation
capturing the strategy.

Following this pattern, supporting different scheduling policies amounts to refine
the class SelecNextActionStrategy (see Figure 4) for each new policy and to overload
the selectNextAction() operation to capture the underlying behavior. In our case, we
introduce the class SelecNextActionStrategy, whose operation selectNextAction() is
overloaded in order to encapsulate the behavior of one particular scheduling policy.
For example, FIFOSelectNextActionStrategy is a concrete class that implements a
simple FIFO strategy (i.e., by “FIFO”, we simply mean that actions are executed
respecting their order of appearance in a list of action activations such as sheduling-
List). In order to plug the scheduler onto the fUML execution model, we also modify
the behavior of ActivityNodeActivation in order to let the scheduler determine the next
action to be executed after a given ActivityNodeActivation finishes the execution of its
visited action. Figure 5 shows a sequence diagram of an interaction trace between the
scheduler and an action. The scheduler executes the operation selectNextAction ()
that chooses one action from its scheduling list according to a certain policy. Its im-
plementation actually consists in delegating the choice to a SelectNextActionStrategy
class (in this case, the policy is the one of FIFOSelectNextActionStrategy. Note that
the Loci class dynamically determines the various semantic strategy classes to be
used, provided it has been correctly configured before launching the execution). Then,
the scheduler triggers the execution of the selected action. The behavior of the se-
lected action is performed by the operation doAction(). The operation sendOffer()
then propagates tokens to the next actions that can logically be executed after it, but it
does not trigger anymore the execution of these actions. The scheduler indeed calls
updateSchedulingList() to add these potential successors into the scheduling list. The
next action to be executed is selected by calling selectNextAction(). This behavior is
repeated until the scheduling list becomes empty (i.e., the execution of the activity is
finished).

 Extending the Standard Execution Model of UML for Real-Time Systems 53

Fig. 5. Execution trace of scheduler interactions with action

5 Conclusion

The ongoing OMG standard on the semantics of a foundational subset (fUML) for
executable UML models defines a general-purpose execution model for a subset of
UML. This subset includes non trivial mechanisms, carrying concurrent and asyn-
chronous execution semantics (e.g., active objects, signals, etc). Our objective was to
evaluate how far the current definition of the fUML Execution Model can support
formalization of concurrent and temporal semantic aspects required for real time em-
bedded system design and analysis. As shown in the study, the current form of the
fUML execution model is not suited to this objective, mainly due to the way concur-
rency and asynchronous communications are actually handled.

We have mainly shown that the current architecture of the fUML Execution Model
suffers the lack of explicit mechanisms for manipulating and synchronizing concur-
rent entities. Existing solutions for embedded system simulation indicate that it is
possible to provide much more adapted and realistic solutions. We proposed some
concrete modifications regarding the architecture of the fUML Execution Model,
inspired by these solutions. We took care of minimizing changes in the architecture,
so that we can leverage as much as possible on the existing Execution Model (and all
the work that its definition implied). The proposed solution is mainly intended to
show that a modification of the fUML Execution Model is technically feasible and
reasonable in terms of efforts. However, further experiments are still required to vali-
date the proposed modifications. Additionally, this solution only reflects executions
by a single unit of computation (i.e., mono-processor). The case of executions onto
multiple processing units will be investigated in future works.

Another important aspect which has not been detailed in this article concerns the
simulation of time in the Execution Model, which is currently not supported. Time is
indeed considered as a semantic variation point within the fUML Specification (Sub-
clause 2.3 of [2]). Consequently, a wide variety of time models could be adopted,
including discrete or continuous time. fUML does not make any assumptions about
the sources of time information and their related mechanisms. Therefore, to support
timed execution semantics and underlying timing properties (e.g., ready time, period,
deadline, etc.), it is necessary to extend the Execution Model with both necessary

54 A. Benyahia et al.

syntactic and semantic concepts. Time is a central aspect to our work. Resolving the
concurrency issues of the fUML Execution Model by adopting solutions similar to
those proposed in the Related Works could therefore, in the same move, provide a
solution for the Time issue of the Execution Model. Ultimately, our goal is to provide
a kind of methodological and tooled framework for the definition of UML profiles,
where the semantic specializations of UML implied by a profile will take as much
considerations as syntactic specializations.

References

1. OMG. A UML profile fore MARTE: Modeling and Analysis of Real-Time Embedded sys-
tems Version 1.0. (2009)

2. OMG. Semantics of Foundational Subset for Executable UML models FTF-Beta2 (2009)
3. Model driven solution, http://portal.modeldriven.org/content/

fuml-reference-implementation-download
4. Agha, G.: Actors: a model of concurrent computation in distributed system. MIT Press,

Cambridge (1986)
5. Selic, B., Ward, P.T., McGee, G.G.: Real-Time Object-Oriented Modeling. Wiley, John &

Sons, Inc. (October 1994), ISBN-13: 9780471599173
6. Terrier, F., Fouquier, G., Bras, D., Rioux, L., Vanuxeem, P., Lanusse, A.: A real time ob-

ject model. In: International Conference on Technology of Object Oriented Languages and
Systems, TOOLS Europe 1996, Paris, France, Février (1996)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity – the Ptolemy approach. Proceedings of the IEEE, Spe-
cial Issue on Modeling and Design of Embedded Software 91(1), 127–144 (2003)

8. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP. In: 4th
IEEE International Conference on Software Engineering and Formal Methods (SEFM
2006), pp. 3–12 (2006)

9. Open SystemC Initiative. SystemC 2.0.1 Language Reference Manual (2004)
10. SystemC. Official web site of SystemC community, http://www.systemc.org/
11. Gamma, Helm, Johnson, Vlissides: Design Patterns: Elements of Resuable Object-

Oriented Software, pp. 163–174, 331–344. Addison-Wesley, Reading (1995)
12. OMG. Unified Modeling Language: Superstructure. version 2.2. formal/2009-02-02 (2009)
13. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,

Xiong, Y.: Taming heterogeneity – The Ptolemy approach. Proceedings of the IEEE, Spe-
cial Issue on Modeling and Design of Embedded Software 91(1), 127–144 (2003)

14. Boulanger, F., Hardebolle, C.: Simulation of Multi-Formalism Models with Mod-Hel’X.
In: Proceedings of ICSTW 2008, pp. 318–327. IEEE Comp. Soc., Los Alamitos (2008)

15. Executable UML/SYSML semantics. Model Driven Solutions. Final project report (No-
vember 2008)

16. André, C., Ferrero, B., Mallet, F.: TimeSquare: a Multiform Time Simulation Environ-
ment. In: Sophia Antipolis and Formal Analysis Workshop (Décembre 2008)

	Extending the Standard Execution Model of UML for Real-Time Systems
	Introduction
	Limitations of fUML Regarding Support for Concurrency and Asynchronous Communications
	Overview the fUML Execution Model
	On the Actual Java Specification of the Execution Model

	Related Works
	Introducing an Explicit Scheduler in the fUML Execution Model
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

