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Abstract—In recent years, recommendation is becoming more 
and more popular in many fields. However, there are still some 
problems, such as single point failure, lack of ability to support 
different devices and etc. To solve these problems, researches 
have been carried out using multi-agent approach but some new 
problems occur. In this paper, we draw an overview of the multi-
agent recommendation systems according to the recent study in 
this field. Through our investigation, we summarize the 
challenges that multi-agent recommendation systems face and 
come up with a general conceptual model called GMMR. To 
some extent, our work may give researchers a comprehensive 
understanding of the significance of multi-agent recommendation 
systems and provide a useful model for developers. 
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I. INTRODUCTION 

Recommendation systems (RSs), also called recommender 
systems are computer applications for recommending specific 
items according to users’ needs. And they have been used in 
many areas, such as websites, books, movies and e-commerce 
[1]. Many approaches occur during the development of RSs, 
including collaborative filtering, content-based filtering, 
knowledge-based recommendation, hybrid recommendations 
and so on [2]. Amazon uses item-to-item collaborative filtering 
method to recommend books [3]. YouTobe uses the 
combination of content-based filtering and knowledge-based 
recommendation to recommend videos to users [4]. Google 
generates its new recommendation algorithm using three 
approaches: collaborative filtering, probabilistic latent semantic 
indexing and covisitation counts [5]. However, there are some 
shortages of traditional RSs. 

 Single point failure: traditional RSs tend to use the C/S 
model to do the recommendation job. If the server 
breaks down, the whole system stops. 

 Support of different devices: traditional RSs do not 
consider much about the differences between different 
devices. 

 Combination of different algorithms: most traditional 
RSs just simply use single algorithm to do the 
recommendation jobs, whose result is not accurate 
enough sometimes. 

 Recommendation speed is slow: the performance of 
traditional RSs is not fast enough to meet users’ needs 
sometimes. 

To handle these problems, many researchers suggest using 
agent technology in RSs. Also there are many RSs focusing on 
specific domains. Even though these systems solve the 
problems that we mentioned above, some new problems occur. 

 There isn’t a general model which can handle 
recommendation jobs in different domains. 

 Lots of effort is needed when adding a new agent into 
the system.  

 These systems can not protect themselves effectively 
and recover from breaking down. 

 The speed of recommendation is still not fast enough to 
meet users’ requirements. 

From these problems, we conclude four research questions. 

Q1 How to focus on different fields in one model? 

Q2 How to improve the scalability of the system? 

Q3 How to improve the ability of self-protection and self-
healing? 

Q4 How to make recommendation faster? 

In this paper, we will study some existing frameworks of 
multi-agent systems, and summarize the ideas of each 
researcher. Then we come up with a general conceptual model 
to help solve these research questions. 

II. RELATED WORK 

The development of Internet and smart devices has led to a 
rapid change of software systems. Almost all the people want 
the applications we use to be smart and autonomous, which can 
bring us more convenience and less effort, so do RSs. 
According to the shortages of traditional RSs we mentioned 
above, many researches have been carried out using multi-
agent approach.  

A. Systems that Solve the Single Point Failure Problem 

TRUST! is a distributed multi-agent system for information 
recommendation created by Haiming Lu [6]. This system has 
many service agents which focus on the same function. If one 
agent is down, another agent with the same function can take 
its place. In this way, the whole system can avoid breaking 
down from single point failure. Nevertheless, the system is still 
lack of self-healing and self-protection ability. When all the 
agents with the same function break down, the system will stop 
working.  
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B. Systems that Support Different Devices 

Domenico Rosaci and Giuseppe created ARSEC, a multi-
agent recommender in e-commerce [7]. The architecture of 
ARSEC has a special part called the customer agent. This kind 
of agent can collect information from different users who use 
different kinds of devices. Because agents themselves have 
differences, a new agent will be added when a new kind of 
device joins the system, which can help to support different 
devices. Although this system helps solve the problem using 
multi-agent approach, the scalability of the system is still not 
that good. When we want to add a new agent into the system, 
we need to compare the differences with other customer agents 
and then set the new agent with some special features. 

C. Systems that Combine Different Algorithms Together 

Kurapati created a multi-agent TV recommender in 2007 
[8]. This system has two different parts, namely implicit and 
explicit recommender agent. They focus on different methods 
of recommendation. This mechanism makes the result more 
accurate than those with one algorithm only. That is to say, 
multi-agent approach can combine different algorithms 
together which makes it easily to be applied to other fields. 

D. Systems that Use Multi-Agent Approach 

Gil created an e-learning recommendation system in 2008 
[9], which used the multi-agent approach. After experiment, 
they found that the system can retrieve and recommend 
documents faster when testing with ACM CR categories. 
However, in the end-user satisfaction measures, the timeliness 
of the system is still not good enough to meet users’ 
satisfaction. That is to say, this multi-agent recommendation 
system is still slow, which need more improvements. The same 
problem also exists in some other multi-agent RSs including 
Implicit [10], Turist@ [11], and APRS [12]. 

In conclusion, the multi-agent approach does solve some 
problems that traditional RSs have. But there are still some 
properties need to be improved.  

III. GENERAL CONCEPTUAL MODEL 

In order to solve the problems that we mentioned above and 
combine different RSs together, we come up with a generic 
model called GMMR. 

A. Architecture 

Inspired by some famous architecture of multi-agent 
systems and the theory of RSs [13,14,15]. Also in order to 
adapt to the requirements mentioned above. We come up with a 
general model called GMMR (general conceptual model of 
multi-agent recommendation systems), whose architecture is 
shown in figure I. 

In this model, there are five major parts: user agents, meta 
agents, server agents, client agents, and blank agents. Each part 
is constituted by the same kind of physical object. That is to say, 
all the agents in the system have the same structure. But when 
we initialize the system, different functions are distributed to 
different agents.  

 

FIGURE I.  GMMR ARCHITECTURE 

1) User agent 

This agent is used to handle user inputs and present results. 
There are many kinds of user input forms, such as speech, 
handwriting, keyboard input, mouse input and etc. The first 
thing of the system is to change different input forms into 
computer text. Each agent is used to handle a kind of input. 
Also it will store information of each user when they login.  

After the process of recommendation, the related user agent 
will be used to show the recommendation result. That is to say, 
it is also used to transform computer text into different kinds of 
expression. 

2) Meta agent 

Meta agent is a kind of auxiliary agent which can help its 
server agent translate the request into some key words. That is 
to say, it can extract important information from computer text. 
For example, a user wants to have a look at the music 
recommendation result. The corresponding computer text can 
be “I want to listen to Jason Chen’s music”. Then the meta 
agent can extract the key words including, Jason Chen and 
music.  

Another use of meta agent is to decide the way to present 
the final recommendation result. This is related to the user’s 
habit and the user input form. 

3) Server agent 

This kind of agent acts as the job dispatcher in this model. 
It is in connection with all the agents in its branch and other 
server agents. 

 Connection with user agents: after transforming the 
user input into computer text, user agents will transfer 
data to their server agent first. After handling the 
problem, the server agent will gather all the 
information and return the result to related users. 

 Connection with meta agents: after getting data from 
related user agents, the server agent will firstly judge 
whether it can be used directly. If not, the server agent 
will call the meta agent to extract key words.  

 Connection with client agents: judging from the key 
words of user request. The server agent will find 
related client agents to handle the task.  
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4) Client agent 

This kind of agent record the relationship between different 
levels and do the specific recommendation job. We regard the 
server agent as the first level agent. In figure Ⅰ, we can see 
that there are four different agents in the second level, namely 
book agent, product agent, movie agent and music agent. In the 
third level, there are also many agents, among which the pop 
agent, jazz agent and blues agent are all related to the music 
agent. Different levels of agents handle different size of tasks. 
The recommendation result of an agent equals to the combined 
results of all its son agents. 

The agent structure is shown in figure II. 

 

FIGURE II.  AGENT STRUCTURE 

Each agent can be divided into three parts. The first part 
records its father agent. If it is a server agent, which means it 
has no father agent, the first part will be “null”. The second part 
is the main part of each agent, which records its basic 
information (capability, name and id), running algorithm and 
related data. The third part records all the son agents in the next 
level. If it is a leaf agent, this part will be set to “null”. Part one 
and part three will change when adding or deleting an agent. 

5) Blank agent 

There is a large number of this kind of agent in the system. 
But it doesn’t work at ordinary times. Only when one of the 
running agents is down, a blank agent will take the place of that 
agent and copy all the information at the same time. The former 
agent will erase all the data and turn into a blank agent. 

From figure I, we can see that all the agents are in pairs. 
The only difference is their addresses. The structure is shown 
in figure III. 

auxiliary
agent

major
agent

agent pair

 

FIGURE III.  STRUCTURE OF AGENT PAIR 

In each pair of agents, there is a major agent and an 
auxiliary agent. The major agent is used to communicate with 
other agents. Also it can assign tasks to its related auxiliary 
agent. When there is a running task on the major agent, it will 
assign some tasks in the waiting queue to the auxiliary agent. 
When the task is very complex, the major agent will divide the 
task into two subtasks and assign some of the subtasks to the 
auxiliary agent. If the auxiliary agent breaks down, a blank 
agent will just take its place. But if the major agent breaks 
down, the auxiliary agent will take the responsibility to 

communicate with other agents, and the blank agent will turn 
into an auxiliary agent. 

For the communication of agents, we can use the existing 
languages and protocols such as KQML [16], FIPA-ACL [17], 
ICL [13]. Or you can create your own language and protocol. 

B. Process Flow 

From the architecture we mentioned above, we present the 
elements of GMMR and their abilities. Now we will give you 
an example of music recommendation so that you can have a 
better understanding of the process flow of our model.  

The user speaks into the microphone a sentence, “I want to 
listen to some pop music”. The system will present the user 
some music that he may like. 

The process flow includes four main steps:  

1) User agents transform user input into computer text. 

The user agent which handles speech is monitoring user’s 
input. After the voice message comes, it will use the algorithm 
predefined in the the agent and transform the speech into 
computer text. Then the agent will transfer the text to related 
server agent.  

2) Meta agent extracts key words from the text. 

Server agent firstly judges whether the computer text is in 
the form of key words. In this example, the server agent gets 
the text “I want to listen to some pop music”. Obviously, there 
are not only key words, but also some other elements including 
subject, predicate and so on. Therefore, the server agent will 
transfer the message to the meta agent so that it can help the 
server extract key words. In this example, the key words are 
“music” and “pop”. After this process, the meta agent will 
return the key words to server agent. 

3) Server agent dispatches the job to different client 
agents level by level. 

After getting the key words, the server will dispatch tasks to 
different agents according to the key words. key words have 
their priorities. In this example, “music” is in the first place and 
“pop” is the next. The server agent will firstly find whether 
there is an agent named music in the second level. If so, it will 
dispatch the task to that agent and the music agent will find the 
pop agent in its subtree. If not, it will dispatch the task to all the 
agents in the second level, and the agents in this level will 
continually dispatch the task until they finally find the music 
agent or reach the leaf agent. All the leaf agents and the pop 
agent become the processing agent group. The process is 
shown in figure IV.  

4) Server agent gets the final result and present it to the 
user. 

After finding the processing agent, the related agents will 
do the recommendation task according to the information 
obtained from the user agent, and transfer the result to their 
father agents. The father agent will gather all the results from 
the son agents and transfer them to the upper level agent. This 
process will repeat until all the results reach the server agent. 
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Finally, the server agent integrates the results into the final 
result. After deciding which way to present the result by the 
meta agent, the server agent transfers the result to the related 
user agent.  

traverse each level after 
agentA’s level

start

related agentC

traverse each agent in this 
level

final related agentB
put into processing agent  

group

end
traverse

Yes

leaf agentNo

Yes

Yes
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for final related agentB

No

put into processing agent  
group

No

stop

end
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FIGURE IV.  THE PROCESS OF TRAVERSING AGENT’S SUBTREE 
FOR FINAL RELATED AGENT 

C. Advantages of GMMR 

In this part, we will present the advantages of GMMR. It 
solves the problems that multi-agent RSs have nowadays, 
which we have mentioned before. Next we will explain how 
our model deal with each research question. 

Q1: Even though agents have the same structure, different 
functions and data will be added into different agents after 
initialization. Because agents have the ability of working 
independently, different agents can focus on part of a specific 
domain. That is to say, each subtree of the server agent focus 
on a specific domain. In this way, this model can do the 
recommendation task in many fields. 

Q2: Each agent is in a different level of the system, when a 
new agent is added, we can easily find its place according to its 
functions. Also, each agent has three important parts. One is 
the pointer to its father agent, another part is a field which 
stores all its son agents. In this case, when a new agent come, 
we can easily modify different fields and find the precise 
location. That is to say, GMMR has a high level of scalability. 

Q3: Blank agents and agent pair structure in GMMR can 
help improve the system’s ability of self-protection and self-
healing. When a running agent is down, the blank agent can 
take its place, and the down agent will turn into a blank agent. 
Meanwhile, each agent in the system has a running copy which 
can reduce the whole system’s probability of breaking down. 

Q4: GMMR uses the level architecture. The deeper the 
level is, the more specific it will focus on. According to this 

architecture, the model will process it in the deepest agents 
when a task comes. These agents contain the least amount of 
related data. Hence, in this respect, GMMR can accelerate the 
recommendation speed. 

IV. REVIEW AND CONCLUSION 

With the rapid development speed of recommendation, we 
can see that traditional RSs can hardly meet our needs. Because 
of the independency, intelligence, autonomy of agent and the 
development of multi-agent systems, researchers tend to apply 
the multi-agent approach into RSs. 

Many applications and practices indicate that multi-agent 
approach can solve the problems of traditional RSs, but new 
requirements occur. We need to come up with new ways to 
solve the problems including focusing on different fields, 
scalability of the system, the ability of self-protection and self-
healing, much faster speed. 

According to these problems, we did a lot of research work 
and summarized many ideas of former researchers. Finally, we 
presented a general conceptual model called GMMR. Through 
agent’s independency, it can focus on many fields of 
recommendation without any restriction. Also, the model has a 
good scalability because of the agent’s structure. What more, 
the blank agents and the agent pairs help improve the ability of 
self-protection and self-healing. Finally, the level structure 
makes the recommendation process faster. 

To some extend, our work presents a concept of a new 
recommendation model based on multi-agent approach, which 
may give researchers in this field a little inspiration. 

V. LIMITATIONS AND FUTURE WORK 

Our model can solve the problems mentioned above to 
some degree. But some new problems appear: 

A. Data Redundancy.  

When we add a new agent into the system, data 
transformation is needed. If the data is easy to separate, we just 
move it from the father agent to the new agent. However, if the 
data is so complex that we cannot separate easily, the system 
will make a copy of the data. Therefore, there may exists some 
duplicated data in the system. 

B. Cost of Communication 

Our model has no limitation to the number of levels of 
agents. When the branch is very deep, the communication 
between agents lead to a big cost, which may be even more 
than the cost of computing on agents. 

C. Time Cost 

The structure of the agent may increase time cost of finding 
the target agent, although it can help reduce the time cost of 
finding the target agent in the server agent and avoid the system 
from becoming centralized to some extent.  

Meanwhile, there are some limitations in our work: Firstly, 
we just come up with the idea of the general model, but have 
not realized a system based on our model. Secondly, we 
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haven’t considered much about the communication among 
agents, which is an important part in the model. 

In the future, we will mainly focus on the shortages and 
limitations of this work and make our model better. 
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