

A General Conceptual Model of Recommendation
Based on Multi-Agent Approach

Xunhui Zhang, Tao Wang, Gang Yin, Xinjun Mao, Huaimin Wang
National University of Defense Technology, China

Abstract—In recent years, recommendation is becoming more
and more popular in many fields. However, there are still some
problems, such as single point failure, lack of ability to support
different devices and etc. To solve these problems, researches
have been carried out using multi-agent approach but some new
problems occur. In this paper, we draw an overview of the multi-
agent recommendation systems according to the recent study in
this field. Through our investigation, we summarize the
challenges that multi-agent recommendation systems face and
come up with a general conceptual model called GMMR. To
some extent, our work may give researchers a comprehensive
understanding of the significance of multi-agent recommendation
systems and provide a useful model for developers.

Keywords-multi-agent recommendation; RSs; GMMR

I. INTRODUCTION

Recommendation systems (RSs), also called recommender
systems are computer applications for recommending specific
items according to users’ needs. And they have been used in
many areas, such as websites, books, movies and e-commerce
[1]. Many approaches occur during the development of RSs,
including collaborative filtering, content-based filtering,
knowledge-based recommendation, hybrid recommendations
and so on [2]. Amazon uses item-to-item collaborative filtering
method to recommend books [3]. YouTobe uses the
combination of content-based filtering and knowledge-based
recommendation to recommend videos to users [4]. Google
generates its new recommendation algorithm using three
approaches: collaborative filtering, probabilistic latent semantic
indexing and covisitation counts [5]. However, there are some
shortages of traditional RSs.

 Single point failure: traditional RSs tend to use the C/S
model to do the recommendation job. If the server
breaks down, the whole system stops.

 Support of different devices: traditional RSs do not
consider much about the differences between different
devices.

 Combination of different algorithms: most traditional
RSs just simply use single algorithm to do the
recommendation jobs, whose result is not accurate
enough sometimes.

 Recommendation speed is slow: the performance of
traditional RSs is not fast enough to meet users’ needs
sometimes.

To handle these problems, many researchers suggest using
agent technology in RSs. Also there are many RSs focusing on
specific domains. Even though these systems solve the
problems that we mentioned above, some new problems occur.

 There isn’t a general model which can handle
recommendation jobs in different domains.

 Lots of effort is needed when adding a new agent into
the system.

 These systems can not protect themselves effectively
and recover from breaking down.

 The speed of recommendation is still not fast enough to
meet users’ requirements.

From these problems, we conclude four research questions.

Q1 How to focus on different fields in one model?

Q2 How to improve the scalability of the system?

Q3 How to improve the ability of self-protection and self-
healing?

Q4 How to make recommendation faster?

In this paper, we will study some existing frameworks of
multi-agent systems, and summarize the ideas of each
researcher. Then we come up with a general conceptual model
to help solve these research questions.

II. RELATED WORK

The development of Internet and smart devices has led to a
rapid change of software systems. Almost all the people want
the applications we use to be smart and autonomous, which can
bring us more convenience and less effort, so do RSs.
According to the shortages of traditional RSs we mentioned
above, many researches have been carried out using multi-
agent approach.

A. Systems that Solve the Single Point Failure Problem

TRUST! is a distributed multi-agent system for information
recommendation created by Haiming Lu [6]. This system has
many service agents which focus on the same function. If one
agent is down, another agent with the same function can take
its place. In this way, the whole system can avoid breaking
down from single point failure. Nevertheless, the system is still
lack of self-healing and self-protection ability. When all the
agents with the same function break down, the system will stop
working.

2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016)

Copyright © 2016, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 133

15

B. Systems that Support Different Devices

Domenico Rosaci and Giuseppe created ARSEC, a multi-
agent recommender in e-commerce [7]. The architecture of
ARSEC has a special part called the customer agent. This kind
of agent can collect information from different users who use
different kinds of devices. Because agents themselves have
differences, a new agent will be added when a new kind of
device joins the system, which can help to support different
devices. Although this system helps solve the problem using
multi-agent approach, the scalability of the system is still not
that good. When we want to add a new agent into the system,
we need to compare the differences with other customer agents
and then set the new agent with some special features.

C. Systems that Combine Different Algorithms Together

Kurapati created a multi-agent TV recommender in 2007
[8]. This system has two different parts, namely implicit and
explicit recommender agent. They focus on different methods
of recommendation. This mechanism makes the result more
accurate than those with one algorithm only. That is to say,
multi-agent approach can combine different algorithms
together which makes it easily to be applied to other fields.

D. Systems that Use Multi-Agent Approach

Gil created an e-learning recommendation system in 2008
[9], which used the multi-agent approach. After experiment,
they found that the system can retrieve and recommend
documents faster when testing with ACM CR categories.
However, in the end-user satisfaction measures, the timeliness
of the system is still not good enough to meet users’
satisfaction. That is to say, this multi-agent recommendation
system is still slow, which need more improvements. The same
problem also exists in some other multi-agent RSs including
Implicit [10], Turist@ [11], and APRS [12].

In conclusion, the multi-agent approach does solve some
problems that traditional RSs have. But there are still some
properties need to be improved.

III. GENERAL CONCEPTUAL MODEL

In order to solve the problems that we mentioned above and
combine different RSs together, we come up with a generic
model called GMMR.

A. Architecture

Inspired by some famous architecture of multi-agent
systems and the theory of RSs [13,14,15]. Also in order to
adapt to the requirements mentioned above. We come up with a
general model called GMMR (general conceptual model of
multi-agent recommendation systems), whose architecture is
shown in figure I.

In this model, there are five major parts: user agents, meta
agents, server agents, client agents, and blank agents. Each part
is constituted by the same kind of physical object. That is to say,
all the agents in the system have the same structure. But when
we initialize the system, different functions are distributed to
different agents.

FIGURE I. GMMR ARCHITECTURE

1) User agent

This agent is used to handle user inputs and present results.
There are many kinds of user input forms, such as speech,
handwriting, keyboard input, mouse input and etc. The first
thing of the system is to change different input forms into
computer text. Each agent is used to handle a kind of input.
Also it will store information of each user when they login.

After the process of recommendation, the related user agent
will be used to show the recommendation result. That is to say,
it is also used to transform computer text into different kinds of
expression.

2) Meta agent

Meta agent is a kind of auxiliary agent which can help its
server agent translate the request into some key words. That is
to say, it can extract important information from computer text.
For example, a user wants to have a look at the music
recommendation result. The corresponding computer text can
be “I want to listen to Jason Chen’s music”. Then the meta
agent can extract the key words including, Jason Chen and
music.

Another use of meta agent is to decide the way to present
the final recommendation result. This is related to the user’s
habit and the user input form.

3) Server agent

This kind of agent acts as the job dispatcher in this model.
It is in connection with all the agents in its branch and other
server agents.

 Connection with user agents: after transforming the
user input into computer text, user agents will transfer
data to their server agent first. After handling the
problem, the server agent will gather all the
information and return the result to related users.

 Connection with meta agents: after getting data from
related user agents, the server agent will firstly judge
whether it can be used directly. If not, the server agent
will call the meta agent to extract key words.

 Connection with client agents: judging from the key
words of user request. The server agent will find
related client agents to handle the task.

Advances in Intelligent Systems Research, volume 133

16

4) Client agent

This kind of agent record the relationship between different
levels and do the specific recommendation job. We regard the
server agent as the first level agent. In figure Ⅰ, we can see
that there are four different agents in the second level, namely
book agent, product agent, movie agent and music agent. In the
third level, there are also many agents, among which the pop
agent, jazz agent and blues agent are all related to the music
agent. Different levels of agents handle different size of tasks.
The recommendation result of an agent equals to the combined
results of all its son agents.

The agent structure is shown in figure II.

FIGURE II. AGENT STRUCTURE

Each agent can be divided into three parts. The first part
records its father agent. If it is a server agent, which means it
has no father agent, the first part will be “null”. The second part
is the main part of each agent, which records its basic
information (capability, name and id), running algorithm and
related data. The third part records all the son agents in the next
level. If it is a leaf agent, this part will be set to “null”. Part one
and part three will change when adding or deleting an agent.

5) Blank agent

There is a large number of this kind of agent in the system.
But it doesn’t work at ordinary times. Only when one of the
running agents is down, a blank agent will take the place of that
agent and copy all the information at the same time. The former
agent will erase all the data and turn into a blank agent.

From figure I, we can see that all the agents are in pairs.
The only difference is their addresses. The structure is shown
in figure III.

auxiliary
agent

major
agent

agent pair

FIGURE III. STRUCTURE OF AGENT PAIR

In each pair of agents, there is a major agent and an
auxiliary agent. The major agent is used to communicate with
other agents. Also it can assign tasks to its related auxiliary
agent. When there is a running task on the major agent, it will
assign some tasks in the waiting queue to the auxiliary agent.
When the task is very complex, the major agent will divide the
task into two subtasks and assign some of the subtasks to the
auxiliary agent. If the auxiliary agent breaks down, a blank
agent will just take its place. But if the major agent breaks
down, the auxiliary agent will take the responsibility to

communicate with other agents, and the blank agent will turn
into an auxiliary agent.

For the communication of agents, we can use the existing
languages and protocols such as KQML [16], FIPA-ACL [17],
ICL [13]. Or you can create your own language and protocol.

B. Process Flow

From the architecture we mentioned above, we present the
elements of GMMR and their abilities. Now we will give you
an example of music recommendation so that you can have a
better understanding of the process flow of our model.

The user speaks into the microphone a sentence, “I want to
listen to some pop music”. The system will present the user
some music that he may like.

The process flow includes four main steps:

1) User agents transform user input into computer text.

The user agent which handles speech is monitoring user’s
input. After the voice message comes, it will use the algorithm
predefined in the the agent and transform the speech into
computer text. Then the agent will transfer the text to related
server agent.

2) Meta agent extracts key words from the text.

Server agent firstly judges whether the computer text is in
the form of key words. In this example, the server agent gets
the text “I want to listen to some pop music”. Obviously, there
are not only key words, but also some other elements including
subject, predicate and so on. Therefore, the server agent will
transfer the message to the meta agent so that it can help the
server extract key words. In this example, the key words are
“music” and “pop”. After this process, the meta agent will
return the key words to server agent.

3) Server agent dispatches the job to different client
agents level by level.

After getting the key words, the server will dispatch tasks to
different agents according to the key words. key words have
their priorities. In this example, “music” is in the first place and
“pop” is the next. The server agent will firstly find whether
there is an agent named music in the second level. If so, it will
dispatch the task to that agent and the music agent will find the
pop agent in its subtree. If not, it will dispatch the task to all the
agents in the second level, and the agents in this level will
continually dispatch the task until they finally find the music
agent or reach the leaf agent. All the leaf agents and the pop
agent become the processing agent group. The process is
shown in figure IV.

4) Server agent gets the final result and present it to the
user.

After finding the processing agent, the related agents will
do the recommendation task according to the information
obtained from the user agent, and transfer the result to their
father agents. The father agent will gather all the results from
the son agents and transfer them to the upper level agent. This
process will repeat until all the results reach the server agent.

Advances in Intelligent Systems Research, volume 133

17

Finally, the server agent integrates the results into the final
result. After deciding which way to present the result by the
meta agent, the server agent transfers the result to the related
user agent.

traverse each level after
agentA’s level

start

related agentC

traverse each agent in this
level

final related agentB
put into processing agent

group

end
traverse

Yes

leaf agentNo

Yes

Yes

traverse agentC’s subtree
for final related agentB

No

put into processing agent
group

No

stop

end
traverse

FIGURE IV. THE PROCESS OF TRAVERSING AGENT’S SUBTREE
FOR FINAL RELATED AGENT

C. Advantages of GMMR

In this part, we will present the advantages of GMMR. It
solves the problems that multi-agent RSs have nowadays,
which we have mentioned before. Next we will explain how
our model deal with each research question.

Q1: Even though agents have the same structure, different
functions and data will be added into different agents after
initialization. Because agents have the ability of working
independently, different agents can focus on part of a specific
domain. That is to say, each subtree of the server agent focus
on a specific domain. In this way, this model can do the
recommendation task in many fields.

Q2: Each agent is in a different level of the system, when a
new agent is added, we can easily find its place according to its
functions. Also, each agent has three important parts. One is
the pointer to its father agent, another part is a field which
stores all its son agents. In this case, when a new agent come,
we can easily modify different fields and find the precise
location. That is to say, GMMR has a high level of scalability.

Q3: Blank agents and agent pair structure in GMMR can
help improve the system’s ability of self-protection and self-
healing. When a running agent is down, the blank agent can
take its place, and the down agent will turn into a blank agent.
Meanwhile, each agent in the system has a running copy which
can reduce the whole system’s probability of breaking down.

Q4: GMMR uses the level architecture. The deeper the
level is, the more specific it will focus on. According to this

architecture, the model will process it in the deepest agents
when a task comes. These agents contain the least amount of
related data. Hence, in this respect, GMMR can accelerate the
recommendation speed.

IV. REVIEW AND CONCLUSION

With the rapid development speed of recommendation, we
can see that traditional RSs can hardly meet our needs. Because
of the independency, intelligence, autonomy of agent and the
development of multi-agent systems, researchers tend to apply
the multi-agent approach into RSs.

Many applications and practices indicate that multi-agent
approach can solve the problems of traditional RSs, but new
requirements occur. We need to come up with new ways to
solve the problems including focusing on different fields,
scalability of the system, the ability of self-protection and self-
healing, much faster speed.

According to these problems, we did a lot of research work
and summarized many ideas of former researchers. Finally, we
presented a general conceptual model called GMMR. Through
agent’s independency, it can focus on many fields of
recommendation without any restriction. Also, the model has a
good scalability because of the agent’s structure. What more,
the blank agents and the agent pairs help improve the ability of
self-protection and self-healing. Finally, the level structure
makes the recommendation process faster.

To some extend, our work presents a concept of a new
recommendation model based on multi-agent approach, which
may give researchers in this field a little inspiration.

V. LIMITATIONS AND FUTURE WORK

Our model can solve the problems mentioned above to
some degree. But some new problems appear:

A. Data Redundancy.

When we add a new agent into the system, data
transformation is needed. If the data is easy to separate, we just
move it from the father agent to the new agent. However, if the
data is so complex that we cannot separate easily, the system
will make a copy of the data. Therefore, there may exists some
duplicated data in the system.

B. Cost of Communication

Our model has no limitation to the number of levels of
agents. When the branch is very deep, the communication
between agents lead to a big cost, which may be even more
than the cost of computing on agents.

C. Time Cost

The structure of the agent may increase time cost of finding
the target agent, although it can help reduce the time cost of
finding the target agent in the server agent and avoid the system
from becoming centralized to some extent.

Meanwhile, there are some limitations in our work: Firstly,
we just come up with the idea of the general model, but have
not realized a system based on our model. Secondly, we

Advances in Intelligent Systems Research, volume 133

18

haven’t considered much about the communication among
agents, which is an important part in the model.

In the future, we will mainly focus on the shortages and
limitations of this work and make our model better.

ACKNOWLEDGMENT

The research is supported by the National Natural Science
Foundation of China (Grant No.61432020,61472430,61502512)
and National Grand R&D Plan (Grant No. 2016-YFB1000805).
We would like to thank Yarong Zeng and Liqian Li for their
collaboration. We would also thank the anonymous reviewers
for providing us constructive comments and suggestions.

REFERENCES
[1] Kim M C, Chen C. A scientometric review of emerging trends and new

developments in recommendation systems[J]. Scientometrics, 2015,
104(1): 239-263.

[2] Felfernig A, Jeran M, Ninaus G, et al. Basic approaches in
recommendation systems[M]//Recommendation Systems in Software
Engineering. Springer Berlin Heidelberg, 2014: 15-37.

[3] Linden G, Smith B, York J. Amazon. com recommendations: Item-to-
item collaborative filtering[J]. Internet Computing, IEEE, 2003, 7(1): 76-
80.

[4] Davidson J, Liebald B, Liu J, et al. The YouTube video recommendation
system[C]//Proceedings of the fourth ACM conference on Recommender
systems. ACM, 2010: 293-296.

[5] Das A S, Datar M, Garg A, et al. Google news personalization: scalable
online collaborative filtering[C]//Proceedings of the 16th international
conference on World Wide Web. ACM, 2007: 271-280.

[6] Lu H M, Lu Z X, Li Y D. TRUST!-A distributed multi-agent system for
community formation and information recommendation[C]//Systems,
Man, and Cybernetics, IEEE International Conference October 07-10,
2001, 3:1734-1739.

[7] Rosaci D, Sarné G M L. A multi-agent recommender system for
supporting device adaptivity in e-commerce[J]. Journal of Intelligent
Information Systems, 2012, 38(2): 393-418.

[8] Kurapati K, Gutta S, Schaffer D, et al. A multi-agent TV
recommender[C]//Proceedings of the UM 2001 workshop
“Personalization in Future TV. 2001.

[9] Gil A B, Peñalvo F J G. Learner Course Recommendation in e-Learning
Based on Swarm Intelligence[J]. J. UCS, 2008, 14(16): 2737-2755.

[10] Birukou A, Blanzieri E, Giorgini P. Implicit: a multi-agent
recommendation system for web search[J]. Autonomous Agents and
Multi-Agent Systems, 2012, 24(1): 141-174.

[11] Batet M, Moreno A, Sánchez D, et al. Turist@: Agent-based
personalised recommendation of tourist activities[J]. Expert Systems
with Applications, 2012, 39(8): 7319-7329.

[12] Huang L, Dai L, Wei Y, et al. A personalized recommendation system
based on multi-agent[C]//Genetic and Evolutionary Computing, 2008.
WGEC'08. Second International Conference on. IEEE, 2008: 223-226.

[13] Martin D L, Cheyer A J, Moran D B. The open agent architecture: A
framework for building distributed software systems[J]. Applied
Artificial Intelligence, 1999, 13(1-2): 91-128.

[14] Case D M, DeLoach S A. Obaa++: an agent architecture for participating
in multiple groups[C]//Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2014:
1367-1368.

[15] Bradshaw J M, Dutfield S, Benoit P, et al. KAoS: Toward an industrial-
strength open agent architecture[J]. Software agents, 1997: 375-418.

[16] Finin T, Fritzson R, McKay D, et al. KQML as an agent communication
language[C]//Proceedings of the third international conference on
Information and knowledge management. ACM, 1994: 456-463.

[17] Bellifemine F, Poggi A, Rimassa G. JADE–A FIPA-compliant agent
framework[C]//Proceedings of PAAM. 1999, 99(97-108): 33.

Advances in Intelligent Systems Research, volume 133

19

