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Abstract

The dynamics of high-dimensional, nonlinear systems drive biology at all scales, from
gene regulatory networks to ecosystems. Microbial ecosystems (‘microbiomes’) exemplify such
systems due to their richness and the small length- and time-scales of complex ecological and
evolutionary dynamics. Microbes inhabit, respond to, and alter environments ranging from
the human gut to the ocean. Here, using information theory and topological data analysis [1]
(TDA), we model microbiome dynamics as motion on a potential energy-like landscape, called
the quasipotential, identifying attractor states and trajectories that characterize ecological
processes including disease progression in the human microbiome and geochemical cycling in
the oceans. Our approach allows holistic analysis and prediction of large-scale dynamics in
generalized complex systems that are difficult to reduce to their underlying interactions.

Numerous variables define the state of a microbiome, from the frequencies of microbial oper-
ational taxonomic units (OTUs) and their genetic alleles, which are decoupled due to genomic
plasticity and horizontal gene transfer [2, 3]; to environmental conditions such as temperature, pH,
and biochemical concentrations. A microbiome thus has a vast number of potential configurations.
By contrast, systemic phenotypes, such as human gut infections or aquatic algal blooms, persist
for much longer than bacterial generation time, with fewer degrees of freedom and configurations.
Whether a human host is ‘sick’ or ’healthy’ constitutes one degree of freedom with two possible
configurations, for example. Within each phenotype or phase of a periodic process, community
compositions can be diverse [4]. It is thus challenging to infer systemic phenotypes from commu-
nity structure, or to predict community dynamics associated with events such as disease and ocean
acidification.

One approach to analyzing microbiome dynamics has been to approximate the network of
underlying pairwise interactions between OTUs by calculating the inverse covariance matrix from
time series data, often as a basis for modeling population dynamics [5–7]. Due to the compositional
nature of much microbiome data, direct fitting of population dynamics models can be misleading
[8]. It is also challenging to experimentally characterize microbe-microbe interactions due to the
unculturability of many bacteria [9]. Even where pairwise interactions between OTUs could be
experimentally validated, higher-order interactions may be significant. As the number of OTUs
increases, the combinatorial explosion of potential higher-order interactions renders interaction-
based frameworks infeasible.

We adopted an alternative quasipotential landscape approach, which represents the configu-
rations of a dynamical system—here, the possible compositions of a microbiome—as coordinates
in phase space, where similar configurations are located close together. By analogy to statistical
physics, the density of observations around each point in phase space is assumed to be inversely
related to the value of a potential energy-like function, called the quasipotential. The system
dynamics are considered as stochastic motion on the resultant manifold, with topological features
corresponding to the probable configurations of the system and trajectories between them. Thus,
the landscape encodes the underlying interactions between components without explicit assump-
tions (Fig. 1A). Related approaches have been used to investigate questions in ecology [10] and
molecular biology [11, 12].

We used the TDA algorithm Mapper [13, 14] to infer the quasipotential landscapes for three
published microbial time series data sets, two human gut microbiomes—one collected from seven
cholera patients from disease through recovery [15], one from two mostly healthy adult males
[16]—and one of marine Prochlorococcus communities spanning multiple depths collected from
one site in the Atlantic Ocean (BATS) and one in the Pacific (HOT) [17]. Mapper represents
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the underlying distribution of data in a metric space as an undirected graph, where each vertex
comprises a non-exclusive subset of data points spanning a patch of phase space. An edge is drawn
between each two vertices that share at least one point (Fig. 1A), representing connectivity between
patches. As microbiome compositions are probability distributions, we used the square root of the
Jensen-Shannon divergence as a metric [18]. For specifics of inputs to Mapper used, see Methods.

We estimated the quasipotential for each vertex by calculating the k-nearest neighbors (kNN)
density [19] for each constituent data point i:

kNN(i, k) =

∑k
j dij

k
(1)

where dij is the distance between points i and j, choosing k equal to 10% of the number of samples
in each data set, rounded to the nearest integer. kNN varies inversely with density, making it a
proxy for the quasipotential. For a vertex V representing n points, we define its quasipotential as

Q(V ) =

∑n
i∈V kNN(i, k)

n2
(2)

The n2 term in the denominator compensates for the differing sizes of vertices.
We then defined basins of attraction on the landscape. We designated each vertex with lower

Q than its neighbors to be a local minimum of the quasipotential. Connected vertices tied for
minimum Q were each assigned to be a local minimum. To approximate a gradient, we converted
the undirected Mapper graph to a directed graph, with each edge pointing from the the vertex with
greater Q to the one with lower Q. For each non-minimum vertex, we found the graph distance dg
to each local minimum constrained by edge direction. We defined the basin of attraction Bx of a
minimum Vx as the set of vertices V with uniquely shortest graph distance to Vx:

V ∈ Bx if dg(V, Vx) < dg(V, Vy) (3)

for all x 6= y and Vy ∈M , where M is the set of all local minima (Fig 1B).
We found the cholera phase space to be partitioned by clinical phenotype, i.e. diarrhea or

recovery (Fig. 2A). The diarrhea region was further subdivided into two basins, 2 and 7 (Fig. 2B),
with patients (except D) following a succession of 2 to 7 during diarrhea (Fig. 2C), suggesting that
cholera presents a strong deterministic perturbation to the gut microbiome, and has a universal
‘early’ state (basin 2) and a universal ‘late’ state (basin 7) with distinct communities in these
patients. Generally, patients occupied basin 7 for longer than they did basin 2, suggesting that the
stability of the late state in a given patient influences disease duration.

To quantify stability, we calculated a temporal correlation function for each basin-patient pair
during the diarrhea phase. Given that a system occupied basin Bx at time t, we defined the
temporal correlation to be the expectation that it will still (or again) occupy basin Bx at time
t+ τ :

fx(t) =

{
1 if system is associated with basin Bx at time t
0 otherwise.

(4)

corrx(τ) = 〈fx(t+ τ)〉 (5)

for all sampled intervals of length τ , where fx(t) = 1. Where a data point is associated with
multiple basins, we weigh the association with each basin as f ′x(t) = 1

pfx(t), with p the total
number of unique basins associated with the system at time t, with the unassigned/unstable
state regarded as a single distinct basin. Monotonically decreasing correlation functions indicate
metastability; slopes become more negative with decreasing stability. We found non-monotonic
correlation functions for basin 7 in patients A, C, and E, coinciding with increased duration of
diarrhea, with patients B and F exhibiting the expected monotonicity (Fig. 2D). This indicated
that patients A, C, and E repeatedly entered and exited basin 7, and that prolonged diarrhea in
these three patients may not be due to stabilization of basin 7, but instability or inaccessibility of
alternative, healthy states.

In contrast to the cholera data set, the two healthy adult gut microbiome time series from
David et al. [16] were separated by subject (Fig. 3A). Both subjects’ microbiomes experienced
perturbations: subject A traveled from his residence in the United States to southeast Asia, twice
experiencing traveller’s diarrhea; and subject B, also based in the US, suffered an acute infection
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by Salmonella. Previous studies [16, 20] noted that, while the microbiome of A returned to its
original state after travel, recovery from Salmonella left the microbiome of B in an alternative
state. Confirming this, we found that subject A occupied the same regions of phase space before
and after travel, while subject B occupied disjoint regions before and after infection (Fig. 3B). The
regions each constituted several basins of attraction (Fig. 3C), suggesting that the clinical ‘healthy’
phenotype of an individual is a probability over multiple states.

The coarse-graining of microbiome compositions by basins intuitively suggests a notion of dy-
namic stability, defined as a stationary probability across basins between time windows. Subject
A occupied basins with stationary probability before and after travel, exhibiting dynamic stability
(Fig. 3D). Temporal correlations showed that subject A, as well as subject B before infection,
repeatedly visited the same set of basins; in contrast, subject B after infection transiently occu-
pied several basins without repetition, indicating clinical recovery without restoration of dynamic
stability (Fig. 3D).

In contrast to the human gut, the Prochlorococcus phase space was organized by gradients of
depth (Fig. 4A) and temperature (Supporting Fig. 4), indicating that, in these environments, small
changes to environmental conditions result in small changes to community structure. The phase
space possessed multiple basins of attraction (Fig 4B), with basin 4 largely representing shallow
fractions of the water column ≤ 100m; basins 2, 3, and 6 deeper fractions; and basin 1 intermediate
depths. Basin 5 represented an infrequently-occupied region sampled only by the 140m fraction at
BATS on January 27, 2004, and by the 125m fraction at HOT on January 31, 2008. As such, basin
5 possibly constitutes an alternative state for deep water fractions in mid-winter. Communities
differing in depth rarely shared compositions, and transitioned between basins, in many cases
periodically across calendar years (Fig. 4C), suggesting that some communities experienced abrupt
periodic shifts in environmental conditions due to geochemical events.

It is known that the BATS water column undergoes an annual late winter upwelling [17],
intermixing communities that otherwise inhabit different depth depths, and homogenizing envi-
ronmental conditions across depths. We predicted that mixing would drive communities at all
depths at BATS to converge on a common state, while no convergence would be observed at HOT.
Accordingly, we observed a transition to basin 1 by all depths at BATS in January of each year.
After June, depths 1-20m and 120-200m relax toward basins characteristic of shallow and deep
depth fractions, respectively, while basin 1 persists longer in intermediate depths 40-100m. By
contrast, the probability of a given depth fraction at HOT occupying any basin remains uniform
over the calendar year; the distribution is especially stationary for shallow depths (Fig. 4C). This
periodicity was also evident in periodic correlation functions for BATS, and non-periodic for HOT
(Fig. 4D).

In conclusion, our use of TDA to map the microbial quasipotential landscape revealed the role
of latent clinical and environmental variables [21], such as disease state and annual phase, in or-
ganizing microbiomes over time. The quasipotential model assumes ergodicity with symmetrical
noise weak relative to the drive of gradient descent; where perturbations are strong and the system
is kept far from metastability, the quasipotential would fail to predict the dynamics. Nolting [10]
and Abbott [22] discuss these caveats in detail. TDA inference of the quasipotential naturally
depends on the quantity and quality of data; subsampling analyses suggest that our biological
conclusions here are robust (Supplemental Material). Finally, we note that Mapper is a recently
developed method targeted at high-volume, high-dimensional data and, as such, the theoretical
limits of its robustness and usefulness regarding smaller data sets remain untested. We recom-
mend further development of topology-related methods using population dynamics simulations
with known ground truths. Regardless, we have shown topological methods to be useful for holis-
tic analysis of dynamics in complex biological systems where mechanistic details are unclear. We
expect topological methods to facilitate use of quantitative methods such as Markov models [23,
24] and critical transition theory [25–29] in predicting large-scale dynamics of microbiomes and
other biological systems.

Methods

Details of Mapper analysis
Briefly, Mapper bins data using combinations of overlapping intervals for a set of filter values.
Then, for each bin, it performs hierarchical clustering for all pairwise distances between data
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points within that bin. It creates a histogram of branch lengths using a predefined number of
bins, and uses the first empty bin in the histogram as a cutoff, separating the hierarchical tree into
single-linkage clusters. These clusters are represented as vertices in the Mapper graph.

The algorithm requires three types of inputs:

1. a pairwise distance matrix between each pair of data points;

2. the output of a set of filter functions, each of which maps each data point to a scalar value;

3. a set of hyperparameters, specifying the number of intervals for each filter function; the
percent overlap between adjacent intervals; and the number of bins used to determine a
cutoff within each combination of filter intervals.

For the filter functions used by Mapper to bin data points, we perform principal coordinate analysis
(PCoA, also known as classical multidimensional scaling) in two dimensions on the pairwise distance
matrix, and used the ranked values of principal coordinates 1 and 2 as the first and second filter
values for Mapper, following Rizvi et al. [13].

As the Mapper algorithm is relatively new, there are currently no standard protocols to optimize
the values of the hyperparameters. For our purposes, it was important that the algorithm achieved
a sufficiently high resolution in partitioning data, but also adequately represented connections
between regions of phase space. We set hyperparameter values for each data set according to the
following heuristic:

1. the largest vertex in the resultant Mapper graph should represent no more than ≈ 10% of
the total number of data points in the set;

2. the number of connected components representing only one data point should be minimized.

Table 1 lists hyperparameter values used to analyze each data set.

Data set # intervals for (rank(PCo1), rank(PCo2)) % overlap # bins
Cholera (15, 15) 70 10

Two healthy adult males (30, 30) 50 10
Prochlorococcus (20, 20) 60 10

Table 1: Hyperparameters used to generate the Mapper representation of each data set.

We wish to note that, while performing 2D PCoA on a high-dimensional dataset such as 16S
relative abundances will almost invariably lead to loss of information, the local clustering performed
by Mapper uses the original distance matrix, and thus uses all available information in inferring
local structure.

Details of basin assignment
Vertices equidistant to multiple minima were defined to be unstable regions unassigned to any
basin. Multiple connected minima were defined as belonging to the same basin. Notably, one data
point may be associated with multiple vertices and basins, or an unstable region and at least one
basin: we interpreted this to mean that the point is near a saddle point separating basins, and
as the ‘true’ coordinates of the saddle point are unknown, the data point is assigned to all such
basins and/or an unstable region with uniform weight.

Software
All analysis and visualization was performed in the open-source programming language R (http:
//cran.r-project.org). The main repository for the study can be found on GitHub, at http:
//github.com/kellylab/microbial-landscapes.

An open-source implementation of Mapper in R, TDAmapper, was used for the main analysis
and can be found at http://github.com/wkc1986/TDAmapper. This package was forked from the
original implemented by Daniel Müllner which is maintained by Paul T. Pearson and can be found
at https://github.com/paultpearson/TDAmapper. Other R packages used include cowplot,
data.table, ggplot2, ggraph, igraph, philentropy, tidygraph, and tidyverse.
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Figure 1: A. Using the Mapper algorithm to infer the quasipotential landscape of a toy ecosystem.
The mutually antagonistic interaction between species X and Y leads to denser sampling of the
phase space where either X or Y is abundant and the other is rare than in other regions; configu-
rations in which X and Y are similar in density are unstable, as small uncertainties in numerical
advantage will eventually lead to the dominance of one species over the other. This probability
density is analogous to an inverse of the quasipotential landscape. Mapper infers a ‘skeleton’ of
density from the data represented as a point cloud. This representation preserves major features
of the landscape such as the two densely-sampled clusters, representing attractor states and their
basins of attraction, separated by a sparsely-sampled unstable region. B. Identification of local
minima and basins of attraction in the Mapper graph shown in A. Data density for each vertex
is calculated as the mean kNN distance for samples associated with that vertex. The graph is
converted to a directed graph, with each edge pointing in the direction of increasing kNN. A local
minimum, highlighted in pink, is defined as a vertex that has lower kNN than all its neighbors.
Finally, the basin of attraction associated with a local minimum is defined as the set of vertices
that have uniquely shortest directed graph distance to that minimum. Non-minima vertices with
equal graph distances to multiple local minima are unassociated with any basin (grey).

7

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/584201doi: bioRxiv preprint first posted online Mar. 21, 2019; 

http://dx.doi.org/10.1101/584201


0.00

0.25

0.50

0.75

1.00

fraction
diarrhea

A

basin

2

3

4

5

6

7

9

11

NA

B

A
B

C
D

E
F

G

0 30 60 90
hour

0.00 0.25 0.50 0.75 1.00
fraction samples

C

E F G

A B C D

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0 25 50 75 100
0.0

0.5

1.0

0.0

0.5

1.0

interval (hours)

co
rr

el
at

io
n

D

Figure 2: A. Mapper representation of the combined cholera data reveals disease- and healthy-
associated neighborhoods of the phase space. Connected components of the Mapper graph repre-
senting only one sample are not shown. Disjoint regions of phase space are represented as separate
connected components. B. Partitioning of the phase space into basins of attraction. Vertices unas-
signed to any basin are colored in grey. C. Left: progression of subject compositions during the
diarrhea phase by basin of attraction, showing persistence of basin occupation over time. Y axis
and color indicate basin index, with color indexing as in B. Where a sample was associated with
multiple basins, all were included. Right: occupancy of basins during the diarrhea phase for each
subject. D. Temporal correlation function for the diarrhea phase of each subject. Lines: smoothed
empirical mean; ribbons: standard error of the mean. Values outside the range of 0 ≤ y ≤ 1
omitted.
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Figure 3: A. Mapper representation of the combined daily time series of two healthy adult human
gut microbiomes shows that the phase space is strongly partitioned by individual. Connected com-
ponents of the Mapper graph representing only one sample are not shown. B. The gut microbiome
of subject A occupies the same neighborhoods of phase space before and after perturbation, while
that of B occupies two nearly-disjoint neighborhoods. A. Basins of attraction in the phase space
spanned by two mostly healthy adult male gut microbiomes. B. Top: occupancy of basins for
different events. A similar occupancy distribution is observed for subject A for days spent in the
US pre- and post-travel, indicating reversion to a reproducible healthy state. Similarly, occupancy
distribution is similar between the two instances of diarrhea while traveling. In contrast, subject B
shows different occupancy distributions for healthy state samples pre- and post-Salmonella infec-
tion, in agreement with prior analyses suggesting that infection drove an irreversible transition to
an alternate stable state. Bottom: temporal correlation function for each basin during each event
in the ‘healthy’ phases of each subject. Lines: smoothed empirical mean; ribbons: standard error
of the mean.
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Figure 4: The combined phase space of two Prochlorococcus communities inhabiting the Atlantic
and Pacific Oceans, respectively. Connected components of the Mapper graph representing only one
sample are not shown. A. Mean depth varies continuously across the phase space. B. Partitioning
of the phase space into basins of attraction. C. Time series per site-depth fraction. Dotted lines
indicate samples during January. Colors indicate basins as in B. D. Temporal correlation functions
for each basin per site-depth fraction.
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